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IBM has developed an API allowing users to build and execute quantum programs on their quan-
tum computers built using superconducting circuits, ranging from 4 to 20 qubits. Using the SSH
model as our system to study, we compare the accuracy of the ground state found classically to
the ground state calculated by the variational quantum eigensolver. We also explore how vary-
ing parameters such as number of qubits, quantum depth and shots a↵ected the accuracy of the
algorithm.

I. INTRODUCTION

A. Quantum Computing

Quantum computing takes advantage of quantum me-
chanical properties such as superposition and entangle-
ment in order to perform calculations that are too inten-
sive for a classical computer. Richard Feynmann came
up with the idea of quantum computers in 1982, where
it was only theoretically motivated until the creation of
Shor’s algorithm. This algorithm involves the factoriza-
tion of large numbers, which in turn makes it possible
to break encryption keys. Quantum computers would
be capable of using Shor’s algorithm to crack encryp-
tions at a significantly faster speed than a classical com-
puter, which provided the motivation to start develop-
ing quantum computers to run Shor’s algorithm and dis-
cover other uses. In the present day, companies such as
Google, Microsoft, D-Wave Systems, Rigetti Computing,
and IBM are building quantum computers using di↵erent
techniques and racing to achieve quantum supremacy.
The purpose of quantum computing is to perform cal-

culations that are too di�cult to be executed on classical
computers. But before we are able to use these comput-
ers, we must first prove that they are able to use quantum
mechanics that will in turn be used to perform the cal-
culations. As a proof of principle we use algorithms that
can be done classically and compare those results to that
of the quantum computer. In theory, if the quantum com-
puter works for small qubit systems, larger qubit systems
can be implemented and run on quantum computers.

B. QISKit

QISKit is IBM’s application program interface (API)
that allows users to submit their quantum programs to
a queue using a credit system. The programs can be
run on various quantum computers, ranging from 5 to 20
qubits or the custom quantum simulators. The QISKit
library is written in Python and for our project we used

FIG. 1. 3D Model of polyacetylene

the optimization tools, namely the variational quantum
eigensolver (VQE). The VQE uses the variational method
to reach the lowest energy state (the ground state) of a
quantum system. In order to use this eigensolver, we
needed to map our quantum system to 2⇥ 2 matrices so
they represent qubits [1].

C. Su-Schrie↵er-Heeger Model

The Su-Schrie↵er-Heeger (SSH) Model is a finite 1-
dimensional lattice model used to describe polyacetylene
(C2H2)n molecules [2–5]. This chain is used to study
the e↵ects of topology in condensed matter physics as
well as in quantum field theory, where properties of the
molecule depend directly on the arrangement and struc-
ture. Figure 1 is a 3 dimensional model of polyacetylene
created in Avogadro. An interesting trait of this model is
that it alternates between single and double bonds. The
Hamiltonian for a chain with N groups and mass M is:
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where t is the intersite hopping: ti+1,i = t0 � g(ui+1 �
ui), t0 is the hopping term without vibrations, g is
the electron-phonon coupling constant [4]. c†i and ci
are the fermionic creation and annihilation operators,
which obey the anti-commutation relation: {ci, c†j} =
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aia
†
j+a†jai = �ij . K is the spring constant, ui is the group

displacement along the chain and u̇2
i is the kinetic energy

term. For simplicity, we use the Born-Oppenheimer ap-
proximation, which assumes that the chain is perfectly
combined or dimerized [2]:

un = (�1)nu (2)

This makes every displacement term even in distance cre-
ating a less complex space for our Hamiltonian.

II. METHODS

A. SSH Model

To generate the Hamiltonian for this system, we used
MATLAB. The SSH model involved generating both
fermions and bosons. To generate the fermionic ladder
operators we used the Grassman number and the Z Pauli
matrix [6]. Explicitly, the operators are:

aFj = �3 ⌦ �3 ⌦ . . .⌦ �3| {z }
j-1 times
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where j identifies which fermion it is. For example, if
there were 3 fermions, the first one would tensored with
two 2⇥ 2 identity matrices, the second one will be ten-
sored with one �z matrix and one identity matrix while
the third will be tensored with two �z matrices. These
ladder operators fulfill the anti-commutation relations.
Similar to the fermions, bosons are built using their lad-
der operators. Creating multiple bosons requires them
to be tensored with 2⇥ 2 identity matrices [7].
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For multiple bosons, they must fulfill the commutation
relation:

⇥
ai, aj

†⇤ ⌘ aiaj
† � aj

†ai = �ij (7)

FIG. 2. This graph shows how the coupling constant a↵ects
the ground state energy of the SSH Model

⇥
ai

†, aj
†⇤ = [ai, aj ] = 0 (8)

Since bosons are infinitely dimensional matrices, we must
approximate them by using defined matrices. However
the only constraint is that the boson must be a power of
two so that it can be mapped onto multiple qubits if it
were larger than a 2⇥ 2 matrix.
The coupling constant g is how the electrons and

phonons interact in the SSH model. To see how the cou-
pling a↵ected the ground state energy of our system, we
used MATLAB to visualize the ground state as a function
of coupling (Figure 2).

B. Variational Quantum Eigensolver (VQE)

In order for the variational eigensolver to work, various
libraries must be imported (plotting, qiskit, numpy, scipy,
functools). You input the number of qubits you are using
for the Hamiltonian (in the case of my Hamiltonian, 2n

plus the size of boson matrix), as well as the quantum
depth. The quantum depth is how many times the same
circuit is being used per trial. Shots is defined as how
many times the program will calculate the energy then
average, if the amount of shots is 1, then the average is
exactly only one execution for the trial. The program
then imports the list of coe�cients corresponding to the
tensored Pauli matrices. The list is then read and the
Hamiltonian is generated.
Quantum circuits are a sequence of quantum gates

where each gate can act on a qubit in di↵erent ways.
Some gates can change the phase of the qubit, the
Hadamard gate (H gate) allows the qubit to be in su-
perposition of |1i and |0i, meaning that when that qubit
is measured, there will be an equal probability of obtain-
ing either state. In the case of the quantum eigensolver,
the quantum circuit is your trial state.



FIG. 3. Flowchart of the VQE. It begins with initial values
for your trial state and minimize them in order to obtain the
ground state energy.

FIG. 4. Representation of a quantum circuit. This circuit
consists of arbitrary Ry and Rz rotations to reach the ground
state energy.

The variational method says that the expectation value
of a Hamiltonian when using trial states will give you an
upper bound.

h trial|H | triali � Eground (9)

This method consists of varying the trial state parame-
ters until the upper bound is minimized. Once the pa-
rameters are minimized the expectation value will con-
verge to the ground state energy:

h trial|H | triali = Eground (10)

Figure 3 is a flowchart of the VQE. It starts with initial
parameters and the quantum circuit is created. The cir-
cuit is then evaluated and the lowest energy state is the
cost of that expectation value. This process is repeated
for a set amount of trials defined by the user and the final
cost of the optimization is the ground state energy which
the algorithm converges to.
Figure 4 is a representation of the trial circuit used

to evaluate our Hamiltonian. Each qubit is first put in
a state of superposition, then an Ry and Rz rotation is
applied. Once the circuit is evaluated and the next trial
begins, new parameters are passed to the circuit which
can either increase or decrease the upper bound when the
next evaluation occurs.

C. Parameters

To generate the Hamiltonian, the coupling constant g
= 4.8 eV/Å, K = 17.3 eV/Å2 and t0 = 1. Physical con-
stants such as ~, !, and mass are set to 1 for simplicity.

FIG. 5. Energy optimization trial run for a 5 qubit system
with a quantum depth of 3. The percent error was 6.7%.

For this simulation, we used 2 fermions (4⇥4), and an
8⇥8 boson, resulting in a 32⇥32 Hamiltonian, which is
a 5 qubit system. The quantum depth was varied from
1 to 10, and the amount of shots used were 1 and 100.
The default trial circuit from IBM-Q was used to perform
the optimization which was done the quantum computer
simulator.

III. RESULTS

With a quantum depth of 3, the eigensolver is able
to converge to the ground state energy with a 7% error.
Figure 5 shows that at a quantum depth of 3 that the
algorithm converges to an energy state above the exact
ground state of the given system.
Comparing quantum depth to how well the variational

quantum eigensolver converges, (Figure 6) after increas-
ing the depth from 2 to 3, there is a significant di↵er-
ence, but after increasing it further, the results did not
change. This proves that increasing the quantum depth
past a certain point does not improve your optimization.
Simulating a 5 qubit system with shots equal to 100 did

not yield good results. The algorithm converged to an en-
ergy that was 400% greater than the ground state energy
of the system (Figure 7). An explanation to why this cal-
culation did not converge is that there was not enough
data for the variational quantum eigensolver to converge
properly. If the amount of shots per trial were increased
to 2048 or more, the eigensolver will have an easier time
converging to the correct ground state. The only pitfall
for increasing the amount of shots is the amount of time
needed to complete the calculation.

IV. CONCLUSIONS

We studied and visualized the ground state properties
of the Su-Schrie↵er-Heeger model by creating the Hamil-
tonian in MATLAB and using the variational quantum



FIG. 6. Quantum depth versus percent error. There is a
significant di↵erence when using a depth of 2 versus a depth
of 3.

FIG. 7. Energy optimization trial for a 5 qubit system with
a quantum depth of 1 and shots equal to 100. The percent
error was 399.1%.

eigensolver to calculate the ground state energy on the
IBM-Q. The variational quantum eigensolver is able to
converge to the ground state energy of our system with

a minimum of 7% error. More research is needed into
how to create improved trial functions that will allow
the eigensolver to converge to the correct ground state.
Large systems such as the one we have studied require
more complex trial circuits. Increasing the amount of
shots can also allow the algorithm to converge closer to
the correct ground state, more iterations per trial makes
for a better average. Next steps include studying more
realistic systems, which require more qubits and tend to
be more complex.
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