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Abstract

Homology models of the E. coli and T. maritima chemotaxis protein CheW were constructed to assess the quality of
structural predictions and their applicability in chemotaxis research: i) a model of E. coli CheW was constructed using the T.
maritima CheW NMR structure as a template, and ii) a model of T. maritima CheW was constructed using the E. coli CheW
NMR structure as a template. The conformational space accessible to the homology models and to the NMR structures was
investigated using molecular dynamics and Monte Carlo simulations. The results show that even though static homology
models of CheW may be partially structurally different from their corresponding experimentally determined structures, the
conformational space they can access through their dynamic variations can be similar, for specific regions of the protein, to
that of the experimental NMR structures. When CheW homology models are allowed to explore their local accessible
conformational space, modeling can provide a rational path to predicting CheW interactions with the MCP and CheA
proteins of the chemotaxis complex. Homology models of CheW (and potentially, of other chemotaxis proteins) should be
seen as snapshots of an otherwise larger ensemble of accessible conformational space.
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Introduction

Bacterial chemotaxis is widely used as a model to study signal

transduction in biological systems. The core signaling complex in

chemotaxis consists of chemoreceptors and the histidine kinase,

CheA, that are linked by the coupling protein, CheW. Chemo-

receptors detect various extracellular and intracellular stimuli and

modulate CheA activity, which transduces the signals to the

flagellar apparatus via its cognate response regulator, CheY [1],

[2]. In many organisms, the signaling complex assembles into

organized arrays at the cell poles, where chemoreceptors

cooperatively regulate kinase activity [3], [4]. This high-order

structure is critical for signal amplification, the remarkable

sensitivity of the system, and its precise adaptation [5], [6].

Although the general concepts involved in the chemotaxis

pathway are understood, the details of the molecular mechanisms

are still a matter of intensive research [7], [8] and an atomic

description and complete molecular analysis of the chemotaxis

components is fundamental to address this challenging topic [9].

Indeed, studying a large, multi-protein complex requires the use

of more than one structural biology technique. The complex is too

large to be studied with a single X-ray crystal structure or NMR

ensemble. Cryo-electron tomography has been used recently to

obtain low resolution structures of this complex. The electron

density maps were used for low-resolution ‘‘docking’’ of previously

experimentally obtained X-ray and/or NMR structures, providing

an overview of the complex in its entirety [10], [11]. Additional

approaches, such as computational modeling, have been used to

explore such low-resolution complex models [12]. While coarse-

grained modeling techniques can be used to understand the

arrangement of basic elements of the complex, atomic resolution is

necessary for understanding the molecular mechanism of signal

transduction.

However, the structural knowledge of the chemotaxis signaling

complex at the atomic level is incomplete and available mostly for

two model organisms: Thermotoga maritima, a model organism for

protein crystallography, and Escherichia coli, a model organism for

chemotaxis [13], [14]. Other model organisms for chemotaxis,

such as Rhodobacter sphaeroides and Bacillus subtilis [15], [16], still do

not have resolved three-dimensional structures available for their

chemotaxis signaling complexes. This is in sharp contrast with the

large quantity of sequences known for chemotaxis proteins [17];

there are 3,738 CheW protein sequences from draft and complete

genomes in the Microbial Signal Transduction (MiST2) database

as of August 2012 [18]. To translate this wealth of sequence data

into structural knowledge, it becomes necessary to use in silico

approaches to build molecular models. For example, homology

models of CheW proteins from the human pathogen Borrelia

burgdorferi have been built recently using the NMR structure of T.

maritima CheW as a template [19].

Homology modeling has been used extensively in a wide variety

of applications, including analyzing ligand binding sites [20], [21],

substrate specificity [22], docking and scoring involved in rational
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drug design [23], generating ensembles for docking [24],

generating and analyzing binding sites for protein-protein

interactions [25], as well as providing starting models in X-ray

crystallography [26] and NMR spectroscopy [27]. In homology

modeling, the higher the sequence identity between the protein

sequence to be modeled (the target), and the protein template, the

higher the quality of the model [28]. Sequence identity levels of

less than ,30% between the template and the target proteins often

results in poor quality models. Thus, proteins in this range of

sequence identity are often referred to as being in the ‘‘Twilight

Zone’’ of homology modeling [29]. This is the case for CheW,

where functional homologs may exhibit very low sequence identity

[30]. CheW also shares a similar fold with the P5 domain of the

CheA kinase, while also having low sequence identity with this

domain. This is particularly interesting because these two protein

structures have been proposed to bind to each other and interact

in a similar fashion [10], [11].

It is therefore very important for current and future structural

studies to quantify the level of confidence one can have in

homology models of CheW, a protein with the lowest sequence

identity among components of the signaling complex. The present

work addresses this question by assessing the quality of structural

predictions and the extent to which they can explain and

rationalize the function of the corresponding proteins.

Materials and Methods

Bioinformatics
CheW sequences were retrieved from complete genomes in the

August 2012 release of the MiST2 database [18]. The sequences

were then pruned using the CheW domain definition from the

Pfam [31] model PF01584 with the HMMER3 software [32] and

2,240 sequences with a single hit to the Pfam model were selected.

A multiple sequence alignment was generated using linsi from the

MAFFT package [33]. Sequences with 98% identity were deleted

to avoid redundancy. The final dataset contained 1,742 sequences

that were re-aligned.

Homology Modeling
For the modeling of E. coli CheW, the sequence was obtained

from the UniProt database (Entry ID: P0A964) [34], and modeled

based on the T. maritima CheW structure as the template obtained

from the Protein Data Bank [35] (PDB ID: 1K0S) [14]. Similarly,

the T. maritima CheW protein was modeled from its sequence

(UniProt Entry ID: Q56311) using the E. coli CheW structure as

the template (PDB ID: 2HO9) [15]. The first model in the NMR

structures was used as a template for the homology modeling. The

program MOE, version 2010 (Chemical Computing Group, Inc.,

Montreal, Quebec, Canada), was used to align the sequences of

CheW for E. coli and T. maritima against each other using the

BLOSUM62 substitution matrix, with a gap start penalty value of

7 and a gap extension penalty value of 1. This sequence alignment

is very close to that obtained from the multiple sequence alignment

as shown in Supporting Information (Figure S1 in File S1), which

reveals that multiple sequence alignment-based and pairwise E. coli

vs. T. maritima CheW alignments produce nearly identical results.

Twenty homology models (i.e. the same number of models that in

the NMR structures) were built for both the E. coli and T. maritima

CheW proteins. The C-terminal and N-terminal outgap modeling

and automatic disulfide bond detection options were enabled in

MOE. The models generated were scored based on Coulomb and

Generalized Born interaction energies [36], and the top scoring

homology model was selected for molecular dynamics and Monte-

Carlo simulations.

Molecular Dynamics Simulations
The dynamics of the selected CheW homology models was

investigated using all-atom molecular dynamics (MD) simulations,

including the top scoring homology model generated for E. coli and

T. maritima CheW. In addition, the dynamics of the first NMR

structure (which is also the most thermodynamically favorable) of

the PDB entries for the corresponding proteins (1K0S and 2HO9)

was also simulated. Each protein was solvated using periodic

boundary conditions with 8,067 TIP3P water molecules [37], [38].

The molecular dynamics program NAMD2 version 2.7 [38] was

used with the CHARMM22 all-atom force field at a simulated

temperature of 300 K. The integration step was set to 2 fs and all

of the distances in the system involving hydrogen atoms were

constrained to equilibrium values. All simulated systems were

initially energy minimized using the conjugate gradient algorithm

for 2,000 steps. After initial energy minimization, the systems were

gradually heated in an equilibration procedure from 100 K to

300 K, in incremental steps of 50 K for 100 ps at a time, for a

total of 500 ps. This was followed by a production run of 50 ns

(Supplementary Information, Figure S2 in File S1).

Monte Carlo Simulations
The same systems that were used in the MD simulations were

used in Monte-Carlo simulations using the LBMC method [39].

All simulations were run using an equilibration phase of 36108

Monte Carlo MC steps, followed by a total of 36109 MC steps

(Supplementary Information; Figure S2 in File S1). The simulation

temperature was chosen to be slightly below the unfolding

temperature, based on 13 short simulations of 36108 MC steps,

i.e. of kBT/e= 0.7, where e is the depth of the Gō potential [40],

[41]. Frames were saved every 105 MC steps. Trial moves

consisted of swapping three consecutive peptide planes per step

and/or changing the corresponding Y angles [39] with an

acceptance rate of approximately 20–25%; setting the fraction of

local moves to 10% and the fraction of Y-only moves to 30%.

RMSDs were calculated using the same numbers of residues as

with the MD simulations (above), and for the LBMC ensembles,

Figure 1. Histogram of the pairwise sequence identities for
amongst 1,742 non-redundant CheW sequences. The pairwise
identity Iij between the sequences i and j was calculated for
i~1,2,3, . . . ,1741 and j~iz1,iz2, . . . ,1742. All Iij values were binned
in 1% bins and displayed in the histogram format.
doi:10.1371/journal.pone.0070705.g001

Homology Modeling of CheW
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33,000 structures were generated in the molecular dynamics

simulations of the selected homology model and NMR model.

Sequence and Structural Similarities
Sequence similarity was measured and mapped to the E. coli

NMR structure with the MultiSeq tool [42] of the VMD package

[43] using the BLOSUM60 similarity matrix. The RMSD (root-

mean-square deviation) per residue between two structures as a

measure of structural similarity were calculated using a custom

script for VMD and included all heavy atoms for each residue.

The overall similarities and differences between two given

structures were quantified by calculating RMSD between these

structures. Three different RMSDs were calculated that focus on

different structural subsets of CheW: i) using the backbone heavy

atoms of all residues, ii) using the backbone heavy atoms of only

the ‘‘protein core’’, i.e. excluding residues 1–16 and 158–167 in

the E. coli protein, or residues 1–9 and 148–151 in the T. maritima

protein, and iii) using only the backbone heavy atoms of only the

a/b consensus residues, i.e.; residues having either a a-helix or b-

pleated sheet structure in all 20 sub-structures of the NMR

models. For the E. coli protein, this included residues 17–19, 22–

24, 27–30, 36–39, 57–61, 64–69, 87–93, 96–102, 104–105, 109–

111, 133–135, 142–144, and 154–160 (57 residues, or 34.1%, out

of the total 167 residues in the protein). For the T. maritima protein,

the residues included were 12–17, 22–26, 30–34, 51–55, 58–63,

65–69, 80–84, 92–95, 97–103, 127, 132, 134–135, and 139–147

(61 residues, or 40.4%, out of the total 167 residues in the protein).

RMSDs were calculated between all 25,000 structures generated

in the molecular dynamics simulations of the selected homology

model, and all 25,000 structures generated in the molecular

dynamics simulations of the selected NMR model.

Results

CheW Protein Sequences are very Diverse Despite the
Conserved Function

Pairwise comparisons between 1,742 non-redundant CheW

protein sequences from public databases indicate that most

sequences exhibit less than 20% identity to each other (Figure 1),

thus being in the ‘‘Twilight Zone’’ described above and presenting

a challenge for homology modeling. The bimodal distribution

observed in Figure 1 is attributed to the presence of three major

classes of chemotaxis system: flagellar (F), Type IV pili (Tfp) and

alternative cellular function (Acf) [17]. Sequences from flagellar

systems are substantially different from Tfp and Acf sequences,

and Tfp and Acf are also different from each other. The lowest

identity peak shows sequences from two given classes compared to

a third class while the peak with higher identity is related to

comparisons between sequences from the same classes.

Homology models of E. coli CheW were built using the NMR

structure of T. maritima CheW (PDB code: 1K0S) as a template.

Similarly, homology models of T. maritima CheW were built using

the E. coli NMR structure as a template (PDB code: 2HO9). The

residue identity between the sequences of these two proteins is

25.8%. The sequence similarity score per residue is mapped to the

E. coli CheW NMR structure (Figure 2.A.). It is a paradigm in

molecular evolution that protein regions of biological importance

tend to maintain amino acid conservation in a certain position

over large evolutionary distances. This does not seem to be clearly

the case for the CheW protein. Despite its crucial role as a scaffold

protein in chemotaxis, CheW sequences from T. maritima and E.

coli show no spatial co-localization of conserved residues in the 3D

structure (Figure 2.A.). This intrinsic characteristic is an additional

challenge to make biologically relevant models of CheW proteins.

Static Homology Models of Individual CheW Proteins are
Structurally Different from their Experimental Target

The biological significance of the homology model is analyzed

through the calculated RMSD per residue between the top scoring

homology model (i.e. the model that would be identified as the

‘‘best model’’ in fully automated homology modeling) and the first

structure of the NMR ensemble of each organism (i.e. the

experimental structure that would be visualized by most protein

structure rendering software). The results are mapped respectively

to the E. coli and T. maritima NMR structures (Figure 2.B.). As a

general trend, residues belonging to the hydrophobic core of the

protein are accurately modeled despite the low sequence similarity

in the region (Figure 2.A.). In contrast, residues further from the

center show low positional accuracy, despite being part of

secondary structure elements considered as ‘‘medium resolution’’

(atomic RMSDs of 0.57 Å and 1.06 Å for backbone and heavy

atoms, respectively for T. maritima) and ‘‘high resolution’’ (atomic

RMSDs of 0.49 Å and 0.80 Å for backbone and heavy atoms,

respectively for the E. coli protein) ‘‘structured elements’’ in the

NMR structures. This could be due the structural alignment by a

least squares fit method used here. However, residues located on

the hydrophobic surface formed by the b-strands 1, 2, 3, 6 and 8

(top of the structures in Figure 2) present lower RMSDs per

Figure 2. Mapping of sequence and structural similarity into the CheW structure. A. Sequence similarity between E. coli CheW and T.
maritima CheW (BLOSUM60) mapped to E. coli NMR structure. B. To measure structure similarity we measure the RMSD per residue between the
selected homology model and the NMR structure of E. coli (left) and T. maritima (right).
doi:10.1371/journal.pone.0070705.g002

Homology Modeling of CheW
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residue than the residues on the a-helix 1 and 2 and surrounding

structural elements (bottom of the structures in Figure 2).

Interestingly, multiple experiments suggest that same hydrophobic

surface to be involved in MCP binding (Table S1 in File S1 and

Figure S3 in File S1). On the other hand, the region with residues

interacting with the kinase, formed by b3–b4 loop and b-strands 4

and 5 (right side of the structures in Figure 2), shows a large

disparity between the NMR structure and the homology model in

CheW proteins from both organisms.

Ensembles of Static CheW Homology Models also Exhibit
Structural Differences with their Experimental Targets

The homology models are structurally closer to their template

structure than to their target structures. Comparison of the

RMSDs calculated between the ensemble of 20 homology models

and the ensemble of 20 NMR structures (Figure 3) exhibit

relatively large values, up to 6.5 Å for E. coli and up to 6 Å for

T. maritima proteins, suggesting that in the case of E. coli homology

models, CheW is further away from the NMR model than in the

case of T. maritima. In contrast, the RMSD values between the

Figure 3. Comparison of the RMSDs between 20 homology models and 20 NMR structures. Prior to the RMSD calculation of each pair, the
structures were aligned, taking into consideration the backbone atoms of the residues that can be aligned without gap in the protein cheW from E.
coli and T. maritima pairwise alignment. The selected residues for E. coli are: 7 to 72, 74 to 120, 123 to 151, and 154 to 161, while for T. maritima, all
residues were included except 151. The RMSD values calculated for the same set of residues used in the alignment were calculated using the measure
RMSD function of VMD.
doi:10.1371/journal.pone.0070705.g003

Homology Modeling of CheW
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experimental static NMR sub-structures are no larger than 4 Å for

both E. coli and T. maritima proteins. Molecular dynamics and

Monte Carlo simulations of specific homology models and NMR

structures (see Materials and Methods) sample structural variations

that are thermodynamically accessible at room temperature.

RMSD values between the 50,000 structures obtained by MD

simulation based on NMR and homology models were calculated

as described in the Materials and Methods section. The results are

summarized in Tables 1 & 2, and, in the case of the a/b consensus

residues, displayed on Figure 4. The ‘‘all residue’’ RMSD values

are high: 9.1 Å for E. coli and 6.8 Å for T. maritima (Tables 1 & 2).

However, for ‘‘residues 17–157’’ (core structural elements of the

proteins), RMSD values are lower and they are further lowered for

the a/b consensus residues ranging between 3.0 Å for E. coli and

4.4 Å for T. maritima proteins. This indicates that about half to

two-thirds of the relatively high overall RMSD difference between

the homology model and NMR structures is mostly due to

Figure 4. RMSD Similarity Matrices. RMSD matrices comparing the similarity of each point of the homology-modeled trajectories with each point
of the NMR trajectories for the a/b consensus regions. The top two matrices are for the MD simulations, and the bottom two are for the LBMC
simulations. The small green dots in each graph indicate the lowest RMSD values.
doi:10.1371/journal.pone.0070705.g004

Table 1. RMSD values (Å) for MD simulation trajectories, from Figure 4.

RMSD vs. NMR
E. coli CheW
All Residues

E. coli CheW
Res. 17–157
Only

E. coli CheW
a/b Consensus
Residues Only

T. maritima CheW
All Residues

T. maritima CheW
Residues
10–147 Only

T. maritima CheW
a/b Consensus
Residues Only

Starting value 9.1 6.2 3.0 6.8 5.8 4.4

Lowest value 5.2 3.0 0.8 3.4 2.8 1.5

Highest value 10.4 6.3 3.4 6.0 5.1 2.7

Average value 8.5 5.3 2.1 5.3 4.5 2.4

doi:10.1371/journal.pone.0070705.t001

Homology Modeling of CheW
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differences in the terminal flexible regions of the protein, with the

structural core being better modeled by the homology approach.
Conformational Sampling of the CheW Homology
Models Reduces their Difference with Experimental
Targets

Molecular dynamics and Monte Carlo trajectories sample

structural variations of the starting NMR and homology modeled

structures that can be much closer to each other than the static

starting models are to each other: as low as 0.8 Å (for E. coli) and

1.5 Å (for T. maritima) for the a/b consensus residues (Table 1).

Superimposition of the corresponding structures shows that the

core structures are highly similar in NMR and homology modeled

trajectories (Figure 5). Yet there is very little overlap seen in the N-

terminal and C-terminal regions as well as in some of the internal

loops. Significant differences are also visible in the b3–b4 loop

(Loop 1) located near the top of each structure in Figure 5

(corresponding to residues 42–56 in E. coli and residues 37–49 in

T. maritima proteins).

Figure 6 shows the distributions of RMSD values between the

structures in the NMR and homology model simulations (as shown

in Figure 2 for the a/b consensus residues). In all of the cases

represented in Figure 6, the distribution representing the 20

homology models vs. each other (blue) consistently exhibit the

lowest range of RMSD values, indicating that they are relatively

structurally close to each other. The RMSD range of the 20 NMR

structures vs. each other (green) consistently exhibit RMSD values

shifted toward higher values than the homology models, indicating

that the NMR structures collectively describe more configurational

space than the homology models. This configurational space is

different when calculating RMSDs between the homology models

and the NMR structures (red). As shown in Supplementary

Information (Table S1 in File S1) and described above, the NMR

and homology models are closer to each other in the case of the

core residues than when comparing all residues, and further so in

the case of the a/b consensus residues. The purple and cyan

distributions show that the range of conformations sampled in

molecular dynamics and LBMC simulations are slightly different

in the case of simulations of the selected NMR model and of the

selected homology model. Importantly, the red distribution in

Figure 6.E. shows that, in the case of the MD simulation of the E.

coli homology model and of the E. coli NMR structure, the

configurational space sampled is leading to RMSD values that can

be lower than that exhibited between NMR structures. In other

words, a static NMR model and a static homology model, differing

by approximately 3 Å RMSD (black line in Figure 6.E.) can, when

sampling their accessible configurational space, find themselves

closer to each other at RMSD values less than 1 Å than individual

NMR structures of the same protein.

Table 2. RMSD values (Å) for LBMC simulation trajectories, from Figure 4.

RMSD vs. NMR
E. coli CheW
All Residues

E. coli CheW
Res. 17–157
Only

E. coli CheW
a/b Consensus
Residues Only

T. maritima CheW
All Residues

T. maritima CheW
Residues
10–147 Only

T. maritima CheW
a/b Consensus
Residues Only

Starting value 9.1 6.2 3.0 6.8 5.8 4.4

Lowest value 4.9 3.9 1.1 3.9 3.5 1.1

Highest value 11.4 6.8 2.9 9.1 6.8 6.3

Average value 8.1 5.2 1.9 6.0 4.9 3.4

doi:10.1371/journal.pone.0070705.t002

Figure 5. Structural Superimposition of Similar Models.
Superimposition of the most similar structure in the NMR trajectory
(red) with the most similar structure in the homology-modeled
trajectory (blue) for (A): E. coli MD simulation (RMSD= 0.8 Å), (B) E. coli
LBMC simulation (RMSD= 1.0 Å), (C) T. maritima MD simulation
(RMSD=1.5 Å), and (D) T. maritima LBMC simulation (RMSD= 1.1 Å).
The ribbon segments colored in green indicate the residues that are
proposed to participate in protein-protein interactions (c.f. Supplemen-
tary Information: Table S1 in File S1).
doi:10.1371/journal.pone.0070705.g005

Homology Modeling of CheW
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Figure 6. Histograms of the RMSD values comparing the NMR ensembles and MD/LBMC simulated trajectories. Blue: RMSD values of
the 20 homology models versus each other; Green: RMSD values of the 20 NMR structures versus each other; Red: RMSD values of the 20 homology
models versus 20 NMR structures; Purple: RMSD values of every structure of the homology model simulation versus every structure of the NMR
simulation, using LBMC; Cyan: RMSD values of every structure of the homology model simulation versus every structure of the NMR simulation, using
MD. The vertical black line indicates the starting RMSD value between the homology model and the NMR structures simulated by MD or LBMC.
doi:10.1371/journal.pone.0070705.g006

Homology Modeling of CheW
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Discussion

Quality Homology Models of CheW can be Successfully
Constructed using Templates of Low Sequence Identities

When comparing CheW homology models to their correspond-

ing experimental structures, the limitation of homology modeling

becomes apparent: models are structurally closer to their template

structure than to their target structures. CheW is known to have

two distinct interacting surfaces that are equally important.

Mutations in residues in either of these surfaces disrupt chemotaxis

[44], [45]. In the present study, the MCP binding site is better

modeled than the CheA binding site. This difference is likely due

to the b3–b4 loop being part of the interacting surface with the

kinase, while the MCP binding site consists of well-defined beta

strands. Overall, the regions of the structures corresponding to the

structural core exhibit more conserved sequences (30 to 35%

identity) than the regions outside of the structural core (10 to 15%

identity), indicating that structural conservation is correlated to

sequence conservation for CheW and that the sequence conser-

vation varies in different parts of the protein. However, sampling

of the local folding landscape is needed to translate this higher

sequence identity into better structural predictions for CheW.

Although homology models and NMR models of CheW may be

overall different from each other, the sampling of structural space

accessible by these models using molecular dynamics or Monte

Carlo simulations significantly improves the agreement between

predicted and experimental models of the same protein. Predicted

structures may be closer to each other than NMR structures are

close to each other. This suggests that whenever possible,

individual, static homology models should not be seen as ‘‘the

best possible model’’, but rather as a possible model amongst an

ensemble. A homology model (or, better, an ensemble of

homology models) should be subjected to MD or Monte Carlo

simulations to identify the range of thermodynamically accessible

structures. Relatively short molecular dynamics simulations such

as the ones presented here are beneficial: the lowest RMSD

between the NMR-simulated trajectory and the homology-

modeled trajectory (green dot in Figure 4), is typically near the

end of one simulation’s configurational space and the beginning of

the other, which indicates that conformational changes happen

beyond the local rearrangements of the first stages of molecular

dynamics simulations (LBMC graphs in Figure 4 do not indicate

time-dependent properties). In the present simulations, different

starting conformations explore regions of the conformational space

that approaches the configurational space of each other. However,

comparisons between homology models and very long molecular

dynamics simulations of experimental structures of proteins and of

corresponding homology models indicated that the homology

model can become quite different from their experimental targets,

most likely because of limitations in the accuracy of the force field

[46]. It is possible that the improvement of the homology models’

quality due to MD is limited to relatively short simulation times

limiting the sampling to the local accessible space.

Quality CheW Homology Models Require Caution when
Functionally Interpreted

While experimentally determined structures are currently

available only for three CheW proteins, experimental studies on

chemotaxis are carried out in dozens of bacterial species [16].

Furthermore, static models are generated for remote CheW

homologs (as distant as spirochetes) using E. coli and T. maritima

templates in order to draw conclusions on their structural

similarities [19] and static models of CheW and its interacting

partners are produced in order to obtain a higher-order assembly

of the chemotaxis signaling complex [10], [11]. T. maritima is not

genetically tractable and structural information obtained for its

chemotaxis proteins using crystallography and NMR must be

translated onto homologs in other species, where predicted

interactions can be verified using genetics and biochemistry.

These recent developments in the field of bacterial chemotaxis

necessitate better understanding of usefulness and limitations of

homology models built on templates with low sequence similarity.

Molecular dynamics and MC simulations still fail to correctly

predict and explore the structure of the highly flexible N-terminal

and C-terminal regions of the CheW homology models. This is

also the case for the flexible b3–b4 and b8–b9 loops (Loop 1 and

Loop 2). What does this mean in terms of confidence of the model

when it comes to translating CheW structure into function?

Supplementary Information (Figure S3 in File S1 and Table S1

in File S1), show the CheW residues that have been proposed to

interact with chemoreceptors and the CheA histidine kinase, based

on experimental evidence from mutagenesis, protein footprinting,

and NMR studies [47], [48], [49], [50]. These residues are also

highlighted in green in Figure 5, many of them being located in

the stable protein core. Some residues of interest are also in the

flexible Loop 1 as well, suggesting that protein dynamics may also

play a role in the function of CheW. The a/b consensus region,

for which the ‘‘dynamics-improved’’ homology models are in

agreement with the structures in the NMR ensemble, contains

many residues that are proposed contact sites for chemoreceptor

binding. However, this is not necessarily the case for some residues

proposed to participate in interactions between CheW and CheA

kinase located in the structurally variable regions that are not well

predicted by homology modeling. Specifically, the dynamic b3–b4

loop between residues 42–56 in E. coli and residues 37–49 in T.

maritima, which is difficult to model correctly, is the known site for

the interaction between CheW and the CheA P5 domain,

suggesting that molecular dynamics and other methods of assessing

protein flexibility will play a key role in the study of this

chemotaxis complex.

Conclusion
This work shows that it is possible to construct a reliable

ensemble of CheW homology models despite low sequence

identity between a CheW target sequence and its template. A

key component of this modeling should consist of an adequate

sampling of configurational space using molecular dynamics or

Monte Carlo simulations. Homology models of CheW should be

viewed as snapshots of an otherwise large ensemble of accessible

conformational space. This ensemble suggests that most of the

potential predicted CheW/MCP interactions are overall correctly

modeled, but that the potential interactions between CheW and

CheA involved regions that are more difficult to model and thus

are less reliable. Revealing the dynamics of predictive homology

models of CheW will aid the assembling of the chemotaxis

complex and understanding the mechanism of signal transduction.

Assembling the chemotaxis complex of E. coli, for which the wealth

of genetic, biochemical and imaging data has been accumulated,

will require modeling of the CheA kinase, the central regulator of

chemotaxis. No structure is currently available for the E. coli CheA

protein and current [11] and future efforts are likely to use the T.

maritima CheA templates for homology modeling. CheA is a much

larger and more complex protein than CheW. Therefore, potential

problems with modeling revealed here will only multiply.

Consequently, longer molecular dynamics simulations will be

needed to aid in this important task.

Homology Modeling of CheW
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