BROOKHFAVEN

NATIONAL LABORATORY
BNL-209080-2018-PUCP

Capturing provenance as a diagnostic tool for workflow performance
evaluation and optimization

L. Pouchard

Submitted to the NYSDS 2017 Conference
to be held at New York, NY
August 06 - 09, 2017

August 2017

Computational Science Initiative

Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC), Advanced Scientific Computing Research (SC-21)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others

to do so, for United States Government purposes.

This work was supported by the Laboratory Directed Research and Development Program of
Brookhaven National Laboratory under U.S. Department of Energy Contract No. DE-SC0012704.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Capturing provenance as a diagnostic tool for work-

flow performance evaluation and optimization

Line Pouchard
Computer Science Initiative
Brookhaven National Labora-

Abid Malik

tory tory
Upton, NY Upton, NY
pouchard@bnl.gov amalik@bnl.gov
Wei Xu

Computer Science Initiative
Brookhaven National Laboratory
Upton, NY
xuw(@bnl.gov

Abstract — In extreme-scale computing environments such as the
DOE Leadership Computing Facilities scientific workflows are
routinely used to coordinate software processes for the execu-
tion of complex, computational applications that perform in-sil-
ico experiments. Monitoring the performance of workflows
without also simultaneously tracking provenance is not suffi-
cient to understand variations between runs, configurations,
versions of a code, and between changes in an implemented
stack, and systems, i.e. the variability of performance metrics
data in their historical context. We take a provenance-based
approach and demonstrate that provenance is useful as a tool
for evaluating and optimizing workflow performance in ex-
treme-scale HPC environments. We present Chimbuko, a
framework for the analysis and visualization of the provenance
of performance. Chimbuko implements a method for the eval-
uation of workflow performance from multiple components that
enables the exploration of performance metrics data at scale.

Keywords — provenance, performance, scientific workflows,
workflow performance provenance ontology, WFPP, Chimbuko

I. INTRODUCTION

In extreme-scale computing environments such as the
DOE Leadership Computing Facilities [1] scientific work-
flows are routinely used to coordinate software processes for
the execution of complex, computational applications that
perform in-silico experiments. Workflows enable the orches-
tration of the numerous processes that read, write, and ana-
lyze data and calculate quantities of interest for parallel and
distributed scientific applications that range from quantum
chemistry, molecular dynamics (MD), climate modeling, and
many others. Important factors for any application running
in such environments include execution time and perfor-
mance, accuracy of calculations, and the ability to analyze
results. Given the limitations of a fixed resource budget

Notice: This manuscript has been authored by employees of
Brookhaven Science Associates, LLC under Contract No. DESC0012704
with the U.S. Department of Energy. The publisher by accepting the manu-
script for publication acknowledges that the United States Government re-
tains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so,
for United States Government purposes.

Computer Science Initiative
Brookhaven National Labora-

Huub Van Dam Cong Xie
Computer Science Initiative Department of Computer Sci-
Brookhaven National Labora- ence
tory Stony Brook University
Upton, NY Stony Brook, NY

hvandam@bnl.gov xiecng@gmail.com

Kerstin Kleese Van Dam
Computer Science Initiative
Brookhaven National Laboratory
Upton, NY
kleese@bnl.gov

(number of cores allocated for a specific period of time) and
with simulations running for several days or weeks, it is im-
portant to determine if a simulation run is progressing as ex-
pected, what variations in performance a run exhibits and
where they can be attributed. Monitoring the performance of
workflows in HPC provides insights into this progression,
how the computational resources are used, and where execu-
tion bottlenecks occur. But monitoring performance without
also simultaneously tracking provenance is not sufficient to
understand variations between runs, configurations, versions
of'a code, and between changes in an implemented stack, and
systems, i.e. the variability of performance metrics data in
their historical context. For gaining this type of insights, the
provenance of workflow performance is needed. We define
the provenance of workflow performance as the provenance
that captures and correlates traditional provenance character-
istics and performance metrics data. This type of provenance
is used for performance analysis in empirical studies on the
performance of a software or workflow during a development
phase or in different computational environments.

Scientific workflows can play an important role in help-
ing scientists coordinate complex tasks and take better ad-
vantage of the computing resources available to them by de-
coupling the composition of tasks from workflow instance
executions and their actual environment [2,3]. Scientific
workflows have been extensively studied and numerous
workflow management systems are in circulation [4]. How-
ever, many research topics remain unexplored, including the
real-time monitoring of scientific workflow processes to val-
idate performance and support data re-use and reproducibility
[5]. Defining the appropriate level of abstraction for moni-
toring given the number of components, the complexity of
the connections and the rate of execution for each component
remains a challenge that we start addressing here with a
method and a prototype framework for studying the prove-
nance of workflow performance.

Specific aims and scope

Our goal is to show that provenance can be used to im-
prove the performance of workflows in scientific codes and
facilitate optimization in code development. We take a prov-
enance-based approach and demonstrate that provenance is
useful as a tool for evaluating and optimizing workflow per-
formance in extreme-scale HPC environments. In particular,
in forensic analysis of workflow performance metrics, we
aim to elucidate the factors present during certain time peri-
ods of a run when performance does not achieve as expected.
Sluggish performance can be associated with communication
between parts of a workflow, data movement, and interde-
pendencies in the sequence of processes related to regions in
the software code that directs flow and interaction, and many
other factors. It can be associated with parts in the system
architecture, for instance the network interconnect between
nodes, and with the input and output of data. By capturing
metrics related to these factors and correlating them to ver-
sions, configuration parameters, input data, system software
stacks and other provenance characteristics, we enable com-
parison between runs.

Fully capturing the runtime environment for a scientific
workflow or application (i.e. the complete provenance of a
run) requires the ability to capture system variables at a gran-
ular level not usually available to end users on shared and
managed systems. Existing tools for such capture [6,7] are
developed to support operations of LCF systems, including
Titan, Cori, and others. Although it is theoretically possible
to capture a user runtime environment with these tools by
querying their databases, access is not always available as
these data may be deemed too sensitive for open use. In this
paper we focus on the provenance metrics and characteristics
that we can access, such as execution times at the call path
level and job information.

We present a method for the evaluation of workflow per-
formance that enables the comparison of performance met-
rics data. We provide a use case with two different kinds of
workflows implemented with small modifications in
NWChem [8]. This is innovative because 1) provenance is
used in conjunction with performance measuring tools; 2)
this combination is applied to workflows rather than single
applications; 3) we provide web-based visualization that en-
ables both high level and detailed visualization of the perfor-
mance data; 4) provenance metadata is linked to performance
metrics; and 5) we demonstrate that provenance is a critical
tool for workflow performance evaluation and optimization
in extreme-scale environments. This work is part of the Co-
design center for Online Data Analysis and Reduction (CO-
DAR) [9].

II. METHODS

We design and implement Chimbuko, a framework for
capturing, integrating, and visualizing the provenance of per-
formance that implements our method. Our method relies
upon four components each examined in details below:

1) We present a use case for NWChemEx, the next
generation of the NWChem computational chemistry and
materials code currently starting a new release cycle. For this

use case we instrument NWChem routines run in parallel and
serial fashions.

2) We rely on the Workflow Performance Provenance
ontology (WFPP), an ontology based upon W3C PROV and
the Open Provenance Model to classify performance and
provenance metrics [10].

3) We use a state-of-the-art performance metrics
toolkit to instrument our use case [11]. And we extract and
integrate metrics of interest for the scientific use case.

4) We display performance metrics with provenance
for workflows in a visualization environment that scales.

The Chimbuko framework captures, integrates, analyzes
and visualizes performance metrics for complex scientific
workflows and relates these metrics to the context of their
execution on extreme-scale machines. The purpose of
Chimbuko is to enable empirical studies of performance anal-
ysis for a workflow during a development phase or in differ-
ent computational environments. Chimbuko enables the
comparison of different runs at high and low levels of metric
granularity. Chimbuko currently provides this capability in
offline mode with plans to extend to online (in-situ) modes
with data reduction. Chimbuko encapsulates the numerous
steps in our method and its design highlighted the needs for
wrappers integrating information between the various com-
ponents of our system.

A. Use case: NWChemEx

NWChemEx [12] is being developed as a set of scientific
codes for simulating the dynamics of large scale molecular
structures and materials systems on large atomistic com-
plexes. The final goal is a capability that supports ab-initio as
well as MD calculations, although phase I of the project fo-
cusses on ab-initio capabilities. For the MD module the aim
is to calculate trajectories for about a million atoms at a time
resolution of a few femtoseconds collecting statistics equiva-
lent to a simulation time of at least a microsecond. All codes
are distributed data parallel programs. The programming par-
adigm is currently envisioned to be MPI/OpenMP exploiting
shared memory within the node. NWChemEx provides an
interesting use case for provenance as it needs to demonstrate
performance improvements with new code versions and sim-
ilar performance gains on various LCF systems of different
architectures. Although NWChemEXx is a single application,
it is expected to provide energy and force calculations for tra-
jectories of interest in molecular dynamics simulations, par-
allelized over many cores and nodes. As a single resulting
trajectory would generate 32 Terabyte of data even when
storing only 1 of every 1000 timesteps this is still very large
to be stored for offline analysis. Therefore, we envision an
approach where the MD simulation is run, emitting snapshots
of the protein structure along the trajectory, and where the
data analysis is run concurrently consuming the data as it is
produced. Ultimately, such an approach could avoid the need
for the data to be stored at all. To demonstrate what is in-
volved in such an approach we ran NWChem molecular dy-
namics on a small protein where we computed the trajectory
parallelizing each time-step using global arrays, and concur-
rently another NWChem process performed the analysis. For

this demonstration a particularly simple analysis option was
used, namely the root-mean-square deviation of the coordi-
nates with respect to a point. Our use case is intended to ex-
plore the capture and use of provenance that is of interest to
NWChemEx while simultaneously highlighting the chal-
lenges of such capture for our intended use. These challenges
included instrumenting the code, extracting and compiling
useful metrics, and visualizing results in usable manner.

The information needed to track the provenance of per-
formance in NWChemEXx includes strictly performance-re-
lated metrics such as the total execution time per workflow,
per node, and per code region, the call tree, communication
and interconnect performance, and number and volume of
1/O reads and writes. In addition, needed characteristics for
provenance include the application name, version, name of
who ran the application, SVN branches and revision num-
bers, time compiled, time started, and wall time and number
of processors allocated.

An important component of the NWChemEx project is to
demonstrate scalability on the future exa-scale platforms as
well as performance portability and of course efficient use of
resources. These characteristics will be captured in, so called
Key Performance Parameters (KPP). The parameters will be
measured on the current code and on the new NWChemEx
code and set levels of improvement must be met for the pro-
ject to be successful. Obviously this requires tracking which
codes are being compared, for which information on the SVN
branches and revision numbers, time compiled, and time
started are important. Critical here is that the a test always
tests the whole system, i.e. the hardware, the compilers, the
libraries, and the code of your project. As problems can orig-
inate in any of these components it is important to capture
information not only about the code itself but also infor-
mation that can be correlated with the state of the computing
platform. In addition to measure the impact of the code de-
velopment work the time taken by different code regions is
crucial as changes there will be related to changes in the al-
gorithms or their implementations. Even in cases where the
total volume of compute does not change significantly im-
provements may be obtained by better distributions of the
workload hence imbalance in the workload is important to
track. Communication, whether by message passing, through
files, or yet some other mechanism are always critical to the
parallel performance of a code. In all these cases it is essential
to record these performance characteristics in such a way that
improvements in a code’s performance can be attributed to
particular coding efforts. This is required to ensure that mod-
ifications that successfully improve the performance are se-
lected and kept on the basis of solid empirical evidence for
improved performance.

B. Workflow Performance Provenance Ontology (WFPP)

WEFPP [9] aims to inventory all possible metrics needed
for relating provenance to workflow performance. Different
metrics are needed for different scientific applications and
purposes of capturing performance provenance. Metrics re-
lated to communication time and volume, FLOPS per pro-
cess, wait in barrier, energy usage, memory usage, cache ac-
cess and misses, page faults, /O number of reads and writes

and volume of data moved are of interest for NWChemEx.
On GPUs, divergence of conditional statements will be
needed and pose additional challenges. Our experiment fo-
cuses on execution times, location and call paths as a starting
point. In addition, provenance characteristics included in job
submission scripts and user profiles is collected and related
to workflow execution.

The use of WFPP to specify provenance is crucial to de-
termine both the required metrics and the level of granularity
for these metrics. Taking into account that users may pursue
different performance optimization goals WFPP entities
specify characteristics allowing them to study trade-offs be-
tween different goals. For instance, quality-related measures
such as accuracy or adaptability are included along perfor-
mance metrics such as total execution time of a workflow in-
stance, allowing a user to prioritize their optimization goals.
In our use case, WFPP allows a detailed exploration of the
needed metrics (execution time and communication) by
providing an explicit structure for specifying them in details
and extracting them and their meaning from the performance
tools, as well as highlighting the gaps in the tools.

C. Performance tools

While numerous performance tools for single applica-
tions exist, the ability to easily and comprehensively measure
the performance of workflow instances and components at
appropriate levels of details for the exascale is lacking, and
no existing utility monitors the performance of workflows.
In this study, we evaluated ScoreP and TAU (Tuning and
Analysis Ultilities), two state-of-the-art performance tool
suites for their ability to extract performance for our use case
and their potential development for monitoring the perfor-
mance of workflows. Tools for distributed and parallel prob-
lems such as the TAU (Tuning and Analysis Utilities) em-
phasize flexibility in the empirical methods chosen for per-
formance instrumentation and portability across platforms
and programming models for single applications [10]. TAU’s
flexibility makes it a good choice for instrumenting NWChe-
mEx while its design for portability makes it a good candi-
date to demonstrate performance monitoring across plat-
forms. The new developments for TAU to support work-
flows are described in Findings.

D. Chimbuko Provenance Framework

We designed Chimbuko as a multi-view, provenance
framework to capture, integrate, and persist workflow perfor-
mance in the context of their provenance at the exascale.
Chimbuko allows different perspectives on the performance
of workflow components that can be harnessed by scientific
users and by runtime systems developers. The Chimbuko
framework is illustrated in Figure 1. Chimbuko includes the
performance analysis tools (TAU in our implementation), the
ProvEn provenance framework, visualization and analysis
modules. Figure 1 shows the basic layout of the Chimbuko
Framework. The framework can be coupled with a number
of performance analysis tools. The workflow application can
be instrumented manually or automatically using a perfor-
mance tool. For the off-line mode, information is collected
during a run of a workflow and analyzed when the execution

is over. Performance analysis tools dump information in var-
ious format for profiling and tracing. The information man-
agement unit of the framework makes sure that the infor-
mation is stored in the central databases in the same format.
The information management system consists of various
scripts that help a user transfer the collected data into the
JSON format. Section III.B talks about the information man-
agement system in more details. The collected information is
stored in hybrid databases maintained by the ProvEn [13].
ProvEn consists of a harvester, a triple store, and a time series
database [14]. The visualization component of the frame-
work provides the spatial and temporal resource utilization
feedback to the user. The feedback helps improve both the
computational and resource efficiency of a given workflow
application. Section III.C provides details about the visuali-
zation component. The data analysis part of the framework
is used to analyze computational and communication patterns
in a given scientific workflow. These patterns can be used to
improve the performance of workflow. Currently, we are us-
ing this component for a data reduction problem.

-

\m _ Performance
'\'—/?\ X Analysis

Information Extraction and
Wrapping

Hybrid dat “
o
| |

.
1111 — N
N Analysis

[T
CHIMBUKO

Figure 1: Components of the Chimbuko framework

E. Visualization

In order to enable a comprehensive understanding of per-
formance for heavy computational applications with prove-
nance, especially in terms of workflows, performance visual-
ization is essential and facilitates the following aspects [15]:
1) visualizing different types of performance data such as
counters, traces, profiles and call paths, 2) satisfying the re-
quirements of performance analysis with different goals such
as global comprehension, problem detection and diagnosis,
and 3) supporting various performance contexts such as hard-
ware (cluster node or network), software (trace, call graph or
source code structure), and others.

The visualization challenge is to accommodate large
amount of information into limited display resolution, while
still enabling detailed exploration of interesting pieces of
data. We solve that issue by designing a visualization tool
enabling level-of-detail exploration and user interaction that

is an integral part of Chimbuko. The purpose of the tool is
not to cover every detailed functionality of existing tools in
the TAU analysis suite (e.g. Vampir, ParaProf or Jumpshot).
But instead, we enable what is missing — the capability to vis-
ualize and analyze the performance of the workflow execu-
tion for multiple applications.

III. FINDINGS

In instrumenting NWChem and visualizing workflow
performance in its provenance context we encountered chal-
lenges related to the usability of the performance tools
(choosing the appropriate instrumentation for this scientific
application, the configuration of the performance tool to ob-
tain meaningful output, and attributing metrics to their
source), and given the volume of traces, the selection of ap-
propriate resolution for the visualization. Our Chimbuko
framework that includes new developments for integrating
information produced by TAU attempts to answer these chal-
lenges.

A. Usability of Output: Traces and Profiles

We address the issue of usability for the performance
tools by collaborating closely with the TAU team, producing
agreed upon design documents and work plans, and repeated
iterations of the experimental design. Our experiment
demonstrated that capturing provenance is a very useful di-
agnostic tool for the chosen use case as it highlighted perfor-
mance variations between different calculations. Capturing
application or workflow traces is not sufficient in itself to un-
derstand problem locations in hardware or software and re-
late them to specific runs. Only when provenance is included
with performance metrics can traces be compared in their his-
torical and execution context. The need to understand trade-
offs in execution highlights requirements for persisting prov-
enance leads to the development of a data model to translate
WEFPP entities into queriable and extractable elements.

Obtaining meaningful output from the TAU performance
tool with the given NWChem runs proved challenging be-
yond expectations, in spite of the availability to us of the
TAU development team to answer questions. TAU outputs
2 kinds of files, a trace file monitoring execution of code re-
gions on nodes and a profile file summarizing this infor-
mation and displaying the call tree. New developments in
Chimbuko were needed to make use of the performance met-
rics output by TAU and attribute them to their source func-
tion. These metrics were obtained by executing the dynamics
and analysis concurrently for an NWChem MD calculation
in an attempt to simulate a concurrent workflow situation.
The MD calculation loops until a trajectory file appears. At
that point the analysis workflow is started. One major chal-
lenge encountered for provenance in this scenario is to attrib-
ute the metrics output by the tool to its origin. For instance,
while a simple subtraction allows to extract execution time
for an MPI call on a node, one still needs to know what MPI
call we are reading. A trace file was also obtained; the size
of this Trace file is 224MB in binary format, 812MB in text
format, and represents a classical MD run of 320 timesteps
on 4 cores as well as the corresponding analysis of 100
timesteps on 1 core. From start to finish the MD run took
38.0 seconds wall clock time. In addition, the program was

compiled to suppress the instrumentation of all subroutines
apart from the main MD and analysis routines.

B. The Chimbuko Information Management System: Relat-

ing Metrics to Meaning

Chimbuko is collecting and summarizing fine level infor-
mation while preserving the ability to query at the fine gran-
ular-level. Figure 3 presents the collection of workflow per-
formance metrics for each component C in the Chimbuko in-
formation management system. A typical scientific workflow
consists of a number of components/applications which in-
teract with each other for data management and communica-
tion. In the current implementation, Chimbuko uses the TAU
infrastructure to collect information. Currently, TAU is ap-
plication specific. Each component is compiled and instru-
mented using wrappers designed with information extracted
from metrics. When the instrumented code is run during the
workflow execution, the profile and trace information is col-
lected. TAU provides runtime variables that can be used to
collect information in separate directories for each compo-
nent. The profile information is dumped in a tabular text for-
mat, and the trace information is collected using Open Trace
Format (OTF). To facilitate the visualization and data anal-
ysis components, new wrappers are developed to manipulate
the collected data.

Workflow starts Workflow ends Summary of
information

: (c4 J :

' 1 | TAU wrappers coalesce
H [C3)] i independent component
I

I I

I

I

information in JSON format

Information|dumping using TAU |nfrastructyre

Profiles/Traces far each
component in separate

Chimbuko Extractand Wrap Layer directories

Figure 2: Workflow performance metrics capture

The wrappers designed can be used:

e To coalesce the information dumped in separate directories
from each component. This helps in comparing and visual-
izing the performance of different components in the same
temporal window.

e To convert the profile tabular text format into JSON for-
mat.

e To convert the OTF into JSON format.

e To summarize the information at the workflow level.

Chimbuko collects a comprehensive list of performance
metrics which can be used for various performance analysis
problems, e.g. performance scalability, resilience, better
memory management, and runtime optimizations. Figure 3
shows a subset of these features.

"Work_flow_performance":{

"execution_time": 58.8989
+
"Detail_of_each_Component": [
{

"name” : “heat_transfer.F90",
"processors": 12,
"aggr_execution_time": "12:22.279",
"aggr_communication_time": "11:47.525",
"idle_time": "11,132"

"name": "stage_write.c",
"processors": 2,
"aggr_execution_time": "1:59.244",
"aggr_communication_time": "1:40.141",
"idle_time":168
}
1,
"Intra_component_detail":{
"volume_of_communication": "3.204E+04 x 6",
"number_of_messages": 6
}
}

Figure 3: Subset of performance metrics one can collect with
Chimbuko

C. Visualization Results

In this work, we aim to visualize the measurements of in-
strumentation on our use case -- a parallel workflow designed
with NWChemEX. Our acquired data are individual trace and
profile files capturing the execution of independent workflow
components. It includes several types of data: 1) event table
listing the start and end time of all function calls, 2) the mes-
sages passing among functions, 3) profiling of certain metrics
for time spent in each code region on each computing
node/thread, and 4) the call path for each node/thread. In or-
der to connect them together, we devise a data model for each
workflow that includes the following information: 1) the
overall structural description of the workflow, 2) the
metadata about the workflow, 3) the connected trace events
of the entire workflow, and 4) the connected profiling of the
entire workflow. Thus, in order to explore all the above in-
formation, we devise and develop a level-of-detail multiple
channel visualization framework with front-end plotting of
the data and back-end performing of the necessary analysis
and computation.

Visualization for the Chimbuko framework includes four
major components: overview, detailed view, statistical view,
and profile view that together establish an interactive analysis
platform to visually explore and analyze the performance of
a workflow. Overview shows the summary of the whole
workflow execution as in Figure 4 (top).

|8 Overview

20
10
-
T T T T T T T T T
2. 2. 2. 2.

2648 2658 2688 2678 2688 2698 78 Tie 728 T3s 9.7'4' 9.7'5'
node-id: 0 NI
node-id: 1 1
node-id: 2 i
node-id: 3 1
node-id: 4
| Traces

EETAU_USER
I I I [CITAU_DEFAULT
. =1 - = : . ; =il - mll [EITAU_CALLPATH
27248 27268 27288 273 27328 27348 Cwet

T T T
27148 27168 27188 2728 27228

[EIOthers

N7/ | /A

! 1 i | 1| |-
\ /I AN\l L LA

: L/ A\ | || I

; NNz | | |

Figure 4: Visualization of trace performance for our use case: the overview panel (top) and the detailed view of the selected region (bottom)

10 EETAU_USER
s ‘ ' =
‘ | l 1 [ETAU_CALLPATI
o = S
|

27340

L 1|l

O] | [

Ay |1

S I |

TNBORN 11 A2]

Figures 5a and 5b: Visualization of trace performance for our use case: (a) zoom-in effect, (b) enhance the stroke of rectangles.

There are two parts in the Overview: the trace events, and
the message counts. The trace events indicating the start and
end time of each function call are shown as timeline. We use
intensity to indicate the depth of the call path. A darker color
represents a more nested function call. For each node/thread,
the trace events are plotted separately. Above the timelines,
we also visualized the message counts (sent or received) in a
separate histogram view along the timeline. For the interac-
tion, it allows the user to select a time range of interest and
see more details in the detailed view panel. In this example,
we visualized a parallel workflow running on five
nodes/threads.

The detailed view shows the function calls and the mes-
sages in the selected time range as in Figure 4 (bottom). Each
function call is visualized with a rectangle whose color rep-
resents a different call group. The functions are visualized
with nested rectangles that indicate their depths in the call
path. This fashion is similar to what Jumpshot utilized. In this
view, users can still zoom in to explore more details by se-
lecting a smaller time range (Figure 5a). When there are
many short function calls in a nested call structure, it can be
difficult to observe small events and differentiate each call.
Therefore, we designed two features for that issue. First, we
use different transparency to enhance the visibility of over-
lapping functions. Second, when zooming in, we add the
stroke of the rectangle to enhance the separation of different
functions (Figure 5b).

For the message visualization, we visualized the message
passing (send and receive) between functions as straight
black lines (Figures 4 and 5). As being organized in a time-
line, the line direction is ignored since the message is always
passing from left to right. Additionally, when hovering over
each rectangle, detailed function name can be seen in text.

The statistical view summarizes the time spent for each
function call in the selected region. In this aggregated visual-
ization, it is easier to compare the time difference side by
side. We also adjust the text display in order to avoid clutter
issue. In the Profiles view, with the selected metric (time or
counter), we visualize the percentage spent on each function
for each node/thread.

In summary, we devised a visualization platform for
workflow performance evaluation. We utilized nested bar
charts and stacked graphs to represent events in terms of
timeline. We also connect that to profile in the form of
stacked bar graphs to reveal the corresponding statistics of
the chosen metric. In order to support the scalability, we im-
plemented a few types of visualization with different levels
of details -- overview, zoom-in with transparency, and zoom-
in with separation enhancement. The message communica-
tion is also visualized by line connections and message count
histograms.

D. Future Work

In-situ analytics has been shown to be an effective ap-
proach to reduce both I/O and storage costs for scientific an-
alytics. Developing an efficient in-situ implementation, how-
ever, involves many challenges, including parallelization,
data movement or sharing, and resource allocation. We aim
to overcome these challenges using our framework.

Many large-scale scientific applications are usually con-
structed as workflows due to large amounts of interrelated
computation and communication. Workflow scheduling has
long been a research topic in parallel and distributed compu-
ting. However, most previous research focuses on single
workflow scheduling. As cloud computing emerges, users
can now have easy access to on-demand high performance
computing resources, usually called HPC cloud. Since HPC
cloud has to serve many users simultaneously, it is common
that many workflows submitted from different users are run-
ning concurrently. Therefore, how to schedule concurrent
workflows efficiently becomes an important issue in HPC
cloud environments. We are aiming to extend the framework
to optimize the scheduling strategy for concurrent work-
flows.

The performance portability is a big issue for scientific
workflows. A given workflow has portable performance if
in addition to running on diverse platforms it exhibits similar
accuracy, stability, and reliability across these platforms for
a given configuration. Moreover, the time to solution should
reflect efficient utilization of available computational re-
sources on each platform. We plan to extend the framework
to include an adaptive runtime system that will help ensure
performance portability of scientific workflows across differ-
ent computing frameworks.

For visualization, we will implement a Sankey diagram to
show data I/O between workflow components. Then, we will
redesign the Chord diagram to support message communica-
tions between threads. Finally, we will improve the scalabil-
ity with data reduction and try more complicated workflow

types.

IV. CONCLUSION

Our method marshals in data from different sources re-
quired to identify barriers, compare seemingly alike execu-
tions, and enable visualization of workflow performance
trace. Integration of provenance with performance analysis
tools brings elements of response to questions related to the
resources needed to complete a workflow in time and the
trade-offs between workflows. As our experiment develops
to address increasingly complex workflows, the use of a
workflow management system may be needed to manage the
workflow graph. In the future, we will also enhance the ca-
pability with the help of advanced analysis routines in the
back-end.

ACKNOWLEDGEMENT

This research was supported by the Exascale Computing Pro-
ject (ECP), a collaborative effort of two DOE organizations
— the Office of Science and the National Nuclear Security
Administration. The Project Number for the Co-design cen-
ter for Online Data Analysis and Reduction (CODAR) that
supported this research is 17-SC-20-SC.

REFERENCES

[1] US Department of Energy Advanced Scientific Compu-
ting Research: Leadership Computing Facilities. Available
from https://science.energy.gov/ascr/facilities/.

[2] Ludischer, B., Altintas, 1., Berkley, C., Higgins, D., Jae-
ger, E., Jones, M., Lee, E.A., Tao, J., and Zhao, Y.: ‘Scien-
tific workflow management and the Kepler system’, Concur-
rency and Computation: Practice and Experience, 2006, 18,
(10), pp. 1039-1065

[3] Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., and
Good, J.: ‘Pegasus: A framework for mapping complex sci-

entific workflows onto distributed systems’, Scientific Pro-
gramming, 2005, 13, (3), pp. 219-237

[4] Garijo, D.: ‘Al buzzwords explained: scientific work-
flows’, Al Matters, 2017, 3, (1), pp. 4-8

[5] Deelman, E., Peterka, T., Altintas, 1., Carothers, C.D.,
Kleese van Dam, K., Moreland, K., Parashar, M., Ramakrish-
nan, L., Taufer, M., and Vetter, J.: ‘The future of scientific
workflows’, The International Journal of High Performance
Computing Applications, 2017, pp. 1094342017704893

[6] Agrawal, K., Fahey, M.R., McLay, R., and James, D.:
‘User environment tracking and problem detection with
XALT’, in Editor (Ed.)"(Eds.): ‘Book User environment
tracking and problem detection with XALT’ (IEEE Press,
2014, edn.), pp. 32-40

[7] Huang, R., Xu, W., and McLay, R.: ‘A web interface for
XALT log data analysis’, in Editor (Ed.)*(Eds.): ‘Book A
web interface for XALT log data analysis’ (ACM, 2016,
edn.), pp. 31

[8] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P.
Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra,
T.L. Windus, W.A. de Jong, ‘NWChem: a comprehensive
and scalable open-source solution for large scale molecular
simulations’ Computer Physics Communications 181, 1477
(2010) do0i:10.1016/j.cpc.2010.04.018

[9] Foster, 1., Ainsworth, M., Allen, B., Bessac, J., Cappello,
F., Choi, 1.Y., Constantinescu, E., Davis, P., Di, S., Di, W.,
Guo, H., Klasky, S., Dam, K.K.V., Kurc, T., Malik, A., Me-
hta, K., Mueller, K., Munson, T., Ostouchov, G., Parashar,
M., Peterka, T., Pouchard, L., Tao, D., Tugluk, O., Wild, S.,
Wolf, M., Wozniak, J., Xu, W., and Yoo, S.: ‘Computing Just
What You Need: Online Data Analysis and Reduction at Ex-
treme Sca’. Proc. EuroPar2017

[10] Kleese van Dam, K., Stephan, E.G., Raju, B., Altintas,
I., Elsethagen, T.O., and Krishnamoorthy, S.: ‘Enabling
Structured Exploration of Workflow Performance Variability
in Extreme-Scale Environments’. Proc. 8th Workshop in
Many-Task Computing on Clouds, Grids, and Supercompu-
ters (MTAGS) collocated with SC 2015, Austin, TX2015

[11] Shende S, Malony A. Using TAU for performance eval-
uation of scientific software. In: Allen G, Carver J, Choi SCT,
Crick T, Crusoe MR, Gesing S, et al., editors. Workshop on
Sustainable Software for Science: Practice and Experiences.
No. 1686 in CEUR Workshop Proceedings. Aachen; 2016.

Urn:nbn:de:0074-1686-8. Available from: http://ceur-
ws.org/Vol-1686/WSSSPE4 paper 12.pdf.

[12] ‘Launching a New Era for NWChem’
https://www.pnnl.gov/science/highlights/high-
light.asp?id=4411 [Accessed May 11, 2017]

[13] Elsethagen, T., Stephan, E., Raju, B., Schram, M.,
MacDuff, M., Kerbyson, D., van Dam, K.K., Singh, A., and
Altintas, I.: Data provenance hybridization supporting ext-
reme-scale scientific workflow applications, in Book: Data

provenance hybridization supporting extreme-scale scientific
workflow applications (IEEE, 2016), pp. 1-10

[14] Stephan, E., Raju, B., Elsethagen, T., Pouchard, L., and
Gamboa, C.: ‘A Scientific Data Provenance Harvester for Di-
stributed Applications’. IEEE Proc. New York Scientific
Data Summit, New York, NY2017

[15] Tsaacs, K.E., Giménez, A., Jusufi, I., Gamblin, T.,
Bhatele, A., Schulz, M., Hamann, B., and Bremer, P.-T.:

‘State of the art of performance visualization’, EuroVis 2014,
2014

https://www.researchgate.net/publication/320751056

