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An energy-based coupling approach to nonlocal interface problems

Giacomo Capodaglio!, Marta D’Elia?, Pavel Bochev?, Max Gunzburger!

Abstract

Nonlocal models provide accurate representations of physical phenomena ranging from fracture mechanics to
complex subsurface flows, settings in which traditional partial differential equation models fail to capture effects
caused by long-range forces at the microscale and mesoscale. However, the application of nonlocal models to
problems involving interfaces, such as multimaterial simulations and fluid-structure interaction, is hampered
by the lack of a physically consistent interface theory which is needed to support numerical developments and,
among other features, reduces to classical models in the limit as the extent of nonlocal interactions vanish. In
this paper, we use an energy-based approach to develop a formulation of a nonlocal interface problem which
provides a physically consistent extension of the classical perfect interface formulation for partial differential
equations. Numerical examples in one and two dimensions validate the proposed framework and demonstrate
the scope of our theory.

Keywords: Nonlocal Models, Interface Problems, Heterogeneous Materials, Coupling.

1. Introduction

Nonlocal models can accurately describe physical phenomena arising from long-range forces at the mi-
croscale and mesoscale. Such phenomena cannot be accounted for by partial differential equation (PDE)
models in which the interaction is limited to points that are in direct contact with each other. Nonlocal models
are represented mathematically by integral operators which are better suited to capture interactions occurring
across a distance. In particular, physically consistent nonlocal models have been defined that allow for the

treatment of nonstandard effects such discontinuous solutions and, more generally, can capture nonstandard
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effects such as multiscale behaviors of the displacement in continuum mechanics and anomalous diffusion pro-
cesses in, e.g., subsurface flow applications. In fact, specific examples in which long-range forces are essential for
accurate predictive simulations can be found in a diverse spectrum of scientific applications such as anomalous
subsurface transport [1, 2, 3, 4], fracture mechanics [5, 6, 7], image processing [8, 9, 10, 11}, magnetohydrody-
namics [12], multiscale and multiphysics systems [13| 14], phase transitions [15, 16], and stochastic processes
[17, 18, 19].

Although research efforts devoted to nonlocal models have recently intensified, there are few such examples
specifically devoted to nonlocal interface (NLI) problems, with [20, 21] being perhaps the only published works
in this direction. In contrast, the extant literature on interface problems governed by local PDEs is vast
and ranges from standard transmission conditions [22] to problems with more complicated conditions such as
the Beavers—Joseph—Saffman—Jones approximation [23], or the Beavers-Joseph conditions [24] in Stokes-Darcy
models. A thorough review of this literature is beyond the scope of the paper and we limit ourselves to just
these references to provide some illustrative examples.

However, the NLI formulations in these papers do not demonstrate convergence, as the extent of nonlocal
interactions vanish, of their nonlocal models and their solutions to their classical local PDE counterparts; such
convergence is a litmus test that nonlocal models must pass in many settings, including the ones mentioned
above. Furthermore, these papers do not establish, for the nonlocal models they consider, a mathematically
rigorous well-posedness theory nor do they provide rigorous error estimation for approximate solutions. The
absence of such a mathematical framework has hampered the wider adoption of nonlocal models in science and
engineering applications. In this paper we also do not provide such theories but will do so in a follow-up paper.

Here, our goals are first to define a new NLI model. The NLI model we introduce is motivated by an energy-
based description of classical local interface problems in which the local energy of the system is minimized
subject to constraints modeling the physics occurring across the local interface. The next goal is to show that
the new model does indeed pass the litmus test mentioned above. We then also provide results of numerical
experiments which illustrate the behavior of solutions with respect to changes in grid size and extent of
nonlocal interactions and which also illustrate the convergence of nonlocal models and their solution to their

local counterparts. Being the first such efforts in these directions, we develop the NLI model in the simple



context of the nonlocal counterpart of the local interface problem for the Poisson equation. Doing so allows
for a clear exposition of the important features of the NLI model and of its solution and of comparisons with
local interface models. Comments regarding generalization to more complex settings are made at the end of
the paper.

The paper is structured as follows. In Section [ we review the classical energy-based formulation of a local
interface problem for second-order elliptic PDEs; this review provides the template for the development of an
energy-based formulation of a NLI problem. In Section 3, we review some fundamental notions about nonlocal
problems. The two reviews given in Sections 2 and [3] set us up for introducing, in Section 4, the NLI model we
consider in the rest of the paper. Then, in Section [5, we prove that that model passes the litmus test and, in
Section [6, we present our numerical results. Finally, in Section [7, concluding remarks are provided, including

prospects for future work.

2. A local, PDE-based, interface problem

In this section, we review a classical energy-based formulation of local interface problems for second-order
elliptic PDEs.

Let €7 and Q5 be two disjoint open and bounded subsets of R", n = 2,3, with Q9 surrounded by ; as
illustrated in Figure [IHeft.’] The interface, i.e., the common boundary between the domains, is defined as
I' = Q; NQy. With 9Q; denoting the boundary of €;, we let T'; = 99; \T'. Note that Qs = T'. The geometric

entities so introduced are illustrated in Figure [I-left.

2.1. Local energy minimization principle

Consider the following (local) energy functional

s f) =y [ @ Vm@)de— [ p@n @)

+ % /92 KQ(a:)|VU2(m)|2dw — o, fo(x)us(x)de,

3Note that in one dimension, this description is not possible. A one-dimensional configuration is described Section |6 and used
for several numerical tests. Note also that, for practical implementation reasons, the two-dimensional domain configuration used
for the numerical tests is different and consists of rectangular domains, see Figure [7, top left.



Figure 1: Left: illustration of the geometric configuration for the local interface problem. Right: illustration of the geometric
configuration for the nonlocal volume-constrained problem.
where the functions k1 and ks represent the different material properties of the two domains and are assumed
to be positive and bounded from below. The functions fi, fo are known.

We obtain a particular instance of a local interface problem by choosing a specific constrained minimization

setting for (1). To this end, let us define the following energy spaces, for ¢ = 1,2

Wi ={w € H'(Q) : [[lw]lli < oo}, where [[[w]ll} = [|Vw|§q, +Ilw

|3,Qi7
(2)
Wi={weW, : w(x)=0onT;}.
Note that, due to the configuration of the domains depicted in Figure T, left, W = W,. Tensor product spaces
are then defined as W = W; x Wy and W€ = W x Wy

Minimization Principle 2.1. Given g1, f1, f2, k1 and k2, find (u1,us) € W such that

(u1,u2) = argmin &E(v1,v2; f1, f2),
(v1,02)EW

subject to the constraints
ui(x) = g1(x) x e,
3)
ur (@) = uz(x) xzcT.
Here, ¢; is a known Dirichlet data function defined on T';. The second constraint in (3), i.e., the continuity of

the states across the interface, is a modeling assumption about the physics of the interface, which gives rise to

a specific flavor of a local interface problem.



2.2. Weak formulation

The Euler-Lagrange equation corresponding to the Minimization Principle 2.7 is given by the following

weak variational equation: find (uy,us) € W satisfying the constraints in (3) and such that

/Q1 k1 (2)Vuy (x) - Vo (x)de +/

ko(x)Vuz(z) - Vua(z)de = | fi(z)vi(z)de + [ fo(z)ve(z)de
Qo Q1 Q2

(4)

for all (v1,v9) € W€ satisfying v () = va(x) on T.

2.8. Strong formulation

As usual, we derive the strong form of the interface problem from the weak formulation (4)) by assuming
that uw; and wuy are sufficiently regular. Collecting terms, integrating by parts, and taking into account that

v1 € W€ yields

/Ql ( =V (k1(x)Vuy(x)) — fl(m))m(:c)d;c + /

Qo

(-7 (@) V(@) - fo(®@))val@)dz (5)

+ /1“ vi(z)k1(x)Vuy (x) - nyjde + /F’Ug(a:)ng(a:)VuQ(w) ‘nadx =0,

where n; and ny are unit vectors, normal to the interface I', pointing outward from ; and s, respectively.
Because v; and vy are arbitrary on €y UT" and Q5 UT, respectively, we may first set vy arbitrary on €1, v;1 =0
on I', and vo = 0 on Q3 UT" and then set vy arbitrary on Qs, v =0 on ', and v; = 0 on € UT to obtain from
(B) the strong forms —V - (k;(x)Vu;(x)) = fi(x) on Q;, i = 1,2, of the subdomain equations. Substituting

these equations back into (f)) leaves us with

/ vi(x)k1(2)Vur (x) - nyde + / va(x)ka(x)Vus(x) - nade = 0.
r r

Using that v; = vy on I" we then recover from this equation the flux continuity condition k1 (x)Vui(x)-ng +

ko(x)Vug(x) -ng = 0. Thus, the strong form of the local interface problem corresponding to the Minimization



Principle (2.1)) is given by

V- (51 (@)Vua () = fi() z e, (6)

uy (x) = g1 () @ eIy, (7)

V- (2(@) V(@) = fo(@) ve, ®)

B ) — () zeT, ()

oy (VA (5] + iy -+ i) i) ~ By = zeT. (10)

We note that the strong form of the interface problem contains the flux continuity condition (10) that was
not explicitly present in Minimization Principle I. This condition is a consequence of the specific form of the
energy functional (1) and of the constraint (9)), both of which are modeling assumptions about the physics local
interface problem. Interfaces for which both the jumps in the state and in the normal flux are zero across the
interface are known as perfect interfaces [25]. In contrast, interfaces for which one or both of these quantities
are discontinuous across the interface are known as imperfect interfaces; see, e.g. [25].

One practically important example are interfaces in which the flux is driven by a jump in the primal variable.
Such imperfect interfaces are employed across vastly different scales to model, e.g., interfacial thermal resistance
at the nanoscale in semiconductor devices [26, 27], as well as the flux exchange between the ocean and the
atmosphere [28] in climate models. In both cases the interface physics is not fully understood and is modeled
by constitutive “closure” relations. Furthermore, It is worth pointing out that mathematical and numerical
analysis of such conditions is somewhat limited even in the local setting; see, e.g., [29] and [30] for some of the
available examples. For this reason, we leave extension of imperfect interfaces to nonlocal problems for future

work and focus instead solely on nonlocal generalizations of perfect interfaces.

3. Nonlocal volume constrained problems

In this section, we review the fundamentals for a nonlocal problem which is the nonlocal counterpart of

the local Poisson PDE. Let Q be an open and bounded subset of R™. Given a positive real number §, often



referred to as the horizon or interaction radius, we define the interaction domain T associated with Q as
F={yeR"\Q: |z—y|<d, forxeQl} (11)

Note that f, as all other entities defined in this section, depend on ¢, so that, for the sake of economy of
notation, that dependence is not explicitly included in those entities. Figure [I}-right illustrates an example of
a two-dimensional domain € and its interaction domain I' having thickness §, i.e., having non-zero volume in

R™.

3.1. Nonlocal energy minimization principle

We use an energy-based characterization of nonlocal volume constrained problems which mirrors the Dirich-
let principle for the classical gradient operator. Specifically, we seek the states of the nonlocal model as suitably

constrained minimizers of the nonlocal energy functional
1 2
swrd) =5 [ [ Juw) - u@)f* @y dyde - [ f@u@)ia. (12)
Qut Jaur Q
The function + is referred to as the kernel and is required to satisfy
Y@, y) =7(y,x), forz,yeQUT. (13)

Let us define the following function spaces

V= {ve LAQUT) : [lvll| < oo},
where [IollF = [ [ juty) = v(@)Pa(@.y) dyde + oz (14)

Ve={veV : v=0forxzel}.

Minimization Principle 3.1. Given v, f, and g, find u € V' such that

u = argmin &(v;~, f),
veV



subject to u(x) = g(x) on T.

Note that the constraint u(z) = g(z) is applied on the interaction domain I' that has nonzero volume, in
contrast to the local case for which such a Dirichlet constraint is applied on the boundary 92. We refer to the

constraint in (3.1]) as a Dirichlet volume constraint.

3.2. Weak formulation

The necessary optimality condition of the Minimization Principle is given by the following variational

equation: find u € V such that u(z)=g(x) on I and

[ ] (W -v@)(u) - ue)i@viyde = [ v@)f@de  Yoeve (15)
Qur Jour

Q

3.8. Strong formulation

To state the strong form of (15) we recall the nonlocal diffusion operator

Luf@) =2 [ (u(y) - ul@)) (e, y)dy. (16
Qut
and the nonlocal Green’s identity [31]

/Q o) Cul)das = / ~ /Q (0(9) = @) (uy) ~ u(e)) (e, )dyde

(17)
2 [ [ o(@) (uly) - u(e))(e,)dyda
T Jour
Using ([L7) and the fact that v = 0 on T one can transform (19) into the following equation
/ v(x)Lu(x)dx + / v(z) f(z)dx = 0. (18)
Q Q

Since v is arbitrary on 2 one then easily obtains the strong form of the nonlocal volume constrained problem

—Lu(x) = f(x) e
) (19)

u(x)=g(x) xel
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Figure 2: Left: geometric configuration for the nonlocal interface problem. Center: illustration of the subdomains I"12 and I'2;.
Right: illustration of the subdomains I';, and T'y;.

which is the nonlocal counterpart of the Dirichlet problem for second-order elliptic PDEs.

4. Nonlocal interface problem

In this section we define a NLI model that provides a physically consistent extension of the perfect local
interface problem of Section 2.

In the NLI model, the domains £;, i = 1,2, interact with each other through regions that have nonzero
volume. These regions are defined in different ways depending on the relative location of  and y and on two

horizon parameters d; and §y. Specifically, for 4; > 0 and J2 > 0, we let
eI ={yeR"\Q; : |z—y| <d ,forx €N} : the (external) interaction domain of ;.
e I'p={yecQ:|x—y| <, forx € Q}: the subregion of Qs that interacts with ; when & € Q5.
e I'yy ={yecQ : |z—y| <da,forx € Ny} the subregion of Oy that interacts with Q when x € Q.
e ={yeQ:|z—y| <, forx € Q}: the analogue of I'y; on Qs.
eIy ={yecQ : |xz—y| <, forx € Qs}: the analogue of I'13 on 5.

Figure 2 illustrates the geometric configuration for the nonlocal interface problem and the various subdomains

involved. We also introduce the set I'* = I';; UL,; if 6; > d;. Note that by definition I';; C I'* and I;; C I'™



for any ¢ and j. The kernel function + is defined for all (z,y) € (QUT;) x (QUT') as follows:

Y1(2,y) = C11(61)Xp, (@) (y) €D U, ye QU

Y12(2,y) = C12(61)XB, () (y) T €A UL, y €D
V(®,y) = (20)
Y21(2, Y) = Co1(02)Xp,(2)(y) x €, y € QU

Yo2(x,y) = Co2(02)XB,(2) (¥) T € D, Yy € o,

where Xg is the indicator function on the set S and B;(x) is the ball of radius d; centered at @. Specific choices

of Cjj(0;), 1,7 = 1,2, are discussed in Section [ and Section .

4.1. Nonlocal energy minimization principle

Mirroring the energy-based description of the local perfect interface problem we start with defining the

nonlocal energy of the system as follows

1

cwrh)=3 [ [ @ -uw)reydydz- [ 1@ de (21)

QUT; QUL Q

Using that ©; and €, are disjoint, we split the energy in two parts, associating the first to w; and the second

to us, i.e.
1
el )=y [ [ w@-u@)iey) dyde- [ fuds
Q. ul'y QUI'y Q1
(22)
1
3 [ [ e - ww@ydyde - [ fude
Qs QUI'y Qo
Let us define the following function spaces
_ 2 . 2 2
Wi={weL*(QUT1) : [[Jwlllf+llwlizq,ur,) <o},
1
where [[lwllf =5 [ [ Jua() - (@) (e y)dyde,
2 Qul'y JOQ Uy (23)

Wa ={w e L) : [llwll3 + lwlliz(q,) < oo},

1
where [[[wllf = [ [ Jus(y) - us(@)Praale, w)dyda.
Q2 J Qo

10



The constrained space W7 is defined as

Wi={weW; : w(®)=0o0nT}. (24)

We also introduce the tensor product spaces W = W7 x Wy and W€¢ = Wy x Ws. Note that we used the same

notation as in the local case even though these are different functional spaces.

Minimization Principle 4.1. Given v, g1 and f, find (u1,us) € W such that

(u1,ug) = argmin &(vy,ve;7, f),
(v1,v2)EW

subject to the constraints

up(x) = g1(x) zely,

(25)
u(x) = usz(x) xel™.

The second constraint in (25) can be viewed as a generalization of the state continuity constraint in (3)

much like the volume constraint in (19) generalizes the standard Dirichlet boundary condition.

4.2. Weak formulation

From the Euler-Lagrange equation corresponding to the Minimization Principle 4.1, we derive a weak

variational equation for the NLI model given in the following proposition. The derivation is given in
Al

Proposition 4.1. A weak formulation corresponding to the Minimization Principle[].1 is given by the following

weak variational equation: find uy € Wy and ug € Wy such that (25) and vi(x) = va(x) for ® € T'* are satisfied

and
(@) - (@) (0:(@) - v @hm@dyde + [ [ (@) - uw)o@neydyde
Q. Ul Q10T Q1 Qo
i (26)
— / /(uQ(m) —u1(y))v1(y)ye1(x, y)dy de = /f(m)vl(a:) dx for all vi(x) € W7
Qo 97

11



and

/ / (2 (@) — w2(a)) (va(®) — v2 (0 vea(, )y d + / / (12 (¥) — 2 (@)v2())yen (2, )y e

QQ Qz Q2 Ql

— //(ul(m) —ua(y))v2(y)v12(x, y)dy de = /f(w)vg(w) dx for all va(x) € Wh.
Qo

€ Q2

(27)

4.3. Strong formulation

The strong formulation of the NLI model can be derived from the weak formulation as shown in the following

proposition whose proof is given in [Appendix B|.

Proposition 4.2. The strong form of the NLI model associated with the weak formulation (26) and (27) is

given by the nonlocal subdomain equations

-2 / (u1(y) —ua(x)) iz, y) dy —/(U2(y) - ul(w))(’Yu(way) + 721(-’3731)) dy = f(z), (28)

QU Qs

for x € Q1, and

*2/(’“2(?!) —uz(x))v22(z, y) dy */(Ul(y) - Uz(m))(’Yzl(m,y) + ’712(337y)) dy = f(x), (29)

Qg Ql
for x € Qs.

Isolating terms in (28) and (29) that do not interact with Q5 and 4, respectively, we obtain the equations
20u(0) [ (wly) - w(@)dy= @) fore e h\Ly,
Bl(m)

2 (5) /B ) @) dy = @) forw e 0\,

where we have used (20) to substitute for ;; (2, y) and also that, by construction, (€, UT1) N Bi(x) = By (x)

12



for ¢ € Oy \ [y, and Qo N Ba(x) = Ba(x) for @ € Q5 \ T'y5. Collecting the remaining terms then yields

—2C11(61) / (u1(y) —wi(x)) dy — C12(d1) / (u2(y) —ui(x)) dy — C21(d2) / (u2(y) —ui(x)) dy = f(x)
(Q1U'1)NBy (x) T'1oNB1(x) L', ,NBa(x) ( )
31

for x € I'y;, and

205 (62) / (uz(y) — ua()) dy — Cox (52) / (1w (3) — wa(@)) dy — Cra(81) / (w (3) — wa(@)) dy = f ()
QoNBa(x) T'21NB2(x) I,,NBi(x)
(32)

for ¢ € I'y,, where we have again used (20)).
To summarize, the strong form of the nonlocal interface problem is comprised of the subdomain equations
(80), the nonlocal flux interface conditions (31)) and (32)), and the volumetric constraints in (25). Together, these

nonlocal equations and interface conditions are the nonlocal analogue of the perfect interface PDE formulation

(6)-(10).

5. Local limits of the nonlocal interface model

In the next proposition whose proof is given in [Appendix C|, we show that the weak form of the NLI problem
converges to the weak form of the local interface problem as the extent of the nonlocal interactions vanish, i.e.
as 01 and do approach zero. This exercise results in unique choices for the constants Cj;, 4,7 = 1,2, whereas it
allows for some freedom in the choices of Cy; for ¢ # j. For the sake of clarity, we present the analysis in the
two-dimensional setting; extension to the three-dimensional case is straightforward but involves significantly

more cumbersome notation.

Proposition 5.1. Fori = 1,2, and any positive constants @j, provided u;(x) is sufficiently smooth, if

dr; )

Cuy =1 ()
Ci; o,
64 1 # .77

13



then, in the local limit 1 — 0 and 69 — 0 of vanishing horizons, the weak formulation of the nonlocal interface
problem given in Proposition converges to its local counterpart () with constant k1 and k. Moreover, the

convergence rate is first order with respect to the horizon parameters.

Note that the constants and parameters in (33) associated with the one- and three-dimensional problems
are different, but can be determined by following the same procedure presented for the two-dimensional case.
In Section [6] we report examples of kernels for a one-dimensional problem. We recall that for nonlocal volume-
constrained problems such as the one in (19) (i.e., in the absence of interfaces), the nonlocal operator converges
to its local counterpart (the classical Laplacian) as O(62) and that the convergence of nonlocal solutions to the
corresponding local ones is also of second order. We conjecture that also for the nonlocal interface problem, the
rate of convergence of solutions is the same as that for the weak form, i.e., we conjecture that the convergence of
nonlocal solutions to their corresponding local counterparts is also of first order. This conjecture is supported
by the numerical results given in Section 0.

Also note that, even though there is freedom in the choice of 51;j, their values do affect the quality of the

solution at the interface. In Section @ we investigate the sensitivity of the nonlocal solution to different Cj;.

6. Numerical Results

In this section we carry out a numerical investigation of the NLI theory developed in this paper. We first
consider a one-dimensional setting, reported in Figure 3, and then present preliminary tests in two dimensions,
see Figure [7], top left, for the domain configuration. Note that, to simplify the numerical implementation, we
consider an interface problem with a slightly different domain configuration compared to the one used in the

previous sections; however, our theory applies to this configuration as well.

6.1. One-dimensional problem

In the section we illustrate the theoretical results presented in the previous sections and highlight some

important features of the proposed approach.

Implementation details and problem setting. The domains are discretized using an interface-fitted finite element

grid T, having Nj, nodes x; and Nj, — 1 elements of size h. We denote the node on the interface by z;.. On

14



I [y I' Ty Iy

Ql QQ

Figure 3: Domains configuration for the numerical results. Note that I' is a point in this one-dimensional setting.

each subdomain we approximate the nonlocal solution by a piecewise linear C° finite element space endowed
with the standard Lagrangian nodal basis ;. To allow the nonlocal solution to develop a discontinuity on
the interface we “ double-count” the degree-of-freedom living on the interface node z;.. Discretization of the

nonlocal interface problem results in a (N, +1) X (N, + 1) linear system of algebraic equations Au = f, where

Ay = /QUf [/QUF v(z,y) (%(x) = @j(y)) (%(x) = cpz-(y))dy}dw, fi= /Qf(w)soi(:c)dx, (34)

for 4,5 = 1,...ip,ipr + 1,..., N. Integrals in the bilinear form are computed using a three-point Gauss
quadrature (the same quadrature rule is used for error computation, descried later on). In equation (34)),
is an approximation of €7 U s, and [ of T; UT,. Let x; and ks be two positive constants describing the
material properties in €2y and ()5, respectively. By applying the theory of Section [ to a one-dimensional

problem setting, we define the kernel in equation (B4) as follows.

3K
Y1, y) = 3 5—§X31(a:)(y) (z,y) e {fQ UT1 x Q UT1}
1

Y12(z,y) = C12(01)XB, (o) (y)  (z,y) € {1 UT1 x Qo U T}
Yz, y) = (35)
Yo1(2,y) = C21(02)XB,(2)(y)  (w,y) € {Q2UT2 x Q UT}

352
263

Yoo (w,y) = X, () (v) (z,y) € {Q2UT2 x Qa UT2},

15



Four different kernels are considered, defined by the choice of C15 and Co;.

3 Ko 3 K1
1. Ci2(d1) = B 5_%, C21(d2) = 3 6_5" (36)
2. Ci2(6) = J B C21(d2) = : =2 (37)
2 6¢° 2 63
3 K1 Ko
3. C12(0)=Cxn(0)=-(=+=)- (38)
12(01 21 (02 1 (5% 65’)
_3 (kL k2 _3 (kL k2
1 Cae)=1(F+5) e)=7(5+5) (39)

The values of C1; and Chy are defined as in equation (35)). Unless otherwise stated, we let k1 = 1 and k2 = 3 in
equation and consider the domains I'y = [—d; — 0.5, —0.5], Q; = (—0.5,0), Q2 = (0,0.5) and I's = [0.5,0.5+ J3],
so that QUT = [—8; — 0.5,0.5 4 5]. The forcing term is constant and such that f(z) = 1 in Q. The volume

constraints for the nonlocal problem are

1 1 1., 11 1,

gl(x)zﬁ—gx—ix, g2r) = —=——z—=z". (40)

In our study of the convergence to the local limits, also referred to as d-convergence, we consider the following

local interface problem

—rkuf(x) = fi(z) =z € (-0.5,0)

—roul(z) = folz) =z € (0,0.5)
(41)

ul(—0.5) = O, U2(05) = O, (751 (O) = UQ(O)

k1u) (0) = Kaub(0),

16



where, consistently with the nonlocal problem, k1 = 1, ko = 3 and f; = fo = 1. The analytic solution uy of

the above problem is

(@) = ui(z) = gi1(x) z € (—0.5,0) 42)

uz(x) = go(x) x € (0,0.5),
where g1 and g9 are the volume constraints of the nonlocal problem, defined in equation (40)).

Convergence to the local limit. To assess d-convergence, we consider a fine mesh with fixed size h = 27'2 and
progressively halve ¢; and d2, as ||un,n — ui]| L2(QUT) is monitored. Here, uy p is the finite element nonlocal
solution associated with the grid of size h. Since, in correspondence of the fine grid, the error ||ur n —uL| z2(0)
between the numerical solution uy, ;, of problem (41)) and the analytic solution uy, is of order 1072, we use ur,
in place of ur, j, because we expect the discretization error to be negligible compared to the § error. Note that
from now on we drop the dependence of the norms on the domain.

Results are reported in Table [I. We see that the error between the nonlocal and the local solution goes
to zero with a first order convergence for all kernels, showing how the local model can be recovered from the
nonlocal model. Note that this confirms the conjecture made in Section [ that solutions of the nonlocal interface
problems converge to its local counterpart as O(d;). In Figure [, we show the nonlocal solution obtained with
the different kernels compared to the local exact uz. On the left, we display solutions associated with relatively
large values of §; and o, namely §; = 272 and d, = 272.

As anticipated in Section , different E’ij yield a different behavior of the nonlocal solution across the
interface. As an example, we note that the nonlocal solution obtained using Kernel 3 is almost insensitive to
the presence of the interface. This behavior is likely due to the fact that C15 = Cs1, i.e. the symmetric nature
of the kernel prevents capturing the discontinuities in model parameters.

In Figure [ (right), we show nonlocal solutions associated with relatively small values of ; and da, namely
d; = 2719 and §, = 279, This figure is meant to give visual proof that all kernels provide a nonlocal solution

that converges to the local exact as d; and o approach zero.
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Figure 4: Left: comparison of nonlocal solution and exact local for different kernels with §; = 2710, 53 = 272 h = 2712, (zoom
at the bottom). Right: comparison of nonlocal solution and exact local for different kernels with 61 = 273,62 = 272 h = 2712,
(zoom at the bottom).

Convergence with respect to the mesh size. To investigate the h-convergence of the proposed finite element
approximation, we let uy n, be a finite element nonlocal solution associated with a fine grid of size hy, with
hy < h. For fixed values of §; and d2, the h-convergence is assessed by progressively halving h and monitoring
lun,n — unngllL2-

Results are shown in Table 2, for §; = 27°,82 = 27%, and hy = 27!2. Recall also that a double node is
present at the interface, to allow a discontinuous nonlocal solution. From Table 2, we see that the expected

quadratic order of convergence given by the use of linear finite elements is obtained only for Kernel 1, whereas
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Kernel 1 Kernel 2 Kernel 3 Kernel 4

01 02 | |lun,n —urllpz order| |lunn —urllzz order| |un,, —ur|p2 order| |jun,n —wur|p2 order
27° 271 1.62e—04 — 3.86e—04 — 7.72e—04 — 2.61le—04 -
g=6 g=4 6.69e—05 1.28 2.19e—04 0.82 4.22e—04 0.87 1.45e—04 0.84
g~% o8 3.11e—05 1.11 1.16e—04 0.91 2.20e—04 0.94 7.72e—05 0.91
278 o7 7 1.52e—05 1.04 6.01e—05 0.95 1.12e—04 0.97 3.98¢—05 0.95
279 278 7.52e—06 1.01 3.05e—05 0.98 5.68e—05 0.98 2.02e—05 0.98
210 9—% 3.75e—06 1.00 1.54e—05 0.99 2.86e—05 0.99 1.02e—05 0.99

Table 1: One-dimensional problem. Errors with respect to the local solution for decreasing values of §; and Js.

Kernel 1 Kernel 2 Kernel 3 Kernel 4
h |llunn —unngllg2 order | lunn —unn,llp2 order | |lunn — unpn,llp2 order | |unn — unn,llp2 order
27° 6.58e—05 = 5.86e—05 — 5.79e—05 — 6.07e—05 =
276 1.63e—05 2.01 1.36e—05 2.10 1.32e—05 2.13 1.44e—05 2.07
277 3.94e—06 2.05 3.33e—06 2.03 4.08e—06 1.69 3.43e—06 2.07
278 9.49e—07 2.05 1.18e—06 1.45 2.21e—06 0.88 9.39e—07 1.87
279 2.33e—07 2.02 6.77e—07 0.80 1.40e—06 0.65 4.25e—07 1.14

Table 2: One-dimensional problem. Errors with respect to a reference nonlocal solution for decreasing values of h.

the other kernels display a rapidly deteriorating rate. In light of Table 2, from now on we only consider Kernel

1, given in equation (36)F.

Behavior of the solution at the interface. First, we consider the behavior of the solution at the interface as the
nonlocal interactions vanish. In Figure [5, a plot of the numerical nonlocal solution for different values of §;
and 02 is compared to the local solution in equation (42). It can be see from the pictures that the nonlocal
solution has a jump discontinuity at the interface, and that the magnitude of the jump approaches zero as §;
and 0y approach zero, as confirmed by the results in Table [I.

In Table B, left, we investigate the behavior of the magnitude of the jump, i.e. the difference of the solution
values at the double node that has been placed at the interface. For h = 27!2, and progressively smaller values
of §; and d2, we report the magnitude of the discontinuity; we observe that it approaches zero with first order
convergence. This shows that the nonlocal solution starts as discontinuous, and as it converges to the local

solution becomes continuous.

4We are not able to theoretically explain the deterioration of convergence of Kernels 2-4; we believe a rigorous analysis of the
numerical finite element error is needed; this is part of our current work.
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Figure 5: Numerical nonlocal solutions compared to the local exact solution in equation (42). The pictures are progressively
zoomed on the interface moving from left to right and from top to bottom.

In Table 3| right, we consider 6, = 27°, §; = 274 as h is decreased. As expected, the magnitude of the
discontinuity reaches a saturation value. This behavior is due to the fact that the discontinuity is intrinsically

related to nonlocality and its magnitude depends on the values of §; and Js.

Sensitivity to the parameters k;. To complete the one-dimensional investigation, we also report pictures of
nonlocal solutions obtained with a larger difference between the values of k1 and ks, or between the values of
01 and 09, see Figure [6. Note that, while the values of x; change the solution profile, the convergence behavior

with respect to §; and h is not affected, as it is independent of them.
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o1 d2 |magnitude order h_5 mABAHINg  gRder
27° 27| 415e—04 - B g || crocei -
B as 276 | 4.23e—04 6.20e—01
2 2751 2.25e—04 0.88 7

g 2 4.17e—04 1.99¢—02
2 2 1.17e—04 0.94 &

& o7 2 4.15e—04 6.20e—03
2 2771 5.95e—05 0.97 5

g B 2 4.15e—04 1.00e—04
2 2781 3.00e—05 0.99 10

2,10 2,9 1.51e—05 0.99 2 4156—04 3006_04

‘ 2711 4.15e—04 0.00e+00

Table 3: One-dimensional problem. Left: magnitude of the jump discontinuity at the interface of the nonlocal solution, for fixed
h and decreasing 61 and J2. Right: magnitude of the jump discontinuity at the interface of the nonlocal solution, for fixed d; and
42 and decreasing h.
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Figure 6: Nonlocal solution for h = 2712 and left: k1 = 1, ko = 3, §1 = 279, 82 = 272; center: k1 = 1, ko = 10, §; = 273,
d2 =272 right: k1 =1, ko = 100, §1 =273, §3 =272,

6.2. Two-dimensional problem

In this section we show the applicability of our strategy to higher-dimensional problems and illustrate the
theoretical results in Section [5. We refer to the configuration in Figure [7], top left; also in this case, the domains
are discretized using an interface-fitted finite element grid of size h. On each subdomain the nonlocal solution
is a piecewise linear finite element approximation. Double edges and nodes are placed on the interface to allow

for a discontinuous nonlocal solution across the interface.

Problem setting. We consider I'y U Q; = [—6; — 0.5,61]%, and Qo UTy = [—82,0.5 + 62)%. Let @ = (x1,22), the

nonlocal volume constraints on the interaction domains are defined as
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1/16 29| > 0.5

g1(x) = (43)
1/16+(—1/8x1—1/230%)(3:%—1/4) otherwise
1/16 |z2| > 0.5

g2(x) = (44)
1/16 + ( —1/242; —1/6 ﬁ) (xg - 1/4) otherwise,

and, for k1 = 1 and ke = 3, the forcing term is defined as f(x) = —k;Ag; for © € Q;. In the analysis of the

d-convergence, we consider the following local problem

—k1Auy = f T e

—KoAus = f T €
Uy = g1 zedW \T

(45)
Uz = ga x € 0y \ r

ur(z) =uz(x) x€Tl

6U1 aUQ
Kil=— =kog—— x €l
18.73‘1 28.’131 ’

whose analytic solution ur,, reported in Figure [7], top right, is given by uy(z) = g;(z) for € Q;. The nonlocal

kernel v is chosen in accordance to the results in Section f.

Convergence to the local limit. We conduct the same analysis of the previous section and analyze the conver-
gence of the finite element nonlocal solution to the approximate solution of problem (45) as ; and d2 approach
zero. Note that in this case, we do not use the analytic local solution as the finite element grid is not fine
enough to make the discretization error negligible. We denote by ur, 5 the local finite element solution on a
grid of size h.

In Table 4 we report values of ||un,p — ur p| 2 for h =278 as the interaction radii approach zero. Also in

this case, we observe a first order convergence to the local solution. In Figure [7, bottom, we report uy,p in

22



£ T, NI

—

Figure 7: Top left: domains configuration for the 2D numerical tests. Top Right: numerical local solution in ©Q; U Q5. Bottom
left: numerical nonlocal solution in €1 U2 with (61,d2) = (2*8, 2*7). Bottom right: numerical nonlocal solution in 3 U2 with

(61,02) = (2_4, 2_3).

Q1 UQy for (61,62) = (278,277), bottom left, and (274,273),

bottom right.

b 62 ||lunp —upnlpe order
9% 3 3.06e—04 =

2-5 9—4 1.42e—04 1.10
9—6 95 6.64e—05 1.10
=7 96 2.94e—05 1.18
2-8 97 1.17e—05 1.32

Table 4: Two-dimensional problem. Difference between numerical nonlocal and local solutions as the interaction radii approach

zero on a mesh of size h = 278,
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7. Conclusion and Perspectives

We developed and demonstrated a new mathematical formulation for nonlocal interface problems (NLI),
which extends the classical local interface theory to the non-local setting. Our theory, based on the minimiza-
tion of the energy of the nonlocal system, provides a rigorous and physically consistent nonlocal counterpart
of the classical theory, and fills a longstanding theoretical gap in the formulation of nonlocal interface prob-
lems. An important feature of our approach is that as the extent of the nonlocal interactions vanishes, the
solution of the nonlocal interface problem converges to the one of corresponding local problem; we refer to this
property as physical consistency. Convergence properties of our formulation, both with respect to the nonlocal
parameter and the discretization size, are illustrated by several one-dimensional experiments. Furthermore,
a two-dimensional experiment shows the applicability of our strategy in higher dimensions and represents a
promising preliminary result towards realistic simulations.

In this work we focused on nonlocal generalizations of perfect interface conditions. Subsequent work will
address application of the NLI theory to the design of efficient nonlocal domain decomposition solvers and its
extension to imperfect interfaces that occur in important applications such as fracture mechanics and problems
with interfacial thermal conductance [32]. In particular, our objectives include 1) Consistent NLI formulations
for problems in which the solution has a prescribed jump at the interface; 2) extension of the numerical tests
to more complex geometries; and 3) extension of NLI to singular kernels, that are characteristic of fracture

problems and subsurface flow applications.
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Appendix A. Proof of Proposition 4.1

The Euler-Lagrange equation corresponding to the Minimization Principle 4.1] is given by

(ur(z) — w1 (y))(v1(2) — v1(y))y (2, y)dy d
Q:Ul'; Q40T

+ / / (2(x) — w1 (1)) (0n (&) — 1 (@))(s y)dy ds — / P d

Q1 Qs 1951

+ / / (1) — u2(¥)) (v2(x) — v2())v(, y)dy dax
Qs Qo

+ / / (u2(@) — ua (1)) (v2(&) — 021, )y d — / Fosda =0,
Qs Oy Qo

for all (vi,v2) € W€ satisfying v1(x) = va(x) for & € I'* and vy () = 0 for € 'y, where we have again used

the assumption that points in €23 do not interact with points in I';. Substituting (20), (25), and v, (z) = va(x)
for € I'* results in

/ / (1w () — w1 () (01 () — 02 ()1 (2, )y

QUM Qul'y

+ [ [ @) = wa@)0a(@) - ) st )y de — [ fondo

Q1 Qo

Q
+ [ [ua@) — @) oae) — o), vy do
Qs Qs
+ //(ug(a:) —u1(y))(v2(x) — v1(y))v21(x, y)dy dz — / fvadx = 0.
Q2 O Qo
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Rearranging terms, we obtain

(ur(z) — u1(y))(vi(x) — v1(y))y(z, y)dy dz
Q U’y QU

+ / / (1) — ua (3) o (@) pra (e, )y e

Q1 Qo

- / / (un () — a (3))0n (1) (2, )yl — / for dee
Q

Qs Q1

T / / (@) — () (02 () — v2(9) V2, )y v

Qs Q2

n / / (w2(®) — 1 (1) (@) s (o, ) dy e

Qo Q1

- [ @)~ w@)ewrete iy dz - [ fede=o

Q1 Q2 Q2

Then, (26) and (27) follow because vy (x) for x € Q; and va(x) for & € Q1 can be independently chosen.

Appendix B. Proof of Proposition

We make use of the identity

/Dl Dzw(w’y)a(y)v(w,y)dydx:/

a(x) [ ¥(y,z)y(y, z)dyde, (B.1)
Do Dy

where Dy and Dy are two generic subsets of R™. For the first term in (26) we have, using (B.1)), v1(x) = 0 on
'y, the first choice in (20)), and the symmetry of 11 (x, y),

| / / (2 () — (1)) (01 (&) — 02 ()7 (2, ) dy e

QU QU

= / v1 () / (ur(z) — ur(y)) 1z, y) dy de — / vy () / (u1(y) = wr () (y, ) dy dz (3 9

QU Q Ul QU Q Ul

= —2/1}1(33) / (ur(y) — ur ()11 (x, y) dy de.
Q

Qul'y
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For the third term in (26]) we have,

~ [ [~ u@yuwrn @ viyde = - [o@ [we) - uen@iad. Gy

QQ Ql Ql Q2

Substituting (B.2) and (B.3)) in (26)) results in

s / u(@) / B i — o B, ) ey s — / v () / (us(y) — w1 (@)1 (2, y)dy d
01 Qul'y 1931 Qo

- / o (@) / (un(@) — 101 (2)) 121 (&, )y daz = / f(@)on () de.
(951

Q Qg

Because v1(z) for « € Q4 is arbitrary, (28) follows. In a similar manner, (29) is derived from (27).

Appendix C. Proof of Proposition 5.1

Let us define

IV iy, g, 0, ) 2= / / (2 (&) — 1 (1)) (01 (&) — 02 ()1 (@, ) dy e
QU QU

+ [ [ - u@)eie) - n@heydy e [ e - wE)ee) - uw)hmeydy

QU Q2 Q2 Qo
. (uz(x) — u2(y))(v2(2) — v2(Y))re1(z, y)dy dx — [ fividz — [ fova.dz.
L, ]
(C.1)
L(ul,u2.,111,112) = / mVul(as) . Vvl(sc)d:c —|—/ HQV'U/Q(x) . sz(ac)da: — / fl’UldSC = fzvgdw. (02)
(o8 Qg 1931 Qo
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Hence, we have
NL(ulyuQanthafy) _L(u11u27vlav2) (Cv?))

= / / (12 (&) — (1)) (01 (&) — 01 ()01 (2, ) iy e + / / (u (&) — 03 (1)) (01 () — 02 ()12 (o, )y

QU QU QU Qo
+ / / (ua(@) — uz(8)) (v2(2) — v2 ()22, )y d + / / (2 (1) — () (v2(x) — v2()) s (, )y e
Qo Qs Qs QU
- / k1Vu(x) - Vuy (z)de — / koVus(x) - Vug(x)de. (C.4)
Q1 Qg
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Or equivalently,
N L(u1, uz,v1,v2,7) — L(u1, uz,v1, v2)

= / / (i (&) — 1 (1)) (01 () — v ()0 (2, )y

QU U2 QUM U2

+ / / (12 (&) — 1 (1)) (01 (&) — 02 () n2(, ) dy e
QU Qo

+ / / (u2(®) — w2 (@) (02(&) — 02(@) (e, y)dy dee
QU1 Q22U

+ / / (w2() — ua(y)) (v () — v2(@)) s (=, )y de
Qs QUM

= / k1Vuy () - Vi (x)de — / koVug(x) - Vua(x)dx
1951

Qo

- / / (2 () — 2 () (w1.@) — 0 ()yan (e, )y
QUl'y T2

- / / (2 () — (1)) (01 (&) — 02 ()1 (2, ) dy e
T QU U2

- / / (u2(x) — () (v2(@) — v2(@)22(, ) dy dee

Q2 T2

- / / (2(®) — wz(2)) (v2(2) — v2 ()22, )y diz.
T2 QU2

Note that vi(x,y) = Cii(0i)xB,(x) () is a radial function, i.e. v;(x,y) = vi(|z — y|). Let z = x —y, then
~ii = vii(|2]) = Cii(5i)XBi(0)(Z)~ Define (KZ-NL)jk = fBi(o) vii(|2])z; zrdz, with j, k =1,2. Tt follows that

2m 57_ 4
(KiNL)ll = /B(O) "/u‘('Z')Zl Zle = /0 (A C“((Sl)p?’ COSQ(G)d,O)dH = O“((Sz)ﬂ'% = Kj- (05)

2 5
(KNEYp = /B PRUCEECE /0 ( /0 Ca(6,)0° cos(6) sin(@)dp)dd =0, j#k  (C6)
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27 & 4

¢ : 9
24 = [ labansada= [ ( [T Cutdag® suf 00dp)db = Culd)mf = e (C1)
B;(0) Y i 4

Define

KF:= lim KN, then KF =
61'*)0

It follows from a result in [33] that

(ur(z) — ui(y))(vi(z) —v1(y))yi(z, y)dy dz = / K1V (z) - Vi (z)de + O(67).

Q
QU UM QU U5 !

/ / (n (&) — w2(8)) (v2(2) — v2 () Y22, )y e = / 2 Vs (i) - Vo (w)da + O(63).

Qo
QoUl'ey QUM

Let’s now focus on each of the other contributions in ([C.3), one at the time.

/ / fis () — i (el — v Lo, )y

QUM Q2

— Cua(6) / / (wa () — 11 () (0 () — v (9) dy o
QUT QN By ()

— C1a(8) / / (u2(@) — 11 (1)) (02 (&) — 2 (9)) dy de

Ly Ti2NBy ()

~ C12(01) / / O(01)O(61)dy dx  (using Taylor expansions)
Lyy T12NBi ()

~ C12(81)O(67) / O(67)dy = Cr2(6:1)0(67)O(31)O(61) = Cr2(6:1)O0(67) = O(61).

E21
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In a similar manner, we obtain

(u2(x) — u2(y)) (v2(®) = v2(y))y21(, y)dy da
Q2 QU

— Ot / / (un() — ua(y)) (v2() — va(y))dy de
Q2 QU1 NBy ()

— Co(6) / / (us(®) — us(y)) (v () — va(y))dy dz

Ly T21NBa ()

~ O (02)O(62) / O(62)dy ~ O(5y).

F12

[ [ @ - w@)we) - o @)y vy de =

QU T2

— Cn(ay) / / (w1 () — w1 (1)) (01 () — 01 (9))dy d

QUM IT'12NBy(x)

=ou@) [ [ @) - n@)e@ - )y i

Ly T12NBi ()

~ O (61)0(52) / 0(62)dy ~ O®,).

£21

/ / (12 (@) — w1 (1)) (01 (@) — 02 ()11 (=, ) dy deo

2 ©UNUN 2

— Gha) / / (w1 (%) — w1 (1)) (01 () — o1 (9))dy de

T2 (QluFluFlz ﬂBl(:l:)

— B (8 / / (w1 () — u (1)) (01 (2) — 01 (9))dy da

T2 (Dy,UT12)NB1 ()

~ C11(61)0(63) /05? )dy =~ O(8}).

T2
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[ [a@) - ww)s(@)  va(w)resta, )y o

Q2 2y

— Co(6) / / (12(®) — u2(9)) (va(x) — v2(w))dy dx

Q2 T'21NBa(x)

— Coa(6) / / (u2(®) — ua () (va() — va(y))dy d

Ly To1nNBa(x)

~ Cya(62)O(62) / O(83)dy ~ O(8y).
212

(uz() — uz(y))(v2(x) — v2(y))y22(2, y)dy dee
a1 Q22U

— Coa(82) / / (u2(®) — ua(9)) (va(@) — va(y))dy dee
T21 (Q22UT21)NBa ()

— Chal) / / (ua() — 12 (1)) (v () — va(y))dy dse

F21 F12UF21)OBQ(E)

~ 022(52 (52 / O 5; dy ~ 0(52)

2

Therefore, we conclude that |NL(uy,ug,v1,v2,7) — L(u1, ug,v1,v2)| & O(81) + O(d3).
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