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ABSTRACT

The analysis of different energy systems has shown various
sources of variability and uncertainty; hence the necessity to
quantify and take these into account is becoming more and more
important. In this paper, a steady state, off-design model of a
solid oxide fuel cell and turbocharger hybrid system with
recuperator has been developed. Performances of such stiff
systems are affected significantly by uncertainties both in
component performance and operating parameters. This work
started with the application of Monte Carlo Simulation method,
as a reference sampling method, and then compared it with two
different approximated methods. The first one is the Response
Sensitivity Analysis, based on Taylor series expansion, and the
latter is the Polynomial Chaos, based on a linear combination of
different polynomials. These are non-intrusive methods, thus the
model is treated as a black-box, with the uncertainty propagation
method staying at an upper level. The work is focused on the
application on highly non-linear complex systems, such as the
hybrid systems, without any optimization process included.
Hence, only the wuncertainty propagation is considered.
Uncertainties in the fuel utilization, ohmic resistance of the fuel
cell, and efficiency of the recuperator are taken into account. In
particular, their effects on fuel cell lifetime and some simple
economic parameters are evaluated. The analysis distinguishes
the specific features of each approach and identifies the strongest
influencing inputs to the monitored output. Both approximated
methods allow an important reduction in the number of
evaluations while maintaining a good accuracy compared to
Monte Carlo Simulation.
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ASR
CFN
COovV
DOE
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Area specific resistance [ohm/cm?]
Annual cash flow [$]
Coefficient of variation [%]
Design of experiment

End of life [yr]

Fuel cell

Fast probability integration
Overall fuel utilization [%]
Hybrid system

Internal rate of return [%]
Lanthanum strontium manganite
Monte Carlo simulation
Net benefit to cost ratio [%]
Net present value [$]
Pay-back period [yr]
Polynomial chaos
Probability density function
Percentage error [%]

Proton exchange membrane
Response sensitivity analysis
Solid oxide fuel cell

Total capital investment [€]
Turbogas

Triple phase boundary
Yttria-stabilized zirconia
Area [m?]

Electricity price [$ kWh]
Fuel cost [$ kg'!]
Maintenance cost [$]
Specific heat [J kg™! K]
Faraday’s constant [C mol™']
Gibbs free energy [kJ]
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evi(Z2) Functional relationship between j-th output
parameter and the inputs Z
h Specific enthalpy variation from 298K

condition [kJ kg!]
Convection coefficient [W m? K]
i Current density [A cm™]

io Exchange current density [A cm™]
Kp Equilibrium constant

k Conduction coefficient [W m™! K]
L Cell length [m]

M; J-th parameter of output for the system
m Mass flow rate [kg s!]

n Number of transferred electrons
P Electricity production [kWh]

P Fuel consumption [kg]

Per Gas turbine power [kW]

p Pressure [bar]

0 Fuel cell thermal output [kW]

Ogen Generated heat [W m™']

R Area specific resistance [Q m?]

Rg Ideal gas constant [J mol! K]

rq Degradation rate [% kh™']

T Temperature [K]

t Time [s]

V Voltage, overpotential [V]

X Mole fraction

Zi I-th parameter of input for the system
a Charge transfer coefficient

) Discretization step

n Efficiency

1 Mean

v Variance

P Density [kg m™]

c Standard deviation

Subscripts

act Activation

an Anode

ca Cathode

dif Diffusion

ohm Ohmic

1 INTRODUCTION

Engineering design is increasingly supported by uncertainty
quantification techniques. In fact, because of the complexity of
some problems, or due to the variability caused by the
manufacturing process, or because of limited information about
new and unexplored fields, many solutions inevitably cannot be
accurately predicted. Building detailed models for these systems
helps in evaluating performance, including any reasonable
variables, especially for energy systems such as the one
described in this paper. Many are the ways to deal with this
uncertainty and even more are the available techniques to
analyze it, some of them have been already presented in other
works such as [1] [2] [3]. Few examples of comparative analysis

of such methods are also available in open literature. Padulo et
al. [4] compared different UQ methods with a particular attention
to robust engineering design problems. In particular, the new
Sigma-Point approach was compared to MC, Gaussian
Quadrature and higher-order MM. Lee et al. [5] showed the
comparative study of several UQ methods for black-box type
problems. The full factorial numerical integration, the univariate
dimension reduction and the polynomial chaos expansion were
applied to four illustrative examples.

During the present work, the sampling method Monte Carlo
Simulation (MCS) and two different approximating methods,
namely Response Sensitivity Analysis (RSA) and Polynomial
Chaos (PC), have been explored as tools for uncertainty
quantification. In modelling, when simulated system are
computationally expensive, based on complex structures, or
when the simulated period is extended over months or even
years, a minimum computational effort and short calculation
time become crucial. Despite its great reliability, MCS cannot be
used when any single analysis requires too many or too long
simulations. The analysis performed for this work on the fuel cell
gas turbine hybrid system model focuses on the entire operating
life of the plant. As introduced before, because of a long
simulated interval and a large amount of variables that could be
taken in consideration in this system, fast processing methods are
needed. Therefore, beside the scientific importance of studying
the effect of uncertainties on the degradation and then on system
life and economic parameters, this paper aims to underline the
advantages of having a well-calibrated approximated method
instead of using one based on samplings, such as MCS. In such
a context, this work can be seen as a follow up of [1] [2] [6] [7].
The continue research in this field can help industries developing
new tools or optimize the existent ones able to manage stochastic
information and to carry out useful analysis and solution. It is
important to clarify the influence of some parameters usually
affected by variability or uncertainty on the life of a hybrid
system and the consequences induced on economical parameters
that usually lead to the final choice of investment. As for any
other probabilistic study like this, a set of parameters affected by
uncertainty must be chosen, and propagation of this variability
can be estimated monitoring the outputs of interest.

The research available in the open literature related to
uncertainties in energy systems is mainly focused on steady-state
models [8] [9] [10]. Probabilistic methods are mostly applied for
optimization purposes and design performance evaluation [2] [9]
and very few cases are related to dynamic energy system
analyses. Model uncertainties, materials variability, and
uncertainty in operating parameters were considered in SOFC
systems and the effects on the performance were evaluated [8]
[9] [10] [11] [12]. RSA was applied to a PEM in order to count
for the uncertainty in load profile and costs, evaluate the impact
on fuel cell performance, and optimize the design and the
operating strategy [2]. Model uncertainties were taken into
account in a multi-objective optimization approach for a SOFC
based system [11].

The Monte Carlo approach was used by Thomas et al. to
predict the life of a lithium-ion cell with a degradation model
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[13] while Placca et al. studied the effect of temperature
uncertainty on cell voltage and degradation rate in a PEM
through ANOVA [14].

For this work, typical ranges of variability have been founded
for FU, ASR and 1cycie, based on literature information, industrial
information, and author’s background; while fuel cell life, PBP,
IRR and NBCR are set as monitored outputs. The different
approaches for uncertainty propagation have been tested in
parallel on two configurations of a hybrid system model. Results
carried out from MCS and approximated methods have been
compared, highlighting pros and cons for each of them.

2 METHODOLOGY

Simulation of a deterministic model provides a set of outputs,
which may give an incomplete and frequently incorrect
representation of the system. A deterministic single-point
simulation gives no value of the range of potential values for
given parameter or their respective probability of occurrences,
which may be expected in the system. To complete this
information, the sensitivity and uncertainties in the results are
needed. Uncertainty quantification methods can be classified
into sampling methods (e.g., Monte Carlo simulation (MCS),
Latin hypercube simulation, etc.) and approximate methods (e.g.
response sensitivity analysis (RSA) method, fast probability
integration (FPI) methods, polynomial chaos (PC) and
metamodeling) [15]. In open literature, all of these approximated
methods were applied to different applications in engineering.
Kim et al. [16] and Abrassi et al. [6] applied Response
Sensitivity analysis for a fuel cell gas turbine hybrid system
optimization with more than 20 uncertainty inputs and for the
performance analysis of a micro gas turbine respectively. In the
design field of energy systems, a lot of examples for the
application of Polynomial Chaos are available, such as [17] and
[18], even if very few applied this method to fuel cell and hybrid
system models.

21 MONTE CARLO SIMULATION

Among the sampling methods, MCS is the most common
traditional probabilistic simulation technique for performing a
probabilistic analysis on a model via a very large number of
repeated simulations [19].

MCS is particularly distinguished as a probabilistic
simulation technique since it can solve extremely complex and
discontinuous problems precisely, provided the model is
simulated with a high enough sampling number. Once the
probabilistic information of a variable such as the mean value,
the variance, and/or the probability distribution are known, the
randomness of the variable can be simulated close to its true or
real randomness using a random number generator. Repeating
the simulation changing the set of randomly generated input
variable values and storing the system output values every step,
a set of probabilistic values and probability distribution functions
(PDFs) of the output variables are obtained. This type of
approach explicitly results in exact uncertainty (relatively
speaking) propagation from the input variables to the system
response, of course, assuming that the sampling number is high

enough. Moreover, the probabilistic information of the system
output quantifies the range within performance falls relatively to
the objective limits set on the system.

2.2 RESPONSE SENSITIVITY ANALYSIS

Response Sensitivity Analysis (RSA) is a sensitivity-based
approximation approach; it is utilized to estimate probabilistic
information on the outputs of an analyzed system through a
Taylor series expansion based calculation and with few
information on the characteristics of input data [1] [6] [16].

The RSA algorithm returns probabilistic information on the
output such as their first order moment (mean value) and second
order moment (standard deviation). As explained in [16], when
the mean and variance of each system input (Z;) are known and

an implicit nonlinear functional relationship 8w, (Z) between
each system output M; and the inputs 7 is available, it is possible

to use Taylor series expansion in order to estimate approximated
value of mean and variance for each system output M;, i.e
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where iz, is the mean of the each i-th input.
Depending on where the expansion is truncated, the first and
second order approximated means v of each output M;, will

appear as shown respectively in equation (2) and (3).
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For practical purposes, the first-order variance (Eq. 4) and
the second-order mean (Eq. 3) are generally used. If there are no
explicit functional relationships between the system responses
and inputs, the partial derivatives in the previous formulas
cannot be determined analytically. However, numerical solution
can be obtained using finite difference schemes [2], [6].
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L is called the system

In Equation 4, the derivative term 57
i

response sensitivity for Mj associated to Z;. This is an important
parameter, since, if properly converted into a dimensionless
variable (Eq. 5), it can estimate the impact of each single input
uncertainty on the monitored outputs at the same time of the
probabilistic analysis.

agMj Zi,nom (5)
aZi gM]"nom

Sensitivity =

RSA is easily applicable to dynamic system simulation because
it is a computationally inexpensive method compared to MCS.
When system responses show piecewise linear characteristics,
the RSA method provides high fidelity analysis results very close
to those provided by MCS. Moreover, to reduce the error due to
truncation of Taylor series, a proper finite difference scheme for
the resolution of derivatives has to be chosen [6]. The
discretization step, usually called delta (§), utilized in the
definition of finite differences, is crucial for the approximation
of results [6]. An example of finite difference scheme for the
second order truncation used to approximate derivatives is
shown in equation (6).
Ogu; _ Mj — M; (6)

3z, 25

23 POLYNOMIAL CHAOS

Among the approximated methods for uncertainty
quantification, the Polynomial Chaos (PC) is well known. It is
based on the work by Wiener [20], who originally was concerned
with stochastic processes with Gaussian random variables. More
recently, the generalized PC (gPC) approach was introduced by
Xiu [21]. In addition, it has the potential to achieve a significant
reduction in computational cost (number of evaluations) with
respect to traditional techniques such as Monte Carlo approaches
[22] [23]. Moment estimation (i.e. mean and standard deviation)
and sensitivity analysis (Sobol indices) can be extracted without
significant additional costs from the PC expansion.

In the PC framework, both intrusive and non-intrusive PC
methods are available [24]. The intrusive approach requires the
governing equations to be rewritten. This means altering the
model source code, which is used for the computations. This type
of approach is only possible when the source code is available.
On the other hand, the non-intrusive approach (NIPC) treats the
model as a black-box. The way to gain information about the
system is by running simulations with some specific sampling
data points. For this reason, the non-intrusive approach is much
more common for engineering applications.

Regardless the distinction between intrusive and non-
intrusive methods, all Polynomial Chaos (PC) work is based on
the same principle. An approximation of the model is
constructed using an orthogonal set of polynomials, which serve
as basis functions for an N-dimensional parameter space.

In a general definition, a polynomial chaos expansion can be
written as:

[oe]

Y(X) = Z a;®; (X) (7)

j=0

where Y is the model response and X contains the input
variables, both of which are affected by uncertainty. Therefore,
the solution is split into a deterministic part, coefficients a;, and
a stochastic part, the polynomial basis ®;.

The original work by Wiener [20] uses Hermite polynomials
as the basis functions to represent Gaussian random variables.
Different types of polynomials could be used, depending on the
probability distributions of the random inputs [16].

Once the stochastic system response has been determined as
a PC expansion, the determination of the relevant statistics is
straightforward, thanks to the orthogonality of the basis terms. In
fact, from the evaluation of the coefficients of the expansion the
mean and variance could be easily evaluate, as explain in
equations (8) and (9):

U =ag (8)

p

0.2 — Z aj2<q)j2> (9)

i=1

The integral <®;>> is reported for standard expansions in [26] or
can be calculated numerically. Sensitivity analysis, evaluated
through the Sobol indices, can be also performed without
significant efforts. Sobol coefficients sx can be calculated as
follows:

_ var[Yxk(X)] _ Zk=1k a,%(‘b,%) (10)
Sk = var[Y(X)] Y a(d2)

where the index k sums over all the polynomials dependent only
on Xy.

Hence, a method for calculating the coefficients of the expansion
is required. Between the different NIPC methods, several
quadrature rules, for the definition of the sampling data points
(DOE points), with different accuracy level and sparsity exist.
The most common one is the full tensor quadrature. A full tensor
product quadrature is an effective approach for calculating
multidimensional integrals when the number of dimensions is
relatively small, but since the number of DOE points grows
exponentially with the number of random dimensions; its
effectiveness decrease rapidly for larger-dimensionality
problems [27].

In problems with a moderately large number of variables, sparse
tensor product grids (first proposed by Smolyak [28]) can be
used to reduce the number of DOE points, while preserving a
high level of accuracy. Panizza et al. [29] applied the sparse-grid
approach on the uncertainty quantification of centrifugal
compressor performance, and proved its effectiveness compared
to MCS. A further improvement can be achieved also with the
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adaptive sparse grids [30] [31], where the number of DOE points
in each dimension is chosen adaptively based on the difference
between approximations of successive orders. Another approach
that recently grows in the analysis of complex systems in
engineering field is the use of least squares approximations
(LSA) within a pseudo-spectral approximation concept. The idea
is to construct a polynomial chaos approximation with an
appropriate set of orthogonal polynomials and then calculate the
coefficients of the expansion so that they provide the best fitting
(in a least square sense) to some data [32] [33].

31 HYBRID SYSTEM MODEL

The model used in this analysis is a 1D model to simulate a
co-flow, planar anode-supported SOFC, composed of a Ni doped
yttria-stabilized zirconia (Ni-YSZ) anode, an YSZ-lanthanum
strontium magnetite (LSM) cathode, and YSZ electrolyte [34].
The model was previously developed with the aim of integrating
it into a SOFC gas turbine hybrid system emulator [34] [35] [36]
taking into consideration the degradation effects. The full
description of the model is reported in [7] [34] [35] and it is here
summarized. An overview of the hybrid system model is
depicted in Figure 1.

SOFC System Model

Load [A]

Syngas
800°C

...q Voltage,
Power

Air Recuperated

MGT

Figure 1: Schematic layout of the hybrid system model

The model employs a coupled approach of finite difference
and finite volume, respectively, for thermal and electrochemical
equations. Since the electrochemistry models do not use
differential equations, the finite volume approach is more
appropriate, while for heat transfer a finite difference method is
applied. Originally, the SOFC model was created to simulate the
effects of voltage degradation in the cell, including different
mechanisms in a simple expression that relates the degradation
rate to cell operating parameters (current density, fuel utilization
and temperature), as explained in [7]. This model was here used
for an uncertainty quantification analysis with the aim to
evaluate the sensitivity of different outputs of interest to
stochastic variations in the inputs, such as FC life and economic
parameters.

More details on equations, parameters, and model validation can
be found in Hughes et al. [34]. In Table 1 the main equations are
summarized.

Table 1: Main equations of the SOFC model

AGh,0
) VnernsT = — T
Nernst potential RyT | (sz JP_(;2> (11)
nF PH,0
Veeu =V, —Vair — Vaer —
Cell Voltage cell NERI;VST dif act (12)
ohm,deg
Activation Vo = RgT sinh~1 i
polarization at " anF (Zio) (13)
_RgT XHy bulk-XH,0,TPB
Diffusion Vair = 2F (ln (XHZO,bulk-XHZ,TPB) + (14)
polarization 1in (xoz,bulk>)
2 X0,,TPB
Ohmic Vonm =R -1
polarization (15)
. t
Resistance R = (Ropm + Rirr) - (1 + 7y -m) (16)
Irreversible Rirr = Xtime(Rpen + Roxige) 1r_d
contribution of 000 17)
degradation
Degradation v — 1+ 7, - Rowrs
contribution ohm.deg = Tohm ( @ 1000 ) (18)
Anode exchange foan = s
current density 5.5 - 108 22 P20 oy 30107 (19)
Pamb Pamb RgT
i =
Cathode exchange Qe
; 108 (Poz \* ~100-10° (20)
current density 7-10 (pamb) exp( RT )
Water-gas shifting
(WGS) reaction Hz +CO & COZ + H20 (21)
K _ DPu,Pco, _
. p,shift — -
WGS equilibrium PH,0Pco 22)
constant exp (4le - 3.961)
02T | hAgas
Temperature kAchannei 5z + Lg (T —T) + 23)
distribution _ A ar
Qgen - pcp channel at
Thermal output 0 = tgychour — Minhin (24)

In the hybrid system model, the fuel cell thermal output was
recovered by a gas turbine to generate electrical power,
according to Equation 25. The gas turbine model, purposely
simplified, included a map of the recuperated cycle efficiency as
function of generated power. Therefore, only the turbine power
was calculated regarding the turbomachinery, while compressor
and recuperator were not modelled.

Per =Ner* Q (25)
In the open literature, different control approach could be
applied to hybrid system with different aim. For example, Ferrari
M. [37] applied an advanced control approach to an hybrid
system plant to prevent thermal stress in the fuel cell and to
reduce the peak values of cathode/anode pressure difference and
STCR. In this paper, a different control approach was
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implemented. In particular, two different configurations for the
hybrid system model were taken into account, simulating two
hybrid systems with a pressurized fuel cell, considering two
different operating strategies. The aim was to evaluate the
different impact of model uncertainty on a hybrid system and to
understand if a different strategy can have a significant impact in
the results.

In both configurations, cell voltage was kept constant, to
reduce degradation over time and extend cell durability [38]. In
the first hybrid configuration (1), “HS Power”, the total system
power was maintained constant, shifting load to the turbine as
the fuel cell degraded. For this purpose, fuel flow increased in
order to provide more heat in the off-gas burner to drive the
turbine. Hence, the turbine worked in part-load condition at the
beginning of the operating life and turbine power was
incremented over time.

The second considered control strategy (2) named “HS
Voltage”, where the total power of the system was let decrease
during time while maintaining constant voltage. The gas turbine
size was considered optimized for the fuel cell initial conditions
and operating at design point throughout the entire life of the
plant. Thus, the fuel decreases together with the current to
ensure that the power of the turbine remains constant while FU
decrease. More in detail, since fuel and current do not decrease
with the same rate the overall effect is a weak decreasing in FU.
The two cases are briefly summarized in Table 2.

Table 2: Summary of the operating strategies

Voltage Stack FU Turbine Total

power power power

HS Power | Constant ! l 1 Constant
HS Voltage | Constant ! l Constant l

The initial conditions considered in this analysis for the two
cases are illustrated in Table 3.

Table 3: Initial conditions

HS Power HS Voltage
Current density [A cm™] 0.5
Cathode inlet flow [kg s'] 1
Average cell temperature [°C] 800
Anode fuel flow [kg s7'] 0.09
Fuel utilization [%] 80%

28.6% CO, 12% CO02, 29.1%

-
Fuel composition H2, 27.1% H20, 3.2% N2

Fuel cell pressure ratio (p/pamb) 35

Cell voltage [V] 0.82

Stack power [kW] 333
Turbine power [kW] 160 130

*fuel is assumed to be syngas from coal gasification and cleaning process

The conditions for the End of Life (EOL) were considered
as follows:

e For the hybrid system with “HS Power” strategy, since
voltage and total system power were both constant, EOL
was determined when the stack power was approximately
25% and the turbine power reached the considered design
condition

e  For the hybrid system with “HS Voltage” strategy, EOL was
determined when the total system power reached 50%

Different criteria could be considered for the power reduction to
optimize the economic performance of the systems, for instance
allowing the power to decrease further in the constant voltage
scenarios. However, here the purpose is focused on the
uncertainty evaluation and propagation through economic
parameters.

3.2 ECONOMIC MODEL

A simple economic analysis was implemented to evaluate
the impact of uncertainty in degradation rate on some key
economic parameters, such as Pay Back Period (PBP), Internal
Rate of Return (IRR), and Net Benefit Cost Ratio (NBCR).
Those were calculated as function of annual cash flow (CFN)
and total capital investment (TCI), according to Equations 26-
30. The considered variable costs or profits were fuel
consumption, net electricity and a maintenance factor.

PBP
TCI = Z CFN; (26)
j=1
EOL (CFN:;
NPV = L__TCI (27)
j=1 (1 + 7")]
NPV
NBCR = —— (28)
CR=1e1
EOL  CFN.:
Z " _7cr=0 (29)
j=1 (1 + IRR)J

Where:
CF]V] = CelPel - CfPf - Cmain (30)

The assumptions for the calculation of the economic parameters
were the following, assuming that the plant is installed in USA:

e an initial investment of $/kW 1000 for the FC stack,
considering a 330 kW stack and 1% of the stack cost for
ancillaries [36]

e an initial investment of $/kW 750 for the gas turbine (with
a nominal power of 350kW in the “HS Power”
configuration and 130kW in the “HS Voltage”
configuration) [39]

e an initial investment of $129,500 for the recuperator in the
hybrid system configurations [40]
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e revenue of $/kWh 0.15 for electric power produced
considering a feed-in tariff in order to favour SOFC early
penetration in the market

e acost of $/kg 0.1 ($/kJ 2.4-10-6) of fuel considering the
price of natural gas [41]; although the simulated fuel
composition was a typical syngas employed to extrapolate
the degradation model, for simplicity in this study a gasifier
was not considered in the economic analysis

e 3% of the total investment cost for the annual maintenance
cost

e aninternal rate of 1% to actualize the cash flows

The work does not aim to evaluate accurately the economic
performance of the systems, but to assess the uncertainty
propagation from the inputs onto fuel cell lifetime and economic
parameters. A simplified economic analysis was carried out,
taking into consideration only the capital cost of the hybrid
systems (mMGT+SOFC) and variable cost (fuel consumption and
electrical power production). Hence, auxiliaries and gasification
process were not taken into account in this work. In addition, a
fixed maintenance cost was considered for simplicity rather than
a function of the fuel cell lifetime: in fact, the economic analysis
was performed on the life cycle of the first SOFC stack, and not
on the whole lifetime of the plant. In other words, the
replacement of stacks onto the same balance of plant has not
been considered. For this reason, NPV was calculated for costs
occurring up to the moment of SOFC failure (EOL in the
formulas) and not on the whole lifetime of the balance of plant.
Thus, the economic results are indicative of how the probability
distribution of NBCR, PBP and IRR is affected by uncertainties
in the model.

4 RESULTS

This analysis was conducted focusing on the variability of
system performance and economics due to uncertainties of single
component performance. A fuel cell degradation model with
fixed coefficients is included; it means that no uncertainty is
considered on how the system degrades.

41 DETERMINISTIC RESULTS

Firstly, a deterministic simulation was performed to
understand, without uncertainty, the behaviour of the plant in
terms of fuel cell lifetime (considering 1 year as 8760 hours) and
economic outputs. The FC life is calculated based on the EOL
definition explained in paragraph 3.1. In this case, all the model
parameters subject to uncertainty have been set with constant
values, equal to the average values of their distributions.

The results of the deterministic simulation for both
configurations are reported in Table 4. From these results, some
important aspects need to be highlighted. In particular, the choice
of control strategy for hybrid system has an important effect both
on fuel cell lifetime and on economic parameters. In fact, the
constant power strategy allows an important increase of the fuel
cell life compared to the strategy with constant voltage. This
leads to a significant difference also in the economic parameters,

making this strategy more attractive from an economic point of
view.

Table 4: Deterministic results

HS Power | HS Voltage
FC life [year] 18.69 12.29
IRR [%] 23% 14%
PBP [year] 4.54 6.47
NBCR [-] 0.90 0.16

4.2 MCS RESULTS

After analysing the deterministic performance of the plants,
uncertainty in some inputs was introduced. The stochastic
analysis focused on design parameters that typically influence
system performance: overall fuel utilization (FU), ohmic losses
in the stack (ASR), and recuperated-TG cycle efficiency (1) were
considered. The choice of these parameters is based on the
availability of experimental data, knowing that other parameter
like operating temperature could be taken into account since it is
also a key variable for the lifetime. In addition, the coefficients
of the degradation model were considered, in this paper,
deterministic. A stochastic analysis related to the uncertainty of
such coefficients could be found in [42].

The standard deviation of the considered input is reported
in Table 5, together with their initial mean values, these latter
change during simulation. The uncertainties on these values were
considered inputs for the model.

Table 5: Design input parameters at initial conditions

u 9
FU [%] 80 2

[ohﬁsst] 0.024 0.00072
n [%] 25 1.5

The mean and the standard deviation of the parameters are
assumed according to known information, actual measurements,
or Authors’ knowledge and experience [43]. In particular, since
the needed data of standard deviation for the recuperated-GT
cycle efficiency was related to the standard deviation in
recuperator effectiveness, a prior estimation was necessary.
Hence, the evaluation of a 0 of 1.5% for the entire GT cycle
efficiency was evaluated with the same model and approach
described in [6], starting from a standard deviation of 2.5% for
the effectiveness of heat exchanger given by manufacturers [43].
The mean value of efficiency was chosen according to the
technical features of the emulator on which the model was based.

In addition, each parameter is assumed to be distributed as
Gaussian PDF. For most engineering problems, a clear
probability inference of parameters usually requires a large
amount of experimental data, which is often impractical due to
expense considerations or experimental limitations. Thus, a
normal (Gaussian) distribution is popularly adopted without
losing the generality, which is, under such circumstance, more
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appropriate than other distributions. This is due to the facts that:
(a) normal distributions are often found in engineering problems
when the data collection is adequate and; (b) in many cases, a
detailed description of probability distributions is not required
since only the means and variances are sought [44]; (c) normal
is an easier type of distribution to handle with approximated
method used in this work.

With this assumption, a stochastic analysis was applied to
the systems considering the uncertainty in the aforementioned
input parameters.

A convergence analysis was performed on MCS in order to
understand the minimum number of sampling needed to obtain a
result with a high level of reliability. Then a simulation with 1000
samples has been adopted as reference case for the following
considerations. Starting from the data series obtained from the
MCS, a PDFs fitting was performed. It results that each output
parameter could be graphically described as a Gaussian
distribution.
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Figure 2: Comparison of FC life between the two strategies
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Figure 5: Comparison of PBP between the two strategies

In Figures 2-5 the distributions obtained from the MCS
simulations are shown, with a particular attention on the different
behaviour of the outputs between the two configurations. A
Gaussian distribution was considered to represent the outputs
after a pdf fitting analysis. With the given assumptions, the
constant power control strategy guarantees a longer life for the
system, reducing the payback time and resulting in higher NBCR
and IRR, making this solution economically more attractive. In
addition, it is clear that the Gaussian distributions never
overlapped. This means that, once again, considering these
particular assumptions and introducing uncertainties, the
constant power strategy behaves better than the constant voltage
one in terms of FC life and economic parameters. All these
consideration, already observed in the deterministic scenario, are
confirmed in uncertainty regime too. It is important to underline
how these results are influenced by modelling assumptions and
different criteria for definition of EOL.

4.3 COMPARATIVE ANALYSIS

In this case, simulations were performed with RSA and PC
in order to compare the two approximated methods with MCS
and to find their strengths and weaknesses, when applied to
highly non-linear complex systems. In particular, for the RSA, a
second order for both mean and standard deviation was
considered, while for the PC, the order 4 and 6 for the polynomial
for each input was implemented. Since both PC and RSA give
information only on mean and variance values of the outputs,
those can be used to evaluate different PDFs. Hence, a Gaussian
distribution was assumed based on previous MCS results.
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As first analysis, the deviation from MCS results for both
approximated methods was analysed; the adopted indicator is the
percentage difference (or error, assuming the MCS result as the
correct result). With this parameter, it is possible to understand
how much any single value of the mean and standard deviation
carried out from approximated methods deviates from
references.

Reference — Approximated result
P.E.= f pp .100 (1)

Reference

These calculations are summarized in Table 6 and Table 7.
Both RSA and PC have a very good level of approximation
related to the evaluation of the mean values, as the percentage
error never exceeds 2.2% for every output.

Table 6: Percentage error for each method compared to MCS (HS
\oltage configuration)
Percentage error (const Voltage)
FClife PBP | NBCR IRR
mean I st.dev. [ mean [ st.dev. [ mean I st.dev. | mean I st. dev.

RSA -1.8% | -20% | 1.2% 4.3% 6.4% 1.0% 3.9%
pc4” | -01% -1.8% 0.4% 0.1%
pce” | -0.1% -1.4% 1.4% 0.3%

Table 7: Percentage error for each method compared to MCS (HS
Power configuration)

Percentage error (const Power)

FClife [ PBP [ NBCR IRR
mean | st.dev. | mean [ st.dev. | mean | st.dev. [ mean | st.dev.
RSA 0.3% -2.2% 0.4% 8.6% 0.1%
pc4™® -0.1% 2.4% -0.6% 1.3% 0.2%
pce™ -0.1% 2.5% -0.7% 1.2% 0.2%

Regarding the calculation of the standard deviation, globally
RSA behaves better than PC, except for the estimation of ¢ of
lifetime in the constant voltage strategy. Due to the high
complexity of the system and the wide time extension simulated,
a value of error up to 10% was considered acceptable: this was
the criterion to distinguish accurate solutions from the others.
For a better comprehension, values that exceed this limit are
highlighted in the tables. As easily noticeable, a great amount of
cases overcomes this limit for the standard deviation; the
solution to increase accuracy is different for each method. For
RSA, the choice of accurate values for the delta parameter (&)
could be the solution; this is a variable somehow related to the
resolution of the method. Firstly, different values of delta were
taken into account in order to find the one that fit better with MC
results. A good compromise was found between mean and
standard deviation. However, other investigations on this
parameter are needed. For example, a minimization algorithm
was suggested, which automatically fits the delta to reduce such
an error, with an early fitting of RSA on MCS results (when
available). Until now, the delta value has always been set
manually basing on experience. The introduction of this further
passage in RSA codification could help both to reach better level
of approximation and to achieve quicker a good set-up for the
RSA method.

For PC, it was expected that increasing the polynomial
degree could help to improve the approximation, however, as
reported in Table 6 and Table 7, passing from a 4" to a 6™ order, it
did not show the expected benefit. It is possible to conclude that
for this particular version of the problem another tuning strategy
has to be considered for PC. For instance, extending the range of
mixed terms included in the PC algorithm could certainly help in
decreasing the error.

The most powerful aspect of approximated methods is the
great saving in computational time they guarantee. The number
of calls to the model during each probabilistic analysis can well
quantify the computational efforts; this is proportional to the
calculation time. Table 8 shows the advantage, in terms of number
of model runs, to compute an approximated method (PC or RSA)
rather than a sampling one (MCS).

Table 8: Number of model calls per simulation for each method
MCS PC RSA
| n°of model runs 1000 256 13

A more direct comprehension of the level of approximation
given by these two methods is visible in Figure 8 and Figure 9
where the complete PDFs carried out by each method are
depicted. The standard deviation is related to the shape of the
Gaussian curves, in particular, the higher is the ¢ and the wider
the bell-shape curve appears, while the mean value fixes the
center of the PDF. Observing these figures, the good level of
approximation of the means is highlighted by the fact that the
PDFs are well centered. In all cases, RSA still has a good level
of approximation; the error on the standard deviation has less
influence if the o/p ratio, or coefficient of variation (COV), is
small. This is an important aspect to be taken into account during
the analysis of results, in fact, this observation seems to indicate
that a correct estimation of variance is less important than a good
approximation of means in order to obtain an overall good
achievement of results. According to this argument, different
values of acceptable percentage errors could be chosen to
identify what is an acceptable level of error. Anyway, even if
Figure 8 and Figure 9 show a good alignment with MCS, which
could push to consider the RSA results acceptable, in
comparison, the criterion of percentage error introduced before
still remain the more rigorous and reasonable one. COV
parameter briefly introduced before represents another way to
compare these methods. Figure 6 and Figure 7 show value of
COVs calculated for each output distribution carried out with
each method. Two remarkable observations come out from these
diagrams, firstly, starting from the same distributions of inputs,
compared to the other one, the constant power approach with
returns a lower dispersion in outputs distribution, that means
thinner bells for pdf and lower values of COVs. Secondly, a
better approximation of RSA is confirmed by the lower
difference between values of COVs coming from MCS and this
latter approximated method (except for FC-lifetime in constant
power case).
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A low value of this indicator denotes the low influence that the
percentage error on the standard deviation has on the PDF’s
shape.
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Figure 8: Probability density functions of the outputs from MCS
(black), RSA (blue), PC 6th (red) in the Constant Power configuration
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Figure 9: Probability density functions of the outputs from MCS
(black), RSA (blue), PC 6th (red) in the Constant Voltage configuration

Stochastic analysis favour the constant power strategy also
because the dispersion in results is limited compared to the other
solution. This means that system performance, and consequently
the economic analysis, are globally influenced more by the
variability of inputs when the power degrades during life. Full
analysis of results is reported in Table 9 and Table 10.

Table 9: Means and standard deviations of outputs (Constant Voltage

approach)
Constant Voltage
FC life [year] PBP [year] NBCR [-] IRR [%]
0 c n c 0 c u c
MCS 1231 | 0.,40 | 6.57 | 0.28 | 0.16 | 0.04 | 0.14 | 0.01
RSA 12.53 0.39 6.49 0.24 0.16 0.04 0.14 0.01
PC 1232 | 0.53 | 6.65| 0.56 | 0.16 | 0.05 | 0.14 | 0.01

Table 10: Means and standard deviations of outputs (Constant Power

approach)
Constant Power
FC life [year] PBP [year] NBCR [-] IRR [%]
n c 0 c n c n c
MCS 18.71 | 0.60 | 4.47 0.16 0.91 0.06 | 0.23 0.01
RSA 18.66 | 0.60 | 4.56 0.19 0.90 0.06 | 0.23 0.01
PC 18.73 0.69 4.50 0.27 0.89 0.08 | 0.23 0.01

RSA is also able to investigate the effect that each single input
has on each output, through the sensitivity parameter of equation
(5). This is not possible to infer from the complete PDFs, where
the influence of each single input is cumulated with the others.
The comparison between Figure 10 and Figure 11 confirms the
stronger impact of inputs when the degrading power strategy is
chosen. Both graphs show there is a very weak effect of the FU
variability on each monitored output, while the main influence
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is provided by the TG cycle efficiency (n - eta), which, once
again, is larger for the constant voltage case. The ASR parameter
is the only one that shows more impact on PBP and FC life in the
first control strategy .

Therefore, in both control cases (constant and degrading
power), sensitivity analysis suggests to reduce first the
uncertainty on the microturbine efficiency in order to minimize
variability on economic outputs, and second, to reduce the
uncertainty on ASR.
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Figure 10: Sensitivities for Constant Power approach
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Figure 11: Sensitivities for Constant Voltage approach

6 CONCLUSION

In this paper, a stochastic analysis was applied to a fuel cell
gas turbine hybrid system; the plant, represented with a model
developed in Matlab Simulink, includes a degradation model for
the SOFC. The main focus was to investigate the uncertainty
effect related to some inputs on system performance, in
particular on the lifetime of the fuel cell. Furthermore, a simple
economic analysis was performed in order to understand the
sensitivity on some economic indicators to the introduced
variability. The same hybrid system model was tested with two
different control strategies: the fuel cell voltage was kept
constant in both cases, while the total power output was constant
in the first configuration and was allowed to degrade along plant
life in the second one. In addition, different probabilistic
methods have been used for the stochastic analysis: MCS results
were assumed as reference for the comparison between RSA and
PC.

Overall, the hybrid system in deterministic conditions with
constant power control showed better results if compared to the
degrading power one. In particular, with the first strategy an

increasing of 35% in lifetime and of about 81% in NBCR were
obtained. Moreover, its sensitivity to the variation of the input
seemed globally weaker than in the second case. The sensitivity
analysis performed with RSA has shown that the uncertainty
related to the microturbine cycle efficiency is the most critical
parameter in both cases.

The comparison between the approximated methods returns
a good level of accuracy to estimate the mean for both methods,
with a maximum error of 2.2% and 1.8% using RSA and PC
respectively. On the other hand, considering the standard
deviation, RSA gives better results than PC respect to MCS
ones. Possibility for improvement has been identified for both
methods acting on their set up parameters, i.e. optimization of
delta parameter for the RSA and higher optimization degree for
the PC. Moreover, thanks to this work, a feasible strategy of
calibration for the approximated methods has been suggested.
This is based on optimization algorithms and it will be tested in
future works.

A further investigation in this sense is strongly
recommended and justified by the large computational savings
that these approximated methods can provide: in this case, for
the same calculation, PC and RSA cut the simulation efforts by
a factor of 5 and 50, respectively, compared to MCS. In an
application field where this kind of analysis is continuously
needed with a lot of different configurations of the model to test,
it is not practical to use Monte Carlo simulations.
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