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Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of
organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydro-
genotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and
noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide
Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from
a compendium of transcriptome data that was collected over 58 different steady-state and time-course experiments that
were performed in chemostats or batch cultures under a spectrum of environmental perturbations that modulated
methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least
three additional protein-coding genes of previously unknown function as well as one noncoding RNA. We discovered that
at least five regulatory mechanisms act in a combinatorial scheme to intercoordinate key steps of methanogenesis with
different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and
environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in
the regulation of phosphate-dependent repression of formate dehydrogenase—a key enzyme in the methanogenesis
pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between meth-

anogenesis and other cellular functions.

[Supplemental material is available for this article.]

Methanogenic archaea (methanogens) are phylogenetically diverse,
consisting of at least seven orders (Methanococcales, Methanobacter-
iales, Methanomicrobiales, Methanopyrales, Methanosarcinales, Meth-
anocellales, and Methanoplasmatales) of strictly anaerobic Eur-
yarchaeota (Liu and Whitman 2008; Sakai et al. 2008; Paul et al.
2012). Most species of methanogens are hydrogenotrophic and use
hydrogen gas (H>) as the electron donor for the reduction of carbon
dioxide to methane. In addition, many species can use formate in
place of H,, and a few can use certain alcohols. These microorgan-
isms contain very high levels of different types of hydrogenases and
consume Hj at very high rates. Furthermore, under certain condi-
tions the H, uptake system can be induced to produce H; at elevated
proportions by using formate as an electron donor (Hendrickson and
Leigh 2008; Lupa et al. 2008; Costa et al. 2013a). Certain species of
methanogens can produce H; by fixing nitrogen, and therefore have
the potential to produce H, using the nitrogenase system. Finally,
most hydrogenotrophic methanogens are autotrophs, and assimi-
late CO, by the acetyl-CoA pathway (Liu and Whitman 2008).
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Methanogenesis is a form of anaerobic respiration that gen-
erates a chemiosmotic membrane potential for ATP production
(Deppenmeier 2002). In hydrogenotrophic methanogenesis, H or
formate is used to reduce CO, to methane. Four reduction steps are
interspersed with steps in which carbon units are transferred be-
tween coenzymes, and dehydration occurs as well. Electron de-
livery is mediated by the deazaflavin coenzyme F,,( or ferredoxin
(Fd). A variety of hydrogenases and/or formate dehydrogenase re-
duce these electron carriers. Electron flow for the final reduction
step involves the cycling of two sulfhydryl-containing coenzymes
between their suthydryl and heterodisulfide forms. Recently, it
has been shown that although ATP generation is chemiosmotic
(driven by Na* pumping), the phenomenon of electron bifurcation
is an important aspect of energy conservation (Thauer et al. 2008;
Kaster et al. 2011b). Electrons accumulate in the form of a two-
electron reduced flavin in heterodisulfide reductase (Hdr). From
each reduced flavin, one electron flows in the exergonic direction
to reduce the heterodisulfide, and the other electron flows in the
endergonic direction to reduce the Fd that carries electrons to the
first reduction step in the pathway. Electron bifurcation renders
the pathway cyclic, and reduced intermediates must be replen-
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ished anaplerotically by the action of the hydrogenase Eha (Lie
et al. 2012; Thauer 2012).

A large body of literature exists on the biochemistry of the
methanogenesis pathway (Deppenmeier 2002; Kaster et al. 2011a),
yet little is known about transcriptional regulation of methano-
genesis genes. Gene regulatory networks spatiotemporally regulate
cellular physiology to optimize resource utilization, maintain in-
tegrity of genetic information, and contribute toward competitive
fitness of the organism under changing environmental conditions.
Construction of mathematical and computational global gene reg-
ulatory network models by integration of diverse high-throughput
experimental data have been successful in understanding regulatory
mechanisms and generating testable hypotheses (Bonneau et al.
2007; Faith et al. 2007; Kaur et al. 2010; Krouk et al. 2010). Meth-
anococcus maripaludis S2 (M. maripaludis) is a premier model for the
hydrogenotrophic methanogens with its complete genome se-
quence (Hendrickson et al. 2004), rapid and reliable growth in a
laboratory, and existence of excellent genetic tools (Leigh et al.
2011). Extensive studies of the transcriptome (Hendrickson
et al. 2007, 2008) and proteome (Xia et al. 2006, 2009) showed
that genes of the methanogenic pathway are significantly regu-
lated by H,. Our recent study on the transcriptome map of
M. maripaludis generated a comprehensive list of protein-coding
and noncoding RNAs for systems modeling of this organism (Yoon
etal. 2011).

In this study, we have developed the first systems scale envi-
ronment and gene-regulatory influence network (EGRIN) (Bonneau
et al. 2007) model of a hydrogenotrophic methanogen. First, we
generated a comprehensive list of coding and noncoding RNAs
through comparative analysis of the complete transcriptome and
a comprehensive PeptideAtlas (Deutsch 2010) for M. maripaludis—
i.e., genome-wide alignments of a collection of peptides that were
experimentally detected across a diverse set of tandem mass spec-
trometry experiments (Yoon et al. 2011; Supplemental Methods).
Next, we generated a compendium of over 50 transcriptome profiles
from steady-state conditions and during dynamic cellular response
to a spectrum of environmental perturbations. Along with eight
transcriptome data sets from our previous study (Yoon et al. 2011),
a total of 58 transcriptome profiles of wild-type M. maripaludis
MMOI01 were analyzed using the cMonkey biclustering algorithm
(Reiss et al. 2006) and the Inferelator algorithm (Bonneau et al. 2006),
in order to infer the set of environmental factors (EFs) and tran-
scriptional factors (TFs, sequence-specific DNA-binding proteins
that mediate regulation of mRNA transcription) that accurately
modeled the dynamic transcriptional changes of genes within each
bicluster. The EGRIN model was validated using 56 transcriptome
data sets that were not used for the model construction: 52 new
transcriptome data sets from several genetic backgrounds that
modulated methanogenesis in well-understood schemes and four
data sets from our previous work (Costa et al. 2013b). We demon-
strated that this EGRIN model accurately predicted transcriptional
responses of all genes in the network and can be used as a framework
to formulate novel hypotheses regarding gene functions and regu-
lation. Specifically, we used the modular organization of genes in
EGRIN biclusters to delineate how the methanogenesis genes are
coregulated with other genes from different biological processes.
Further, we analyzed regulatory influences on these modules to
uncover novel regulators of methanogenesis, two (MMP1100 and
MMP0719) of which we subsequently validated through new en-
vironmental and genetic perturbation experiments that confirmed
the predicted direct and indirect regulatory influences of MMP1100
and MMPO0719 on formate dehydrogenase.

Results and Discussion

Experimental design

We used a systems approach to investigate the dynamic regulation
of all genes in M. maripaludis under differing environmental con-
ditions that modulate H, utilization/production. Our basic prem-
ise here is to iteratively perturb, observe, and model cellular re-
sponses to characterize the gene regulatory circuits that coordinate
genes involved in methanogenesis and H, utilization/production
with other aspects of physiology. We selected culture conditions
that separate the varying effects of different environmental factors
on H, utilization/production and methanogenesis (Fig. 1) and
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Figure 1. Chemostats of environmental perturbations for time-series
arrays. Four separate growth experiments for time-series array data in
chemostats were performed for M. maripaludis MM901 (A,B), and five
chemostat runs were performed for gene deletion strains MM901Amtd,
MM901AfruAAfrcA, MM901AMMP1447, MM901AMMPO0719, and
MM901AMMP1100 (C). Before perturbation, cell cultures were allowed
to reach steady state (constant growth rate and cell density). The per-
turbation for each experiment was as follows: (A) The proportion of H; in
the gas entering the chemostat was rapidly increased from limiting to
excess (left) or decreased from excess to limiting (right). (B,C) The pro-
portion of H; entering the chemostat was rapidly decreased from excess to
limiting and, simultaneously, the concentration of ammonium or phos-
phate was rapidly increased from limiting to excess. Samples were taken
30 min before perturbation, immediately after the perturbation, and after
5,10, 20, 30, 45, 60, 90, 120, 180, and 300 min. In each plot, culture time
is shown on the x-axis, cell density (red line) in ODg¢g0 on the left y-axis, and
CH, (black line) in the output gas on the right y-axis. Above each plot,
culture conditions before and after perturbation are shown for excess (red
triangle) and limiting (inverted green triangle) of a nutrient.
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collected RNA samples to capture global transcriptional responses.
We performed these experiments in two different modes:

1. Cellular responses to single environmental perturbations. In
order to test the effects of H; availability, the proportion of H, in
the input gas was rapidly increased to 110 mL/min (Hz-excess)
or decreased to 21 mL/min (H,-limiting). In this experiment,
growth rate was proportional to H; availability (Fig. 1A). Cell
density increased linearly and gradually after the transition
from H,-limiting to H,-excess conditions (P-value < 0.0001) and
decreased similarly when Hj limiting conditions were restored
(P-value < 0.0001). In contrast, CH4 production increased and
decreased much more rapidly. This response reflects a marked
difference in growth yield on a per-CH, basis under the two H,
conditions (Costa et al. 2013b).

2. Cellular responses to combinatorial environmental perturba-
tions. In the above experiments, the changes in H, were ac-
companied by changes in growth rate and cell density, which
can have confounding consequences for global transcrip-
tional responses. Therefore, it was important to perform ad-
ditional experiments in which growth rate and cell density
were held constant in order to isolate the effects of environ-
mental variables such as H, (Supplemental Table S3). In these
experiments, we operated the bioreactor in chemostat mode by
simultaneously changing two essential nutrients in the culture
media—e.g., H, and phosphate (P) or H, and nitrogen (N) (Fig.
1B,C). The initial culture condition of Hj-excess/P-limitation
was switched to H2-limiting/P-excess as the experiment pro-
gressed. In this way, the cell growth was limited by P and H,
before and after perturbation, respectively. Growth rates were
held constant across all experiments by keeping the dilution
rates constant in the chemostat. All cultures had cell densities
(ODgg0) between 0.6 and 0.8.

The EGRIN model was constructed based on a compendium
of 58 transcriptome profiles of wild-type M. maripaludis MM901;
these included eight samples from a growth curve experiment
(previously published) (Yoon et al. 2011), 48 from time-series
sampling of the H, perturbation experiments described above
(Fig. 1A,B), and two from steady-state cultures using formate as an
electron donor in the presence of H,. EGRIN predictions of global
transcriptional changes in response to new environmental per-
turbations were tested by using data from 56 transcriptome
measurements that were not included in building the original
EGRIN model. These experiments included 52 transcriptome
profiles from gene deletion strains (Fig. 1C) and four from steady-
state cultures grown with formate as an electron donor “without”
H, (Costa et al. 2013b). Culture conditions and samples for
transcriptome analysis are summarized in Supplemental Table S4.

Biclustering analysis reveals complex transcriptional regulatory
patterns of genes involved in the methanogenesis pathway

We performed the network inference in two steps to first uncover
the modular organization of genes based on their conditional co-
regulation and, second, to infer the regulatory influences responsible
for regulation and intercoordination of gene expression within each
of these modules. First, using the cMonkey algorithm we discovered
biclusters, i.e., conditionally coregulated sets of genes that share
conserved cis-regulatory motifs in their promoters (Reiss et al. 2006).
The cMonkey algorithm uses functional associations such as
operon information, shared phylogenetic histories, as well as
protein—protein and protein-DNA interactions to discover modules

of conditionally coregulated genes that are not only coexpressed
across some environments but also share conserved cis-regulatory
motifs in their promoters. In order to discover regulatory programs
associated with methanogenesis, the experiments were designed to
probe responses to changes in factors such as H,, P, and N that are
known to affect this process. Notably, by allowing genes to be
grouped into multiple biclusters, the algorithm is able to discover
different regulatory programs for the same gene. Before model
building, 203 genes (~11%) that did not show significant ex-
pression changes across most of the experimental conditions
were filtered out as described previously (Reiss et al. 2006). The
remaining 1661 genes, including unannotated transcripts from
the transcriptome architecture analysis (Yoon et al. 2011), that
changed significantly in at least a subset of experiments, were
grouped into 166 biclusters. (Supplemental Fig. S1; Supplemental
Table S5). Altogether, 149 of 166 biclusters were of high quality, as
their mean residual values were less than 0.45; residual of a bicluster
is a metric for significant gene coexpression among member genes
(Reiss et al. 2006).

We identified six biclusters that were enriched for known
genes of the methanogenesis pathway (Fig. 2; Table 1) (hyper-
geometric P-value < 0.05, Methods). Among these six biclusters
(Supplemental Fig. S2), four were clearly dominated by genes that
play an integral role in methanogenesis (bc_0114, bc_0009,
bc_0019, and bc_0035). The fifth bicluster (bc_0133) is com-
posed mainly of genes for the energy-conserving hydrogenase
Eha. Our recent results (Lie et al. 2012) show that Eha does not
function in methanogenesis at a level stoichiometrically equal to
the core steps, but anaplerotically supplements electron bifurca-
tion as a means of supplying electrons to formylmethanofuran
dehydrogenase. The sixth bicluster (bc_0010) consists of genes
for early biosynthetic steps that are linked to methanogenesis;
these steps comprise a biosynthetic pathway of CO, fixation
starting with a methyl group of methyltetrahydromethanopterin
(CH3-H4MPT) (Fig. 2). Interestingly, the results of biclustering
analysis revealed that different steps of methanogenesis were
separated into several biclusters. The first four biclusters were
distinguished by the presence of genes that responded positively
to H, limitation. mRNA levels of these genes were generally
down-regulated as the cultures transitioned from H,-limiting
to H-excess conditions, up-regulated in a transition from H,
excess to H limitation, and up-regulated in both transitions to H,
limitation with cell density being kept constant. More specifi-
cally, biclusters bc_0114 and bc_0009 both contained genes that
were the most noticeably increased by H, limitation, such as
F4z0-dependent methylene-Hs-methanopterin dehydrogenase
(mtd), methylene-H,-methanopterin reductase (mer), subunits of
Fyz0-reducing hydrogenase (fiuAG and ficB), and formate de-
hydrogenase (fdhC and two operons for fdhAB). These enzymes
represent the four steps of methanogenesis that use F430 as an
electron carrier, and all were suggested previously to be regulated
by H; limitation, based on transcriptome analysis of steady-state
samples (Hendrickson et al. 2007). The first three sets of genes were
included in bc_0114 while formate dehydrogenase was in bc_0009.
These biclusters also revealed previously unknown affiliations.
bc_0114 and bc_0009 shared genes encoding subunits of Fszo-
nonreducing hydrogenase (cysteine-containing, vicGB) and a hy-
pothetical protein (MMP1378). The bc_0114 contained genes
encoding subunits of F4yp-nonreducing hydrogenase (selenocys-
teine-containing, vhiuDGAUB), a subunit of formylmethanofuran
dehydrogenase (selenocysteine-containing, fiwdB), and a subunit
of heterodisulfide reductase (hdrA). bc_0009 contained subunits of
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Figure 2. Differential regulation of methanogenesis genes. Methanogenesis pathway of M. maripaludis
together with corresponding bicluster membership information is shown. Methanogenesis from CO,
occurs in four reduction steps, two C-1 transfer steps, and one dehydration step. Note that the Fd that
donates electrons to Fmd/Fwd can be reduced in two ways—by electron bifurcation from Hdr or by the Eha
hydrogenase. Dotted arrows indicate coupling of metabolic steps with membrane ion gradients. Bio-
synthetic CO; fixation to acetylCoA and pyruyvate is also shown. Colors in enzyme designations denote
bicluster membership as indicated in the color key in the lower left corner (see Fig. 4 for their member
genes). The main methanogenesis pathway genes are included in four biclusters, bc_0114 (red), bc_0009
(pink), bc_0019 (green), and bc_0035 (purple). The other two biclusters, bc_0133 (brown) and bc_0010
(blue), include genes involved in reactions that are related to methanogenesis such as electron bifurcation
and carbon fixation (see text for details). Transcriptional changes of member genes of each of the biclusters
are shown in Supplemental Figure S2. Genes encoding enzymes: (Cdh) carbon monoxide dehydrogenase/
acetylCoA synthase; (Eha) energy-conserving hydrogenase A; (Ehb) energy-conserving hydrogenase B;
(Fdh) formate dehydrogenase; (Fmd/Fwd) formyl-methanofuran dehydrogenase; (Fru/c) F4zo-reducing
hydrogenase; (ftr) formyl-methanofuran-Hs-methanopterin formyltransferase; (Hdr) heterodisulfide
reductase; (Hmd) H,-dependent methylene-Hs,-methanopterin dehydrogenase; (Mch) methenyl-Hg4-
methanopterin cyclohydrolase; (Mcr) methyl-coenzyme M reductase; (Mer) methylene-H,-
methanopterin reductase; (Mtd) F4o-dependent methylene-Hy-methanopterin dehydrogenase; (Mtr)
methyl-H,-methanopterin-coenzyme M methyltransferase; (Por) pyruvate oxidoreductase; (Vhu/c) F4z0-
nonreducing (Hdr-associated) hydrogenase. Metabolites: (Fd) ferredoxin; (MFR) methanofuran; (HsMPT)
tetrahydromethanopterin; (CoM) coenzyme M.

Hdr (hdrC2B2) and a gene involved in the biosynthesis of co-
enzyme Fy0 (cofH). These results show that our network model
was able to recapitulate known regulation of key methanogenesis

genes under limiting H, conditions and
identify novel associations with other
genes, including hypothetical proteins.
While many genes of methanogenesis are
regulated by hydrogen, these newly dis-
covered associations could be key to re-
vealing additional factors that can alter
methanogenesis.

The remaining steps in methano-
genesis are affiliated with the other two
methanogenic biclusters. The bc_0019
contains genes for methyl-coenzyme M
reductase (mcrBDCGA), formyltransferase
(ftr), and subunits of formylmethanofuran
dehydrogenase (fwdHFGDAC) other than
fwdB, which is in bc_0114 (Table 1). The
bc_0035 contains the sodium-translocating
methyltransferase (mtrEDCBA-GH) and
the methenyl-Hs-methanopterin cyclo-
hydrolase mch. The separation of methyl-
coenzyme M reductase (mcrBDCGA) from
the sodium-translocating methyltransfer-
ase (mtrEDCBA-GH) is particularly striking
since they are present in two neighboring
operons and catalyze the final two steps in
methanogenesis. This partitioning might
indicate functional nuances in associa-
tions with other bicluster members such
as electron carriers. It is possible that this
regulatory scheme may be necessary to
maintain redox homeostasis during meth-
anogenesis by separating regulation of the
nonredox pathway (Mtr) from the redox
pathway (Mcr). In addition, the differ-
ential regulation of these adjacent steps
might be necessary to accommodate dis-
tinct environment-dependent roles for
Mcr, which is cytoplasmic, and Mtr, which
is membrane bound and capable of di-
rectly generating a chemiosmotic mem-
brane gradient. The correlation of the ex-
pression patterns of the first operon genes
(mcrB and mtrE) was 0.76 throughout
the samples, compared to 0.99 between
genes within an operon. Their expres-
sions were highly correlated in the four
time-series cultures of the wild-type strain
(r > 0.93) except for a transition from an
H-excess to an H,-limiting condition (r =
0.77). However, their patterns varied with
chemostats of gene deletion mutants:
Amtd (r = 0.94), AMMPO719 (r = 0.88),
AMMP1100 (r = 0.74), AMMP1447 (r =
0.65), and Afrulfrc (r=0.65). Interestingly,
a putative transcript (Antisense_27) was
also present in bc_0019. Antisense_27 is
cotranscribed with its flanking genes
MMP1635 encoding a redox-active disul-
fide protein and MMP1637 encoding a

hypothetical protein (r > 0.96) and is antisense to MMP1636
encoding a major facilitator transporter (Yoon et al. 2011). These
observations suggest that conditions that favor expression of genes

1842 Genome Research
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on March 1, 2021 - Published by Cold Spring Harbor Laboratory Press

Global gene regulatory network of a methanogen

Table 1. Methanogenesis biclusters

bc_0009

bc_0010

* 28 genes, 39 arrays,® residual = 0.44

* Glyoxylate and dicarboxylate metabolism (P=8.9 X 10~
* Regulatory motif:©

TGaCtGATTAgTCAA (E-value = 0.21)

GGtttTgTGggtagcAc (E-value = 5.2)

4yp

* Member genes:

Antisense_22, Unanno_18, Unanno_45, Unanno_50, MMP0057(cofH),
MMPO138(fdhA), MMPO139(fdhB), MMP0172, MMP0347, MMP0486,
MMP0791,Y MMP0792, MMP0793, MMP0799,% MMP0818(frcG),
MMP0819(frcD), MMP0822(vhcG), MMP0824(vhcB), MMP1053(hdrB2),
MMP1054(hdrC2), MMP1297(fdhB), MMP1298(fdhA), MMP1299,
MMP1300, MP1301(fdhC), MMP1302, MMP1378, MMP1642

* 25 genes, 42 arrays, residual = 0.23

» Methane metabolism (P = 4.1 X 107'°)

* Regulatory motif:

CTAtTTATCATGATtgATAATQA (E-value = 4.2 X 1073)

* Member genes:

MMP0984(cdh), MMP0985(cdhA), MMP1152, MMP1153(ehbN),
MMP1271(vorA), MMP1272(vorB), MMP1273(vorC), MMP1274,
MMP1275,9 MMP1469(ehbA), MMP1502( porF), MMP1503( porE),
MMP1504( porB), MMP1505( porA), MMP1506( porD),
MMP1507(porC), MMP1621(ehbO), MMP1622(ehbM),
MMP1623(ehbLl), MMP1624(ehbK), MMP1625(ehb/), MMP1626,
MMP1627(ehbG), MMP1628(ehbF), MMP1629(ehbE)

bc_0019

bc_0035

* 32 genes, 38 arrays, residual = 0.40

» Methane metabolism (P =7.5 x 1073)

* Regulatory motif:
TATATAtantTTtttAtTTgantT (E-value = 74)

* Member genes:

Antisense_27, MMP0041 (l‘fb),d MMP0042, MMP0278, MMP0344,
MMP0405(gch3), MMP0407, MMP0632, MMP0736, MMP0762,
MMP1067, MMP1223, MMP1244(fwdH), MMP1245(fwdF),
MMP1246(fwdG), MMP1247(fwdD), MMP1248(fwdA), MMP1249(fwdC),
MMP1257, MMP1258(hemB), MMP1475, MMP1511, MMP1555(mcrB),
MMP1556(mcrD), MMP1557(mcrC), MMP1558(mcrG), MMP1559(mcrA),
MMP1586, MMP1609(ftr), MMP1610, MMP1637, MMP1712¢

* 30 genes, 39 arrays, residual = 0.43

* Polycyclic aromatic hydrocarbon degradation (P = 0)
* Regulatory motif:

ACtgcTaAATCGLTTTTaAAAT (E-value = 6.9 X 10~%)
ACTAagtgaaTAAATatgnCTTT (E-value = 1.6)

* Member genes:

MMP0076, MMP0077, MMP0219( ppaC), MMP0383(slp), MMP0590,
MMP0591, MMP0592, MMP0593, MMP0718, MMP0719,4
MMP1073(ehbC), MMP1190, MMP1191(mch), MMP1373(purP),
MMP1493, MMP1518, MMP1519, MMP1520, MMP1560(mtrE),
MMP1561(mtrD), MMP1562(mtrC), MMP1563(mtrB),
MMP1564(mtrA), MMP1565(0r900), MMP1566(mtrG),
MMP1567(mtrH), MMP1643, MMP1644, MMP1717, MMP1718

bc_0114

bc_0133

* 19 genes, 40 arrays, residual = 0.23

» Methane metabolism (P = 4.1 X 107%)
* Regulatory motif:

gCCCgagGTGGG (E-value = 3.1 X 1073)
CGGgGA (E-value = 0.15)

* Member genes:

Unanno_20, Unanno_25, Unanno_63, MMP0058(mer), MMP0372(mtd),
MMP0817(frcB), MMP0822(vhcG), MMP0824(vhcB), MMP1378,
MMP1382(fruA), MMP1383(fruD), MMP1384(fruG), MMP1691(fwdB),
MMP1692(vhuB), MMP1693(vhuU), MMP1694(vhuA),

MMP1695(vhuG), MMP1696(vhuD), MMP1697(hdrA)

* 26 genes, 38 arrays, residual = 0.37
* Methane metabolism (P = 4.8 X 1073)

* Member genes:

Unanno_59, MMP0118, MMP0170(cofF), MMP0186, MMP0844,
MMP0930(cheR), MMP1066, MMP1090, MMP1199,

MMP1230, MMP1231, MMP1454(ehaG), MMP1455(ehaH),
MMP1456(ehal), MMP1457(ehal), MMP1458(ehaK),
MMP1459(ehal), MMP1460(ehaM), MMP1461(ehaN),
MMP1462(eha0), MMP1463(ehaP), MMP1464(ehaQ),
MMP1465(ehaR), MMP1466(ehaS), MMP1467(ehaT), MMP1630

Detailed information for the biclusters that were identified to be significantly enriched for methanogenesis related genes is listed (see Methods for

calculation of functional enrichment).
“Number of arrays in which the member genes were coexpressed.

PCumulative hypergeometric P-values for overrepresentation of KEGG pathways or methanogen-specific genes in the gene list of each bicluster.

“Predicted cis-regulatory motifs in the promoter regions of member genes.

%Transcription factor.

encoding formylmethanofuran dehydrogenase, methyl-coenzyme
M reductase, and tetrahydromethanopterin formyltransferase
also favor expression of the redox-active disulfide protein and
the hypothetical protein, while inhibiting, via antisense tran-
scription, expression of the major facilitator transporter.

In two cases, subunits of the same enzyme were in separate
biclusters. hdrA was in a separate bicluster from hdrC2B2, and fwdB
was in a separate bicluster from fwdHFGDAC. In the latter case, the
separation is consistent with different gene expression patterns,
especially in the growth-curve experiment (r = —0.85) (Supple-

mental Fig. S2). In agreement with the biclustering results, in
M. maripaludis, hdrA and fwdB are adjacent to the genes for the
Vhu hydrogenase, while the remaining subunits of Hdr and Fwd
are encoded elsewhere. Furthermore, the transcriptome archi-
tecture analysis had previously indicated that hdrA and fwdB are
organized as a single operon with the vhu genes (MMP1691 to
1697) (Yoon et al. 2011). This pattern of coexpression and gene
organization may have to do with the organization of the re-
spective enzymes in a functional complex. We showed previously
that Hdr, Fwd, and Vhu, which function in the bifurcated flow of
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electrons from hydrogen to heterodisulfide and to CO; for re-
duction to formylmethanofuran, are physically associated (Costa
etal. 2010). Of the three subunits of Hdr, HdrA, which contains the
electron bifurcating center, likely forms the immediate contact
with Vhu. Similarly, FwdB, which harbors the redox-active site of
Fwd, may contact HdrA. Hence, the bicluster organization may
reflect the enzyme subunits that are most closely associated,
physically and functionally, with electron bifurcation from
hydrogen.

Strikingly, three putative novel transcripts (potentially protein-
encoding; Supplemental Table S2) were present in bc_0114 (Table 1).
BLASTN and BLASTX searches of these transcripts against the NCBI
nonredundant (nr) database did not produce any significant align-
ments, and no hits were found for protein-sequence similarity
searches (Finn et al. 2011) against protein family databases such
as Pfam, TIGRFAM, Gene3D, and Superfamily; yet biclustering
analysis suggested that they played a role in methanogenesis. Fur-
thermore, the three novel transcripts have motifs resembling
a consensus ribosome binding site (CCCgagGTGGG), which ver-
ifies that those putative novel transcripts are bona fide genes (Sup-
plemental Fig. S2).

M. maripaludis contains two membrane-bound energy-
conserving hydrogenases, Eha and Ehb. The genes encoding these
two enzymes showed markedly different expression patterns (eha
was in bc_0133 and ehb was in bc_0010), indicating that they are
differentially regulated (Supplemental Fig. S2). The ehb genes were
highly up-regulated after H, perturbations, and they were clus-
tered with genes encoding subunits of acetyl-CoA synthase/carbon
monoxide dehydrogenase (Cdh), pyruvate oxidoreductase (Por),
and 2-oxoisovalerate oxidoreductase (Vor), all anabolic oxidore-
ductases that catalyze early biosynthetic steps using CO, and re-
duced Fd. It has been suggested (Porat et al. 2006; Xia et al. 2006;
Major et al. 2010) that Ehb is the primary source of low-potential
electrons for carbon assimilation, and our results strongly support
this hypothesis. Additional members of bc_0010 included a gene
encoding a relative of AMP-dependent acetyl-CoA synthetase gene
(MMP1274) and a hypothetical protein (MMP1275) (Table 1). These
genes were adjacent to the vor operon, and might have a role in this
process.

We recently showed that Eha plays an anaplerotic role that both
sustains the methanogenic pathway and replaces intermediates
used for biosynthesis (Lie et al. 2012; Thauer 2012). In addition,
Eha is thought to serve as an auxiliary source of anabolic electrons
in the absence of Ehb (Porat et al. 2006; Xia et al. 2006; Major et al.
2010). Nevertheless, the regulation of Eha was markedly different
from that of Ehb. No significant changes in gene expressions were
observed for the eha operon when H, was perturbed. Furthermore,
in a transcriptomic and proteomic analysis, the expression of eha
genes was not affected by the deletion of ehb genes (Xia et al. 2006).
These results are consistent with the anaplerotic replenishment of
methanogenic intermediates as the primary function of Eha.
Thus, exploration of EGRIN recapitulated known biological phe-
nomena and patterns associated with methanogenesis, and
more importantly, it uncovered novel genes and regulatory asso-
ciations that will drive hypothesis-driven investigations into novel
aspects of this important process. The interactive exploration of all
biclusters to enable similar discoveries is possible online at the
following links:

Network portal: http://networks.systemsbiology.net/mmp/
cMonkey Output: http://baliga.systemsbiology.net/cmonkey/enigma/
mmp/cmonkey_4.8.8_mmp_1661x58_11_Oct_11_16:14:07/

Regulation of methanogenesis is distributed across five
subnetworks each linked to a different set of biological
processes

To find out which biological processes were associated with
methanogenesis, we identified biclusters that share three or more
genes with the methanogenesis-associated biclusters (Fig. 3). The
network of biclusters distinctively separated into five subnetworks:
among six biclusters enriched with methanogenesis genes, two
of them (bc_0009 and bc_0114) were related to each other. Most of
the genes for FwdB, Mtd, Mer, Fru, Frc, Vhu, Vhc, and Hdr formed
a single subnetwork, indicating their shared regulatory pattern
(bc_0009 and bc_0114). Genes encoding FwdHFGDAC, Ftr, and
Mcr were present in bc_0089 as well as bc_0019. The latter bicluster
also contains genes for ABC transporters, including a molybdenum/
tungsten transporter that may provide the metal for the cofactor of
Fmd or Fwd, a phosphate transporter, and a variety of hypothetical
genes. MMP1243, which neighbors the fwd operon in the opposite
strand and encodes a UBA/THIF-type NAD/FAD-binding protein,
was also a shared gene. Genes encoding Mch and Mtr (bc_0035)
were connected to bc_0126, which contained a two-component
response regulator (MMP1304). Genes encoding membrane-bound
hydrogenase Ehb (bc_0010) were linked to CO, fixation via an
acetyl-CoA pathway (bc_0017), further supporting the role of
Ehb in providing anabolic electrons. The other membrane-bound
hydrogenase, Eha (bc_0133) was linked to chemiosmotic ATP
production (bc_0107) and to chemotaxis and flagellar biosynthesis
(bc_0098), suggesting that motility and chemotaxis are coordinated
with hydrogen utilization and energy flux. In the related species
Methanocaldococcus jannaschii, flagellum biosynthesis was found
to respond to hydrogen conditions (Mukhopadhyay et al. 2000).
Similarly, M. maripaludis may have a motile and chemotactic re-
sponse, perhaps toward hydrogen, which responds to energy con-
ditions. Thus, the distribution of genes across biclusters revealed a
systems level perspective on the regulatory, and perhaps metabolic,
dependencies of methanogenesis with other aspects of physiol-
ogy such as motility and transport. In the subsequent section, we
provide orthogonal evidence for the intercoordination of these
interlinked pathways via regulation by a shared set of TFs and EFs.

Construction of a predictive model of global gene regulation
of methanogenesis

In order to infer regulatory mechanisms responsible for coreg-
ulation of methanogenesis with disparate aspects of physiology,
we used the Inferelator algorithm (Bonneau et al. 2006). Inferelator
uses a regression-based approach to model the expression changes
of genes in each bicluster as a function of corresponding (steady-
state data) or preceding (time-course data) changes in one or more
TFs and/or EFs. In other words, the causal regulatory influences in
the EGRIN model are inferred through regression analysis of ex-
pression-level changes in bicluster genes against corresponding (or
time-lagged) concentration changes across EFs and mRNA levels of
TFs. While this strategy does not fully capture mechanistic detail of
transcriptional regulation, it does generate meaningful associa-
tions that can drive further targeted analyses in the context of gene
functions, genomic locations, physical interactions, and evolu-
tionary associations among a specific set of interconnected genes
in the EGRIN model to generate experimentally testable hypoth-
eses. The Inferelator discovered the most probable set of regulatory
influences from 57 TFs and two EFs that sufficiently explained
expression changes of genes within each of the cMonkey-identified
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biclusters. The collection of the complete set of regulatory in-
fluences interconnected regulation of genes across all biclusters of
M. maripaludis into a unified EGRIN model. Using this approach, we
discovered that individual and combinatorial regulatory influences
of 46 (out of 57 predicted) TFs (Supplemental Table S6) and two EFs
(Hz and formate) accurately recapitulated experimentally observed
transcriptional changes in 90% of the genes in the entire genome.
In toto, the EGRIN model includes a set of 1227 EF and TF regu-
latory influences that interlink the regulation of 1661 genes (90%
of all genes in the genome) that are organized into 166 biclusters.

Consistent with the biclustering results, genes involved in the
methanogenesis pathway were predicted to be under the regulatory
influences of multiple TFs and EFs (Fig. 4A). As expected, H, was
predicted to negatively regulate biclusters (bc_0114 and bc_0009),
which showed the most marked response to H, conditions. In-
terestingly, biclusters bc_0019 and bc_0035 were predicted to be
under different regulatory influences, although their member
genes involved in consecutive metabolic steps—the mcr operon
(member of bc_0019) and the mtr operon (bc_0035)—are adjacent
in the genome. As explained before, the differential regulation of
these adjacent steps might reflect redox homeostasis and/or dis-
tinct environment-dependent functional differences between these
two operons.

Intercoordination of different steps is accomplished by shared
regulators in a combinatorial scheme

We found that the intercoordinated regulation of genes across
multiple biclusters was accomplished through combinatorial reg-
ulatory schemes by several TFs regulating each other. Interestingly,
MMP1100, a TrmB family TF, was predicted to coregulate genes in
biclusters 9, 19, and 114, which are involved in the majority of the
steps in methanogenesis, except for those catalyzed by Mch and
Mtr (Fig. 4A). This is evident in how the expression of MMP1100
perfectly tracks with the expression of the putative regulatory
targets in the methanogenesis-related biclusters (Supplemental
Fig. $3). Additional regulators are predicted to act in a combinato-
rial scheme to uniquely alter regulation of genes within each of
these biclusters; e.g., regulation of bc_0114 by the TF MMP1023
and regulation of bc_0009 by the TF MMP0629. Furthermore, TFs
that are coregulated with genes in a bicluster interlink the network
of regulation across biclusters; e.g., the TF MMP1275 is a member
of bc_0010 and a regulator of bc_0035. Likewise, MMPO0719 is a
member of bc_0035 and a regulator of bc_0114. MMP1100, a reg-
ulator of biclusters 9, 19, and 114, is itself in bicluster 124 (Sup-
plemental Table S5) that also contains the anabolic genes including
cdh, cdhD, cdhB, acsA, and acd. This may indicate that MMP1100
is coregulated with carbon fixation genes and regulates meth-
anogenesis. Based on the measured values of TFs and EFs, we used
regulatory influences in the EGRIN model to predict average tran-
scriptional changes of genes within each bicluster. This analysis

showed that the model accurately recapitulated the global tran-
scriptional changes in biclusters across the entire EGRIN model. The
predicted and observed global transcriptional changes for the
methanogenesis biclusters is illustrated in Figure 4B.

Experimental verification of EGRIN predictions uncover
phosphate-dependent regulation of formate dehydrogenase

Since MMP1100 and MMP0719 were predicted to play key regu-
latory roles in methanogenesis, we tested the effect of knocking
out these TFs. We focused on genes encoding formate dehydro-
genase active-site subunits (fdhB, MMP0139 and MMP1297),
members of bc_0009, as target genes. Although MMP1100 and
MMP0719 could interact with H as an environmental signal, other
possibilities include P and N, which were inversely varied with H, in
time-course transition experiments. As an indication that P is in-
volved, we found that for AMMP1100, the level of P in the medium
supplied to the chemostat in order to achieve P-limited conditions
(0.18 mM PO,2~ to maintain a steady-state ODgg0 Of 0.76) was dif-
ferent from that required for the wild-type strain (0.12 mM). We
therefore plotted the levels of MMP0139 and MMP1297 mRNAs
over time-course transitions from PO4>-limited conditions to H,-
limited conditions (Fig. SA,B). Compared with the wild type, both
MMPO0139 and MMP1297 were expressed at elevated levels in
AMMPO0719 (paired t-test P=0.043 and P =0.0003, respectively) and
AMMP1100 (P = 0.016 and P = 0.00003, respectively), especially
after transition to H, limitation and PO~ excess conditions. In-
terestingly, regulation of MMP1100 itself was also affected in the
AMMPO719 genetic background, being expressed at lower levels,
particularly after the transition. In addition to providing experi-
mental validation for EGRIN-predicted regulation of formate de-
hydrogenase, these results suggest a model in which MMP1100 is
a transcriptional repressor that responds to excess PO4>~ to modu-
late formate dehydrogenase levels. Additionally, MMPO0719 is
a transcriptional activator that coregulates MMP1100 and the fdh
genes (Fig. 5C).

We evaluated the power of the EGRIN model to predict global
transcriptional responses of M. maripaludis over 56 new tran-
scriptome data sets that were not used for the model construction.
These new data sets included transcriptional responses of Amtd,
AfruAAficA, AMMP1447, AMMPO0719, and AMMP1100 to changes
in H, and PO, (Fig. 1C; Supplemental Table S4). The predicted
expression state of each bicluster based on the levels of TFs and EFs
were compared with the corresponding measured states both in
the training data set and in the new data by using root mean square
deviation (RMSD) to estimate the predictive power. The predictive
powers of the M. maripaludis EGRIN were quite similar over train-
ing data (RMSD = 0.42) and new data (RMSD = 0.44) (Fig. 5D).
Thus, the small and similar RMSD values in both training and new
data sets highlighted that the overall expression state is well-pre-
dicted and that the M. maripaludis EGRIN network model accu-

Figure 3. Biclusters related to the methanogenesis. Each panel shows methanogenesis-related bicluster(s) and associated biclusters. (A) bc_0009 and
bc_0114, (B) bc_0133, (C) bc_0019, (D) bc_0035, and (E) bc_0010. Colored boxes denote biclusters that are related to the methanogenesis as shown in
Figure 2 and Supplemental Figure S2 (same color scheme). Biclusters that share three or more genes with methanogenesis-related biclusters are linked to
these biclusters for identifying functional associations and are shown as gray-colored boxes. Each rectangle inside the bicluster boxes indicates member
genes. Blue rounded squares of “A N B” show member genes common in the biclusters of A and B. Genes are colored according to their category from
KEGG pathways—methane and hydrogen metabolism (red), motility (amber), oxidative phosphorylation (baby blue), ABC transporters (yellow), CO,
fixation (green), other functions (gray), and hypothetical genes (dark gray). Genes that are adjacent to member genes of a bicluster, but belong to the
other connected bicluster, are in white. Transcription factor (TF) genes including putative ones are shown in red lettering. Arrows above gene(s) indicate
direction and span of transcription units determined in the previous study (Yoon et al. 2011). Un_XX means a transcript that did not match any protein
sequence in the nr data set, and As_XX denotes a transcript antisense to annotated genes. Detailed information of the biclusters can be found in Sup-

plemental Figure S1 and Supplemental Table S5.
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Figure 4. Environment and gene regulatory influence network for methanogenesis. (A) Environment

and gene regulatory influence of methanogenesis biclusters is shown as a network diagram. One of the
striking influences is the activation of three of the six methanogenesis related biclusters (bc_0009,
bc_0019, and bc_0114) by MMP1100. H; on the other hand, repressed bc_0009 and bc_0114. Reg-
ulatory influences of TFs and EFs on biclusters are associated with influence weight calculated by
Inferelator. Influence weights can be used to filter most probable regulatory influences. For meth-
anogenesis, network influences with weight less than 0.1 were not included in the analysis. Rectangles
designate biclusters (colored the same as in Figs. 2, 3); circles denote transcription factors (red) and
environmental factors (pale green); and triangles indicate AND logic gates of regulatory influences. Red
arrows and green blunt-headed lines represent positive and negative influences, respectively, with their
width being proportional to the influence weight. (B) The EGRIN model accurately recapitulates tran-
scriptional changes within each bicluster, just from measured values of TFs and EFs. For selected
biclusters, comparison of predicted mean expression values with the corresponding measured state is
shown as line plots in the top panels. Prediction of the bicluster mean expression level in the time course
conditions and steady-state conditions are shown as solid black and blue dashed lines, respectively.
Corresponding measured expression is shown as dashed red lines. Correlation between predicted and
measured relative transcript level changes for each bicluster is shown as a scatterplot in the bottom
panels. Corresponding correlation coefficient is given at top, left and denoted by R.

effect on genes contained in biclusters
0114 and 0009, and genes that were most
markedly affected were those that are as-
sociated with F4,0, consistent with pre-
vious observations (Hendrickson et al.
2007) and with the central role of this
coenzyme. In addition, three steps asso-
ciated with coenzyme F45¢ were found to
be transcriptionally coregulated with
other, non-Fy¢-associated steps of meth-
anogenesis. Also interesting was the ob-
servation that in two cases (Hdr and
Fwd), different subunits of a single en-
zyme were under separate regulatory in-
fluences. This appears to reflect the as-
sociation of these enzymes into multi-
enzyme complexes that are important for
electron flow and bifurcation centering
on the heterodisulfide reductase. Reflect-
ing this separation of methanogenesis
into multiple biclusters, at least five regu-
latory mechanisms are predicted to con-
trol methanogenesis (Figs. 2,3). Each
mechanism links a key step of methano-
genesis with a different aspect of metab-
olism. Similarly, regulation of Ehb mem-
brane-bound hydrogenase is uniquely
coupled with enzymes associated with
carbon assimilation, supporting its role
in using H; to supply electrons for bio-
synthesis. Many cellular processes were
transcriptionally coordinated with meth-
anogenesis (Fig. 3). Chemotaxis, flagellar
synthesis, and ATP generation were affili-
ated with Eha. As expected, the synthesis
of certain ABC transporters was associated
with several steps, including the metal-
containing formymethanofuran dehydro-
genases and carbon fixation. Strikingly,
additional genes of previously unknown
functions including three novel coding
RNAs and one antisense transcript may
also be involved in methanogenesis (Sup-
plemental Table S2).

We have previously demonstrated
the power of the EGRIN approach to
characterize the biology of an organism
by providing insights into environmental
context-dependent dynamic interactions
(functional and regulatory) among nearly
all genes in the genome (including non-

rately captured causal regulatory relationships across genes and
biclusters to reveal a regulatory landscape of methanogenesis.

Conclusion

In this study, we built the first predictive model of global H, reg-
ulation of methanogenesis in a hydrogenotrophic methanogen.
The model revealed important aspects of methanogenesis regula-
tion and related metabolic processes. Methanogenesis was gener-
ally up-regulated with H, limitation, which clearly has a broad
impact on transcriptional regulation. H, had an especially marked

coding RNAs and genes of unknown function). In this study, we
extended this model to methanogenic archaea to gain insights
into the regulation of methanogenesis. It should be noted that in
its current instantiation this model does not account for all types of
regulatory mechanisms, including signal transduction and allo-
steric control. However, this is not entirely a limitation of the
modeling algorithms, but more a function of our limited un-
derstanding of many pre- and post-transcriptional regulatory
mechanisms. For instance, incorporation of regulation by RNases
and ncRNAs can be partly attributed to our limited understanding of
their mechanism of action. Once characterized, we can develop
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appropriate strategies to incorporate novel regulatory mechanisms,
as was done with miRNA regulation (Plaisier et al. 2011, 2012). Ul-
timately, the EGRIN model is just a powerful instrument for gen-
erating hypotheses that should be further characterized through
iterative experimentation and modeling (Pang et al. 2013).
Methanogenesis, like all aspects of metabolism, is not an in-
sulated process. It has complex interdependencies with many
other cellular processes, partly due to shared and limited resources
including metabolic intermediates or the general energy demand.
By observing the dynamic molecular changes when M. maripaludis
transitions across varied environment-dependent states of meth-
anogenesis, we have captured the complex interrelationships
among known genes of methanogenesis and other genes of known
and unknown function. The comparative analyses of these dy-
namic changes have revealed the multifaceted modular organiza-
tion even within the known components of methanogenesis, and
shed insight into causal influences of EFs and TFs on this process.
These systems level interactions within the EGRIN model could
also be a reflection of dynamic, complex, and coupled changes in
the natural environment of this organism. Conversely, the model
could also help to characterize the microbial ecology of meth-

Roles of the transcriptional regulators MMP0719 and MMP1100. Transcriptional changes
of formate dehydrogenase subunits in TF knockouts MMP1100 and MMP0719 during transition from
P-limited to H,-limited conditions confirm EGRIN predictions. (A) barplot of fdhB2 (MMP0139) mRNA
levels versus time in the wild-type (WT) (brown), MMP0719 knockout (dark green), and MMP1100
knockout (dark yellow) during transition from P-limiting to H,-limiting conditions. Expression of
MMP1100 is also shown as blue dotted line in both genetic backgrounds. (B) Barplot of fdhB1
(MMP1297) mRNA changes, similar to A. (C) Based on the experimental confirmation of EGRIN pre-
dictions, we developed a model for the regulation of formate dehydrogenase. According to this model,
MMP1100 modulates the activity of MMP1297 in a PO4-dependent manner, while MMPO0719 activates
both MMP1100 and MMP1297. (D) Predictive power of the EGRIN network model evaluated over the
training (left) and new transcriptome data (right). Histogram of RMSD error between the predicted and
measured response for 166 biclusters evaluated over 58 conditions in the training (left) and 56 condi-
tions in the new data sets that were not used for the model construction (right). Similar median values
(0.42 for training and 0.44 for new data set) indicate that our model performed equally well on both

ture (1:99). For shifts from a H,-excess to
a H,-limited condition, H, was lowered
from standard 110 mL/min to 21 mL/min
and Ar was raised from standard 35 mL/min
to 125 mL/min. For shifts from P-limited
to P-excess conditions, phosphate was
raised from 0.12 mM to the standard
0.8 mM. Shifts from N-limited to N-ex-
cess conditions were achieved by raising
NH,* from 2.8 mM to the standard 10 mM
(Fig. 1). The dilution rate was held con-
stant at 0.083 h™!. For time-series array
data, cultures before perturbation were
allowed to reach steady state. We rapidly
changed concentration(s) of H, and/or a
nutrient, and sampled at 30 min before perturbation, immediately
after the perturbation, and after 5, 10, 20, 30, 45, 60, 90, 120, 180,
and 300 min. Culture samples (1.5 mL) were rapidly removed from
the chemostat vessels by syringe and cell pellets collected by
microcentrifugation, immediately frozen in an ethanol-dry ice bath,
and stored at —80°C. Rates of CH, production were measured for all
cultures as described before (Lie et al. 2012).

For single environmental perturbations, we used a constant
dilution rate in a chemostat (Haydock et al. 2004) until the culture
reached steady state (defined as constant cell density). Sub-
sequently, we rapidly increased or decreased the proportion of H, in
the input gas, 110 mL/min or 21 mL/min, respectively (Fig. 1A). A
sample was collected prior to the perturbation and subsequently, in
a nonlinear time course, multiple samples were collected to cap-
ture the early, middle, and late stages of the cellular response. For
combinatorial environmental perturbations, we first equilibrated
the cells to a H,-excess and P-limited (or N-limited) condition and
sampled as the culture transitioned to a H,-limited and P-excess (or
N-excess) condition (Fig. 1B,C). Total RNA was prepared from each
of these samples, labeled, hybridized to a high-density tiling
microarray, scanned, and analyzed for global transcriptional
changes.

1848 Genome Research
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshilp.org on March 1, 2021 - Published by Cold Spring Harbor Laboratory Press

Global gene regulatory network of a methanogen

Construction of gene deletion mutants

In-frame deletions of the genes mtd (MMP0372), frcA (MMP0820),
and fruA (MMP1382) were previously constructed in the vector
pCRprtneo (Hendrickson and Leigh 2008). The inserts, which
contained ~500 bp of each upstream and downstream flanking
DNA, were digested out and recloned into pCRuptneo (Costa
et al. 2010). Plasmid DNA was transformed into the strain
MM901, and merodiploids were resolved to make the mutants
containing the deletions Amtd (strain MM1283) and AfruAAfrcA
(strain MM1280) (Lie et al. 2012). Mutants containing the de-
letions AMMP1100 (strain MM1323) and AMMPO0719 (strain
MM1321) were made by PCR amplifying 500 bp of the flanking
regions of each target gene. The 3’ end of each upstream product
contained the start codon followed by the restriction site Ascl.
The 5’ end of each downstream product contained Ascl, addi-
tional base(s), and the stop codon. The fragments were digested
with Ascl, ligated, PCR amplified, cloned into pCRuptneo, and
introduced into MM901 as above. To make MM901AMMP1447
Pnif::eha (strain MM1322) (Costa et al. 2013b), regions flanking
MMP1447 were PCR amplified and cloned into the plasmid
pHW40 containing Pnif (Chaban et al. 2007). The product was
PCR amplified, ligated into pCRuptneo, and introduced into
MMO901 as above. The complete replacement of all wild-type al-
leles with the introduced mutant constructs was confirmed by
Southern blot or PCR.

Construction of high-resolution tiling microarray, RNA
hybridization, and image analysis

A whole-genome high-resolution tiling array was designed to con-
tain 60K 60-mer probes with strand-specific sequences and manu-
facturer’s controls (SurePrint G3 8 X 60K, Agilent Technologies).
Probes were tiled every 60 nt for M. maripaludis (GenBank genome
accession: NC_005791) (Hendrickson et al. 2004). Most of the ORFs
(96.9%) had over five probes (mean: 15.8 ea, std: 8.9) to provide
statistically significant coverage over the entire region of the ORE.

Total RNA was prepared by using the mirVana miRNA iso-
lation kit (Applied Biosystems) according to the manufacturer’s
instructions. Total RNA from each sample was compared against
a reference RNA pool that was generated in bulk from a mid-log
phase culture of MM901 (Yoon et al. 2011). Total RNA from sam-
ples and reference were directly labeled with Cyanine 3 (Cy3) or
Cyanine 5 (CyS) dyes (Molecular Probes and Kreatech BV), and
were hybridized to the tiling array and washed according to the
array manufacturer’s instructions. The arrays were scanned by
a Microarray Scanner (Agilent Technologies) and spot finding was
done using Feature Extraction software (Agilent Technologies).
Labeling dye for sample versus reference was flipped to have two
differentially labeled replicates per sample.

Signal intensities and local backgrounds were determined
by using Feature Extraction software (Agilent Technologies). Raw
intensity signals from each slide were processed by the SBEAMS-
microarray pipeline (Marzolf et al. 2006) (http://www.SBEAMS.
org/microarray), where resultant data was median normalized and
subjected to significance of microarray (SAM) and variability and
error estimates (VERA) analysis. Each data point was assigned a
significance statistic, \, using maximum likelihood (Ideker et al.
2000).

Construction of environmental and gene regulatory influence
network

In our previous study of the transcriptome architecture of
M. maripaludis, we identified 62 transcripts that did not overlap

any previously annotated coding sequences and 29 transcripts that
were antisense to annotated genes (Yoon et al. 2011). To develop
a mechanistically accurate EGRIN model, those transcripts were
appended to the list of annotated genes. We identified 57 known
and putative transcription factors (TFs), 32 from the initial genome
annotation, one from a literature (Kaster et al. 2011a), and an addi-
tional 24 from databases of DBD (Wilson et al. 2008) and ArchaeaTF
(Wu et al. 2008; Supplemental Table S6).

The cMonkey integrated biclustering algorithm was applied
to identify subsets of genes that were coregulated under certain
culture conditions (Reiss et al. 2006). The inputs to cMonkey were
58 transcriptome profiles of wild-type M. maripaludis MM901
(Supplemental Table S4), upstream regions of all genes, and func-
tional association networks, including operon predictions from
MicrobesOnline and functional protein interactions from EMBL
String databases (Szklarczyk et al. 2011). Briefly, cMonkey itera-
tively prioritizes the grouping of genes with similar expression
profiles, supported by additional evidence of coregulation such as
the existence of similar cis-regulatory motifs in their promoter re-
gions (detected de novo using the MEME algorithm) (Bailey and
Elkan 1994) and functional associations between genes (here we
used only the integrated functional association network provided
by STRING database) (Szklarczyk et al. 2011). cMonkey first cre-
ates seed clusters and then optimizes them to create biclusters by
adding or removing genes and conditions after calculating co-
expression measures, searching for motifs and additional evi-
dences of coregulation. At each stage it computes the probability
of being a member of the bicluster for each gene or condition
sampled from the conditional probability distribution. cMonkey
biclusters are sets of genes that are putatively coregulated in subsets
of the experimental conditions. The algorithm allows genes to be
members of multiple coregulated gene groups—a property that is
consistent with how biology operates—thereby allowing the dis-
covery of combinatorial regulation of the same genes by multiple
EFs and/or TFs.

Following the protocol of Bonneau et al. (2007), transcrip-
tional influences of each bicluster were inferred using the Inferelator
(Bonneau et al. 2006). The algorithm attempts to predict the mean
expression levels of the genes in each bicluster via regularized linear
regression and variable selection with 10-fold cross-validation. It
does so by using a sparse subset of linear combinations of mea-
sured expression level changes in TFs and the experimental record
of EF changes as linear predictors. Whereas the original Inferelator
utilized L;-constrained regression (Tibshirani 1996), which required
preclustering of highly correlated predictors into “TF groups” (see
Bonneau et al. 2006 for details) prior to the inference, we modified
the procedure slightly to utilize the “softer” “elastic net” linear
constraint (Zou and Hastie 2005). This procedure effectively groups
correlated predictors “during” the variable selection process,
thereby eliminating the predictor preclustering step and enabling
the variable selection for each bicluster independently from the list
of highly correlated predictors. We verified that this modified ver-
sion of the algorithm generated nearly identical predictions to those
reported previously (Bonneau et al. 2006, 2007), including all of the
experimentally verified predictions in Bonneau et al. (2007) (data
not shown). The resulting EGRIN model was visualized as a network
in Cytoscape (Cline et al. 2007) and was explored using the Gaggle
framework (Shannon et al. 2006).

Enrichment analysis of KEGG pathways

For functional enrichment analysis, a list of available KEGG an-
notated functions for Methanococcus maripaludis S2 genes were
collected from the KEGG database. Genes represented in each of the
specific KEGG pathways were compared with the members of each
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bicluster to find statistically significant enrichment of pathways.
P-values for overrepresentation of KEGG pathways or methanogen-
specific genes in the gene list of each bicluster were calculated using
the cumulative hypergeometric distribution and were corrected for
multiple hypothesis testing by the Bonferroni method (Sheskin
2007).

Data access

The microarray data have been deposited in the NCBI Gene Ex-
pression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under
accession numbers GSE42115, GSE42126, GSE42130, GSE42143,
GSE42159, GSE42162, GSE42164-GSE42167. All of the data from
this study are available at http://baliga.systemsbiology.net/enigma/.
In addition, a network model is available at the following URL: http://
networks.systemsbiology.net/mmp.
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