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Abstract—The purpose of this project is to visualize and study
the electronic properties of carbon nanostructures. The principal
structures studied are AA and AB (Bernal) stacked graphene
bilayers, an 80C nanocone with pentagonal defects at its apex,
and a 16C nanoring. Graphene and other based nanostructures
have attracted much attention due to their unique electronic
properties. For example, bilayer graphene shows superconduc-
tivity at certain magic angles of rotation. Open source molecular
modeling and visualization programs like SAMSON, Avogadro,
and VMD are utilized to generate the structures above. Using
bond information in order to find nearest neighbors, an adjacency
matrix can be generated from which the energy eigenvalues are
solvable and are used to visualize the dispersion relation, free
energy, persistent current, Green’s function, and entanglement
entropy. The goal of this project is to study the effect of rotation
on the electronic properties of bilayer graphene, particularly as
it pertains to the magic angle where superconductivity occurs,
as well as the electronic properties of the bilayer Moiré patterns
which emerge due to the superposition of the identical lattices
at different angles. An important goal is to incorporate phonon
interactions into the tight-binding model for carbon structures,
and to utilize quantum based computing as a tool to find the
ground state properties of these structures, particularly in the
terminating case where boundary conditions have an effect.

Index Terms—Graphene, Green’s Function, Moir patterns,
IBM QISKit, Variational Quantum Eigensolver

I. NANOSTRUCTURE VISUALIZATION

The physical properties of carbon-based systems are largely
determined by their dimensionality. As such, it is important to
understand a nanostructure’s geometry and topology particu-
larly as it affects electron transport and phonon interaction.
Using the open-source molecular modeling and visualization
softwares Software for Adaptive Modeling and Simulation
Of Nanosystems (SAMSON) v. 0.7.0, Avogadro v. 1.2.0 [1],
and Visual Molecular Dynamics (VMD) [2] [3] enabled the
visualizations of nanostructures, some of which are natural
and experimentally grown, and some of which are avenues for
further research into the topology of lattice structures in order
to develop theories on how the electronic properties might be
affected in carbon-based devices with similar characteristics.
Such characteristics include defects in the hexagonal lattice
that creates curvature in the 2D form of graphene, or the
superposition of two structures and the relative angle between

them, or even how atom arrangement at the edges affects the
electronic properties of a lattice.

A. Moiré Superconductor

Since its isolation from graphite in 2004, a carbon-based
structure that has been the subject of extensive solid-state
physics research is graphene [4] [5]. Single layer graphene
(SLG) is a sheet a single atom thick formed of a lattice of
hexagonally arranged sp2 hybridized carbon atoms, called a
honeycomb lattice. Each carbon atom has six electrons and an
electrical configuration 1s22s22p2. The hybridization of the
2s an 2p orbitals lowers the system’s energy when covalent
bonds between carbon atoms take place. The hybridization
involves three of the four valence electrons in the carbon atom,
leaving a single electron perpendicular to the graphene plane
in the p

z

orbital [6]. The electronic properties of graphene are
owed to the valence (⇡) band given by the p

z

orbital. The
lattice structure of graphene can be seen as being composed
of two triangular sublattices with two atoms per unit cell.
The two points K and K0 at the corner of the Brillouin zone
(BZ) of graphene 1 are known as the Dirac points, behave
as low energy Dirac relativistic fermions where the energy
bands meet, and the energy spectrum is approximately linear.
The dispersion relation of SLG for nearest and next nearest
hopping is given by Eqn 1, where t and t0 are the nearest
neighbor and next-nearest neighbor hopping parameters with
experimental values of 2.7 eV and 0.4 eV respectively, and
k
x

, k
y

are the wave vectors, and a is the lattice constant of
graphene, approximately 0.246 nm.

E±
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The dispersion relation gives the level of all possible en-
ergies and momenta for a material. The dispersion relation
of graphene is approximately linear near the Fermi level and
can be described by the pseudo-relativistic Dirac equation
- a relativistic wave equation that describes spin 1

2

massive
particles [7].
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Fig. 1: Brillouin zone of graphene with non-equivalent Dirac
points K and K0.

(a) Dispersion of SLG (b) Dispersion Near Dirac

Fig. 2: a) Dispersion relation of SLG b) Dispersion relation
of SLG near Dirac Point for low energy-states, showing Dirac
cone which allows electrical conduction to be described by
the Dirac equation

In bilayer graphene there are two methods of stacking: AA
and AB (Bernal) stacking. AA stacking is a direct superim-
position of the top layer over the bottom layer, where the
A atoms of the top layer are directly over the A atoms of
the lower layer. In Bernal stacking, which is more commonly
encountered and electrically stable, the top layer is offset by
the length of one carbon-carbon bond.

Exposing stacked graphene layers to a perpendicular electric
field can induce a tunable band gap, important for its potential
uses in electronics.

Rotated Bernal stacked graphene has recently shown super-
conductivity at certain magic angles of rotation . Researchers
have found that for an angle of approximately 1.1 degree
tunable superconductivity can be achieved in doped graphene
at temperatures as high as 1.7 K [8].

(a) AB Stacked
Graphene Unrotated

(b) AB Stacked
Graphene Rotated by
Some ✓

(c) AB Stacked
Graphene at Magic
Angle 1.1

Fig. 3: Visualizations made using Avogadro and VMD a) 24
atom Möbius strip b) 16 atom ring

(a) N=24 Möbius strip (b) N=16 Nanotube

Fig. 4: Visualizations made using Avogadro and VMD a) 24
atom Möbius strip b) 16 atom ring

(a) N=16 Möbius strip (b) N=16 Nanostrip Ring

Fig. 5: a) Energy dispersion of 16 atom Möbius strip b) 16
atom ring

B. Polyacetelyne, Nanorings and Nanostrips

The Su-Schrieffer-Heeger polyacetylene (SSH) model has
also been extensively researched to characterize electric prop-
erties on a 1D lattice, due to its conductivity as an organic
polymer [9]. The presence of phonon-electron interaction in
the SSH model causes dimerization of the lattice and an
electronic excitation at zero energy.

A ring of carbon atoms is very similar to the SSH model,
with the added advantage that the influence of flux due to a
magnetic field can be analyzed and the persistent current of
the model can be calculated. Additionally, the ring is a finite
case and easily given an adjacency matrix using the approach
from [10] [11].

The dispersion relation for a ring of N atoms with a flux �
as shown in the figure 6 is given by E

n

(�) = 2 cos(

2⇡n

N

+�)
Stacking the rings or atoms and connecting the adjacent

atoms gives a round nanostrip of graphene. Nanostrips area
terminated case of graphene where the boundary conditions
play an important role in the electronic spectrum of the

Fig. 6: Ring of N atoms.



Fig. 7: Dispersion of a nanoribbon with a width of 6 unit cells

(a) A (b) B

Fig. 8: Pentagonal Nanocones created using Avogadro and
rendered with VMD

nanostructure. In the case of graphene nanoribbons, there are
two cases of carbon arrangement along terminating edges.
Edge-localized states are found in zigzag-edge graphene, and
armchair graphene nanostrips have one electron band gaps [7].

C. Stacked Nanocone

Graphene cones which have been experimentally produced
are pentagonal defects in 2D graphene sheets. Graphitic cones
are important avenues for research because of the importance
of electronic effects due to defects in the development of
carbon based electronics, and the possible implementation of
curved carbon structures [12]. Graphene cones formed from
pentagonal defects on a graphene lattice show distinct low-
energy electronic properties at the apex due to the topological
differences that change the electron transport properties [13]
[14].

Superimposing two graphene cones and performing rota-
tions, as in the case of AA rotated bilayer graphene, may
yield unique electronic properties as yet unexplored.

Nanocones with an apex containing several pentagons was
studied in [15]. These nanocones or nanohorns are a promising
material for developing bio and chemical sensors due to their
high conductivity and high current capacity, as well as stability.

D. Nanohorn

A different type of nanohorn modeled in figure 10 has
10 pentagons and 5 heptagons to create a bulbous shape on
a nearly planar surface. The inspiration for this model is
the vortex model that joins a carbon nanotube to a plane of
graphene. The nanohorn has an Euler characteristic of 1. For
more information on carbon nanohorns see [15],

Fig. 9: Two overlaid cones with one cone rotating with respect
to the other in the VMD animation environment. View from
underneath the cones.

Fig. 10: Nanohorn created using Avogadro and rendered in
VMD.

E. Euler Formula

In topology, the Euler characteristic is a number that de-
scribes the topology of a structure classically defined as the
number of faces of a polyhedron added to the difference
between the number of edges and vertices.

V � E + F (2)

In the disc formed from a section of graphene, the Euler
characteristic is 24 � 30 + 7 = 1 consistent with a circular
disk.

For the N = 24 ring formed by hexagons the Euler char-
acteristic is 24 � 30 + 6 = 0 consistent with that of a circle,
torus or möbius strip. The N = 24 möbius strip formed from
hexagons also has an Euler characteristic of 0.

The nanocone formed by a single pentagonal defect sur-
rounded by 5 hexagons has an Euler characteristic of 20 �
25 + 6 = 1.

Finally, a nanohorn as shown in figure 10 has an Euler
characteristic of 155� 220 + 66 = 1.

II. COMPUTATION

A. Tight Binding Model

Quantum field theory (QFT) is a unifying mathematical
framework for special relativity and quantum mechanics, ex-
tending quantum mechanics dealing of particles to systems
with infinite degrees of freedom. (Ortega, Calabrese, Drissi)

The tight binding model approach is a QFT method for
calculating electronic band structures based on the couplings



(a) Helmholtz Free Energy Möbius
Strip

(b) Helmholtz Free Energy N=16
Ring

Fig. 11: a) Helmholtz Free Energy of 16 atom Möbius strip.
b) Helmholtz Free Energy of 16 atom ring strip

between neighboring atomic states in a molecule. For graphene
and sp2 hybridized carbon atoms, the orbital of interest is the
pz orbital.

For simple explanations of the derivation of the tight binding
model of graphene look to references [6]

B. Free energy, flux and chemical potential

The Helmholtz Free Energy of a linear system [16] is given
by the equation [10]

F = �kT ln(2 sinh

!

i

2kT

)

= �kT
P

i

ln(1� exp(�!
i

/kT ))� 1

2

P
i

!
i

(3)

where h̄ is set to 1. Here, !
i

is the ith dispersion relation and
k is the Boltzmann constant.
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X

i
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i
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In Figures 11a and 11b, the Helmholtz free energies of the
Möbius strip and nanostrip ring are shown for various temper-
atures. These graphics were modeled using Mathematica.

C. Propagator, time, temperature and chemical potential (real
time formulation)

The propagator, commonly known as Green’s functions is
a function in QFT that gives the probability amplitude for a
particle to travel from one place to another.

1) D greater, D lesser boson: Functional Integral Formu-
lation of real-time thermal field theory [17]
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Where n(w) = 1

e

�w�1

and � is inverse temperature.

For the discrete case and fixed position x:
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(a) Real Part (b) Imaginary Part

Fig. 12: Real and Imaginary parts of the boson propagator of
a carbon nanoring for fixed position x =0.

(a) Real Part (b) Imaginary Part

Fig. 13: Real and Imaginary parts of the fermion propagator
of a carbon nanoring for fixed position x = 0.
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In Figures 12a and 12b the real and imaginary parts of
the boson propagator of a carbon nanoring were plotted for
various chemical potentials at a fixed position.

2) D greater, D lesser fermion:

S(x, y) = (�i� · @ �m)

R h
d

3
p

(2⇡)

3
2iE

p

[eip·(x�y)

·
⇣
✓(x

o

, y
o

)[

e

�iE

p

(x
o

�y

o

)

1+e

��(E
p

+µ)
]

� e

��(E
p

+µ)+iE

p

(x
o

�y

o

)

1+e

��(E
p

+µ) ]

+✓(y
o

, x
o

)[

e

�iE

p

(x
o

�y

o

)

1+e

��(E
p

+µ) � e

��(E
p

�µ)�iE

p

(x
o

�y

o

)

1+e

��(E
p

�µ) ]

⌘

(9)
where x

o

is the at some time, and y
o

is the final time, and
the vectors x and y are position vectors. [18] [19]

The discretized form used for the ring of atoms is
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and is plotted for fixed position in Figures 13a and 13b

D. Entanglement Entropy

Entanglement entropy is a measure of quantum entangle-
ment in quantum many-body entangled states. Entanglement
entropy can be used to characterize quantum phases of matter,



(a) Entanglement Entropy N=8 Ring

Fig. 14: Entanglement entropy of a N=8 ring as a function of
temperature for different subsets n of the total ring.

critical phenomena, and dynamics in quantum systems in QFT.
Entanglement entropy is defined as the von Neumann entropy
S
A

= �Tr⇢
A

ln ⇢
A

, where A is a subsystem with reduced
density matrix ⇢

A

.
Using methods described in [11] for a massive fermion on

a discretized circular lattice, the entanglement entropy can
be plotted as a function of temperature of a N=8 ring. The
discretized Hamiltonian is given by
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The two point correlation function of two  fields are

components of the matrix C, the eigenvalues of which have
a one to one correspondence with the eigen-energies of a
reduced energy matrix written as a free-particle Hamiltonian.
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where � is inverse temperature, µ is chemical potential,

✏ = L/N , ! is the dispersion relation of a ring given by
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are the
first and third Pauli matrices.

The entanglement entropy of the carbon nanoring for dif-
ferent subsets of a carbon nanoring is shown in Figure 14a.

III. QUANTUM COMPUTATION

Quantum simulations of the Su-Schrieffer Heeger model
were performed using IBM’s Quantum Experience Package,
using the Quantum Information System Kit (QISKit) and
QISKit Acqua. The IBM QISKit is an open-source quantum
computing platform that gives users access to five-qubit quan-
tum processors through the cloud. Using Jupyter notebook as
the code interface for the quantum computer, Python scripts
can operate the quantum computing platform.

A. Tight binding model with phonon interaction

B. Phonon interaction

Electron-phonon interaction is important for the creation of
phonon scattering of electrons. Phonons create the vibrational

Fig. 15: Percent error of quantum simulation of ground state
energy of SSH model vs number of shots.

modes on the lattice and affect heat capacity, thermal expan-
sion and electrical conductivity.

The Su-Schrieffer Heeger (SSH) model for polyacetylene is
a simple, one-dimensional (1D) case of a topological insulator
[20]. Polyacetylene is a chain consisting of N unit cells of
carbon atoms with alternating double and single bonds.

A topological insulator has the characteristic of being
an insulator in the interior, and conducting on the surface.
The dimensionality and topology in the determination of the
electronic characteristics of a topological insulator. The SSH
model models spinless-fermions on a one dimensional lattice
with a hopping parameter. Electron-phonon interactions play
an important role in quantum systems and in polymers the
hopping of electrons along chain is moderated strongly by
lattice vibrations.

The Hamiltonian of the SSH model, neglecting spin, is given
by:

HSSH = �
P

i ti+1,i(c
†
i+1ci + H.c.)

+

K
2

P
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2
+

M
2

P
i u̇i

2 (14)

where ci (c†i ) are the fermion creation (annihilation) operators at
site i, and u is the boson field.

Considering the case where the hopping parameter, t, is the same
for all sites i, and u is dimerized such that ui = (�1)

iu as in [21],
the Hamiltonian is reduced to

HSSH = �
PN�1

i=1

h
[t+ (�1)

i
2↵u](c†i+1ci + c†i ci+1)

K
2 (�2(�1)

nu)2 + M
2 (�1)

nu̇2
i (15)

where ↵ denotes the electron-phonon coupling, and K is the spring
constant of the phonon.

The quantum simulation of the SSH model with 2 fermions (due
to qubit limit of 5) and a single boson is shown in Figure 17 with
a quantum depth of 5, and 1024 shots over which the value was
averaged with a percent error of 205.57 %.

Percent error in the ground state energy value given by the VQE
plotted versus the number of shots over which the values averaged
for simulations of the SSH model of two fermions and one boson
using a quantum depth of 3 are shown in Figure 15, showing that
increasing the number of shots reduces the percent error, however, the
VQE fails to converge to the exact value of the ground state energy
of the Hamiltonian.

The quantum simulation of a tight-binding model for a ring of 5
atoms is shown in Figure 16 with a percent error of 40.61 %.

For the case of a single boson with effective action, the free energy
as a function of flux given by:



Fig. 16: Quantum simulation for ground state energy of a N=5
carbon nanoring.

Fig. 17: SSH model of polyacetylene on the IBM Quantum
simulator.

Fferm,bos = ±kT
X

i

ln(1± exp(�!i/kT )) (16)

modeled instead as a function of u, the scalar field matrix representing
boson and with a term for potential, the flux potential V (u) is
interpolated and modeled using Mathematica in Figure 22.

The quantum simulation of a single boson in the SSH model is
shown in Figure 18.

C. Four fermion interaction
The four-fermion interaction gives a description for local inter-

actions between four fermions at a single spacetime point. The
Gross-Neveu model of four-fermion interactions in (1+1) time and
spacial dimensions for N self-coupled Dirac fermions is given by the
Lagrangian density:

L =  a(i�@ �m) a
+

g2

2N
[ a 

a
] (17)

where  a ( a) is the Dirac fermion (the Dirac adjoint  =  �0),
g is the coupling constant, N is the number of Dirac fermions, and
�@ is ��@� .

The low energy effective continuum theory of the Gross-Neveu
model, evaluated with degrees of freedom phonon can be represented
as

L =  (i�µ@µ )�
1

2

�2 � g�  (18)

The Hamiltonian for the trans-polyacetylene modeled by the
Gross-Neveu model is given by [22]:

Fig. 18: SSH model of single boson on IBM Quantum Simu-
lator.

(a) Gross Neveu Model polyacetylene
with Four Fermions

Fig. 19: Quantum Simulation of the Gross-Neveu model of 4
fermions on a trans-polyacetylene chain

(a) E vs. g

Fig. 20: Largest and Smallest energy eigenvalues of the Gross-
Neveu model as a function of g.
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and the bar over a symbol represents its dot product with the
second Pauli matrix. Mapping the Hamiltonian to qubits is performed
on Mathematica [23].

Modeled as

H = �
NX

j=1

t(c†jcj)�
N�1X

j=1

g(c†j+1cj+1c
†
jcj) (20)

for cj (c†j) annihilate (create) a fermion at site j. When simulated
on the quantum computer, the eigensolver converged to the exact
value within fewer than a 0.01 percent error for a value of g = 0.1.

D. VQE with Effective Potential
The Variational Quantum Eigensolver is an important tool for

quantum chemistry using the Quantum Computer. It effectively solves
the Schrödinger equation of a non-trivial Hamiltonian of a molecule.
It performs an unconstrained energy optimization in the Fock space
of the original electronic problem. The solution contains information
important to understanding the properties of the molecular system.
With increasing numbers of interacting particles (electrons) the
system becomes exponentially more difficult to solve on classical
computer, motivating its use on the quantum computer.



Fig. 21: Effective Potential for the continuous case as a
function of �.

Fig. 22: Phonon Free Energy – substitution of phonon for flux
with a momentum term

The two basic steps leading up to the VQE algorithm are mapping
between fermionic and qubit operators and factoring the effective
Hamiltonian into Pauli matrices.

Using Mathematica code, the the Hamiltonian is represented as
H =

P
i diPi where the di are coefficients given by di =

1
N
Tr(HPi) and Pi are Pauli Matrices.
The Variational Quantum Eigensolver approach is dependent on a

good ’trial’ state.
The quantum computer prepares variational trial states based on

parameters, and the expectation value of the energy is estimated and
then used in a classical optimizer to generate improved parameters
[24]. For its default optimization algorithm IBM uses simultaneous
perturbation stochastic approximation (SPSA).

The trial state is prepared by applying an ryrz circuit supplied by
the SPSA optimization module. Theoretically, any state can be built
from the ground state by applying a series of Ry and Rz rotations
[25]. Measurements of the Hamiltonian are taken as each qubit state
is put into a superimposed state by the application of a Hadamard
gate followed by the Ry and Rz rotations.

The VQE uses the variational principle to calculate the upper
bound of the ground energy state of a system.

Effective potential accounts for the quantum fluctuations in the
classical potential of a system. The effective potential rewrites the
effect of fermion fields in terms of boson fields, and reduces the
degrees of freedom for the system. The ground state of the Gross
Neveu model of a 2D lattice is given by the minimum of the effective
potential [26].

The Gross Neveu model with chemical potential using the large-N
approximation seen in Figure 21 has a 1/N expansion of
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where � = µ

p
N/⇡, � is an auxiliary field representing boson

degrees of freedom, µ is the chemical potential, and ✓(x) is the
Heaviside step function [27].

IV. CONCLUSION

Over the course of this project we created several visualizations
of discrete quantum systems with interesting topologies. The models

visualized included twisted bilayer graphene for various twist angles,
pentagonal cones and nanohorns, as well as nanostrip rings and
Möbius strips using open-source molecular modeling software. The
adjacency matrices and tight binding models were used to generate
the energy dispersion relations and free energy of the models.
The propagator, and entanglement entropy of the one-dimensional
model of a ring composed to carbon atoms were modeled using
Mathematica. The nanoring and polyacetylene ground state energies
were modeled on the IBM Quantum Experience simulator, with large
percent errors for the converged values for the Su-Schrieffer-Heeger
model with phonon interaction, and a simple tight binding model
with nearest neighbor hopping. The Gross-Neveu model simulated on
the quantum simulator converged to the ground state energy. While
quantum computing shows much promise in completing complex
calculations, there are still many issues with scalability and deco-
herence. In order to perform the factorization of the Hamiltonian, the
VQE requires the ability to create the Hamiltonian in matrix form.
For Hamiltonians of increasing complexity this will become more
and more difficult to achieve on a classical computer. The size of
the system that can be modeled is also limited by the number of
qubits available for mapping. Additionally, the rxry-trial circuit used
to prepare the trial state was not appropriate for each model studied.
Determining a trial-circuit for each model presents a complicated
obstacle to using the Variational Quantum Eigensolver in complex
models. The trial wavefunctions used are likely too close to the values
for the excited states, suggested by the simulations failing to converge
to the ground state energy value.
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