
Usable Data Abstractions for Next-Generation Scientific Workflows

Final Report – University of California, Berkeley

May 13, 2020

1. DOE award # and name of the recipient (Institution)
● DOE award #:

SN10040 DE-SC0012463

● Name of the recipient:
University of California, Berkeley

2. Project Title and name of the PI
● Project Title:

Usable Data Abstractions for Next-Generation Scientific Workflows

● Name of the PI:
Fernando Pérez

3. Date of the report and period covered by the report
● Date of the report:

May 13, 2020

● Period covered by the report:
September 1, 2016-December 31 2019.

4. Brief description of the progress/accomplishments during the current funding period
and plans for the next year funding period.

Project description: Data- and computationally-intensive scientific research, such as numerical
simulations and inversions or the training of large neural networks in machine learning
applications, that are well suited for HPC environments also often require expert insight and
evaluation throughout the computation which can be greatly facilitated with the use of interactive
computing tools, such as those in the Jupyter ecosystem. HPC workflows and interactive
workflows are typically treated as orthogonal, however, the next generation of research will
require both. The first challenge we face in this project is thus designing the right level of

abstractions to allow interactive capabilities in the JupyterLab environment to allow the working
scientist to flexibly explore and query their data at multiple levels, with a minimal amount of
customization required of the underlying optimized codes. In addition to these questions
regarding the high-level representation of data for interactive use in HPC, we tackled two
additional issues that are part of the entire lifecycle of research and that become particularly
acute in HPC contexts: how to improve the experience of interfacing with the HPC system's
scheduling environment for a scientist focused on exploratory questions, and how can that
scientist then best share the results of their work with others in a self-contained, reproducible
manner.

Project accomplishments at UC Berkeley: There are three major technical accomplishments
of this project which span the research life-cycle from: (1) setting up an HPC computation
interactively, to (2) visualizing results through the JupyterLab interface, to (3) sharing
computational work in a manner that allows results to readily be reproduced by others. To
motivate and test new developments in this project, we selected a research use-case: imaging
the subsurface using geophysical data. Geophysical imaging is used in several of the DOE’s
priority areas including: resource exploration in hydrocarbons, minerals, and groundwater, as
well as geotechnical and environmental applications. The computational building blocks that we
require for working with geophysical data are common to many problems in scientific computing,
particularly in the emerging domain of machine learning and physically-motivated scientific
contexts. They include: (a) The ability to simulate the governing partial differential equations.
These are typically large-scale, require parallel computation, and can generate large volumes of
data that are stored to disc for later analysis. (b) The ability to run PDE constrained optimization
to estimate a model of the subsurface given geophysical data. This requires many simulations
to be run as well as mechanisms for estimating derivatives in the optimization. With these needs
as motivating context, we now outline the main project accomplishments in developing a
prototype implementation for the current workflow (a publication is in preparation). In addition to
the technical accomplishments, we conducted user interviews to understand users’ experiences
and expectations from interactive Jupyter based HPC environments. To test and demonstrate
our research, we used Notebooks from the geophysics use-cases for simulating
electromagnetic geophysical experiments.

1. Requesting HPC nodes interactively from Jupyter to run parallel computations.
Dask is a project that can be used to parallelize Python code on a variety of
infrastructure types: from a laptop, to Kubernetes clusters on the cloud, to HPC clusters.
Dask-Jobqueue is used to deploy Dask on common queueing systems, including
SLURM, which is used at NERSC. The combination of these projects allows users to set
up a computation interactively and then send the computationally expensive steps to
HPC nodes. We implemented this workflow for our science use-case and were
successful in interactively requesting HPC nodes from a Jupyter notebook. This initial
implementation is the first step for developing documentation and suggested
best-practices for the use of Dask at NERSC. Furthermore this work surfaces usage

patterns that are distinct from more “traditional” HPC workflows. When working
interactively, there is a user-expectation of a moderate job-queuing time -- not
necessarily real-time, but a day-long wait is discordant with an interactive workflow. We
expect that the primary pattern-of-use for HPC nodes requested from Jupyter will only
require several hours of compute-time as a maximum -- e.g. jobs that are too big for a
laptop, but not a 512 core parallized simulation. Designing a solution to best serve these
interactive use-cases is an area for future work.

2. Rich, interactive visualization of HDF data.
Data produced by each simulation is recorded to disk using the Hierarchical Data Format
(HDF) version 5, commonly referred to as HDF5. This data format was designed to store
and organize large amounts of information in addition to supporting complex metadata
and data types and is a high-performance file format suitable for an HPC context.
Obtaining a quick preview of output data is important for identifying and isolating
problems with models and simulation outputs. Additionally, the ability to scan through
two-dimensional slices of data can provide an effective view into the model output, and
allow for easier comparisons between simulation runs. The data is remote to the user, in
files residing on the HPC filesystem, while the user visualizes data in JupyterLab from a
web browser in their local environment (e.g., laptop or desktop). The data we considered
are inversion results from a 3D geophysical inversion.

In order to facilitate interactive visualization of computational results, we built a prototype
JupyterLab extension which allows a user to simply double-click on an appropriately
formatted HDF5 file and visualize the data. Data is fetched on-demand for rapid
visualization and to minimize unnecessary remote data transfer for data not viewed.
Three interactive controls are provided (1) Normal axis selector: a dropdown menu which
determines which axis is perpendicular to the screen (i.e., the dimension which is sliced
across); (2) Slice selector: a slider which determines the current slice index and allows
the user to traverse the normal axis; (3) Colorscale selector: a dropdown menu which
determines the color scheme of the heatmap. This extension of JupyterLab’s default file
browser provides a simple way to render data with the plugin in a typical workflow. Many
files can be opened separately, with each presented in its own window within the
JupyterLab interface. Windows can be arranged side by side for comparison or kept in
separate tabbed views.

3. Creating and share reproducible computational environments

For Notebooks to have value beyond their creators, they need to be shareable and
executable by others. Because Notebooks are files, there are already many existing
solutions for sharing files and this is straightforward. However, to execute and reproduce
the contents of any Jupyter Notebook, multiple elements are needed. First, the Notebook
document or file is required. Second, a specification of the kernel used to execute the
contents of the Notebook is required. Jupyter defines a JSON document called a
kernelspec that contains this information, which must be present with the Notebook, and

the name used within the kernelspec file for the kernel should match the kernel name
used by the Notebook. Third, the kernel depends on an execution environment that
contains all of the dependencies necessary to fulfill the requirements of the contents of
the Notebook. Unfortunately, these dependencies are not trivial to derive from just the
Notebook contents and it is necessary to explicitly define and provide the dependencies
for reproducibility.

To help with the difficulty of reproducing execution environments for kernels and
Notebooks, the Jupyter team provides Binder (Project Jupyter et al., 2018), which
accepts some community standard dependency files and automatically installs the
defined dependencies and launches the provided Notebook. Users can place Notebooks
with a dependency file in a repository, and then simply share a link to the repository with
others to allow them to run the Notebook. Binder is designed to run in a cloud
environment with built-in containerization support for Docker and Kubernetes and was
not designed for use on HPC systems.

To address the need for reproducing Notebooks within the scientific HPC community, we
have adapted part of the Binder toolset for use on Cori at NERSC using Docker and
Shifter to build a prototype. There is a two-step process that we have developed for
running Binder-compatible repositories at NERSC, by leveraging existing Binder and
Shifter tools. The first step involves building a Docker image from a compatible
repository containing one or more Notebooks and pushing that image to a Docker
registry. The second step uses Shifter at NERSC with JupyterHub to pull down the
Docker image, convert it to a Shifter compatible image, and then use JupyterHub to run
Shifter in place of a regular Jupyter Notebook App process. In addition, we use a
ScienceCapsule backend that enables us to capture events from the environment
creating a foundation for reproducibility of the workflow. These steps are currently a
manual process that the user conducts from the command-line. A future avenue of work
is to stream-line this process and provide an intuitive user-interface for researchers to be
able to readily share their work from the Jupyter deployment at NERSC.

5. Unexpended funds projected at end of current budget period:
The entire allotted funds were spent by the end of the budget period.

References

Project Jupyter, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., … Willing,
C. (2018). Binder 2.0 - Reproducible, interactive, sharable environments for science at
scale, (Scipy), 113–120. https://doi.org/10.25080/Majora-4af1f417-011

