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ABSTRACT 

The analysis of different energy systems has shown various 
sources of variability and uncertainty; hence the necessity to 
quantify and take these into account is becoming more and more 
important. In this paper, a steady state, off-design model of a 
solid oxide fuel cell and turbocharger hybrid system with 
recuperator has been developed. Performances of such stiff 
systems are affected significantly by uncertainties both in 
component performance and operating parameters. This work 
started with the application of Monte Carlo Simulation method, 
as a reference sampling method, and then compared it with two 
different approximated methods. The first one is the Response 
Sensitivity Analysis, based on Taylor series expansion, and the 
latter is the Polynomial Chaos, based on a linear combination of 
different polynomials. These are non-intrusive methods, thus the 
model is treated as a black-box, with the uncertainty propagation 
method staying at an upper level. The work is focused on the 
application on highly non-linear complex systems, such as the 
hybrid systems, without any optimization process included. 
Hence, only the uncertainty propagation is considered. 
Uncertainties in the fuel utilization, ohmic resistance of the fuel 
cell, and efficiency of the recuperator are taken into account. In 
particular, their effects on fuel cell lifetime and some simple 
economic parameters are evaluated. The analysis distinguishes 
the specific features of each approach and identifies the strongest 
influencing inputs to the monitored output. Both approximated 
methods allow an important reduction in the number of 
evaluations while maintaining a good accuracy compared to 
Monte Carlo Simulation.  

NOMENCLATURE 
ANOVA  Analysis of variance 

ASR  Area specific resistance [ohm/cm2] 
CFN  Annual cash flow [$] 
COV  Coefficient of variation [%] 
DOE  Design of experiment 
EOL  End of life [yr] 
FC  Fuel cell 
FPI  Fast probability integration 
FU  Overall fuel utilization [%] 
HS  Hybrid system 
IRR  Internal rate of return [%] 
LSM  Lanthanum strontium manganite 
MCS  Monte Carlo simulation 
NBCR  Net benefit to cost ratio [%] 
NPV  Net present value [$] 
PBP  Pay-back period [yr] 
PC  Polynomial chaos 
PDF  Probability density function 
PE  Percentage error [%] 
PEM  Proton exchange membrane 
RSA  Response sensitivity analysis 
SOFC  Solid oxide fuel cell 
TCI  Total capital investment [€] 
TG  Turbogas 
TPB  Triple phase boundary 
YSZ  Yttria-stabilized zirconia 
A  Area [m2] 
Cel  Electricity price [$ kWh-1] 
Cf  Fuel cost [$ kg-1] 
Cmain  Maintenance cost [$] 
cp  Specific heat [J kg-1 K-1] 
F  Faraday’s constant [C mol-1] 
G  Gibbs free energy [kJ] 
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gMj(Z)  Functional relationship between j-th output 
parameter and the inputs Z 

h  Specific enthalpy variation from 298K 
condition [kJ kg-1] 

  Convection coefficient [W m-2 K-1] 
i  Current density [A cm-2] 
i0  Exchange current density [A cm-2] 
Kp  Equilibrium constant 
k  Conduction coefficient [W m-1 K-1] 
L  Cell length [m] 
Mj  J-th parameter of output for the system 
𝑚̇  Mass flow rate [kg s-1] 
n  Number of transferred electrons 
Pel  Electricity production [kWh] 
Pf  Fuel consumption [kg] 
PGT  Gas turbine power [kW] 
p  Pressure [bar] 
𝑄̇  Fuel cell thermal output [kW] 
qgen  Generated heat [W m-1] 
R  Area specific resistance [Ω m2] 
Rg  Ideal gas constant [J mol-1 K-1] 
rd  Degradation rate [% kh-1] 
T  Temperature [K] 
t  Time [s] 
V  Voltage, overpotential [V] 
x  Mole fraction 
Zi  I-th parameter of input for the system 
α  Charge transfer coefficient 
δ  Discretization step 
η  Efficiency 
μ  Mean 
ν  Variance 
ρ  Density [kg m-3] 
σ  Standard deviation 
 

Subscripts 

act  Activation 
an  Anode 
ca  Cathode 
dif  Diffusion 
ohm  Ohmic 
 

1 INTRODUCTION 
Engineering design is increasingly supported by uncertainty 

quantification techniques. In fact, because of the complexity of 
some problems, or due to the variability caused by the 
manufacturing process, or because of limited information about 
new and unexplored fields, many solutions inevitably cannot be 
accurately predicted. Building detailed models for these systems 
helps in evaluating performance, including any reasonable 
variables, especially for energy systems such as the one 
described in this paper. Many are the ways to deal with this 
uncertainty and even more are the available techniques to 
analyze it, some of them have been already presented in other 
works such as [1] [2] [3]. Few examples of comparative analysis 

of such methods are also available in open literature. Padulo et 

al. [4] compared different UQ methods with a particular attention 
to robust engineering design problems. In particular, the new 
Sigma-Point approach was compared to MC, Gaussian 
Quadrature and higher-order MM. Lee et al. [5] showed the 
comparative study of several UQ methods for black-box type 
problems. The full factorial numerical integration, the univariate 
dimension reduction and the polynomial chaos expansion were 
applied to four illustrative examples.  

During the present work, the sampling method Monte Carlo 
Simulation (MCS) and two different approximating methods, 
namely Response Sensitivity Analysis (RSA) and Polynomial 
Chaos (PC), have been explored as tools for uncertainty 
quantification. In modelling, when simulated system are 
computationally expensive, based on complex structures, or 
when the simulated period is extended over months or even 
years, a minimum computational effort and short calculation 
time become crucial. Despite its great reliability, MCS cannot be 
used when any single analysis requires too many or too long 
simulations. The analysis performed for this work on the fuel cell 
gas turbine hybrid system model focuses on the entire operating 
life of the plant. As introduced before, because of a long 
simulated interval and a large amount of variables that could be 
taken in consideration in this system, fast processing methods are 
needed. Therefore, beside the scientific importance of studying 
the effect of uncertainties on the degradation and then on system 
life and economic parameters, this paper aims to underline the 
advantages of having a well-calibrated approximated method 
instead of using one based on samplings, such as MCS. In such 
a context, this work can be seen as a follow up of [1] [2] [6] [7]. 
The continue research in this field can help industries developing 
new tools or optimize the existent ones able to manage stochastic 
information and to carry out useful analysis and solution. It is 
important to clarify the influence of some parameters usually 
affected by variability or uncertainty on the life of a hybrid 
system and the consequences induced on economical parameters 
that usually lead to the final choice of investment. As for any 
other probabilistic study like this, a set of parameters affected by 
uncertainty must be chosen, and propagation of this variability 
can be estimated monitoring the outputs of interest.  

The research available in the open literature related to 
uncertainties in energy systems is mainly focused on steady-state 
models [8] [9] [10]. Probabilistic methods are mostly applied for 
optimization purposes and design performance evaluation [2] [9] 
and very few cases are related to dynamic energy system 
analyses. Model uncertainties, materials variability, and 
uncertainty in operating parameters were considered in SOFC 
systems and the effects on the performance were evaluated [8] 
[9] [10] [11] [12]. RSA was applied to a PEM in order to count 
for the uncertainty in load profile and costs, evaluate the impact 
on fuel cell performance, and optimize the design and the 
operating strategy [2].  Model uncertainties were taken into 
account in a multi-objective optimization approach for a SOFC 
based system [11]. 

The Monte Carlo approach was used by Thomas et al. to 
predict the life of a lithium-ion cell with a degradation model 
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[13] while Placca et al. studied the effect of temperature 
uncertainty on cell voltage and degradation rate in a PEM 
through ANOVA [14]. 

For this work, typical ranges of variability have been founded 
for FU, ASR and ηcycle, based on literature information, industrial 
information, and author’s background; while fuel cell life, PBP, 
IRR and NBCR are set as monitored outputs. The different 
approaches for uncertainty propagation have been tested in 
parallel on two configurations of a hybrid system model. Results 
carried out from MCS and approximated methods have been 
compared, highlighting pros and cons for each of them. 

 2 METHODOLOGY 
Simulation of a deterministic model provides a set of outputs, 

which may give an incomplete and frequently incorrect 
representation of the system. A deterministic single-point 
simulation gives no value of the range of potential values for 
given parameter or their respective probability of occurrences, 
which may be expected in the system. To complete this 
information, the sensitivity and uncertainties in the results are 
needed. Uncertainty quantification methods can be classified 
into sampling methods (e.g., Monte Carlo simulation (MCS), 
Latin hypercube simulation, etc.) and approximate methods (e.g. 
response sensitivity analysis (RSA) method, fast probability 
integration (FPI) methods, polynomial chaos (PC) and 
metamodeling) [15]. In open literature, all of these approximated 
methods were applied to different applications in engineering. 
Kim et al. [16] and Abrassi et al. [6] applied Response 
Sensitivity analysis for a fuel cell gas turbine hybrid system 
optimization with more than 20 uncertainty inputs and for the 
performance analysis of a micro gas turbine respectively. In the 
design field of energy systems, a lot of examples for the 
application of Polynomial Chaos are available, such as [17] and 
[18], even if very few applied this method to fuel cell and hybrid 
system models. 

2.1 MONTE CARLO SIMULATION 
Among the sampling methods, MCS is the most common 

traditional probabilistic simulation technique for performing a 
probabilistic analysis on a model via a very large number of 
repeated simulations [19].  

MCS is particularly distinguished as a probabilistic 
simulation technique since it can solve extremely complex and 
discontinuous problems precisely, provided the model is 
simulated with a high enough sampling number. Once the 
probabilistic information of a variable such as the mean value, 
the variance, and/or the probability distribution are known, the 
randomness of the variable can be simulated close to its true or 
real randomness using a random number generator. Repeating 
the simulation changing the set of randomly generated input 
variable values and storing the system output values every step, 
a set of probabilistic values and probability distribution functions 
(PDFs) of the output variables are obtained. This type of 
approach explicitly results in exact uncertainty (relatively 
speaking) propagation from the input variables to the system 
response, of course, assuming that the sampling number is high 

enough. Moreover, the probabilistic information of the system 
output quantifies the range within performance falls relatively to 
the objective limits set on the system.  

2.2 RESPONSE SENSITIVITY ANALYSIS 
Response Sensitivity Analysis (RSA) is a sensitivity-based 

approximation approach; it is utilized to estimate probabilistic 
information on the outputs of an analyzed system through a 
Taylor series expansion based calculation and with few 
information on the characteristics of input data [1] [6] [16]. 

The RSA algorithm returns probabilistic information on the 
output such as their first order moment (mean value) and second 
order moment (standard deviation). As explained in [16], when 
the mean and variance of each system input (Zi) are known and 
an implicit nonlinear functional relationship gMj

(Z⃗ ) between 
each system output Mj and the inputs Z⃗  is available, it is possible 
to use Taylor series expansion in order to estimate approximated 
value of mean and variance for each system output Mj, i.e., 

𝑀𝑗 ≅   𝑔𝑀𝑗
(𝜇𝑍 ) + ∑(𝑍𝑖 − 𝜇𝑍𝑖

)

𝑛

𝑖=1

𝜕𝑔𝑀𝑗
(𝑍 )

𝜕𝑍𝑖

|

𝜇𝑍𝑖

+
1

2
∑ ∑(𝑍𝑖 − 𝜇𝑍𝑖

)(𝑍𝑘

𝑛

𝑘=1

𝑛

𝑖=1

− 𝜇𝑍𝑘
)
𝜕2𝑔𝑀𝑗

(𝑍 )

𝜕𝑍𝑖𝜕𝑍𝑘

|

𝜇𝑍𝑖 𝑜 𝑘

+ ⋯ 

(1) 

where μZi
 is the mean of the each i-th input.  

Depending on where the expansion is truncated, the first and 
second order approximated means μMj

 of each output Mj, will 
appear as shown respectively in equation (2) and (3). 

𝜇𝑀𝑗
=   𝜇(𝑀𝑗) ≅ 𝑔𝑀𝑗

(𝜇𝑍1
, 𝜇𝑍2

, … , 𝜇𝑍𝑛
) (2) 

𝜇𝑀𝑗
=   𝜇(𝑀𝑗) ≅ 𝑔𝑀𝑗

(𝜇𝑍1
, 𝜇𝑍2

, … , 𝜇𝑍𝑛
)

+
1

2
∑ (

𝜕2𝑔𝑀𝑗

𝜕𝑍𝑖
2 ) 𝜈(𝑍𝑖)

𝑛

𝑖=1

 
(3) 

 
While the first order approximated variance νMj

 will be: 

𝜈𝑀𝑗
=   𝜈(𝑀𝑗) ≅ ∑ (

𝜕𝑔𝑀𝑗

𝜕𝑍𝑖

)

2𝑛

𝑖=1

𝜈(𝑍𝑖) 
(4) 

For practical purposes, the first-order variance (Eq. 4) and 
the second-order mean (Eq. 3) are generally used. If there are no 
explicit functional relationships between the system responses 
and inputs, the partial derivatives in the previous formulas 
cannot be determined analytically. However, numerical solution 
can be obtained using finite difference schemes [2], [6]. 
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In Equation 4, the derivative term 
𝜕𝑔𝑀𝑗

𝜕𝑍𝑖
 is called the system 

response sensitivity for Mj associated to  Zi. This is an important 
parameter, since, if properly converted into a dimensionless 
variable (Eq. 5), it can estimate the impact of each single input 
uncertainty on the monitored outputs at the same time of the 
probabilistic analysis. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝜕𝑔𝑀𝑗

𝜕𝑍𝑖

𝑍𝑖,𝑛𝑜𝑚

𝑔𝑀𝑗,𝑛𝑜𝑚

 (5) 

RSA is easily applicable to dynamic system simulation because 
it is a computationally inexpensive method compared to MCS. 
When system responses show piecewise linear characteristics, 
the RSA method provides high fidelity analysis results very close 
to those provided by MCS. Moreover, to reduce the error due to 
truncation of Taylor series, a proper finite difference scheme for 
the resolution of derivatives has to be chosen [6]. The 
discretization step, usually called delta (𝛿), utilized in the 
definition of finite differences, is crucial for the approximation 
of results [6]. An example of finite difference scheme for the 
second order truncation used to approximate derivatives is 
shown in equation (6). 

𝜕𝑔𝑀𝑗

𝜕𝑍𝑖

≅   
𝑀𝑗𝑖

+ − 𝑀𝑗𝑖
−

2𝛿
 (6) 

2.3 POLYNOMIAL CHAOS 
Among the approximated methods for uncertainty 
quantification, the Polynomial Chaos (PC) is well known. It is 
based on the work by Wiener [20], who originally was concerned 
with stochastic processes with Gaussian random variables. More 
recently, the generalized PC (gPC) approach was introduced by 
Xiu [21]. In addition, it has the potential to achieve a significant 
reduction in computational cost (number of evaluations) with 
respect to traditional techniques such as Monte Carlo approaches 
[22] [23]. Moment estimation (i.e. mean and standard deviation) 
and sensitivity analysis (Sobol indices) can be extracted without 
significant additional costs from the PC expansion.  

In the PC framework, both intrusive and non-intrusive PC 
methods are available [24]. The intrusive approach requires the 
governing equations to be rewritten. This means altering the 
model source code, which is used for the computations. This type 
of approach is only possible when the source code is available. 
On the other hand, the non-intrusive approach (NIPC) treats the 
model as a black-box. The way to gain information about the 
system is by running simulations with some specific sampling 
data points. For this reason, the non-intrusive approach is much 
more common for engineering applications.  

Regardless the distinction between intrusive and non-
intrusive methods, all Polynomial Chaos (PC) work is based on 
the same principle. An approximation of the model is 
constructed using an orthogonal set of polynomials, which serve 
as basis functions for an N-dimensional parameter space. 

In a general definition, a polynomial chaos expansion can be 
written as: 

𝑌(𝑋) = ∑𝑎𝑗Φ𝑗

∞

𝑗=0

(𝑋) (7) 

where Y is the model response and X contains the input 
variables, both of which are affected by uncertainty. Therefore, 
the solution is split into a deterministic part, coefficients aj, and 
a stochastic part, the polynomial basis Φj. 

The original work by Wiener [20] uses Hermite polynomials 
as the basis functions to represent Gaussian random variables. 
Different types of polynomials could be used, depending on the 
probability distributions of the random inputs [16].  

Once the stochastic system response has been determined as 
a PC expansion, the determination of the relevant statistics is 
straightforward, thanks to the orthogonality of the basis terms. In 
fact, from the evaluation of the coefficients of the expansion the 
mean and variance could be easily evaluate, as explain in 
equations (8) and (9): 

𝜇 = 𝑎0 (8) 

𝜎2 = ∑𝑎𝑗
2〈Φ𝑗

2〉

𝑝

𝑖=1

 (9) 

The integral <Φi
2> is reported for standard expansions in [26] or 

can be calculated numerically. Sensitivity analysis, evaluated 
through the Sobol indices, can be also performed without 
significant efforts. Sobol coefficients sk can be calculated as 
follows: 

𝑠𝑘 =
𝑣𝑎𝑟[𝑌𝑋𝑘

(𝑋)]

𝑣𝑎𝑟[𝑌(𝑋)]
=

∑ 𝑎𝑘
2〈Φ𝑘

2〉𝑘=𝐼𝑘

∑𝑎𝑘
2〈Φ𝑘

2〉
 (10) 

where the index k sums over all the polynomials dependent only 
on Xk. 
Hence, a method for calculating the coefficients of the expansion 
is required. Between the different NIPC methods, several 
quadrature rules, for the definition of the sampling data points 
(DOE points), with different accuracy level and sparsity exist. 
The most common one is the full tensor quadrature. A full tensor 
product quadrature is an effective approach for calculating 
multidimensional integrals when the number of dimensions is 
relatively small, but since the number of DOE points grows 
exponentially with the number of random dimensions; its 
effectiveness decrease rapidly for larger-dimensionality 
problems [27].  
In problems with a moderately large number of variables, sparse 
tensor product grids (first proposed by Smolyak [28]) can be 
used to reduce the number of DOE points, while preserving a 
high level of accuracy. Panizza et al. [29] applied the sparse-grid 
approach on the uncertainty quantification of centrifugal 
compressor performance, and proved its effectiveness compared 
to MCS. A further improvement can be achieved also with the 
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adaptive sparse grids [30] [31], where the number of DOE points 
in each dimension is chosen adaptively based on the difference 
between approximations of successive orders. Another approach 
that recently grows in the analysis of complex systems in 
engineering field is the use of least squares approximations 
(LSA) within a pseudo-spectral approximation concept. The idea 
is to construct a polynomial chaos approximation with an 
appropriate set of orthogonal polynomials and then calculate the 
coefficients of the expansion so that they provide the best fitting 
(in a least square sense) to some data [32] [33]. 

3.1 HYBRID SYSTEM MODEL  
The model used in this analysis is a 1D model to simulate a 

co-flow, planar anode-supported SOFC, composed of a Ni doped 
yttria-stabilized zirconia (Ni-YSZ) anode, an YSZ-lanthanum 
strontium magnetite (LSM) cathode, and YSZ electrolyte [34]. 
The model was previously developed with the aim of integrating 
it into a SOFC gas turbine hybrid system emulator [34] [35] [36] 
taking into consideration the degradation effects. The full 
description of the model is reported in [7] [34] [35] and it is here 
summarized. An overview of the hybrid system model is 
depicted in Figure 1. 

 
Figure 1: Schematic layout of the hybrid system model 

The model employs a coupled approach of finite difference 
and finite volume, respectively, for thermal and electrochemical 
equations. Since the electrochemistry models do not use 
differential equations, the finite volume approach is more 
appropriate, while for heat transfer a finite difference method is 
applied. Originally, the SOFC model was created to simulate the 
effects of voltage degradation in the cell, including  different 
mechanisms in a simple expression that relates the degradation 
rate to cell operating parameters (current density, fuel utilization 
and temperature), as explained in [7]. This model was here used 
for an uncertainty quantification analysis with the aim to 
evaluate the sensitivity of different outputs of interest to 
stochastic variations in the inputs, such as FC life and economic 
parameters. 
More details on equations, parameters, and model validation can 
be found in Hughes et al. [34]. In Table 1 the main equations are 
summarized.   

 
Table 1: Main equations of the SOFC model 

Nernst potential 
𝑉𝑁𝐸𝑅𝑁𝑆𝑇 = −

∆𝐺𝐻2𝑂
0

𝑛𝐹
+

𝑅𝑔𝑇

𝑛𝐹
𝑙𝑛 (

𝑝𝐻2√𝑝𝑂2

𝑝𝐻2𝑂
)  

(11) 

Cell voltage 
𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑁𝐸𝑅𝑁𝑆𝑇 − 𝑉𝑑𝑖𝑓 − 𝑉𝑎𝑐𝑡 −

𝑉𝑜ℎ𝑚,𝑑𝑒𝑔  
(12) 

Activation 
polarization 

𝑉𝑎𝑐𝑡 =
𝑅𝑔𝑇

𝛼𝑛𝐹
𝑠𝑖𝑛ℎ−1 (

𝑖

2𝑖0
)  (13) 

Diffusion 
polarization 

𝑉𝑑𝑖𝑓 =
𝑅𝑔𝑇

2𝐹
(𝑙𝑛 (

𝑥𝐻2,𝑏𝑢𝑙𝑘∙𝑥𝐻2𝑂,𝑇𝑃𝐵

𝑥𝐻2𝑂,𝑏𝑢𝑙𝑘∙𝑥𝐻2,𝑇𝑃𝐵
) +

1

2
𝑙𝑛 (

𝑥𝑂2,𝑏𝑢𝑙𝑘

𝑥𝑂2,𝑇𝑃𝐵
))  

(14) 

Ohmic 
polarization 

𝑉𝑜ℎ𝑚 = 𝑅 ∙ 𝑖  (15) 

Resistance 𝑅 = (𝑅𝑜ℎ𝑚 + 𝑅𝑖𝑟𝑟)  ∙  (1 + 𝑟𝑑 ∙
𝑡

1000
)  (16) 

Irreversible 
contribution of 

degradation 

𝑅𝑖𝑟𝑟 = ∑ (𝑅𝑃𝐸𝑁 + 𝑅𝑜𝑥𝑖𝑑𝑒
′′ )  ∙  

𝑟𝑑

1000𝑡𝑖𝑚𝑒   
(17) 

Degradation 
contribution 

𝑉𝑜ℎ𝑚,𝑑𝑒𝑔 = 𝑉𝑜ℎ𝑚 (1 + 𝑟𝑑 ∙
ℎ𝑜𝑢𝑟𝑠

1000
)  (18) 

Anode exchange 
current density 

𝑖0,𝑎𝑛 = 
5.5 ∙ 108 𝑝𝐻2

𝑝𝑎𝑚𝑏

𝑝𝐻2𝑂

𝑝𝑎𝑚𝑏
𝑒𝑥𝑝 (−

50∙103

𝑅𝑔𝑇
)  

(19) 

Cathode exchange 
current density 

𝑖0,𝑐𝑎 = 

7 ∙ 108 (
𝑝𝑂2

𝑝𝑎𝑚𝑏
)
0.25

𝑒𝑥𝑝 (−
100∙103

𝑅𝑔𝑇
)  

(20) 

Water-gas shifting 
(WGS) reaction 𝐻2 + 𝐶𝑂 ↔ 𝐶𝑂2 + 𝐻2𝑂 (21) 

WGS equilibrium 
constant 

𝐾𝑝,𝑠ℎ𝑖𝑓𝑡 =
𝑝𝐻2

𝑝𝐶𝑂2

𝑝𝐻2𝑂𝑝𝐶𝑂
=   

𝑒𝑥𝑝 (
4276

𝑇
 − 3.961)  
 

(22) 

Temperature 
distribution 

𝑘𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝜕2𝑇

𝜕𝑥2
+

ℎ𝐴𝑔𝑎𝑠

𝐿
(𝑇∞ − 𝑇) +

𝑞𝑔𝑒𝑛 = 𝜌𝑐𝑝𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙
𝜕𝑇

𝜕𝑡
  

(23) 

Thermal output 𝑄̇ = 𝑚̇𝑜𝑢𝑡ℎ𝑜𝑢𝑡 − 𝑚̇𝑖𝑛ℎ𝑖𝑛  (24) 
 

In the hybrid system model, the fuel cell thermal output was 
recovered by a gas turbine to generate electrical power, 
according to Equation 25.  The gas turbine model, purposely 
simplified, included a map of the recuperated cycle efficiency as 
function of generated power. Therefore, only the turbine power 
was calculated regarding the turbomachinery, while compressor 
and recuperator were not modelled. 

𝑃𝐺𝑇 = 𝜂𝐺𝑇 ∙ 𝑄̇ (25) 

In the open literature, different control approach could be 
applied to hybrid system with different aim. For example, Ferrari 
M. [37] applied an advanced control approach to an hybrid 
system plant to prevent thermal stress in the fuel cell and to 
reduce the peak values of cathode/anode pressure difference and 
STCR. In this paper, a different control approach was 
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implemented. In particular, two different configurations for the 
hybrid system model were taken into account, simulating two 
hybrid systems with a pressurized fuel cell, considering two 
different operating strategies. The aim was to evaluate the 
different impact of model uncertainty on a hybrid system and to 
understand if a different strategy can have a significant impact in 
the results.  

In both configurations, cell voltage was kept constant, to 
reduce degradation over time and extend cell durability [38]. In 
the first hybrid configuration (1), “HS Power”, the total system 
power was maintained constant, shifting load to the turbine as 
the fuel cell degraded.  For this purpose, fuel flow increased in 
order to provide more heat in the off-gas burner to drive the 
turbine.  Hence, the turbine worked in part-load condition at the 
beginning of the operating life and turbine power was 
incremented over time. 

The second considered control strategy (2) named “HS 
Voltage”, where the total power of the system was let decrease 
during time while maintaining constant voltage.  The gas turbine 
size was considered optimized for the fuel cell initial conditions 
and operating at design point throughout the entire life of the 
plant.  Thus, the fuel decreases together with the current to 
ensure that the power of the turbine remains constant while FU 
decrease. More in detail, since fuel and current do not decrease 
with the same rate the overall effect is a weak decreasing in FU.   
The two cases are briefly summarized in Table 2.  

 
Table 2: Summary of the operating strategies 

 Voltage Stack 
power FU Turbine 

power 
Total 
power 

HS Power Constant ↓ ↓ ↑ Constant 

HS Voltage Constant ↓ ↓ Constant ↓ 

 
The initial conditions considered in this analysis for the two 

cases are illustrated in Table 3.  
 

Table 3: Initial conditions 

  HS Power HS Voltage 

Current density [A cm-2] 0.5 
Cathode inlet flow [kg s-1] 1 

Average cell temperature [°C] 800 
Anode fuel flow [kg s-1] 0.09 

Fuel utilization [%] 80% 

Fuel composition* 28.6% CO, 12% CO2, 29.1% 
H2, 27.1% H2O, 3.2% N2 

Fuel cell pressure ratio (p/pamb) 3.5 
Cell voltage [V] 0.82 

Stack power [kW] 333 
Turbine power [kW] 160 130 

*fuel is assumed to be syngas from coal gasification and cleaning process 
 

The conditions for the End of Life (EOL) were considered 
as follows: 
 For the hybrid system with “HS Power” strategy, since 

voltage and total system power were both constant, EOL 
was determined when the stack power was approximately 
25% and the turbine power reached the considered design 
condition 

 For the hybrid system with “HS Voltage” strategy, EOL was 
determined when the total system power reached 50% 

 
Different criteria could be considered for the power reduction to 
optimize the economic performance of the systems, for instance 
allowing the power to decrease further in the constant voltage 
scenarios. However, here the purpose is focused on the 
uncertainty evaluation and propagation through economic 
parameters. 

3.2 ECONOMIC MODEL 
A simple economic analysis was implemented to evaluate 

the impact of uncertainty in degradation rate on some key 
economic parameters, such as Pay Back Period (PBP), Internal 
Rate of Return (IRR), and Net Benefit Cost Ratio (NBCR).  
Those were calculated as function of annual cash flow (CFN) 
and total capital investment (TCI), according to Equations 26-
30.  The considered variable costs or profits were fuel 
consumption, net electricity and a maintenance factor. 

 

𝑇𝐶𝐼 = ∑ 𝐶𝐹𝑁𝑗

𝑃𝐵𝑃

𝑗=1
 (26) 

𝑁𝑃𝑉 = ∑
𝐶𝐹𝑁𝑗

(1 + 𝑟)𝑗

𝐸𝑂𝐿

𝑗=1
− 𝑇𝐶𝐼 (27) 

𝑁𝐵𝐶𝑅 =
𝑁𝑃𝑉

𝑇𝐶𝐼
 (28) 

∑
𝐶𝐹𝑁𝑗

(1 + 𝐼𝑅𝑅)𝑗

𝐸𝑂𝐿

𝑗=1
− 𝑇𝐶𝐼 = 0 (29) 

Where: 

𝐶𝐹𝑁𝑗 = 𝐶𝑒𝑙𝑃𝑒𝑙 − 𝐶𝑓𝑃𝑓 − 𝐶𝑚𝑎𝑖𝑛  (30) 

The assumptions for the calculation of the economic parameters 
were the following, assuming that the plant is installed in USA: 
 an initial investment of $/kW 1000 for the FC stack, 

considering a 330 kW stack and 1% of the stack cost for 
ancillaries [36] 

 an initial investment of $/kW 750 for the gas turbine (with 
a nominal power of 350kW in the “HS Power” 
configuration and 130kW in the “HS Voltage” 
configuration) [39] 

 an initial investment of $129,500 for the recuperator in the 
hybrid system configurations [40] 
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 revenue of $/kWh 0.15 for electric power produced 
considering a feed-in tariff in order to favour SOFC early 
penetration in the market 

 a cost of $/kg 0.1 ($/kJ 2.4·10-6) of fuel considering the 
price of natural gas [41]; although the simulated fuel 
composition was a typical syngas employed to extrapolate 
the degradation model, for simplicity in this study a gasifier 
was not considered in the economic analysis 

 3% of the total investment cost for the annual maintenance 
cost 

 an internal rate of 1% to actualize the cash flows 
 
The work does not aim to evaluate accurately the economic 

performance of the systems, but to assess the uncertainty 
propagation from the inputs onto fuel cell lifetime and economic 
parameters. A simplified economic analysis was carried out, 
taking into consideration only the capital cost of the hybrid 
systems (mGT+SOFC) and variable cost (fuel consumption and 
electrical power production). Hence, auxiliaries and gasification 
process were not taken into account in this work.  In addition, a 
fixed maintenance cost was considered for simplicity rather than 
a function of the fuel cell lifetime: in fact, the economic analysis 
was performed on the life cycle of the first SOFC stack, and not 
on the whole lifetime of the plant. In other words, the 
replacement of stacks onto the same balance of plant has not 
been considered.  For this reason, NPV was calculated for costs 
occurring up to the moment of SOFC failure (EOL in the 
formulas) and not on the whole lifetime of the balance of plant. 
Thus, the economic results are indicative of how the probability 
distribution of NBCR, PBP and IRR is affected by uncertainties 
in the model. 

4 RESULTS 
This analysis was conducted focusing on the variability of 

system performance and economics due to uncertainties of single 
component performance. A fuel cell degradation model with 
fixed coefficients is included; it means that no uncertainty is 
considered on how the system degrades. 

4.1 DETERMINISTIC RESULTS 
Firstly, a deterministic simulation was performed to 

understand, without uncertainty, the behaviour of the plant in 
terms of fuel cell lifetime (considering 1 year as 8760 hours) and 
economic outputs.  The FC life is calculated based on the EOL 
definition explained in paragraph 3.1. In this case, all the model 
parameters subject to uncertainty have been set with constant 
values, equal to the average values of their distributions. 

The results of the deterministic simulation for both 
configurations are reported in Table 4. From these results, some 
important aspects need to be highlighted. In particular, the choice 
of control strategy for hybrid system has an important effect both 
on fuel cell lifetime and on economic parameters. In fact, the 
constant power strategy allows an important increase of the fuel 
cell life compared to the strategy with constant voltage. This 
leads to a significant difference also in the economic parameters, 

making this strategy more attractive from an economic point of 
view.  

 
Table 4: Deterministic results 

 HS Power HS Voltage 
FC life [year] 18.69 12.29 

IRR [%] 23% 14% 
PBP [year] 4.54 6.47 
NBCR [-] 0.90 0.16 

 

4.2 MCS RESULTS 
After analysing the deterministic performance of the plants, 

uncertainty in some inputs was introduced. The stochastic 
analysis focused on design parameters that typically influence 
system performance: overall fuel utilization (FU), ohmic losses 
in the stack (ASR), and recuperated-TG cycle efficiency (η) were 
considered. The choice of these parameters is based on the 
availability of experimental data, knowing that other parameter 
like operating temperature could be taken into account since it is 
also a key variable for the lifetime. In addition, the coefficients 
of the degradation model were considered, in this paper, 
deterministic. A stochastic analysis related to the uncertainty of 
such coefficients could be found in [42]. 

The standard deviation of the considered input is reported 
in Table 5, together with their initial mean values, these latter 
change during simulation. The uncertainties on these values were 
considered inputs for the model. 

 
Table 5: Design input parameters at initial conditions 

 μ σ 
FU    [%] 80 2 

ASR  
[ohm/cm2] 0.024 0.00072 

η  [%] 25 1.5 
 

The mean and the standard deviation of the parameters are 
assumed according to known information, actual measurements, 
or Authors’ knowledge and experience [43]. In particular, since 
the needed data of standard deviation for the recuperated-GT 
cycle efficiency was related to the standard deviation in 
recuperator effectiveness, a prior estimation was necessary. 
Hence, the evaluation of a σ of 1.5% for the entire GT cycle 
efficiency was evaluated with the same model and approach 
described in [6], starting from a standard deviation of 2.5% for 
the effectiveness of heat exchanger given by manufacturers [43]. 
The mean value of efficiency was chosen according to the 
technical features of the emulator on which the model was based.  

In addition, each parameter is assumed to be distributed as 
Gaussian PDF. For most engineering problems, a clear 
probability inference of parameters usually requires a large 
amount of experimental data, which is often impractical due to 
expense considerations or experimental limitations. Thus, a 
normal (Gaussian) distribution is popularly adopted without 
losing the generality, which is, under such circumstance, more 

7 Copyright © 2017 ASME



 
 

appropriate than other distributions. This is due to the facts that: 
(a) normal distributions are often found in engineering problems 
when the data collection is adequate and; (b) in many cases, a 
detailed description of probability distributions is not required 
since only the means and variances are sought [44]; (c) normal 
is an easier type of distribution to handle with approximated 
method used in this work. 

With this assumption, a stochastic analysis was applied to 
the systems considering the uncertainty in the aforementioned 
input parameters.  

A convergence analysis was performed on MCS in order to 
understand the minimum number of sampling needed to obtain a 
result with a high level of reliability. Then a simulation with 1000 
samples has been adopted as reference case for the following 
considerations. Starting from the data series obtained from the 
MCS, a PDFs fitting was performed. It results that each output 
parameter could be graphically described as a Gaussian 
distribution.  

 

 
Figure 2: Comparison of FC life between the two strategies 

 
Figure 3: Comparison of NBCR between the two strategies 

 
Figure 4: Comparison of IRR between the two strategies 

 
Figure 5: Comparison of PBP between the two strategies 

In Figures 2-5 the distributions obtained from the MCS 
simulations are shown, with a particular attention on the different 
behaviour of the outputs between the two configurations. A 
Gaussian distribution was considered to represent the outputs 
after a pdf fitting analysis. With the given assumptions, the 
constant power control strategy guarantees a longer life for the 
system, reducing the payback time and resulting in higher NBCR 
and IRR, making this solution economically more attractive. In 
addition, it is clear that the Gaussian distributions never 
overlapped. This means that, once again, considering these 
particular assumptions and introducing uncertainties, the 
constant power strategy behaves better than the constant voltage 
one in terms of FC life and economic parameters. All these 
consideration, already observed in the deterministic scenario, are 
confirmed in uncertainty regime too. It is important to underline 
how these results are influenced by modelling assumptions and 
different criteria for definition of EOL.  

4.3 COMPARATIVE ANALYSIS 
In this case, simulations were performed with RSA and PC 

in order to compare the two approximated methods with MCS 
and to find their strengths and weaknesses, when applied to 
highly non-linear complex systems. In particular, for the RSA, a 
second order for both mean and standard deviation was 
considered, while for the PC, the order 4 and 6 for the polynomial 
for each input was implemented. Since both PC and RSA give 
information only on mean and variance values of the outputs, 
those can be used to evaluate different PDFs. Hence, a Gaussian 
distribution was assumed based on previous MCS results. 

8 Copyright © 2017 ASME



 
 

As first analysis, the deviation from MCS results for both 
approximated methods was analysed; the adopted indicator is the 
percentage difference (or error, assuming the MCS result as the 
correct result). With this parameter, it is possible to understand 
how much any single value of the mean and standard deviation 
carried out from approximated methods deviates from 
references. 

𝑃. 𝐸. =  
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 ∙ 100 (31) 

These calculations are summarized in Table 6 and Table 7. 
Both RSA and PC have a very good level of approximation 
related to the evaluation of the mean values, as the percentage 
error never exceeds 2.2% for every output.  
 

Table 6: Percentage error for each method compared to MCS (HS 

Voltage configuration) 

 
 

Table 7: Percentage error for each method compared to MCS (HS 

Power configuration) 

 
 
Regarding the calculation of the standard deviation, globally 
RSA behaves better than PC, except for the estimation of σ of 
lifetime in the constant voltage strategy. Due to the high 
complexity of the system and the wide time extension simulated, 
a value of error up to 10% was considered acceptable: this was 
the criterion to distinguish accurate solutions from the others. 
For a better comprehension, values that exceed this limit are 
highlighted in the tables. As easily noticeable, a great amount of 
cases overcomes this limit for the standard deviation; the 
solution to increase accuracy is different for each method. For 
RSA, the choice of accurate values for the delta parameter (𝛿) 
could be the solution; this is a variable somehow related to the 
resolution of the method. Firstly, different values of delta were 
taken into account in order to find the one that fit better with MC 
results. A good compromise was found between mean and 
standard deviation. However, other investigations on this 
parameter are needed. For example,  a minimization algorithm 
was suggested, which automatically fits the delta to reduce such 
an error, with an early fitting of RSA on MCS results (when 
available). Until now, the delta value has always been set 
manually basing on experience. The introduction of this further 
passage in RSA codification could help both to reach better level 
of approximation and to achieve quicker a good set-up for the 
RSA method. 

For PC, it was expected that increasing the polynomial 
degree could help to improve the approximation, however, as 
reported in Table 6 and Table 7, passing from a 4th to a 6th order, it 
did not show the expected benefit. It is possible to conclude that 
for this particular version of the problem another tuning strategy 
has to be considered for PC. For instance, extending the range of 
mixed terms included in the PC algorithm could certainly help in 
decreasing the error.  

The most powerful aspect of approximated methods is the 
great saving in computational time they guarantee. The number 
of calls to the model during each probabilistic analysis can well 
quantify the computational efforts; this is proportional to the 
calculation time. Table 8 shows the advantage, in terms of number 
of model runs, to compute an approximated method (PC or RSA) 
rather than a sampling one (MCS).  

 
 

Table 8: Number of model calls per simulation for each method 

 MCS PC RSA 
n° of model runs 1000 256 13 

 
A more direct comprehension of the level of approximation 
given by these two methods is visible in Figure 8 and Figure 9  
where the complete PDFs carried out by each method are 
depicted. The standard deviation is related to the shape of the 
Gaussian curves, in particular, the higher is the σ and the wider 
the bell-shape curve appears, while the mean value fixes the 
center of the PDF. Observing these figures, the good level of 
approximation of the means is highlighted by the fact that the 
PDFs are well centered. In all cases, RSA still has a good level 
of approximation; the error on the standard deviation has less 
influence if the σ/µ ratio, or coefficient of variation (COV), is 
small. This is an important aspect to be taken into account during 
the analysis of results, in fact, this observation seems to indicate 
that a correct estimation of variance is less important than a good 
approximation of means in order to obtain an overall good 
achievement of results. According to this argument, different 
values of acceptable percentage errors could be chosen to 
identify what is an acceptable level of error. Anyway, even if  
Figure 8 and Figure 9 show a good alignment with MCS, which 
could push to consider the RSA results acceptable, in 
comparison, the criterion of percentage error introduced before 
still remain the more rigorous and reasonable one. COV 
parameter briefly introduced before represents another way to 
compare these methods. Figure 6 and Figure 7 show value of 
COVs calculated for each output distribution carried out with 
each method. Two remarkable observations come out from these 
diagrams, firstly, starting from the same distributions of inputs, 
compared to the other one, the constant power approach with 
returns a lower dispersion in outputs distribution, that means 
thinner bells for pdf and lower values of COVs. Secondly, a 
better approximation of RSA is confirmed by the lower 
difference between values of COVs coming from MCS and this 
latter approximated method (except for FC-lifetime in constant 
power case).  
 

mean st. dev. mean st. dev. mean st. dev. mean st. dev.

RSA -1.8% -2.0% 1.2% 13.9% 4.3% 6.4% 1.0% 3.9%

PC 4th -0.1% -40.1% -1.8% -111.5% 0.4% -17.6% 0.1% -28.0%

PC 6th -0.1% -40.4% -1.4% -101.9% 1.4% -17.4% 0.3% -28.5%

Percentage error (const Voltage)

FC life PBP NBCR IRR

mean st. dev. mean st. dev. mean st. dev. mean st. dev.

RSA 0.3% 16.0% -2.2% -20.5% 0.4% 8.6% 0.1% 12.3%

PC 4th -0.1% 2.4% -0.6% -77.4% 1.3% -31.0% 0.2% -61.7%

PC 6th -0.1% 2.5% -0.7% -72.6% 1.2% -26.5% 0.2% -60.4%

FC life PBP NBCR IRR

Percentage error (const Power)
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Figure 6: Comparison between COV obtained with different methods 

 
Figure 7: Comparison between COV obtained with different methods 

 
A low value of this indicator denotes the low influence that the 
percentage error on the standard deviation has on the PDF’s 
shape. 

 
Figure 8: Probability density functions of the outputs from MCS 

(black), RSA (blue), PC 6th (red) in the Constant Power configuration 

 
Figure 9: Probability density functions of the outputs from MCS 

(black), RSA (blue), PC 6th (red) in the Constant Voltage configuration 

Stochastic analysis favour the constant power strategy also 
because the dispersion in results is limited compared to the other 
solution. This means that system performance, and consequently 
the economic analysis, are globally influenced more by the 
variability of inputs when the power degrades during life. Full 
analysis of results is reported in Table 9 and Table 10. 
 
Table 9: Means and standard deviations of outputs (Constant Voltage 

approach) 
 Constant Voltage 

 FC life [year] PBP [year] NBCR [-] IRR [%] 

 μ σ μ σ μ σ μ σ 

MCS  12.31 0.,40 6.57 0.28 0.16 0.04 0.14 0.01 

RSA 12.53 0.39 6.49 0.24 0.16 0.04 0.14 0.01 

PC 12.32 0.53 6.65 0.56 0.16 0.05 0.14 0.01 

 
 
 
 
 
Table 10: Means and standard deviations of outputs (Constant Power 

approach) 
 Constant Power 

 FC life [year] PBP [year] NBCR [-] IRR [%] 

 μ σ μ σ μ σ μ σ 

MCS  18.71 0.60 4.47 0.16 0.91 0.06 0.23 0.01 

RSA 18.66 0.60 4.56 0.19 0.90 0.06 0.23 0.01 

PC 18.73 0.69 4.50 0.27 0.89 0.08 0.23 0.01 

 
RSA is also able to investigate the effect that each single input 
has on each output, through the sensitivity parameter of equation 
(5). This is not possible to infer from the complete PDFs, where 
the influence of each single input is cumulated with the others. 
The comparison between Figure 10 and Figure 11 confirms the 
stronger impact of inputs when the degrading power strategy is 
chosen. Both graphs show there is a very weak effect of the FU 
variability on each monitored output,  while the main influence 
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is provided by the TG cycle efficiency (η - eta), which, once 
again, is larger for the constant voltage case. The ASR parameter 
is the only one that shows more impact on PBP and FC life in the 
first control strategy . 

Therefore, in both control cases (constant and degrading 
power), sensitivity analysis suggests to reduce first the 
uncertainty on the microturbine efficiency in order to minimize 
variability on economic outputs, and second, to reduce the 
uncertainty on ASR.  

 
Figure 10: Sensitivities for Constant Power approach 

 
Figure 11: Sensitivities for Constant Voltage approach 

 

6 CONCLUSION 
In this paper, a stochastic analysis was applied to a fuel cell 

gas turbine hybrid system; the plant, represented with a model 
developed in Matlab Simulink, includes a degradation model for 
the SOFC. The main focus was to investigate the uncertainty 
effect related to some inputs on system performance, in 
particular on the lifetime of the fuel cell. Furthermore, a simple 
economic analysis was performed in order to understand the 
sensitivity on some economic indicators to the introduced 
variability. The same hybrid system model was tested with two 
different control strategies: the fuel cell voltage was kept 
constant in both cases, while the total power output was constant 
in the first configuration and was allowed to degrade along plant 
life in the second one. In addition, different probabilistic 
methods have been used for the stochastic analysis: MCS results 
were assumed as reference for the comparison between RSA and 
PC.  

Overall, the hybrid system in deterministic conditions with 
constant power control showed better results if compared to the 
degrading power one. In particular, with the first strategy an 

increasing of 35% in lifetime and of about 81% in NBCR were 
obtained. Moreover, its sensitivity to the variation of the input 
seemed globally weaker than in the second case. The sensitivity 
analysis performed with RSA has shown that the uncertainty 
related to the microturbine cycle efficiency is the most critical 
parameter in both cases.  

The comparison between the approximated methods returns 
a good level of accuracy to estimate the mean for both methods, 
with a maximum error of 2.2% and 1.8% using RSA and PC 
respectively. On the other hand, considering the standard 
deviation, RSA gives better results than  PC respect to MCS 
ones. Possibility for improvement has been identified for both 
methods acting on their set up parameters, i.e. optimization of 
delta parameter for the RSA and higher optimization degree for 
the PC. Moreover, thanks to this work, a feasible strategy of 
calibration for the approximated methods has been suggested. 
This is based on optimization algorithms and it will be tested in 
future works. 

A further investigation in this sense is strongly 
recommended and justified by the large computational savings 
that these approximated methods can provide: in this case, for 
the same calculation, PC and RSA cut the simulation efforts by 
a factor of 5 and 50, respectively, compared to MCS. In an 
application field where this kind of analysis is continuously 
needed with a lot of different configurations of the model to test, 
it is not practical to use Monte Carlo simulations. 
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