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Abstract

This report summarizes the work produced as part of a Truman Fellowship appoint-
ment and its associated LDRD project. The overall goal of the project was to develop
better algorithms and implementations for key computational kernels within the field
of scientific computing by designing them to be communication efficient, moving as lit-
tle data as possible. The primary problem of interest was dense matrix multiplication;
other computations that were addressed include sparse matrix-matrix multiplication,
QR factorization, solving symmetric linear systems, and the symmetric eigendecom-
position. The project also involved the study of computations at the intersection of
scientific computing and data analysis, including nonnegative matrix factorization for
discovering latent factors, Tucker tensor decomposition for data compression, and sam-
pling methods for similarity search.
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1 Introduction

The gap between the peak capabilities of computer hardware and the achieved performance
of numerical computations is caused in large part by the high cost of communication, i.e.,
the movement of data between processors and throughout the memory hierarchy of a single
processor. “Standard” O(n3) matrix multiplication is the most fundamental dense matrix
computation, and communication-optimal algorithms exist that have been heavily tuned
on most architectures to attain high performance. “Fast” O(n2.81) matrix multiplication
algorithms have been identified for over 40 years and are starting to become practical as
communication costs dominate. The primary objective of this research has been to use
computer-aided search to find a matrix multiplication algorithm that is both theoretically
and experimentally faster than current implementations (i.e., O(np) with p < 2.81). The
secondary objective is to pursue several complementary projects that involve developing
other communication-optimal algorithms. This work was completed as part of a Truman
Fellowship appointment.

This report summarizes the work associated with the project. Papers related to the
primary objective (fast matrix multiplication) are described in Sections 2 and 3. Overall,
the goal of finding a practical algorithm with better exponent than 2.81 was achieved, but
the performance improvement of that particular algorithm was minimal for reasonably sized
matrices; however, other fast algorithms with comparable exponents were shown to give
practical improvements for non-square matrix multiplications. In particular, much of the
early work of the project focused on techniques for searching for new algorithms; a major
conclusion from that effort was that combinatorial methods can be successful for very small
base cases but could not scale up to base cases that would yield new algorithms. Numerical
techniques have been much more effective; in fact, the publication of external work by Alexey
Smirnov [15] during the first year of the project presented the best known method to date.
Using his approach, we were able to reproduce many of the results, and we developed code
generation tools to streamline the process from algorithm discovery to high-performance
implementation. We have also analyzed the numerical properties of the algorithms and
devised techniques to improve the errors inherent to fast algorithms. The search for fast,
practical algorithms continues, and the most promising avenue for future progress seems to
be exploiting the special structure of the matrix multiplication tensor.

The remaining sections describe publications related to the secondary objective. In par-
ticular, Section 4 describes a survey article written at the beginning of the project, and
Sections 5, 6, 7, and 8 describe communication-avoiding algorithms for various dense linear
algebra computations, including QR factorization, solving symmetric linear systems, and
the symmetric eigendecomposition. Sections 9, 10, and 11 focus on the multiplication of two
sparse matrices on parallel machines, developing the theory of communication efficiency of
algorithms, studying its use within a particular application, and producing a parallel im-
plementation for general inputs. Finally, Sections 12, 13, and 14 address problems in the
field of data analysis; each approach uses techniques from communication-avoiding linear
algebra and applies them to particular computations for analyzing big data sets, including
nonnegative matrix factorization, Tucker decompositions of tensors, and similarity search.
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2 A Framework for Practical Parallel Fast Matrix

Multiplication

Matrix multiplication is a fundamental computation in many scientific disciplines. In a paper
presented at PPoPP 2015 [13], we show that novel fast matrix multiplication algorithms can
significantly outperform vendor implementations of the classical algorithm and Strassen’s
fast algorithm on modest problem sizes and shapes. Furthermore, we show that the best
choice of fast algorithm depends not only on the size of the matrices but also the shape. We
develop a code generation tool to automatically implement multiple sequential and shared-
memory parallel variants of each fast algorithm, including our novel parallelization scheme.
This allows us to rapidly benchmark over 20 fast algorithms on several problem sizes. Fur-
thermore, we discuss a number of practical implementation issues for these algorithms on
shared-memory machines that can direct further research on making fast algorithms practi-
cal.
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3 Improving the Numerical Stability of Fast Matrix

Multiplication Algorithms

Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer
scalar operations than the classical algorithm, have been considered primarily of theoretical
interest. Apart from Strassen’s original algorithm, few fast algorithms have been efficiently
implemented or used in practical applications. However, there exist many practical alter-
natives to Strassen’s algorithm with varying performance and numerical properties. Fast
algorithms are known to be numerically stable, but because their error bounds are slightly
weaker than the classical algorithm, they are not used even in cases where they provide a
performance benefit. We argue in a paper submitted to SIMAX [4] that the numerical sac-
rifice of fast algorithms, particularly for the typical use cases of practical algorithms, is not
prohibitive, and we explore ways to improve the accuracy both theoretically and empirically.
The numerical accuracy of fast matrix multiplication depends on properties of the algorithm
and of the input matrices, and we consider both contributions independently. We general-
ize and tighten previous error analyses of fast algorithms and compare their properties. We
discuss algorithmic techniques for improving the error guarantees from two perspectives: ma-
nipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling.
Finally, we benchmark performance and demonstrate our improved numerical accuracy.
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4 Communication Lower Bounds and Optimal

Algorithms for Numerical Linear Algebra

The traditional metric for the efficiency of a numerical algorithm has been the number of
arithmetic operations it performs. Technological trends have long been reducing the time
to perform an arithmetic operation, so it is no longer the bottleneck in many algorithms;
rather, communication, or moving data, is the bottleneck. This motivates us to seek algo-
rithms that move as little data as possible, either between levels of a memory hierarchy or
between parallel processors over a network. In a survey paper appearing in Acta Numerica
[5], we summarize recent progress in three aspects of this problem. First we describe lower
bounds on communication. Some of these generalize known lower bounds for dense classi-
cal (O(n3)) matrix multiplication to all direct methods of linear algebra, to sequential and
parallel algorithms, and to dense and sparse matrices. We also present lower bounds for
Strassen-like algorithms, and for iterative methods, in particular Krylov subspace methods
applied to sparse matrices. Second, we compare these lower bounds to widely used ver-
sions of these algorithms, and note that these widely used algorithms usually communicate
asymptotically more than is necessary. Third, we identify or invent new algorithms for most
linear algebra problems that do attain these lower bounds, and demonstrate large speed-ups
in theory and practice.
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5 Communication-Avoiding Symmetric-Indefinite

Factorization

In a paper appearing in SIMAX [3], We describe and analyze a novel symmetric triangular
factorization algorithm. The algorithm is essentially a block version of Aasen’s triangular
tridiagonalization. It factors a dense symmetric matrix A as the product A = PLTLTP T ,
where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and
banded. The algorithm is the first symmetric-indefinite communication-avoiding factoriza-
tion: it performs an asymptotically optimal amount of communication in a two-level memory
hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers
are likely to be communication efficient as well; one such adaptation has been recently pub-
lished. The current paper describes the algorithm, proves that it is numerically stable, and
proves that it is communication optimal.
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6 Avoiding Communication in Successive Band

Reduction

The running time of an algorithm depends on both arithmetic and communication (i.e.,
data movement) costs, and the relative costs of communication are growing over time. In a
paper appearing in ACM TOPC [8], we present sequential and distributed-memory parallel
algorithms for tridiagonalizing full symmetric and symmetric band matrices that asymptot-
ically reduce communication compared to previous approaches. The tridiagonalization of
a symmetric band matrix is a key kernel in solving the symmetric eigenvalue problem for
both full and band matrices. In order to preserve structure, tridiagonalization routines use
annihilate-and-chase procedures that previously have suffered from poor data locality and
high parallel latency cost. We improve both by reorganizing the computation and obtain
asymptotic improvements. We also propose new algorithms for reducing a full symmetric
matrix to band form in a communication-efficient manner. In this article, we consider the
cases of computing eigenvalues only and of computing eigenvalues and all eigenvectors.
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7 Reconstructing Householder Vectors from

Tall-Skinny QR

The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the stan-
dard Householder algorithm for QR decomposition of matrices with many more rows than
columns. However, TSQR produces a different representation of the orthogonal factor and
therefore requires more software development to support the new representation. Further,
implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a
square matrix is more complicated and costly than with the Householder representation. In
a conference paper presented at IPDPS 2014 [6] and a journal version appearing in JPDC
[7], we show how to perform TSQR and then reconstruct the Householder vector represen-
tation with the same asymptotic communication efficiency and little extra computational
cost. We demonstrate the high performance and numerical stability of this algorithm both
theoretically and empirically. The new Householder reconstruction algorithm allows us to
design more efficient parallel QR algorithms, with significantly lower latency cost compared
to Householder QR and lower bandwidth and latency costs compared with Communication-
Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits
of the communication cost improvements: in particular, our experiments show substantial
improvements over tuned library implementations for tall-and-skinny matrices. We also
provide algorithmic improvements to the Householder QR and CAQR algorithms, and we
investigate several alternatives to the Householder reconstruction algorithm that sacrifice
guarantees on numerical stability in some cases in order to obtain higher performance.
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8 A Communication-Avoiding Parallel Algorithm for

the Symmetric Eigenvalue Problem

Many large-scale scientific computations require eigenvalue solvers in a scaling regime where
efficiency is limited by data movement. In a technical report [16], we introduce a paral-
lel algorithm for computing the eigenvalues of a dense symmetric matrix, which performs
asymptotically less communication than previously known approaches. We provide analysis
in the Bulk Synchronous Parallel (BSP) model with additional consideration for communi-
cation between a local memory and cache. Given sufficient memory to store c copies of the
symmetric matrix, our algorithm requires Θ(

√
c) less interprocessor communication than

previously known algorithms, for any c ≤ p1/3 when using p processors. The algorithm
first reduces the dense symmetric matrix to a banded matrix with the same eigenvalues.
Subsequently, the algorithm employs successive reduction to O(log p) thinner banded ma-
trices. We employ two new parallel algorithms that achieve lower communication costs for
the full-to-band and band-to-band reductions. Both of these algorithms leverage a novel QR
factorization algorithm for rectangular matrices.
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9 Hypergraph Partitioning for Parallel Sparse

Matrix-Matrix Multiplication

In a conference paper presented at SPAA 2015 [9] and a journal version submitted to ACM
TOPC [10], we propose a fine-grained hypergraph model for sparse matrix-matrix multi-
plication (SpGEMM), a key computational kernel in scientific computing and data analysis
whose performance is often communication bound. This model correctly describes both the
interprocessor communication volume along a critical path in a parallel computation and
also the volume of data moving through the memory hierarchy in a sequential computation.
We show that identifying a communication-optimal algorithm for particular input matri-
ces is equivalent to solving a hypergraph partitioning problem. Our approach is sparsity
dependent, meaning that we seek the best algorithm for the given input matrices. In ad-
dition to our (3D) fine-grained model, we also propose coarse-grained 1D and 2D models
that correspond to simpler SpGEMM algorithms. We explore the relations between our
models theoretically, and we study their performance experimentally in the context of three
applications that use SpGEMM as a key computation. For each application, we find that at
least one coarse-grained model is as communication efficient as the fine-grained model. We
also observe that different applications have affinities for different algorithms. Our results
demonstrate that hypergraphs are an accurate model for reasoning about the communication
costs of SpGEMM as well as a practical tool for exploring the SpGEMM algorithm design
space.
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10 Reducing Communication Costs for Sparse Matrix

Multiplication within Algebraic Multigrid

In a paper appearing in SISC [12], we consider the sequence of sparse matrix-matrix multipli-
cations performed during the setup phase of algebraic multigrid. In particular, we show that
the most commonly used parallel algorithm is often not the most communication-efficient
one for all of the matrix-matrix multiplications involved. By using an alternative algorithm,
we show that the communication costs are reduced (in theory and practice), and we demon-
strate the performance benefit for both model (structured) and more realistic unstructured
problems on large-scale distributed-memory parallel systems. Our theoretical analysis shows
that we can reduce communication by a factor of up to 5.4 for a model problem, and we ob-
serve in our empirical evaluation communication reductions of factors up to 4.7 for structured
problems and 3.7 for unstructured problems. These reductions in communication translate
to run-time speedups of up to factors of 2.3 and 2.5, respectively.
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11 Exploiting Multiple Levels of Parallelism in Sparse

Matrix-Matrix Multiplication

Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance
graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling
of existing parallel implementations of SpGEMM is heavily bound by communication. Even
though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat
MPI model on Erdos-Renyi matrices, those algorithms had not been implemented in practice
and their complexities had not been analyzed for the general case. In a paper submitted
to SISC [2], we present the first ever implementation of the 3D SpGEMM formulation that
also exploits multiple (intra-node and inter-node) levels of parallelism, achieving significant
speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We
extensively evaluate our implementation and identify bottlenecks that should be subject to
further research.
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12 A High-Performance Parallel Algorithm for

Nonnegative Matrix Factorization

Non-negative matrix factorization (NMF) is the problem of determining two non-negative
low rank factors W and H, for the given input matrix A, such that A ≈ WH. NMF is a
useful tool for many applications in different domains such as topic modeling in text min-
ing, background separation in video analysis, and community detection in social networks.
Despite its popularity in the data mining community, there is a lack of efficient distributed
algorithm to solve the problem for big datasets. Existing distributed-memory algorithms are
limited in terms of performance and applicability, as they are implemented using Hadoop
and are designed only for sparse matrices. In a paper presented at PPoPP 2016 [14], we
propose a distributed-memory parallel algorithm that computes the factorization by itera-
tively solving alternating non-negative least squares (NLS) subproblems for W and H. To
our knowledge, our algorithm is the first high-performance parallel algorithm for NMF. It
maintains the data and factor matrices in memory (distributed across processors), uses MPI
for interprocessor communication, and, in the dense case, provably minimizes communication
costs (under mild assumptions). As opposed to previous implementations, our algorithm is
also flexible: (1) it performs well for both dense and sparse matrices, and (2) it allows the
user to choose from among multiple algorithms for solving local NLS subproblems within
the alternating iterations. We demonstrate the scalability of our algorithm and compare it
with baseline implementations, showing significant performance improvements.
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13 Parallel Tensor Compression for Large-Scale

Scientific Data

As parallel computing trends towards the exascale, scientific data produced by high-fidelity
simulations are growing increasingly massive. For instance, a simulation on a three-dimensional
spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128
time steps yields 8 TB of data, assuming double precision. By viewing the data as a dense
five-way tensor, we can compute a Tucker decomposition to find inherent low-dimensional
multilinear structure, achieving compression ratios of up to 5000 on real-world data sets
with negligible loss in accuracy. So that we can operate on such massive data, in a paper
presented at IPDPS 2016 [1], we present the first-ever distributed-memory parallel imple-
mentation for the Tucker decomposition, whose key computations correspond to parallel
linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a
data distribution for tensors that avoids any tensor data redistribution, either locally or in
parallel. We provide accompanying analysis of the computation and communication costs
of the algorithms. To demonstrate the compression and accuracy of the method, we apply
our approach to real-world data sets from combustion science simulations. We also provide
detailed performance results, including parallel performance in both weak and strong scaling
experiments.
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14 Diamond Sampling for Approximate Maximum

All-pairs Dot-product (MAD) Search

Given two sets of vectors A and B, our problem is to find the top-t dot products among all
possible pairs where one vector is taken from each set. This is a fundamental mathematical
problem that appears in numerous data applications involving similarity search, link pre-
diction, and collaborative filtering. In a paper presented at ICDM 2015 [11], we propose
a sampling-based approach that avoids direct computation of all dot products. We select
diamonds (i.e., four-cycles) from the weighted tripartite representation of A and B. The
probability of selecting a diamond corresponding to pair (i,j) is proportional to the square
of the dot product between vectors i (from A) and j (from B), amplifying the focus on the
largest-magnitude entries. Experimental results indicate that diamond sampling is orders of
magnitude faster than direct computation and requires far fewer samples than any competing
approach. We also apply diamond sampling to the special case of maximum inner product
search, and get significantly better results than the state-of-the-art hashing methods. This
paper was awarded the Best Paper prize at ICDM.
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