

CONF-9510108-16

DOE/MC/32108-96/C0616

Surfactant-Modified Zeolites as Permeable Barriers to Organic and Inorganic Groundwater Contaminants

Authors:

R.S. Bowman
E.J. Sullivan

Contractor:

New Mexico Institute of Mining and Technology
Department of Earth and Environmental Science
Socorro, New Mexico 87801

Contract Number:

DE-AR21-95MC32108

Conference Title:

Environmental Technology Development Through Industry Partnership

Conference Location:

Morgantown, West Virginia

Conference Dates:

October 3-5, 1995

Conference Sponsor:

U.S. Department of Energy, Office of Environmental Management,
Morgantown Energy Technology Center

MASTER
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.

PII.10 Surfactant-Modified Zeolites as Permeable Barriers to Organic and Inorganic Groundwater Contaminants

R.S. Bowman (bowman@nmt.edu; 505-835-5992)

E.J. Sullivan (jeri@nmt.edu; 505-835-5466)

Department of Earth and Environmental Science

New Mexico Institute of Mining and Technology

Socorro, NM 87801

Abstract

We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost (~\$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs^+ or Ca^{2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb^{2+}) via ion exchange and surface complexation, and inorganic anions (CrO_4^{2-} , SeO_4^{2-} , SO_4^{2-}) via surface precipitation.

Introduction

The overall goal of the project is to test and demonstrate the use of surfactant-modified zeolite (SMZ) as a permeable barrier to groundwater contaminants. A permeable barrier

allows water pass through while stopping or retarding contaminant migration (Figure 1).

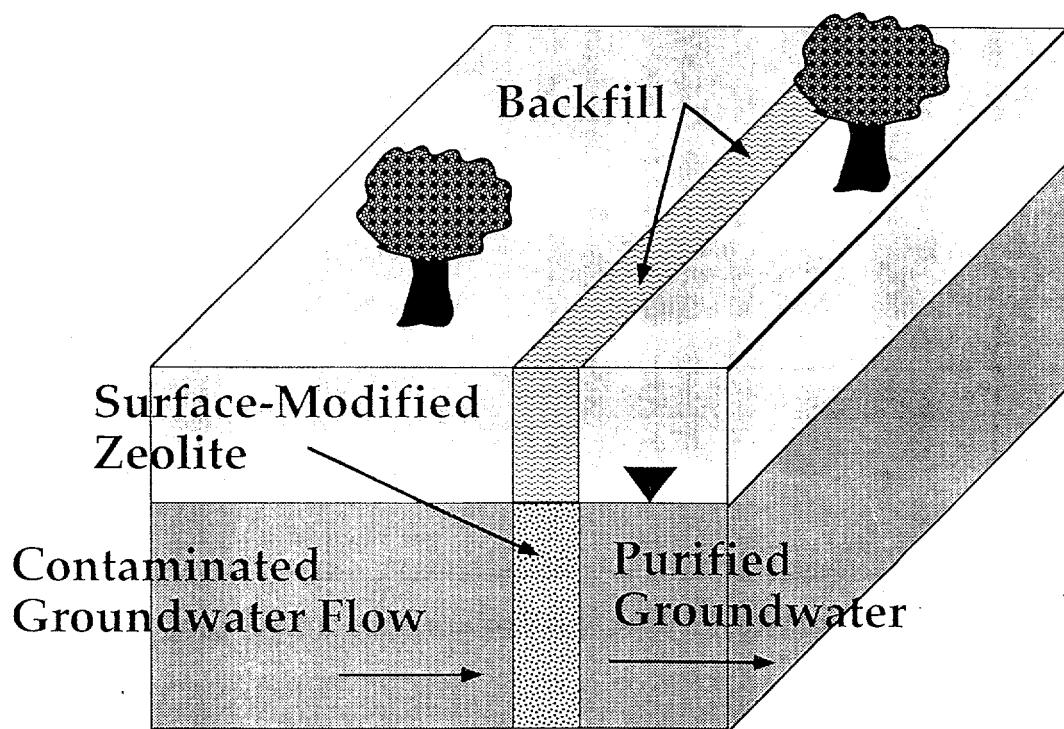
The project is divided into three phases:

- Phase I: SMZ Laboratory Testing and Analysis
- Phase II: Pilot-Scale Testing of Barrier Technology
- Phase III: Field Demonstration

Work on Phase I began in June 1995. This paper summarizes some of our previous work with SMZ and describes our progress under Phase I.

Background

Zeolites are naturally occurring minerals characterized by high surface areas and high cation exchange capacities. Zeolites occur in massive deposits in many areas of the world, and are common in the western United States. We've found that a commercial zeolite from the St. Cloud mine in Winston, New Mexico, is high in the desirable zeolite mineral clinoptilolite and low in smectite clays. Mined zeolite can be ground and sized as desired, thus tailoring its hydraulic properties. The sized zeolite is stable mechanically and hydraulically. After grinding


Research sponsored by the U.S. Department of Energy's Morgantown Energy Technology Center, under contract DE-AR21-95MC32108 with Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801; telefax: 505-835-6436.

and sizing, the St. Cloud zeolite (which is about 95% pure clinoptilolite) costs \$60-\$100 per ton.

Materials and Methods

One-half ton of sized zeolite (14 to 40 mesh, or 1.4 to 0.4 mm size range) was obtained from the St. Cloud mine for Phase I testing. Raw zeolite was mixed with a cationic surfactant dissolved in water. Many different surfactants can be used. Our work has concentrated on zeolite modified with hexadecyltrimethylammonium (HDTMA), commonly found in hair conditioners and mouth

washes. The surfactant binds to the external exchange sites on the zeolite surface (Figure 2). The surfactant forms an organic coating, greatly enhancing the sorptive properties of the zeolite (Haggerty and Bowman, 1994). Internal exchange sites remain available for sorption of small metal cations such as Pb^{2+} (Figure 2). Previous work has shown that solutions of high or low pH, high salt concentrations, and organic solvents do not remove the surfactant coating, as shown in Table 1 (Bowman et al., 1995).

Figure 1. Schematic of surfactant-modified zeolite permeable barrier.

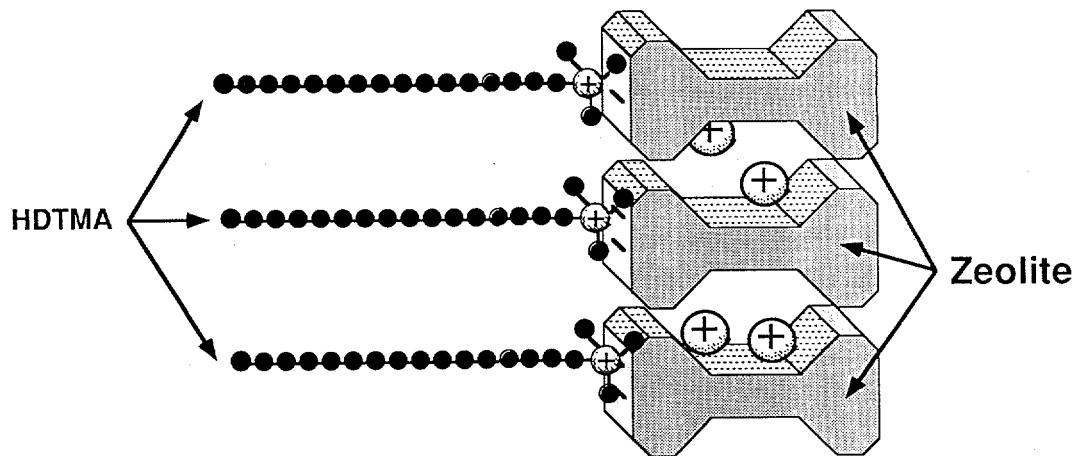


Figure 2. Schematic of surfactant sorption to zeolite surface.

Table 1. Percent of Surfactant Remaining on the Zeolite Surface after 72-Hour Exposure to Various Solutions/Solvents

<u>Solution/Solvent</u>	<u>%Surfactant Remaining</u>
distilled water	99.3
0.005 M CaCl ₂	99.1
pH 3	98.3
pH 5	98.3
pH 10	99.0
0.10 M CsCl	98.6
1.0 M CsCl	97.2
50 mg/L CrO ₄ ²⁻	99.4
methanol	96.0
benzene	99.6
toluene	99.6

Results and Discussion

The surfactant treatment is complete within 8 hours (Figure 3). The surfactant is retained by the zeolite quantitatively up to a saturation plateau (Figure 4). For the example shown, this amounts to 220 mmol/kg, or about 6% by weight. Surfactant retained at or below the plateau (about 220 mmol/kg) is not removed by successive washings with water (Figure 5).

Based on these results, we estimate the cost of the SMZ, using commercial-grade surfactants, to be in the range of \$400 per ton.

Previous work on the properties and applications of SMZ are presented in Bowman et al. (1993, 1995), Haggerty and Bowman (1994), Neel and Bowman (1992), Sullivan et al. (1994), and Teppen et al. (1995).

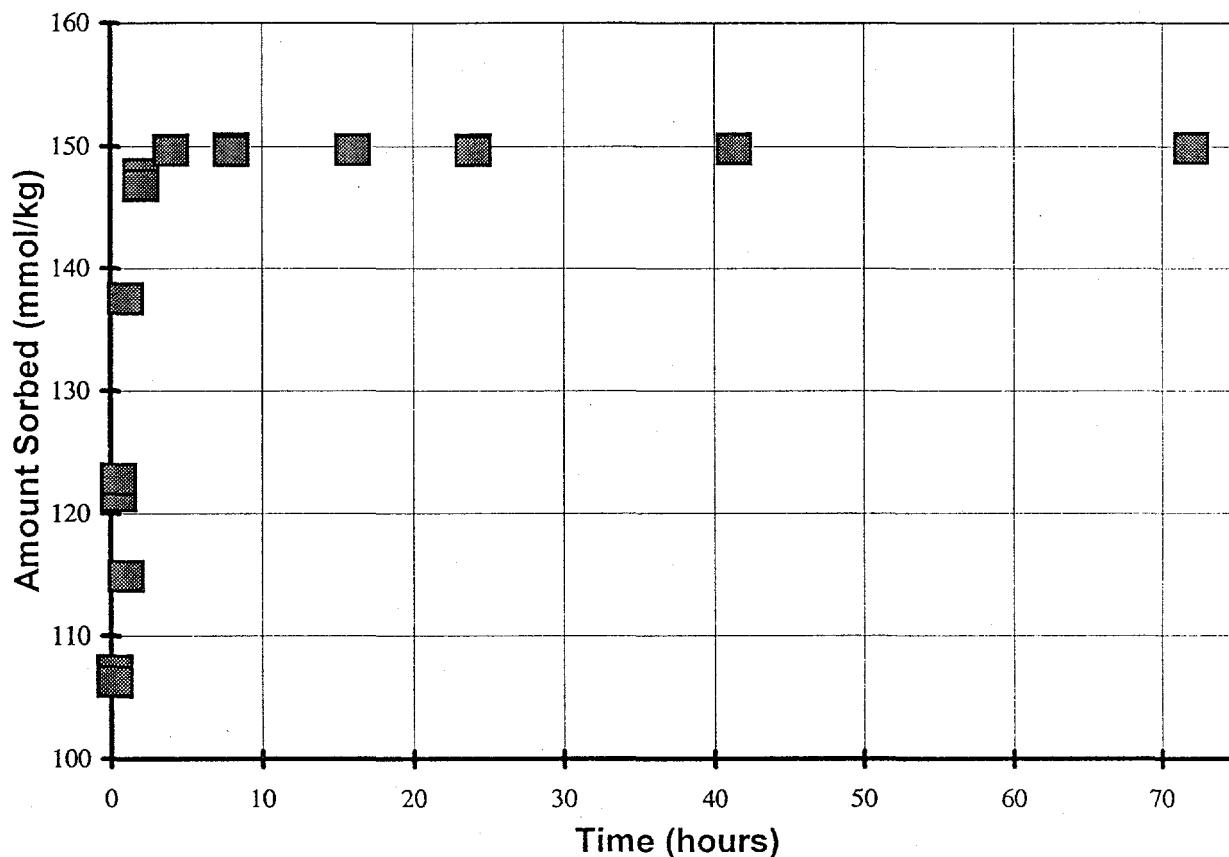
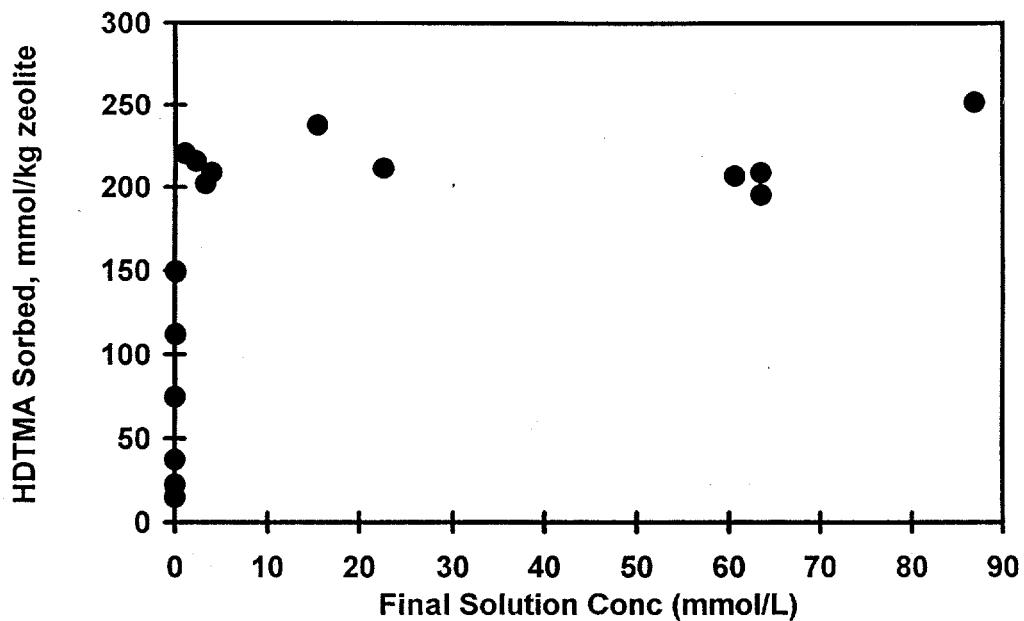
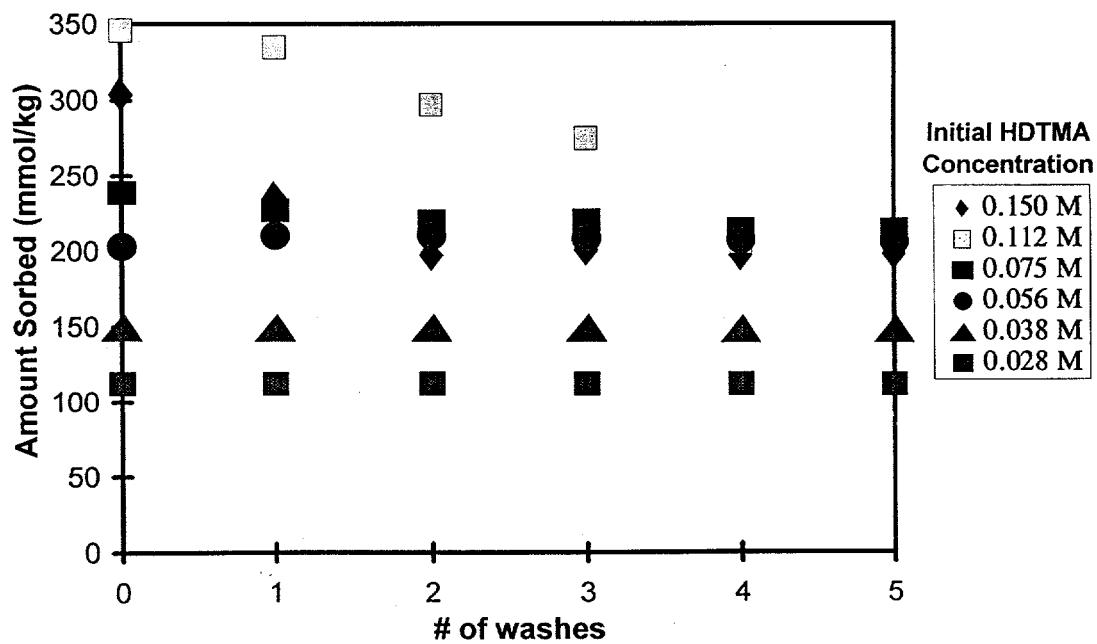




Figure 3. Sorption of HDTMA versus time.

Figure 4. Sorption of HDTMA as a function of solution concentration.

Figure 5. Stability of HDTMA-zeolite as a function of loading.

References

Bowman, R.S., G.M. Haggerty, R.G. Huddleston, D. Neel, and M. Flynn. 1995. Sorption of nonpolar organics, inorganic cations, and inorganic anions by surfactant-modified zeolites. p. 54-64. *In* D.A. Sabatini, R.C. Knox, and J.H. Harwell (eds.). Surfactant-enhanced remediation of subsurface contamination. ACS Symposium Series 594. American Chemical Society, Washington, DC.

Bowman, R.S., M. Flynn, G.M. Haggerty, R.G. Huddleston, and D. Neel. 1993. Organo-zeolites for sorption of nonpolar organics, inorganic cations, and inorganic anions. p. 1103-1109. *In* Proc. Joint CSCE-ASCE National Conference on Environmental Engineering, 12-14 July 1993, Montreal, Quebec, Canada.

Haggerty, G.M., and R.S. Bowman. 1994. Sorption of inorganic anions by organo-zeolites. *Environ. Sci. Technol.* 28:452-458.

Neel, D., and R.S. Bowman. 1992. Sorption of organics by surface-altered zeolites. p. 57-61. *In* Proc. 36th Annual New Mexico Water Conf., 7-8 November 1991, Las Cruces, NM.

Sullivan, E.J., R.S. Bowman, and G.M. Haggerty. 1994. Sorption of inorganic oxyanions by surfactant-modified zeolites. p. 940-945. *In* Proc. SPECTRUM '94, Nuclear and Hazardous Waste Topical Mtg., 14-18 August 1994, Atlanta, GA.

Teppen, B.J., D.B. Hunter, P.M. Bertsch, E.J. Sullivan, and R.S. Bowman. 1995. Modeling organic modification of a natural zeolite surface. p. 181-184. *In* Preprints of Papers, American Chemical Society Annual Meeting, 20-24 August 1995, Chicago, IL.

Acknowledgements

This work is currently being supported by the U.S. Department of Energy's Morgantown Energy Technology Center, under contract DE-AR21-95MC32108.

Prior support was from the New Mexico Waste-management and Education Research Consortium (WERC) under contract 01-4-23190.

Ioana Anghel, Matthew Flynn, Bruce Gamblin, Grace Haggerty, Roger Huddleston, Daphne Neel, and Julia Whitworth contributed to the results presented in this paper.

DOE/MC/32108-96/C0616

Surfactant-Modified Zeolites as Permeable Barriers to Organic and Inorganic Groundwater Contaminants

Authors:

R.S. Bowman
E.J. Sullivan

Contractor:

New Mexico Institute of Mining and Technology
Department of Earth and Environmental Science
Socorro, New Mexico 87801

Contract Number:

DE-AR21-95MC32108

Conference Title:

Environmental Technology Development Through Industry Partnership

Conference Location:

Morgantown, West Virginia

Conference Dates:

October 3-5, 1995

Conference Sponsor:

U.S. Department of Energy, Office of Environmental Management,
Morgantown Energy Technology Center

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.