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Ensifer medicae strain WSM1115 foms effective nitrogen fixing symbioses with a range of annual
Medicago species and is used incommercial inoculants in Australia. WSM1115 is an aerobic, mo-
tile, Gram-negative, non-sporeforming rod. It was isolated from a nodule recovered from the root of
burr medic (Medicago polymoipha) collected on the Greek Island of Samothraki. WSM1115 hasa
broad host range for nodulation and N fixation capacity within the genus Medicago, although this
does not extendto all medic species. WSM1115 is considered saprophytically competent in moder-
ately acid soils (pH(CaCl) 5.0), but it has failed to persist at field sites where soil salinity exceeded 10
ECe (dS/m). Here we describe the features of E. medicae strain WSM1115, together with genome se-
quence information and its annotation. The 6,861,065 bp high-quality-draft genome is arranged into
7 scaffolds of 28 contigs, contains 6,789 protein-coding genes and 83 RNA-only encoding genes,
and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Ge-

nomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Introduction

The genus Medicago comprises 87 species of annu-
al and perennial legumes, including some that were
formerly recognized as Trigonella and Melilotus
species [1]. A small number of annual Medicago
species that have been domesticated are grown
extensively in the sheep-wheat zone of southern
Australia, particularly where pasture regeneration
after a cropping phase is desirable. Annual
Medicago species are grown on more than 20 M ha
[2] and are particularly valued for their contribu-
tion to farming systems, in which Medicago fix
around 25 kg of N per tonne of legume dry matter
produced [3].

Medicago are nodulated by two species of root
nodule bacteria (Ensifer medicae and Ensifer
meliloti) that are recognized as being distinct based
on their different nodulation and N: fixation

phenotypes in host interaction studies and more
detailed analyses of their genetics [4,5].

Ensifer medicae strain WSM1115 is used in Austral-
ia to produce commercial peat cultures (referred to
as Group AM inoculants) for the inoculation of sev-
eral species of annual Medicago (predominantly M.
truncatula, M. polymorpha, M. scutellata, M.
sphaerocarpus, M. murex, M. rugosa and M. orbicu-
laris). WSM1115 has been used commercially since
2002 [6], when it replaced strain WSM688.
WSM1115 was isolated from a nodule from the
roots of burr medic (Medicago polymorpha) collect-
ed by Prof. John Howieson (Murdoch University,
Australia) on the island of Samothraki, Greece.

WSM1115 was selected for use in commercial in-
oculants having demonstrated good N»-fixation ca-
pacity with the relevant medic hosts and adequate
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saprophytic competence in moderately acidic soil
(pH(CaCly) 5).

Saprophytic competence in acidic soils is a re-
quirement of strains used to inoculate Medicago
because several species (M. murex, M.
sphaerocarpus and M. polymorpha) are recom-
mended and sown into soils below pH(CaCl) 5.5, a
level that is known to limit both survival of medic
rhizobia and nodulation processes [7-10]. Useful
variation in saprophytic competence occurs be-
tween strains of medic rhizobia [9] and valuable
insights into the mechanisms that confer acidity
tolerance have been provided by studies using
strain WSM419 [11], which has been recently se-
quenced [12]. However, the complex nature of soil
adaptation means that in-situ field studies still pro-
vide the most reliable means of selecting an inocu-
lant strain and were used to select WSM1115 for
commercial use. In a cross row experiment com-
paring 15 strains on acidic sand (pH(CaCly) 5.0;
Dowerin, West Australia), the nodulation of plants
inoculated with WSM1115 was equal to or better
than that of the other strains. This translated to
better plant shoot weights, which were similar to
those of plants inoculated with WSM688 (the in-
cumbent inoculant strain at time of testing) and
48% greater when compared to former inoculant
strain CC169 (J. G. Howieson unpublished data).

The nitrogen fixation capacity (effectiveness) of
Medicago symbioses is characterized by strong in-
teractions between the strain of rhizobia and spe-
cies of Medicago [13-16]. Hence, the ability to form
effective symbiosis with the species recommended
for inoculation is an important consideration in
inoculant strain selection. WSM1115 satisfies this
requirement. In greenhouse tests it formed

effective symbiosis with 16 genotypes of Medicago
and overall produced 48% more shoot dry matter
compared to plants inoculated with WSM688, the
strain that it replaced (R.A. Ballard and N. Charman,
unpublished data).

A limitation of strain WSM1115 is its poor persis-
tence in moderately saline soils (e.g. where sum-
mer salinity levels exceed 10 ECe (dS/m)). Poor
nodulation of regenerating pasture was first noted
in 2004 during the field evaluation and domestica-
tion of the salt tolerant annual pasture legume
messina  (Melilotus  siculus  syn.  Melilotus
messanensis). Subsequent studies [17] confirmed
that although WSM1115 was able to nodulate and
form effective symbiosis with messina, it did not
persist as well as other strains (e.g. SRDI554)
through the summer months when salinity levels
increased.

Here we present a preliminary description of the
general features of Ensifer medicae strain
WSM1115 together with its genome sequence and
annotation.

Classification and features

Ensifer medicae strain WSM1115 is a motile, non-
sporulating, non-encapsulated, Gram-negative rod
in the order Rhizobiales of the class
Alphaproteobacteria. The rod-shaped form varies
in size with dimensions of approximately 0.5 um
in width and 1.0 um in length (Figure 1A). Itis fast
growing, forming colonies within 3-4 days when
grown on TY [18] or half strength Lupin Agar
(*2LA) [19] at 28°C. Colonies on ;LA are opaque,
slightly domed and moderately mucoid with
smooth margins (Figure 1B).

Figure 1. Images of Ensifer medicae strain WSM1115 using (A) scanning electron microscopy and
(B) light microscopy to show the colony morphology on a solid medium.
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Minimum Information about the Genome Se-
quence (MIGS) is provided in Table 1. Figure 2
shows the phylogenetic neighborhood of Ensifer
medicae strain WSM1115 in a 16S rRNA gene se-
quence based tree. This strain has 100% sequence

identity (1,366/1,366 bp) at the 16S rRNA se-
quence level to the fully sequenced Ensifer
medicae strain WSM419 [12] and 99% 16S rRNA
sequence (1362/1366 bp) identity to the fully se-
quenced E. meliloti Sm1021 [36].

Table 1. Classification and general features of Ensifer medicae strain WSM1115 according to
the MIGS recommendations [20]

MIGS ID

Property

Term

Evidence code

MIGS-22

MIGS-6
MIGS-15
MIGS-14

MIGS-4
MIGS-5
MIGS-4.1
MIGS-4.2
MIGS-4.3
MIGS-4.4

Current classification

Gram stain

Cell shape

Motility

Sporulation
Temperature range
Optimum temperature
Salinity

Oxygen requirement
Carbon source
Energy source
Habitat

Biotic relationship
Pathogenicity
Biosafety level
[solation
Geographic location
Time of sample collection
Latitude

Longitude

Depth

Altitude

Domain Bacteria
Phylum Proteobacteria
Class Alphaproteobacteria
Order Rhizobiales
Family Rhizobiaceae
Genus Ensifer

Species Ensifer medicae
Strain WSM1115
Negative

Rod

Motile

Non-sporulating
Mesophile

28°C

Non-halophile

Aerobic

Varied
Chemoorganotroph
Soil, root nodule, on host
Free living, symbiotic
Non-pathogenic

1

Root nodule
Samothraki, Greece
May, 1987

40.4900

25.6500

<10 cm

325 m

TAS [21]
TAS [22]
TAS [23,24]
TAS [22,25]
TAS [26,27]
TAS [28-30]
TAS [29]

IDA
IDA
IDA
NAS
NAS
NAS
NAS
IDA
NAS
NAS
IDA
IDA
IDA
TAS [31]
IDA
IDA
IDA
IDA
IDA
IDA
IDA

Evidence codes — IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a di-
rect report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly ob-
served for the living, isolated sample, but based on a generally accepted property for the spe-
cies, or anecdotal evidence). These evidence codes are from the Gene Ontology project [32].
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Ensifer melilali AKS3 (Gc01810)*

Ensifer melifati Sm1021 (Gc00059)*

Ensifar melifati SM11 (CPO01830 Gel1688)"
Ensifer meliali Mlalz-1 (Gi08913)
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Ensifer melilotl WSM1022 (GI0BS16)
—— Ensifer meliloti 4H41 (Gi0BS11)

Ensifer medicas WSM419 (Gc00590)"
Ensifer medicas WSM1369 (GIDBIOT)
Ensifer medicae WSM1115 (Gi08906)
Ensifer medicae Di28 (Gi08905)
Ensifer medicas WSM244 (Gi08916)
Enstfer medicas WSM4191 (GIDBI03)
Ensifer medicas A3217 (L39882)

Ensifer arboris LMG 14019 (Gi08822) (syn: HAMBI 15527)

71 [ Ensifer kostiense LMG 152277 (AM181748)

Ensifer chiapanecum ITTG 570 (EUZBE550)

—
0.002

Ensifer mexicanum ITTG RYT (DQ411930)

Ensifer terangae LMG 78347 (X68388)

Figure 2. Phylogenetic tree showing the relationship of Ensifer medicae WSM1115 (shown in bold print) to other
Ensifer spp. in the order Rhizobiales based on aligned sequences of the 16S rRNA gene (1,290 bp internal region).
All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using
MEGA, version 5 [33]. The tree was built using the Maximum-Likelihood method with the General Time Reversi-
ble model [34]. Bootstrap analysis [35] with 500 replicates was performed to assess the support of the clusters.
Type strains are indicated with a superscript T. Brackets after the strain name contain a DNA database accession
number and/or a GOLD ID (beginning with the prefix G) for a sequencing project registered in GOLD [32]. Pub-

lished genomes are indicated with an asterisk.
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Table 2. Compatibility of Ensifer medicae WSM1115 with various Medicago and allied genera for nodulation (Nod)

and N,-fixation (Fix)

Species Name Cultivar or line Common Name  Growth Type Nod  Fix Reference
M. polymompha  Santiago/Cavalier/Scimitar Burr Annual + + IDA
M. truncatula. Caliph/Jester Barrel Annual + + IDA
M. murex Zodiac Murex Annual + + IDA
M. sphaerocarpus ~ Orion Sphere Annual + + IDA
M. scutellata Sava/Silver/Essex Snail Annual + + IDA
M. rugosa Paraponto Gama Annual + + IDA
M. littoralis Herald/Habinger Strand Annual + Poor IDA
M. orbicularis Estes Button Annual + + [15]
M. rigiduloides Accession Pl 227850 Rigid Annual +w) - [15]
M. rigidula Accession Pl 495552 Tifton Annual +w) - [15]
M. arabica Local ecotype Spotted Annual + + [15]
M. minima Devine Woolly burr Annual + + [15]
M. sativa SARDI Ten Lucerne Perennial + + IDA
M. lupulina ‘BEBLK’ Black Perennial + + [15]
Melilotus siculus ~ Accessions SA40006 & 39909  Messina Annual + + [17]
Melilotus albus various accessions Bokhara clover Biennial + + IDA

(w) indicates nodules present were white.

IDA: Inferred from Direct Assay from the Gene Ontology project [37].

Symbiotaxonomy

Ensifer medicae strain WSM1115 forms nodules
(Nod+) and fixes N2 (Fix+) with a range of annual
and perennial Medicago species and Melilotus spe-
cies (Table 2). Levels of N fixation in combination
with Medicago littoralis is suboptimal, that species
generally forming more effective associations with
strains of Ensifer meliloti including strain RRI128
[38]. The level of N; fixation with Melilotus albus is
also noted as positive, but has been observed to
vary markedly with different plant accessions.

Genome sequencing and annotation
information

Genome project history

This organism was selected for sequencing on the
basis of its environmental and agricultural rele-
vance to issues in global carbon cycling, alterna-
tive energy production, and biogeochemical im-
portance, and is part of the Community Sequenc-
ing Program at the U.S. Department of Energy,
Joint Genome Institute (JGI) for projects of rele-
vance to agency missions. The genome project is
deposited in the Genomes OnLine Database [32]
and a high-quality-draft genome sequence in
IMG/GEBA. Sequencing, finishing and annotation
were performed by the JGI. A summary of the pro-
ject information is shown in Table 3.
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Table 3. Genome sequencing project information for Ensifer medicae strain WSM1115

MIGS ID Property Term
MIGS-31 Finishing quality Permanent high quality draft
MIGS-28 Libraries used 2x lllumina libraries; Std short PE & CLIP long PE
MIGS-29 Sequencing platforms Illumina HiSeq 2000
MIGS-31.2  Sequencing coverage 530x Illumina
MIGS-30 Assemblers with Allpaths, version 38445, Velvet 1.1.05, phrap 4.24
MIGS-32 Gene calling methods Prodigal 1.4, GenePRIMP
Genbank ID AQZC01000000
Genbank Date of Release  April 22, 2013
GOLD ID Gi08906
NCBI project ID 74391
Database: IMG-GEBA 2512875026

Project relevance

Symbiotic N, fixation, agriculture

Growth conditions and DNA isolation

Ensifer medicae strain WSM1115 was cultured to
mid logarithmic phase in 60 ml of TY rich medium
on a gyratory shaker at 28°C [39]. DNA was isolat-
ed from the cells using a CTAB (Cetyl trimethyl
ammonium bromide) bacterial genomic DNA iso-
lation method [40].

Genome sequencing and assembly

The genome of Ensifer medicae strain WSM1115
was sequenced at the Joint Genome Institute (JGI)
using Illumina [41] data. An Illumina standard
paired-end library with a minimum insert size of
270 bp was used to generate 23,080,558 reads
totaling 3,462 Mbp and an Illumina CLIP paired-
end library with an average insert size of 9,584 +
2,493 bp was used to generate 2,163,668 reads
totaling 324 Mbp of [llumina data (unpublished,
Feng Chen).

All general aspects of library construction and
sequencing performed at the JGI can be found at
the JGI user home [40]. The initial draft assembly
contained 57 contigs in 11 scaffolds. The initial
draft data was assembled with Allpaths, version
38445, and the consensus was computationally
shredded into 10 Kbp overlapping fake reads
(shreds). The Illumina draft data was also as-
sembled with Velvet, version 1.1.05 [42], and the
consensus sequences were computationally
shredded into 1.5 Kbp overlapping fake reads

(shreds). The Illumina draft data was assembled
again with Velvet using the shreds from the first
Velvet assembly to guide the next assembly. The
consensus from the second VELVET assembly
was shredded into 1.5 Kbp overlapping fake
reads. The fake reads from the Allpaths assembly
and both Velvet assemblies and a subset of the
[llumina CLIP paired-end reads were assembled
using parallel phrap, version 4.24 (High Perfor-
mance Software, LLC). Possible mis-assemblies
were corrected with manual editing in Consed
[43-45]. Gap closure was accomplished using re-
peat resolution software (Wei Gu, unpublished),
and sequencing of bridging PCR fragments. The
estimated total size of the genome is 6.9 Mbp and
the final assembly is based on 3,654 Mbp of
[llumina draft data, which provides an average
530x coverage of the genome.

Genome annotation

Genes were identified using Prodigal [46] as part
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual
curation using the JGI GenePRIMP pipeline [47].
The predicted CDSs were translated and used to
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database,
UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and
InterPro databases. These data sources were
combined to assert a product description for each
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predicted protein. Non-coding genes and miscel-
laneous features were predicted using tRNAscan-
SE [48], RNAMMer [49], Rfam [50], TMHMM [51],
and SignalP [52]. Additional gene prediction anal-
yses and functional annotation were performed
within the Integrated Microbial Genomes (IMG-
ER) platform [53].

Genome properties

The genome is 6,861,065 nucleotides with 61.16%
GC content (Table 4) and comprised of 7 scaffolds
(Figures 3a,3b,3c,3d,3e,3f and Figure 3g) From a
total of 6,872 genes, 6,789 were protein encoding
and 83 RNA only encoding genes. The majority of
genes (76.25%) were assigned a putative function
whilst the remaining genes were annotated as hy-
pothetical. The distribution of genes into COGs
functional categories is presented in Table 5.

Table 4. Genome Statistics for Ensifer medicae strain WSM1115

Attribute

Value % of Total

Genome size (bp)

DNA coding region (bp)
DNA G+C content (bp)
Number of scaffolds
Number of contigs
Total gene

RNA genes

rRNA operons

Protein-coding genes

Genes with function prediction

Genes assigned to COGs

Genes assigned Pfam domains

Genes with signal peptides

Genes coding membrane proteins

CRISPR repeats

6,861,065 100.00
5,918,651 86.26
4,196,062 61.16
7
28
6,872 100.00
83 1.21
3 0.04
6,789 98.79
5,240 76.25
5,168 75.20
5,424 78.93
571 8.31
1,483 21.58
0
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Figure 3a. Graphical maps of SinmedDRAFT_Scaffold1.2 of the Ensifer
medicae strain WSM1115 genome sequence. From bottom to the top of
each scaffold: Genes on forward strand (color by COG categories as de-
noted by the IMG platform), Genes on reverse strand (color by COG cat-
egories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC

content, GC skew.
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Figure 3b. Graphical maps of SinmedDRAFT_Scaffold2.1 of the Ensifer
medicae strain WSM1115 genome sequence. From bottom to the top of
each scaffold: Genes on forward strand (color by COG categories as
denoted by the IMG platform), Genes on reverse strand (color by COG
categories), RNA genes (tRNAs green, sRNAs red, other RNAs black),
GC content, GC skew.
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Figure 3c. Graphical maps of SinmedDRAFT_Scaffold5.3 of the Ensifer
medicae strain WSM1115 genome sequence. From bottom to the top
of each scaffold: Genes on forward strand (colorby COG categories as
denoted by the IMG platform), Genes on reverse strand (color by COG
categories), RNA genes (tRNAs green, sSRNAs red, other RNAs black),
GC content, GC skew.
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Figure 3d. Graphical maps of SinmedDRAFT_Scaffold3.7 of the
Ensifer medicae strain WSM1115 genome sequence. From bottom
to the top of each scaffold: Genes on forward strand (colorby COG
categories as denoted by the IMG platform), Genes on reverse
strand (color by COG categories), RNA genes (tRNAs green, sRNAs
red, other RNAs black), GC content, GC skew.

Figure 3e. Graphical maps of SinmedDRAFT_Scaffold6.5 of the
Ensifer medicae strain WSM1115 genome sequence. From bottom
to the top of each scaffold: Genes on forward strand (color by COG
categories as denoted by the IMG platform), Genes on reverse
strand (color by COG categories), RNA genes (tRNAs green, sRNAs
red, other RNAs black), GC content, GC skew.
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Figure 3f. Graphical maps of SinmedDRAFT_Scaffold4.6 of the
Ensifer medicae strain WSM1115 genome sequence. From bottom
to the top of each scaffold: Genes on forward strand (color by COG
categories as denoted by the IMG platform), Genes on reverse
strand (color by COG categories), RNA genes (tRNAs green, sRNAs
red, other RNAs black), GC content, GC skew.
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Table 5. Number of protein coding genes of Ensifer medicae strain WSM1115 associated

=)

Figure 3g. Graphical maps of SinmedDRAFT_Scaffold7.4 of the Ensifer
medicae strain WSM1115 genome sequence. From bottom to the top
of each scaffold: Genes on forward strand (color by COG categories
as denoted by the IMG platform), Genes on reverse strand (color by
COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs
black), GC content, GC skew.

with the general COG functional categories.

Code Value %age COG Category
J 186 3.23 Translation, ribosomal structure and biogenesis
A 0  0.00 RNA processing and modification
K 527 9.16 Transcription
L 269 4.68 Replication, recombination and repair
B 3 0.05 Chromatin structure and dynamics
D 43 0.75 Cell cycle control, mitosis and meiosis
Y 0  0.00 Nuclear structure
\ 55 0.96 Defense mechanisms
T 244 4.24 Signal transduction mechanisms
M 272 4.73  Cell wall/membrane biogenesis
N 68 1.18  Cell motility
z 0  0.00 Cytoskeleton
w 1 0.02  Extracellular structures
U 112 1.95 Intracellular trafficking and secretion
@) 195 3.39 Posttranslational modification, protein turnover, chaperones
C 335 5.82 Energy production conversion
G 575 10.00 Carbohydrate transport and metabolism
E 609 10.59 Amino acid transport metabolism
F 106 1.84 Nucleotide transport and metabolism
H 194 3.37 Coenzyme transport and metabolism
I 205 3.56 Lipidtransport and metabolism
P 286  4.97 Inorganic ion transport and metabolism
Q 164 2.85 Secondary metabolite biosynthesis, transport and catabolism
R 726  12.62 General function prediction only
S 577 10.03 Function unknown
- 1,704 24.80 Not in COGS
- 5,752 Total
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