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Abstract. Network design problems often involve scenarios where there
exist many possible routes between fixed vertex locations (e.g. building
new roads between cities, deploying communications and power lines).
Many possible routes in a network result in graph representations with
many edges, which can lead to difficulty running computationally de-
manding optimization algorithms on. While producing a subgraph with
a reduced number of edges would in itself be useful, it is also important
to preserve the ability to interconnect vertices in a cost effective man-
ner. Suppose there is a set of target vertices in a graph that needs to be
part of any size-reduced subgraph. Given an edge-weighted, undirected
graph, set of target vertices, and parameter k ≥ 1, we introduce an al-
gorithm that produces a subgraph with the number of edges bounded

by min{O(nn1/k

|T | ), O(n |T |)} times optimal, while guaranteeing that, for
any subset of the target vertices, their minimum Steiner tree in the sub-
graph costs at most 2k times the cost of their minimum Steiner tree in
the original graph. We evaluate our approach against existing algorithms
using data from Carbon Capture and Storage studies and find that in
addition to its theoretical guarantees, our approach also performs well
in practice.

Keywords: Graph Spanner · Steiner Tree · Network Design · Carbon
Capture and Storage.

1 Introduction

Application-specific networks are commonly represented as generic graph struc-
tures, allowing application-agnostic algorithms to be employed for various opti-
mization tasks. Representing a network as a graph requires having information
about edges in the network, which is a challenge in certain geospatial applica-
tions (e.g. road networks, fiber routing) where one knows the vertices that need
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to be connected, but not how to connect them. For example, if one wanted to
connect a set of cities with brand new natural gas transmission pipelines, all that
exists is a vertex set without explicit candidate edges from which to select for
pipe installation. Edges for these networks can be generated by rasterizing the
2D weighted-cost surface into a grid, placing a vertex in the center of each cell,
and determining the cost to visit each of its, up to eight, neighbors. The cost
to visit each neighbor cell is based on the topography, property ownership, and
physical edge construction costs of the underlying weighted-cost surface. The
result of this process is the discretization of the continuous geospatial surface
into a large grid graph with diagonal edges, which achieves the goal of provid-
ing a graph representation for these geospatial network design problems [18].
However, for even a moderately sized region (e.g. the gulf coast of Texas), this
can result in a graph with millions of vertices and edges when the rasterized
cell size is approximately a square kilometer. As regions get larger or cell size
decreases, graph sizes can quickly become computationally prohibitive to use for
complex optimization problems such as Mixed Integer Linear Program (MILP)
formulations of optimal infrastructure deployments. Figure 1 shows an example
of a rasterized 2D weighted-cost surface with three target vertices, the large grid
graph with diagonal edges, and a more manageably sized subgraph.

(a) Rasterized Cost Surface (b) Cost Surface Graph (c) Reduced-Edge Subgraph

Fig. 1. Example of graph construction from weighted-cost surface.

This scenario commonly arises in network design problems embedded in the
real world such as road networks, physical telecommunication networks, and
pipeline networks. We are motivated by the design of Carbon Capture and Stor-
age (CCS) networks. CCS is an effort to reduce the dispersal of CO2 into the
atmosphere by capturing the CO2 byproduct of industrial processes, and trans-
porting it to geological features where it can be stored [19, 16]. CO2 capture
sites are not often collocated with appropriate storage sites. This requires devel-
opment of a CO2 distribution network to link capture sites with storage sites.
Furthermore, like any infrastructure project, CCS networks can be costly under-
takings, so care must be taken to select capture sites, storage sites, and intelligent
distribution links in a cost effective manner [14].
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Design of CCS networks, and other geospatial networks, is not as simple
as determining edge locations to connect a pre-determined set of capture and
storage vertices. Instead, a graph representation of the network needs to be
generated that supports deploying an unknown subset of the available capture
and storage vertices. This is because the graph feeds a variety of risk analysis
studies that determine the best capture and storage locations to open based on
cost, capture, and storage objectives, thereby driving final deployment decisions.
Contingency plans are also considered in case a storage location’s predicted
geologic parameters (e.g. capacity, supported CO2 injection rate) do not match
reality [17]. Therefore, the graph needs to be able to support various possibilities,
while remaining small enough to enable efficient computation and maintaining
some guarantee that the solution cost is within some bound of optimal.

The goal of this research is to simplify a graph by reducing the number of
edges and vertices in the graph, while maintaining some guarantee that vertices
in a target set can all be connected with a Steiner tree of bounded cost. In the
case of the CCS problem, the initial graph is the large grid graph output of the
rasterizing process shown in Figure 1b and the target set of vertices is the set
of possible capture and storage locations. Formally, we look for a subgraph of
a given graph that spans some target vertices, while minimizing the number of
edges in the subgraph and ensuring the subgraph contains Steiner trees for any
subset of the target vertices with cost bounded by the cost of the optimal Steiner
tree in the original graph. To this end, we introduce an algorithm that produces a

subgraph with at most a min{O(nn
1/k

|T | ), O(n |T |)} factor of the optimal number

of edges, where n is the number of vertices, T is the set of target vertices, and k
is an algorithm parameter controlling the quality of solution. This subgraph is
guaranteed to have Steiner trees that cost at most 2k times the cost of optimal
Steiner trees in the original graph, for any subset of the target vertices.

2 Related Work

The problem in the literature that is most closely related to ours is the k-spanner
problem [5]. A spanner (or k-spanner) is a subgraph that results from trimming
edges from a graph, while preserving some degree of pairwise distance between
vertices. Formally, given an edge weighted graph, a k-spanner is a subgraph
whose distance between each pair of vertices is at most k times the distance
between that pair in the original graph. Spanners with a minimal number of
edges have been extensively studied [4]. Most well known, it has been shown
that for k ≥ 1, every graph with n vertices has a (2k − 1)-spanner with at most
O(n1+1/k) edges [1]. The problem we consider in this paper differs from finding
k-spanners in two important ways:

1. Spanners traditionally aim to connect all vertices in the original graph,
whereas we look to connect only a designated subset of those vertices. Forc-
ing a solution to include excess vertices unnecessarily enlarges it.
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2. Spanners bound the shortest path between each pair of vertices, whereas we
aim to bound the minimum Steiner tree cost of any subset of the designated
subset of vertices.

Prior work has been done on subset spanners (or pairwise spanners), which
are subgraphs that approximately preserve distances between pairs of a subset of
the vertices. However, this prior work differs from ours by considering a spanner
variant with additive error instead of multiplicative [7, 10]. In other words, dis-
tances between each vertex pair is at most k plus, not times, the distance between
that pair in the original graph. Work has also been done that seeks spanners that
exactly preserve pairwise distance instead of approximately preserving it [6, 3,
2]. This could be useful for our application area, but does not enable relaxing the
distance requirement in favor of reducing the graph size, which is our primary
goal, given the intractability of optimal network design optimizations on large
graphs. Furthermore, none of these efforts explicitly consider Steiner trees in the
subgraph, necessitating a new approach for finding spanners.

Delaunay triangulation has been shown to produce paths between any two
points that are most 2.418 times their Euclidean distance [11]. However, this
assumes that the graph is embedded in a metric space, which cannot be assumed
for general geospatial network where edge weights need not abide by the triangle
inequality. Therefore, for non-metric instances, Delaunay triangulation’s distance
preserving guarantee does not hold. Nonetheless, it is reasonable to assume that
edge weights in physical networks are likely distance dependent, so we do evaluate
our solution against Delaunay triangulations in Section 5.

3 Problem Formulation

We consider a graph G consisting of a set of vertices V , undirected edges E,
and a value k ≥ 1. A subset of vertices is designated as target vertices T ⊆ V .
A non-negative cost c(e) is associated with each edge e in E, reflecting the
construction cost for that edge. For any subset of target vertices T ′ ⊆ T , the
cost of a minimum Steiner tree on G is denoted SG,T ′ . Our goal is to find a
subgraph of G that includes all vertices in T , bounds the cost of the minimum
Steiner tree for any subset of T , and has a minimal number of edges. The problem
is formally defined below.

Definition 1. Given G = (V,E, T, c, k), a connected, edge weighted, and undi-
rected graph, where T ⊆ V is a set of target vertices, c : E → R≥0 is an edge
cost function, and k ≥ 1, the Minimal Steiner-Preserving Subset Span-
ner problem seeks a subgraph of G, G′ = (V ′, E′, T, c, k) such that V ′ ⊆ V ,
E′ ⊆ E induced by the set V ′, T ⊆ V ′, |E′| is minimized, and for any T ′ ⊆ T ,
SG′,T ′ ≤ k ∗ SG,T ′ .

3.1 Computational Complexity

The minimal Steiner-preserving subset spanner problem is related to the MIN-
IMUM EDGE k-SPANNER problem: Given G = (V,E, k), a connected graph
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with k ≥ 1, find a spanning subgraph G′ = (V,E′, k) of G with the minimum
number of edges such that, for any pair of vertices, the length of the shortest
path (i.e. number of edge) between the pair in G′ is at most k times the shortest
distance between the pair in G.

Theorem 1. The MINIMUM EDGE k-SPANNER problem is reducible to the
minimal Steiner-preserving subset spanner problem via an S-reduction (cost-
preserving reduction).

Proof. Deferred to Appendix A.

Due to Theorem 1, the following complexity results for the MINIMUM EDGE
k-SPANNER problem hold for the minimal Steiner-preserving subset spanner
problem as well:

– When k = 2, the MINIMUM EDGE k-SPANNER problem is NP-Hard to

approximate within a bound of α log|V |
k for some α > 0 [12].

– When k ≥ 3, the MINIMUM EDGE k-SPANNER problem is NP-Hard
to approximate within a bound of 2(log

1−εn)/k, for all ε > 0, if NP *
BPTIME(2polylog(n)) [8].

– When k ≥ 3, the MINIMUM EDGE k-SPANNER problem is NP-Hard to
approximate within a bound of n1/(log logn)c if the exponential time hypoth-
esis holds, due to the spanner problem’s relationship to the Label Cover and
the Densest k-Subgraph problems [13].

Because of these complexity results, we pursue suboptimal approaches with
performance guarantees for finding solutions to minimal Steiner-preserving sub-
set spanner problem instances in Section 4.

4 Algorithm

In this section, we detail an approach for finding approximate minimal Steiner-
preserving subset spanners within graphs. An initial idea could be to leverage the
relationship to the MINIMUM EDGE k-SPANNER problem detailed in the proof
to Theorem 1. Specifically, we use a variant called the edge-weighted MINIMUM
EDGE k-SPANNER where the edges in the input graph have weights: For an
input graph G = (V,E, T, c, k), run a solution to the MINIMUM EDGE k-
SPANNER problem on Q = (V,E, c, k). This would result in a solution Q′ =
(V,E′, c, k) embedded with Steiner trees for any subset of T costing at most k
times their optimal costs in G, since T ⊆ V . However, this requires including all
vertices in V in the solution, which can dramatically increase the solution size
when the size of V is on the order of millions of vertices and the size of T is on
the order of tens of vertices. Instead we pursue an approach that attempts to
more rigorously control the size of the solution.

The classic greedy spanner (GS) algorithm to the edge-weighted MINIMUM
EDGE k-SPANNER problem works by iteratively adding individual edges to the
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Algorithm 1 Greedy Subset Spanner, on input G = (V,E, T, c, k)

Step 1 Find paths for pairs of vertices in T .
Let c′ = c.
forall vertex pairs in T , in order of increasing path cost in G

Find cheapest path in F = (V,E, T, c′, k).
forall Edge e in path

Mark e and let c′(e) = c(e)
k

.
endforall

endforall
Step 2 Build GGSS .

Let EGSS = ∅ and VGSS = ∅.
for Edge e in E

if e is marked
Add e to EGSS and endpoints of e to VGSS .

endif
endfor
Let GGSS = (VGSS , EGSS , T, c, k).

solution graph GGS = (V,EGS , c, k) [1]. Given an input of G = (V,E, c, k), GS
first sets EGS = ∅ and sorts E by non-decreasing weight. Then, for each edge
e = (v1, v2), GS computes the cheapest path from v1 to v2 in GGS and adds e to
EGS if the cost of that path is larger than k times the cost of e. The algorithm
we introduce in this section, GSS for greedy subset spanner, could be seen as
a generalization of the GS algorithm. Instead of greedily adding one edge at a
time, we greedily add all edges from a path between one pair of vertices in T at
a time.

For an input graph G = (V,E, T, c, k), the basic approach we take is to
construct an edge set for GGSS by iteratively adding edges from paths between
pairs of vertices in T . Each pair of vertices from T is first sorted by non-decreasing
cost of their cheapest path in G. A cheapest path for each pair of vertices from
T is generated, one at a time in sorted order. Once a path is generated, its edges
are added to GGSS and the cost of each edge is reduced to be 1

k times its original
cost. Reducing the cost of selected edges encourages their use in the cheapest
paths for the remaining pairs in T . Reducing the edge cost by 1

k ensures that
cheapest paths selected will be within k of their actual cheapest paths and is
used in the analysis of the algorithm’s performance. Note that the cost does not
keep lowering if an edge is selected multiple times. Edges costs are either their
original costs, or 1

k times their original costs. This process builds an edge and
vertex set (vertices included in the selected edges) for GGSS . Details of the basic
GSS algorithm are presented in Algorithm 1.

Step 1 of GSS runs in O(|V |4) time since it executes a shortest path search

(O(|V |2)) for each pair of points in T (O(|V |2)). Step 2 goes through each edge,

and thus runs in O(|V |2) time. Thus the running time of GSS is O(|V |4).
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Since GSS runs in polynomial time and Theorem 1 showed the problem to
be NP Hard, we cannot hope solutions produced by GSS to be optimal. In the
following theorems, we establish a guarantee on the cost of Steiner trees for any
subset of T and a provide an approximation ratio for the number of edges in
solutions output by GSS.

Theorem 2. Given a graph G = (V,E, T, c, k) and a solution provided by GSS,
GGSS = (VGSS , EGSS , T, c, k), for any subset T ′ of T , the cost of the minimum
Steiner tree for T ′ in GGSS is at most 2k times the cost of the minimum Steiner
tree for T ′ in G.

Proof. Suppose that G = (V,E, T, c, k) and GGSS = (VGSS , EGSS , T, c, k) are
the input and output respectively of GSS. The metric closure of a set of vertices
S in a graph G is the complete (over S) subgraph in which each edge is weighted
by the cheapest path distance between vertices in G. It is well known that the
cost of a Steiner tree constructed as a minimum spanning tree on a metric closure
is at most twice the cost of a minimum Steiner tree in the original graph [20].
If MSTMCT ,G denotes the minimum spanning tree on the metric closure of T in
G and STT,G denotes the minimum Steiner tree of T on G,

cost(MSTMCT ,G) ≤ 2 cost(STT,G) (1)

If k = 1, GGSS contains the metric closure of T since GGSS is composed of
the cheapest paths in G between each element of T . If k > 1, GGSS no longer
contains the metric closure of T in G, but contains a path between each pair of
vertices from T that costs at most k times the cost of that path in the metric
closure in G. Thus, a minimum spanning tree on T in GGSS , MSTT,GGSS , would
be at most k times the cost of the minimum spanning tree of the metric closure
of T in G:

cost(MSTT,GGSS ) ≤ k cost(MSTMCT ,G),∀k ≥ 1 (2)

Combining Equations 1 and 2 shows that GGSS contains a Steiner tree for
T of cost at most 2k times the optimal cost:

cost(MSTT,GGSS ) ≤ k cost(MSTMCT ,G) ≤ 2k cost(STT,G),∀k ≥ 1 (3)

Equation 3 holds for all subsets of T , since the metric closures of subsets
of T are embedded in the metric closure for T itself, and for all k ≥ 1, GGSS
contains, within k, cheapest paths between all pairs of vertices from any subset
of T , since it contains them for all pairs of vertices from T itself. ut

Theorem 3. Given a graph G = (V,E, T, c, k) and a solution provided by GSS,

GGSS = (VGSS , EGSS , T, c, k), |EGSS | ∈ O(n |T |2), where n is the number of
vertices in V .
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Proof. For each pair of points from T , GSS provides a path that is within k of
its least cost path. Since edge costs are non-negative, each path can be made
loopless, thereby being less than or equal to n− 1 edges. Since there are O(|T |2)

pairs of vertices, |EGSS | ∈ O(n |T |2). ut

The next theorem bounds the size of EGSS in relation to EGS . To avoid
pathological cases discussed in the proof, the input graph needs to be pre-
processed by running GSS on it with T = V . This does not affect the conclusions
from Theorem 2 or 3, since the pre-processed graph still contains a path between
each pair for vertices that costs at most k times the original cost. Since GSS is
run twice (first on T = V and then on the actual subset T ⊆ V ), the running

time of this modification is still O(|V |4).

Theorem 4. Given a graph G = (V,E, T, c, k) and a solution provided by GSS,
GGSS = (VGSS , EGSS , T, c, k), |EGSS | ∈ O(n1+1/k) when k ≥ 3, where n is the
number of vertices in V .

Proof. Deferred to Appendix B.

Corollary 1. GSS is a min{O(nn
1/k

|T | ), O(n |T |)}-approximation algorithm when

k ≥ 3 and a O(n |T |)-approximation algorithm when k < 3.

Proof. Consider a graph G = (V,E, T, c, k), a solution provided by GSS GGSS =
(VGSS , EGSS , T, c, k), and an optimal solution GOPT = (VOPT , EOPT , T, c, k).
|EOPT | ≥ |T |−1, since the optimal edge set must, at minimum, span all vertices

in T . By Theorem 4, |EGSS | ∈ O(n1+1/k) = O(nn
1/k

|T | |T |) when k ≥ 3. Thus,

|EGSS | ≤ O(nn
1/k

|T | ) |EOPT |. By Theorem 3, |EGSS | ∈ O(n |T |2). Thus, |EGSS | ≤
O(n |T |) |EOPT |. Therefore, |EGSS | ≤ min{O(nn

1/k

|T | ), O(n |T |)} |EOPT | when

k ≥ 3 and |EGSS | ≤ O(n |T |) |EOPT | otherwise. ut

5 Evaluation

In this section, we evaluate the performance of the algorithm presented in Sec-
tion 4 using realistic data and scenarios. We label the algorithm comprised of
Algorithm 1 and the heuristic improvement detailed in Section ?? the Greedy
Subset Spanner (GSS) algorithm. In order to characterize GSS’s performance,
we implemented two additional solutions:

1. Greedy Spanner (GS) is the simple solution to the edge-weighted MINIMUM
EDGE k-SPANNER problem introduced in [1], with its implementation out-
lined in the beginning of Section 4.

2. Delaunay triangulation (DT ) is a simple spanning strategy of calculating
a Delaunay triangulation and replacing each edge in the triangulation with
the cheapest path in the original graph between those points. Theoretical
limitations of this approach are detailed in Section 2.
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We seek to compare these algorithms based on the quality of solution, as
quantified by the size of the output graphs (i.e. number of edges) and cost of
minimum Steiner trees in the output graphs, for various subsets of vertices. The
dataset we used to evaluate these algorithms encompasses southern Indiana, in
the Illinois Basin [9, 15]. Figure 2 shows the geographical area of the dataset
as well as the possible capture and storage locations and the edges selected by
GSS when k = 1.5. The base graph generated by this dataset was constructed
as the rasterization of the 2D cost surface as described in Section 1. The number
of edges in the base graph is 118563 and the number of vertices is 29879, 43 of
which are possible capture and storage locations.

When considering the number of edges in the output subgraph, we collapse
degree 2 vertices that are not in T by making a single edge whose cost is the
sum of the costs of the two replaced edges. This is done because those vertices
dictate the routing of the edge, but not the overall connectivity or cost of the
graph. For each edge in the graph, we keep track of its collapsed vertices for
determining actual edge routes. To calculate the minimum Steiner trees, we use
the popular minimum spanning tree based approximation algorithm [20].

Fig. 2. Dataset map indicating capture (square) and storage (circle) locations as well
as the subset of edges selected by the GSS algorithm when k = 1.5.

First, we explore the tradeoff between the parameter k and the quality of
output for the GSS algorithm by running it with k values between 1.0 and 2.0.
The number of edges in the resulting graph is shown in Figure 3a. As expected,
the size of the output graph decreases as the parameter k increases, since a
larger k allows for more expensive Steiner trees and thus more sharing of edges.
The number of edges was reduced by 94% going from k = 1.0 to k = 1.25, 40%
going from k = 1.25 to k = 1.5, and about 20% from k = 1.5 to k = 1.75 and
k = 1.75 to k = 2.0. The average cost of Steiner trees for 30 random subsets
of capture and storage vertices ranging in size from 10 to 30 vertices is shown
in Figure 3b. The increase in Steiner tree cost is much less dramatic than the
decrease in graph size for increased k values. The average cost of Steiner trees
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increased by 4.5% going from k = 1.0 to k = 1.25 and about 1% for all other
jumps in k. This suggests that GSS is an efficient way to reduce graph size while
preserving inexpensive Steiner trees.
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Fig. 3. GSS performance metrics for various values of k.

Finally, we seek to compare the GSS algorithm with GS and DT . We also
include the base graph, Base, to provide baseline comparison. We parameterized
GSS and GS with k = 1.5. The number of edges in the output graph for each
algorithm is shown in Figure 4a with a log scale, since the differences between
algorithms is quite drastic. The number of edges in the base graph is 118563
whereas the output from GS has 58895 edges, DT has 203 edges, and GSS
has 112 edges. This means that GGS reduced the number of edges in the base
graph by over 99.9%. The average cost of Steiner trees for 30 random subsets
of capture and storage vertices ranging in size from 10 to 30 vertices is shown
in Figure 4b. As expected, the cost of Steiner trees increases as the size of the
graph size decreases, however the increase is markedly small. The average cost
of Steiner trees using GS was 3% more than the cost of Steiner trees on the base
network, while GSS Steiner trees cost on average 6% more and DT Steiner trees
cost on average 4% more than Steiner trees on the base network.

6 Conclusions

Geospatial infrastructure network design problems using optimal approaches can
quickly become intractable due to the size of the graph representing many pos-
sible edge locations. In this paper, we formalized the problem of generating a
reduced edge subgraph that preserves the cost of Steiner trees over any subset
of a target set of vertices and proposed an algorithm for it, GSS. GSS provides
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Fig. 4. Algorithm performance metrics comparison.

theoretical approximation ratios for both the cost of Steiner trees as well as the
number of edges in the subgraph it generates. Using cost surface and capture
and storage locations data from CCS studies, we evaluated GSS against other
possible approaches. GSS proved effective at significantly reducing the number
of edges while displaying a very small increase in Steiner tree cost in these real
world scenarios. Of further interest was the performance of using Delaunay tri-
angulation to find subgraphs. Despite the lack of a theoretical guarantee, and
the cost surface not being a metric space, Delaunay triangulation proved quite
effective and was very quick in practice. Important future work includes finding
a tighter approximation ratio for the number of edges and removing the approx-
imation ratio on Steiner tree cost. An additional avenue of interest is to change
the objective from minimizing the total number of edges to minimizing vertices
with degree larger than two. A single source-to-sink path can consist of many
edges (a route through a cost surface). With the edge minimization objective,
that path contributes many edges, whereas with the degree larger than two mini-
mization objective, that path only counts as a single edge. If further optimization
processes that use the subgraph only consider paths between vertices, and not
underlying routes, it is more accurate to have that path count as a single edge
instead of many.

References
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A Proof of Theorem 1

The MINIMUM EDGE k-SPANNER problem is a special case of the minimal
Steiner-preserving subset spanner problem. Given Q = (V,E, k) with k ≥ 1 as
an input to the MINIMUM EDGE k-SPANNER problem, construct an instance
to the minimal Steiner-preserving subset spanner problem G = (V,E, T, c, k) by
using the same V , E, and k, and letting T = V and c(e) = 1 for all e in E. We
wish to show that a minimal Steiner-preserving subset spanner problem solution
to G is a solution to the MINIMUM EDGE k-SPANNER problem if and only
if a MINIMUM EDGE k-SPANNER problem solution to Q is a solution to the
minimal Steiner-preserving subset spanner problem.

Suppose G′ = (V ′, E′, T, c, k) is a solution to the minimal Steiner-preserving
subset spanner problem. This means that every subset T ′ of T has a Steiner tree
in G′ whose cost is at most k times the cost of the minimum Steiner tree of T ′

in G. Since T = V , V ′ = V and every pair of points in V is a subset of T . Thus,
because a Steiner tree on two points is merely the shortest path between them,
the shortest paths in G′ between any pair of vertices in V is at most k times the
distance between the pair in G. Therefore, G′ is a k-spanner of G, and thus Q.

Suppose Q′ = (V,E′, k) is a solution to the MINIMUM EDGE k-SPANNER
problem. This means that every pair of points in V have a path whose cost is
at most k times the cost of the cheapest path between those points in Q. Given
a subset T ′ of T and a minimal Steiner tree of T ′ in Q, adjacent vertices in the
Steiner tree can be connected by the shortest path in Q′ between those vertices.
Since those paths in Q′ are at most k times their cost in Q, this yields a Steiner
tree whose cost is at most k times the cost of the minimal Steiner tree in Q.
Therefore, Q′ is Steiner-preserving subset spanner of Q, and thus G.

Since any solution to Q suffices as a solution to G and conversely, the mini-
mum solutions must coincide. ut

B Proof of Theorem 4

Suppose that GGSS = (VGSS , EGSS , T, c, k) is the solution provided by GSS
on input G = (V,E, T, c, k). Further, suppose that GGS = (V,EGS , c, k) is the
solution provided by the GS algorithm described at the beginning of this section.
It has been shown that the GS algorithm produces a solution with at most
O(n1+1/k) edges when k ≥ 3 [1]. We will show that |EGSS | ≤ |EGS | for any set
T and k ≥ 1.

Without loss of generality, assume that edge costs are unique. This can be
achieved by small perturbations of the edge costs. We begin by showing that
for any k ≥ 1, EGSS = EGS when T = V . This result is not dependent on the
pre-processing modification to GSS described above.

Let e = (v1, v2) be the least cost edge that meets one of the following condi-
tions:

1. e ∈ EGSS and e /∈ EGS
2. e ∈ EGS and e /∈ EGSS
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Case 1. Suppose that e meets condition 1 (e is in EGSS , but not in EGS). We
will show the contradiction that e cannot be in EGSS . Since e is not in EGS ,
there is a path p from v1 to v2 in EGS such that:

1. For each edge e′ ∈ p, cost(e′) < cost(e), since GS schedules edges in order
of cost.

2. cost(p) ≤ k cost(e), otherwise e would have been scheduled.

All edges from p must be in EGSS , since there does not exist a lower cost edge
that is in EGS but not in EGSS . When GSS considers e, all edges in p must have
already been added to EGSS , since GSS schedules edges in order of increasing
cost. Therefore, when GSS considers e, the reduced cost of each edge e′ in p is
cost(e′)

k . This means that the reduced cost of p is,∑
e′∈p

cost(e′)

k
=

1

k
cost(p) ≤ 1

k
k cost(e) = cost(e)

Therefore, the cost of p found by GSS is at most the cost of e. Increasing k by
a small amount in GSS yields a strict inequality, which means that GSS would
select path p over edge e, thereby excluding e from EGSS .

Case 2. Suppose that e meets condition 2 (e is in EGS , but not in EGSS).
Since e is not in EGSS , there is a path p from v1 to v2 in EGSS such that:

1. For each edge e′ ∈ p, cost(e′) < cost(e), since GSS schedules edges in order
of cost.

2. 1
k cost(p) < cost(e), otherwise e would have been scheduled.

All edges from p must be in EGS , since there does not exist a lower cost edge
that is in EGSS but not in EGS . When GS considers e, all edges in p must have
already been added to EGS , since GS schedules edges in order of increasing cost.
Therefore, p would have been scheduled instead of e, since cost(p) < k cost(e).

Thus, there cannot be an edge e such that either e is in EGSS but not in
EGS , or e is in EGS but not in EGSS . Therefore, when T = V , every edge in
EGSS is in EGS , and EGSS = EGS .

If T is a strict subset of V , there is no guarantee that the size of EGSS
decreases compared to EGSS when T = V . In certain pathological cases, the
size of EGSS can in fact increase with a smaller set T . One such scenario occurs
when the graph contains a complete component of m vertices paired with a
vertex v connected to the other m vertices. With careful edges cost assignments
and selection of k, GSS can be made to select the m edges incident to v, when
T = V , but select the O(m2) edges in the complete component when T equals
that complete component. As such, we leverage the pre-processing modification
to GSS discussed before this theorem, where the input graph is pruned to only
include edges from GSS when T = V . Using the pruned graph with the input T ,
GSS cannot select edges that are not in the pruned graph, so EGSS cannot grow
larger than the pruned graph. Thus, if EGSS−V denotes the edges scheduled by
GSS when T = V and EGSS−S denotes the edges scheduled by GSS for some
strict subset S ⊂ V , EGSS−S ⊆ EGSS−V .

Therefore, for T ⊆ V , |EGSS | ≤ |EGS | and |EGSS | ∈ O(n1+1/k). ut


