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Abstract—This work explores the utility of two novel tech-
niques applied to studying quantum field theory, namely quantum
computing and visualizing effective potentials. We studied the
ground state properties of the anharmonic oscillator and the
Wess-Zumino model using the variational quantum eigensolver
algorithm. We performed calculations for three and four qubit
systems using IBM’s open source quantum computing simulation
software. Using effective potentials, we study a simple dark mat-
ter system with a Higgs and dark Higgs like particle interacting
through a porthole fermion.

Index Terms—quantum field theory, quantum computing, vari-
ational quantum eigensolver, effective potentials

I. INTRODUCTION

Quantum field theory (QFT) is the mathematical framework
that combines special relativity and quantum mechanics into
one consistent theory. Although past computational tools have
produced results which agree with experiment, a class of
problems remain unexplored by standard techniques due to the
mathematical complexity of the theory. Two novel techniques
that show potential for helping solve a new class of problems
are quantum computing, and visualizing effective potentials.
Because these techniques are still in their infancy, we apply
them to simple systems to explore their utility. We will
begin with quantum computing and then move on to effective
potentials.

II. QUANTUM COMPUTING
A. Introduction to Quantum Computing

The concept of a quantum computer was proposed by
Paul Benioff in 1980 [1], and Richard Feynman in 1982
[2]. The proposed devices are computers that use quantum
systems as bits to store information. These quantum bits
(qubits) experience purely quantum mechanical phenomena,
e.g. superposition and entanglement, which can be leveraged to
provide speedups compared to classical computers. Analogous
to how classical computers use logic gates to manipulate bits,
quantum computers use quantum gates to manipulate qubits.
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Quantum circuits are used to visualize the gates being used in
a calculation. The quantum circuits we use in our calculations
can be found in the appendix.

IBM is one of the world leaders in developing research
grade quantum computers using superconducting circuits as
qubits. Through their Quantum Experience program, IBM
developed an application program interface that allows the
public access to their quantum computers, Python libraries,
example code, and software to simulate quantum computers
classically.

Their example code was used in [3] to calculate the ground
state energy of a hygrogen molecule using the Variational
Quantum Eigensolver (VQE) algorithm. We modified their
example code to study QFT in O+1 dimensions using the VQE.
We studied the anharmonic oscillator and the Wess-Zumino
model, using three and four qubits to represent the systems.
All results were obtained using the simulation software, and
in principle, could be reproduced using a quantum computer.

B. Systems Studied

1) Anharmonic Oscillator: The anharmonic oscillator ex-
tends the idealized harmonic oscillator through the addition of
a nonlinear term in the potential. This nonlinear term resem-
bles the self interaction term present in the Higgs potential,
and is therefore a relevant starting model to study using the
VQE. The Hamiltonian for this system in terms of the fields
is

1, 1- N
Ha,nh = §7T2 + §¢2 + A¢4 (1)

Working in the energy basis, the Hamiltonian is
; ata LG4 et
Hanh:aa+§+/\(a+a), ()

where a' and @ are the creation and annihilation operators,
respectively. The strength of the self interaction term is tuned
by the value of the anharmonic coupling .

To pick an appropriate trial function, we followed a similar
procedure followed in [4], where they study the structure of
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the Hamiltonian to guess a trial state. Instead of studying the
Hamiltonian, we studied the properties of the ground state
wavefunction directly by solving the Schrodinger equation
using Mathematica.

The ground state wavefunctions of the two and three qubit
systems, for A = 0.1, are shown in (3) and (4), respectively.

o =1(0.998 0 —0.081 0)T 3)

o =1(0.998 0 —-0.070 0

—0.008 0 0.005 0)7

We see that every other entry is zero. To generate the
exact wavefunction, we therefore need % variable parameters,
where n is the number of qubits. Looking further, we see
the first entry is close to one, and the nonzero entries get
smaller the farther down in the vector they are located. Because
we cannot continue to solve the Schrodinger equation for
arbitrarily large systems, we assume this general trend will
continue for all system sizes. With this information, we pick
the trial function to be

4)

Viriar = (cos® 0 sind 0 0 0", ®

for both the 3 and 4 qubit case. This trial function,
although it does not have enough parameters to meet the
exact groundstate wavefunction, offers a significant advantage.
This state can be generated through a single Y-rotation gate,
providing a low depth quantum circuit which will minimize
the systematic errors associated with quantum decoherence. A
visual representation of the quantum circuit can be found in
the appendix.

We studied the anharmonic oscillator using 3 and 4 qubits,
using the above ., for values of A ranging from zero
to three. The error in the upper bound set by the VQE for
different anharmonic couplings can be seen in fig. 1. We see
that the error grows steadily as A is increased.
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Fig. 1. This plot shows the percent error in the energy calculated by the VQE
for various values of the anharmonic coupling (\). This was done using 3 and
4 qubits to represent the Hamiltonian, using the trial wavefunction found in
(5) for both cases. We notice the error is below 2% for A < 0.5.

2) Wess-Zumino Model: The Wess-Zumino model is a
model that realizes supersymmety (SUSY) [5]. SUSY is a
theory that describing physics beyond the Standard Model. The
theory predicts each boson (fermion) particle has an associated
fermion (boson) superpartner. The Hamiltonian for the Wess-
Zumino model is given by

ir=Ltar s we s L g, 6)
2 2 2

where W is the superpotential. We chose the superpotential

to be

m g 3
W= —¢*>+2 7
S0+ 50, ™

which leads to the Hamiltonian being

a= %AQ + é<mqs+g¢%2>2 + %m[zﬁ*,zﬁ] +299[4" )] (8)

This superpotential was chosen because it produces a
Yukawa coupling between the boson and the fermion, which
is a common coupling seen in QFT. This SUSY Hamiltonian
also contains anharmonic terms, previously studied in [6] and a
finite temperature study was performed by [7]. Again, working
in the energy basis, the Hamiltonian is

. 1
H=ad'a+gm(a+a)?+ 5g2(a +ah)* ©
+éte+ gla+at)(éfe — éeh).

where ¢! and ¢ are the creation and annihilation operators,
respectively, for the fermion.

We look to the ground state wavefunction as before, for
direction when choosing our trial state. The ground state for
the 2 and 3 qubit cases, for g = 0.1, can be found in (10) and
(11), respectively.

PYo=(0 0.999 0 0.035)7 (10)
Yo=(0 0.999 0 —0.034 an
0 0.001 0 —0.029)7

Like the anharmonic case, every other entry is zero, thus
%2 parameters are required to generate the exact wavefunction.
One nontrivial difference is that consecutive nonzero entries do
not fall off in magnitude like the anharmonic case. Looking at
(11), the magnitude of the last entry is larger than the nonzero
entry before it. After a variety of trial functions attempting
to only approximate the wavefunction, all energy results from
the VQE were over one-hundred percent error. This system
requires a more complicated trial function because we can no
longer simply neglect all but the first two nonzero terms. We
resorted to a trial function that contained a parameter for each
nonzero entry. Although for current quantum computers, the
depth required for these trial states may be too great, it serves
as proof of concept that a quantum computer is capable of
producing accurate energies using the VQE for boson fermion



systems. The trial circuits for the 3 and 4 qubit states can be
found in the appendix.
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Fig. 2. This plot shows the percent error in the energy calculated by the VQE
for various values of the coupling (g). This was done using 3 and 4 qubits to
represent the Hamiltonian, using the trial circuit found in the appendix. We
notice the error follows a hit or miss trend, either producing the exact energy
or an error unacceptable by classical standards.

The results can be seen in fig. 2. We see the energies follow
a hit or miss pattern for varying coupling g. The VQE either
produces the exact energy, or an energy far from the exact
solution, with no apparent logical pattern.

C. Discussion

For the anharmonic case, we were able to approximate the
ground state wavefunction with a simple trial state, neglecting
all but the first two nonzero terms. The general trend seen in
fig. 1 shows that this approximation gradually becomes invalid
as the anharmonic coupling A grows. This occurs because
the nonzero terms neglected by the trial state grow with A,
and therefore the quality of the approximation diminishes.
Comparing these results with the SUSY case in fig. 2, we
notice several differences. Firstly, we see exact energies are
produced for some values of g. This is because we have pa-
rameters to account for each nonzero entry in the groundstate
wavefunction. However, for some values of g, we produce
errors greater than one-hundred percent. Being built out of
only sine and cosine terms, the trial function is unable to
account for the distribution of nonzero values. Due to the
poor overlap with the exact wavefunctions, we produce upper
bounds with large error.

III. EFFECTIVE POTENTIALS
A. Introduction to Effective Potentials

In QFT, because of Heisenberg’s Uncertainty Principle, the
quantum vacuum is not simply empty space, but rather it is
teeming with virtual particle-antiparticle pairs popping into
and out of existence. This phenomena generates fluctuations
that change the shape of the classical potential of a system.
Effective potentials account for these quantum fluctuations and
how they change the classical potential. One example is the
Coleman-Weinberg Potential [8], which calculates the effective

potential for boson fields. Effective potentials can be extremely
complicated, making it difficult to deduce properties of your
system without visualizing it.

Effective potentials also can be used to express one field
in terms of other fields present in the system, therefore
eliminating a degree of freedom (dof) from the potential. In a
visualization, these dropped dof’s can be replaced with more
interesting parameters in a system, therefore providing insight
as to how this parameter alters the potential of a system.

The potential we study is an interaction predicted by a
simple dark matter model in 3+1 dimensional QFT. Using
Mathematica’s 3D visualization tools, we plot the Coleman-
Weinberg effective potential with varying interaction strength,
and are able to determine qualitative properties of the stability
of the system.

B. The Potential

The interaction we investigate describes a Higgs boson and
a dark Higgs boson, each interacting with a fermion, but not
directly with each other. The classical potential for this system
is

Ah A
Vo = midf + 0% + mid + )

+mp + Y (h + o)),

where the h, d, and f indices represent the Higgs, dark
Higgs, and fermion terms, respectively. The Y term is the
Yukawa coupling strength, the A terms are the strength of the
self coupling for the boson fields, and the ¢ is a renormal-
ization scale (we set ¢ = 1). Following the procedure from
[9], the effective potential is found to be

(12)

Ah Ad

Ve = mpdi + I(ﬁi +mieos + Zéﬁ
2my, + Ands
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R

Comparing the classical and the effective potentials, we see

several differences. Firstly, we notice the fermion fields have
been completely removed, and their effect rewritten in terms
of the boson fields. The effective potential has reduced the
dof’s in the potential from four (¢, ¢, ¢n, dgq) to two (¢dn, ¢g)-
Secondly, we notice cross terms in the effective potential,
e.g. (¢on + ¢a)* and (¢, + ¢4)?, which represent interactions
between the boson fields. These cross terms are the original
interactions with the fermion, simply rewritten completely in
terms of the boson fields. The effective potential has shown
that two bosons interacting separately with the same fermion
leads to interactions with each other. Looking naively at the
classical potential does not tell us this information.

1 2\2
+ 64?(277% + 3>‘h¢h) ln
(13)

1 2\2
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Because there are now only two dof’s, we can visualize the
effect of varying the strength of the Yukawa coupling without
being forced to fix the value of the fermion field. Fig. 3 shows
the shape of the effective potential plotted against the boson
fields (¢n, ¢q), for varying values of the Yukawa coupling.
With no coupling (top left), the system is completely stable,
with any perturbation leading back to equilibrium. As the
coupling is increased (top right), we notice that large enough
perturbations will push the system out of equilibrium. Finally,
when the coupling becomes too large (bottom), the system
is unstable to a perturbation of any size. This type of insight
into the model could not have been easily extracted from (13).
Additionally, a 3D plot would not have been possible without
the fermion fields being rewritten in terms of the boson fields.

Y=0

2]

Fig. 3. Effective potential plotted against the boson fields (¢1, ¢2), for
varying values of the Yukawa coupling. Top Left: ¥ = 0.0. Top Right:
Y = 0.75. Bottom: Y = 1.5. For no coupling, the system is stable. As
the coupling strength is increased, the system becomes less stable, until it
becomes completely unstable to any perturbation.

IV. CONCLUSION

In this paper, we used the VQE to calculate the ground
state energies for the anharmonic oscillator, and the Wess-
Zumino model in 0+1 dimensional QFT. We studied systems
represented with three and four qubits. For the anharmonic
oscillator, we have shown the same simple trial function is
capable of producing accurate energies for small couplings (),
for both the three and four qubit case. Alternatively, the the
Wess-Zumino model not only required more complicated trial
functions, but different trial functions for the three and four
qubit cases. Exact energies for most values of the coupling
(g9) were produced for both cases. From this work, we see
the large jump in complexity of using the VQE when adding
more particles to a system. In future works, we would like
to consider an alternative algorithm known as quantum phase

estimation, and compare its scaling with particle number
versus the scaling of the VQE.

Through visualizing effective potentials, we were able to
determine properties of the stability of a simple system de-
scribing dark matter interacting with regular matter. These
insights would have remained undiscovered without first calcu-
lating the effective potential, and then using 3D visualization
techniques to study the shape of the effective potential for
varying Yukawa coupling strength (Y'). We aim to study more
complicated systems using effective potentials in the future.

There is also the possibility that effective potentials can
be used to simplify quantum computations. Each quantum
particle is represented by a matrix, which is then in turn
represented with qubits, where the entire quantum state is
built up with tensor products [10]. Using effective potentials
to eliminate degrees of freedom would lead to needing less
qubits to describe the same system, therefore simplifying the
trial state necessary to produce accurate energies. In the future,
we hope to apply effective potentials to the Wess-Zumino
model, and determine the advantages and disadvantages of
each representation of the potential for study using the VQE.
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APPENDIX
A. Quantum Circuits

Quantum circuits are tools to visualize the collection of
gates utilized in a calculation. Each qubit g; has a line
associated with it, and gates acted on that qubit appear on that
line. Gates are implemented from left to right. Control gates
are multi-qubit gates, that only perform an operation on a qubit
if the control qubit is in the 1 state. They are represented by a
normal gate, connected to another qubit with a line. The qubit
with the dot is the control qubit. For our trial circuits, we only
use NOT (X), Y-rotation (), and Controlled Rotation (Cu3)
gates. The parameter 6 represents the rotation angle applied
by that quantum gate.
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Fig. 4. This figure shows the quantum circuit used to create the trial state used in the VQE for the three qubit representation of the anharmonic oscillator. It
is a very simple quantum circuit, consisting only of one Y-rotation gate.

Fig. 5. This figure shows the quantum circuit used to create the trial state used in the VQE for the four qubit representation of the anharmonic oscillator. It
is identical to the quantum circuit used in the three qubit case, consisting only of one Y-rotation gate.
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Fig. 6. This figure shows the quantum circuit used to create the trial state used in the VQE for the three qubit representation of the Wess-Zumino model. It
is a more complicated trail function that either of the anharmonic cases, requiring one NOT gate, three Y-rotation gates, and one controlled rotation gate.
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Fig. 7. This figure shows the quantum circuit used to create the trial state used in the VQE for the four qubit representation of the Wess-Zumino model. It
is noticeably more complex than the three qubit case, requiring one NOT gate, five Y-rotation gates, and three controlled rotation gates.




