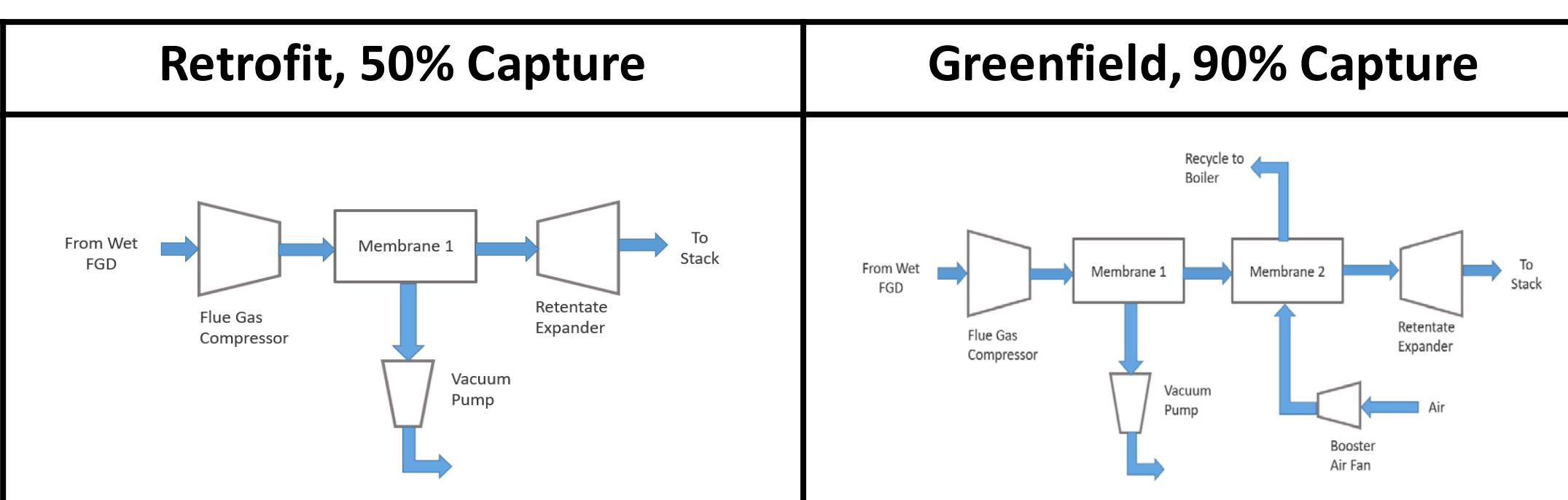


Assessment of a Modularized CO₂ Capture Membrane System

Timothy Fout¹, Alexandra Eggleston^{1,2}, Rick Lausman³, Alexander Zoelle^{1,4}

¹U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA/Morgantown, WV; ²KeyLogic Systems, Inc., Morgantown, WV; ³Black & Veatch, Overland Park, KS; ⁴Leidos, Reston, VA

Research &
Innovation Center

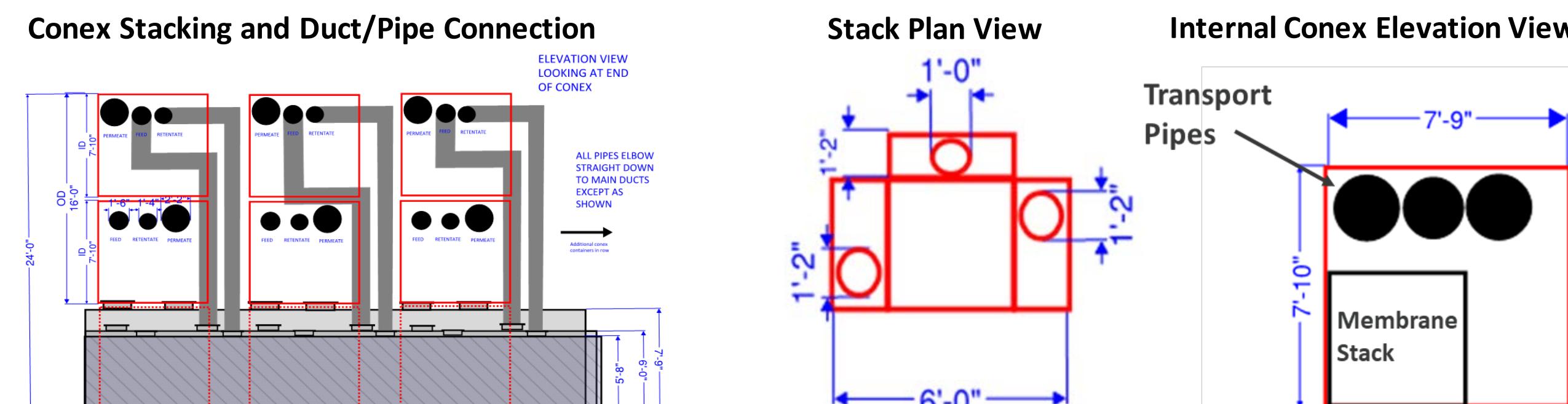

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY
NETL-PUB-22533

Motivation

- Modular capture systems could facilitate the addition of carbon capture for existing CO₂ sources due to the potential for more simple installation (compared to solvents) and lower cost
- Membranes are especially promising as they can avoid potentially costly or complicated plant integrations, such as steam extraction

Study Approach

- 300 MW supercritical pulverized coal unit chosen as CO₂ source, base layout taken from recently constructed plant in Indonesia
- Plate-and-frame membrane stacks housed in 40' x 8' x 8' conex shipping containers are the modular unit
- Analyzed 1,700 GPU (low performance [LP]) and 3,000 GPU (high performance [HP]) membrane materials
- Required membrane areas calculated using co-current membrane model, assumed 120 m² membrane area per rack
- Greenfield and retrofit sites assessed, with separate membrane configurations for each site type

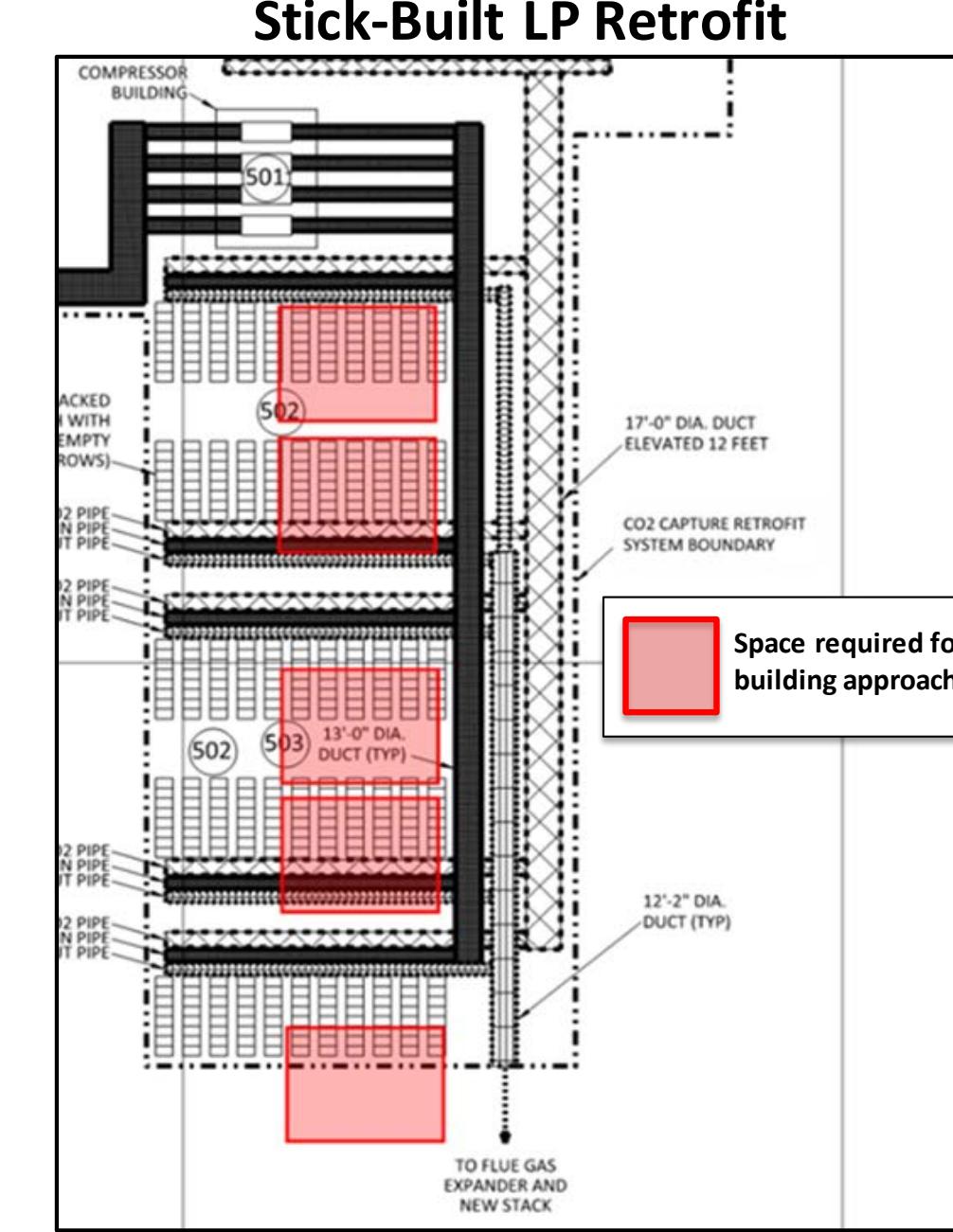


	Membrane 1		Membrane 2	
	Membrane Area (m ²)	Racks Required	Membrane Area (m ²)	Racks Required
HP Retrofit	58,529	488	—	—
LP Retrofit	104,051	867	—	—
HP Greenfield	110,555	921	260,129	2,168
LP Greenfield	195,056	1,626	390,193	3,252

Layout Approach

- Retrofit layout assumes all structures and equipment are fixed
- Greenfield layout assumes structures and equipment can be modified to best fit the capture system
- Membrane stack design is based on site conditions and membrane performance
- Conex are stacked three levels high with one empty conex as a base to provide room for large transport duct connections

Layout Approach (cont'd)


- Stack height (# of racks) treated as design variable due to space constraints in the conex for required piping
- Installed racks include 5–10% spare capacity

	Total # of Conex	# of Empty Conex	# of Conex w/ Racks	Racks Per Stack	Stack Per Conex	Racks Installed	Membrane 1		Membrane 2		
							# of Conex w/ Racks	Rack Per Stack	Stack Per Conex	Racks Installed	
HP Retrofit	132	44	88	2	3	528	—	—	—	—	
LP Retrofit	150	50	100	3	3	900	—	—	—	—	
HP Greenfield	540	270	126	2	4	1,008	144	4	4	2,304	
LP Greenfield	576	288	144	3	4	1,728	144	4	6	3,456	

Site Layouts

- Retrofit site requires extensive ductwork to transport flue gas from desired generating unit
- HP membrane material does not provide significant footprint reduction due to space constraints within conex
- Stick-built site has a smaller footprint than low performance conex case
- Greenfield site layouts are not shown but are available in the report

Cost Comparisons

	BEC	Total Plant Cost (TPC)	\$/kW (gross)
HP Retrofit	\$1,000	\$1,000	667
LP Retrofit	133,877	200,189	711
HP Greenfield	139,590	213,392	1,314
LP Greenfield	262,167	405,457	1,378
Stick-Built LP Retrofit	274,512	424,865	678
Partial Modular LP Retrofit	136,042	203,367	678
	200,679	310,650	1,035

- HP cases only provide slight cost benefit compared to LP cases, as increased performance creates additional conex space issues
- Stick-built case provides significant space savings but only a ~10% reduction in cost since auxiliary equipment drives TPC

Conclusions

- Retrofit membrane layouts will likely require large duct runs to reach open space available for capture system footprint
- Use of baghouse design/sparing philosophy is beneficial for membranes by providing isolation capability and economy-of-scale benefits for auxiliary equipment
- Diameter of piping within conex containers limits the feasible height of the membrane stacks
- Conex limit ability to optimize membrane stack configuration, arrangements, and sizing due to the internal height restrictions
- Confined space restrictions within the conex pose issues both for shop manufacturing as well as maintenance
- Conex use provides limited to no benefit for greenfield site due to large footprint, high costs, boiler recycle requirement, and limited schedule benefits
- Stick-built provides best opportunity for optimizing membrane design to achieve smaller footprint requirements
- Operating and maintenance costs for membrane replacement will be lower for the stick-built case due to better access

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgement

KeyLogic Systems, Inc., Black & Veatch, and Leidos's contributions to this work were funded by the National Energy Technology Laboratory under the Mission Execution and Strategic Analysis contract (DE-FE0025912) for support services