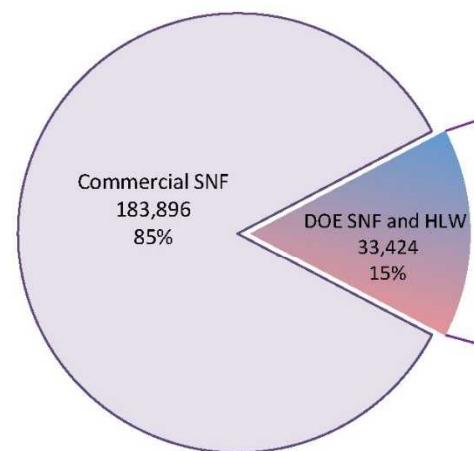


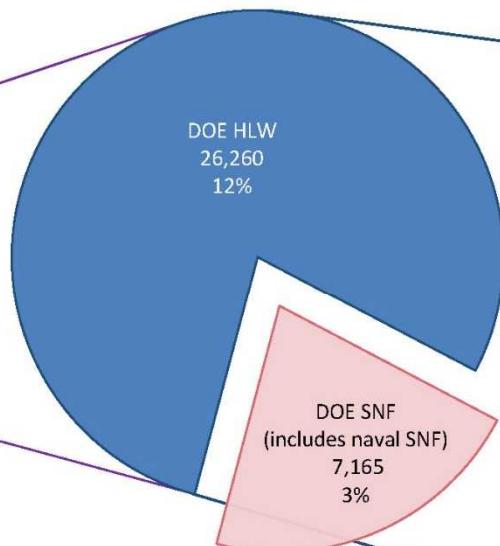
Used Fuel Disposition R&D Campaign

Preliminary Design Concepts Work Package Status Update

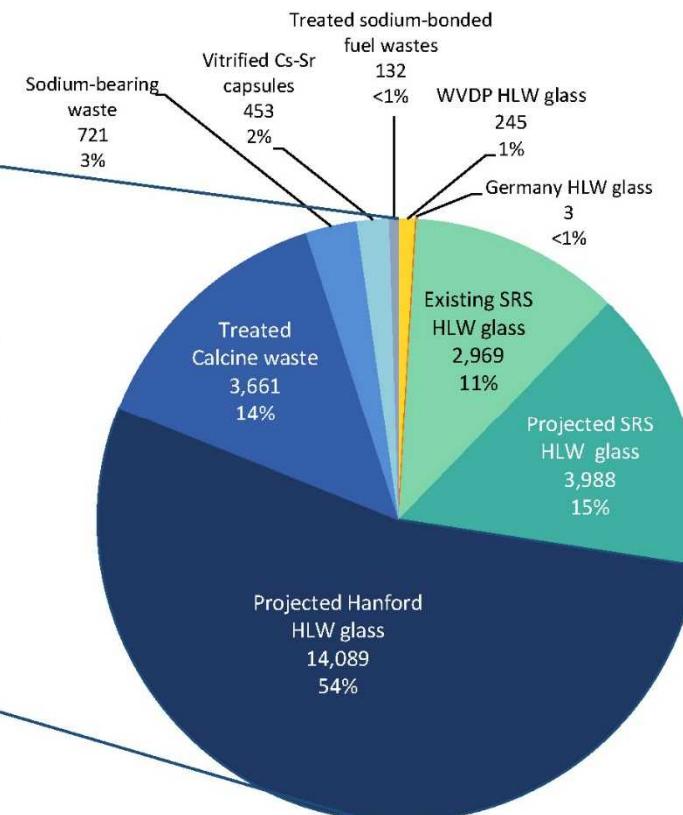
Ed Matteo, Ernie Hardin, Teklu Hadgu, Mark Rigali, Carlos Jové-Colón


March 31, 2016

Used Fuel Disposition


80% of DOE-Managed HLW volume is glass

Projected volumes in m³


Commercial and DOE-Managed HLW and SNF

DOE-Managed HLW and SNF

DOE-Managed HLW

from SNL 2014

Used Fuel Disposition

Table 3. Waste groups and pertinent characteristics for SNF in the US nuclear waste inventory (source: SNL 2014)

Waste Group	Description	Waste Form	Waste Package Dimensions	^b Number of Waste Packages	^b Avg. thermal output per waste package
^a WG1	CSNF in PBC	^d Purpose-built canister (PBC)			<25 kW ^c
		Borehole	10.6" dia by 181.1"	470,063	
		Small	32.3" dia by 196.9"	89,364	
		Medium	50.8" dia by 202.0"	31,163	
		Large	63.0" dia by 202.0"	16,924	
^a WG2	CSNF in DPC	Dual-purpose canister (DPC)	98" dia. by 197" to 225"	11,413	<25 kW ^c
WG5 – Metallic Spent Fuels					
WG6 – Sodium bonded fuels					
WG7 – DOE oxide fuels					
WG9 – coated particle spent fuels					
		Multi-canister Overpack (MCO)	24" dia by 166.4"	413	
					500W or less
		Heterogeneous mix of DSNF			
		18x10	18" dia by 10'	1,506	
		18x15	18" dia by 15'	1,474	
		24x10	24" dia by 10'	133	
		24x15	24" dia by 15'	27	
WG10 – Naval fuel	Naval SNF	Naval SNF canister	66" dia by 187" 66" dia by 201.5"	90 310	11.8 kW limit 4.25 kW avg.

^a WG1 and WG2 are not under current consideration as DOE-Managed HLW and SNF. These WG's are included merely for the purpose of comparison between CSNF and DOE-Managed SNF.

^b Year 2048, if projected. Thermal output data correspond to thermal output per waste package in the year 2048.

^c Stipulated by regulation to be <25kW

^d Assumes only one size PBC is used for all the CSNF waste, such that the number of waste packages (solely for CSNF in PBC's) corresponds to the number of PBC's, all of a particular size, that would be needed for all CSNF. For example, if all CSNF were to be disposed of in borehole-sized PBC's, 470,063 of these canisters would be needed to contain all of the CSNF waste.

Used Fuel Disposition

SRS Glass

39 % of canisters	< 50 W
6.1%	50–100W
51.4%	100–220W
3.5%	220–300W

Hanford Glass

83.9% of canisters	< 50 W
11.1%	50–100W
4.7%	100–220W
0.3 %	220–300W

All glass

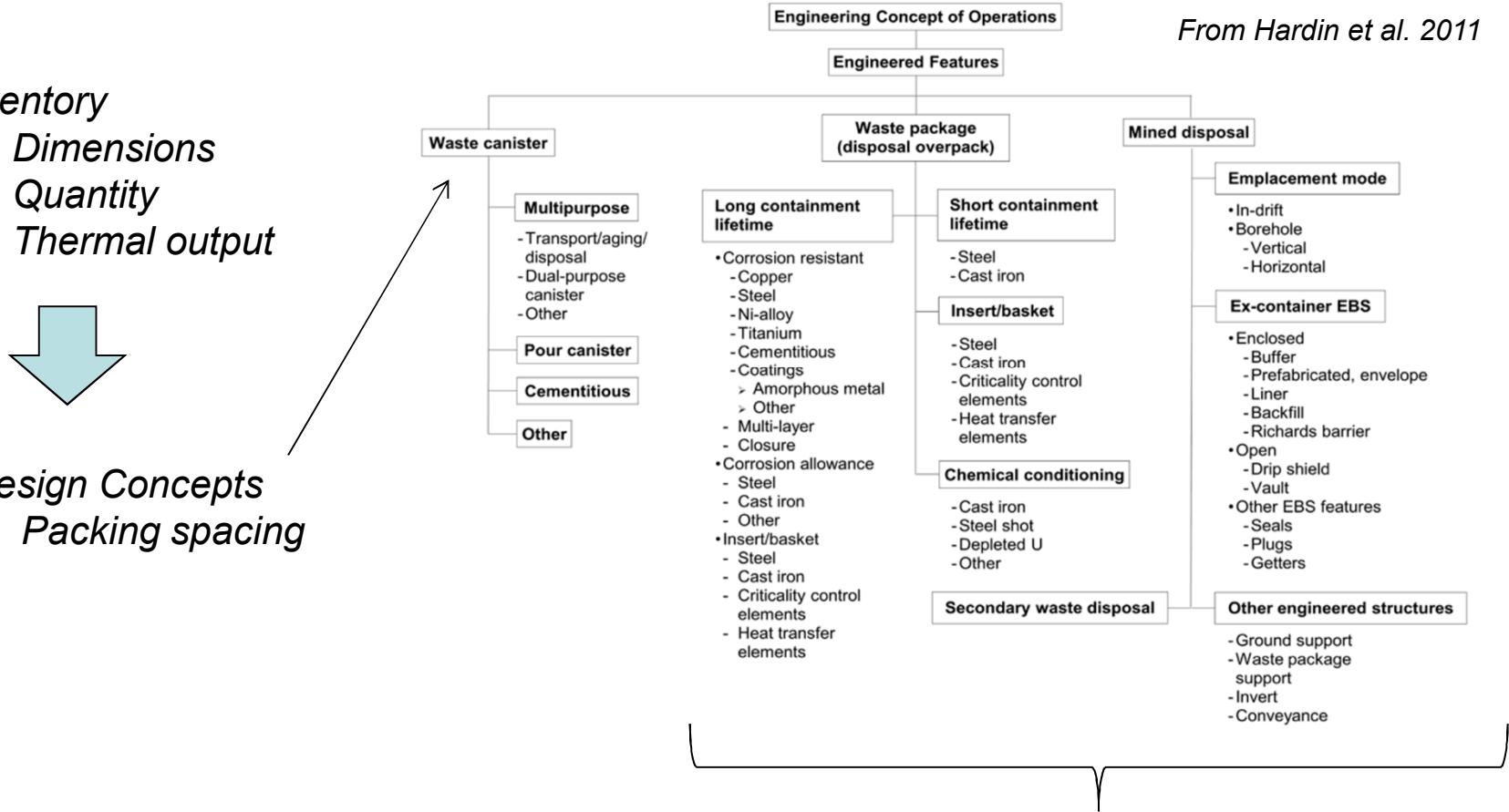
72.2% of canisters	< 50 W
7.4%	50–100W
19.1%	100–220W
0.2%	220–300W
1.1%	300–500W

Waste Group	Description	Waste Form	Waste Package Dimensions	^a Number of Waste Packages	^b Avg. thermal output per waste package
WG3 – HLW Glass	Existing SRS HLW Glass	SRS canister	24" dia by 118"	3,339	30 W
	Existing West Valley HLW Glass	WVDP canister	24" dia by 118"	275	238W
	FRG HLW Glass	FRG canister	11.8" dia by 47.2"	34	^b 950W
	Projected Hanford HLW Glass	Hanford canister	24" dia by 177"	10,586	29W
	Projected SRS HLW Glass	SRS canister	24" dia by 118"	4,485	30W
	<i>Calcine Waste (vitrified)</i>	Vitrified Calcine Waste Canister	24" dia by 118"	11,400	1.2-15.4 W
WG4 – other Engineered waste forms	<i>Cs/Sr capsules at Hanford (vitrified)</i>	Vitrified Cs/Sr waste in Hanford HLW Glass canister	24" dia by 177"	340	905W
	^c Metallic sodium bonded	Glass-bonded sodalite from EMT	24" dia by 118"	64	2,240W
		INL Metal waste from EMT	24" dia by 118"	64	negligible
	^d Calcine waste Hot Isostatic Pressing (HIP – A)	HIP canister (encloses 10 HIP cans)	66" dia by 204"	3,200	40-540W
WG8 –salt, granular solids, powders	<i>Calcine waste (HIP – B)</i>	HIP canister (encloses 10 HIP cans)	66" dia by 204"	1,600	80-1080W
	<i>Metallic sodium bonded</i>	Salt waste from EMT direct disposal canister	24" dia by 118"	64	2,240 W
	<i>Calcine Waste (Direct Disposal)</i>	Direct disposal canister	26" dia by 121"	4,900	2.4-36W
	Sodium bearing waste (SBW) at INL	SBW canister	26" dia by 120"	688	2.5W
	<i>Cs/Sr Capsules (Direct Disposal)</i>	Untreated in overpack/canister	24" dia by 120" (6 capsules per canister)	Cs- 267 Sr - 121	800W 1,170W

^a Year 2048, if projected. Thermal output data correspond to thermal output per waste package in the year 2048.

^b Final configuration not selected. The canisters listed in Table 4 could be disposed of individually or stacked 2 or 3 per container.

^c Metallic sodium bonded fuels can be processed by electro-metallurgical treatment (EMT) to produce either 1) metal waste and glass-bonded sodalite or 2) metal waste and salt waste.


^dAn alternative to HIP-B, HIP-A includes calcine waste plus Si, Ti, and CaSO₄ to produce RCRA-compliant glass ceramic waste form.

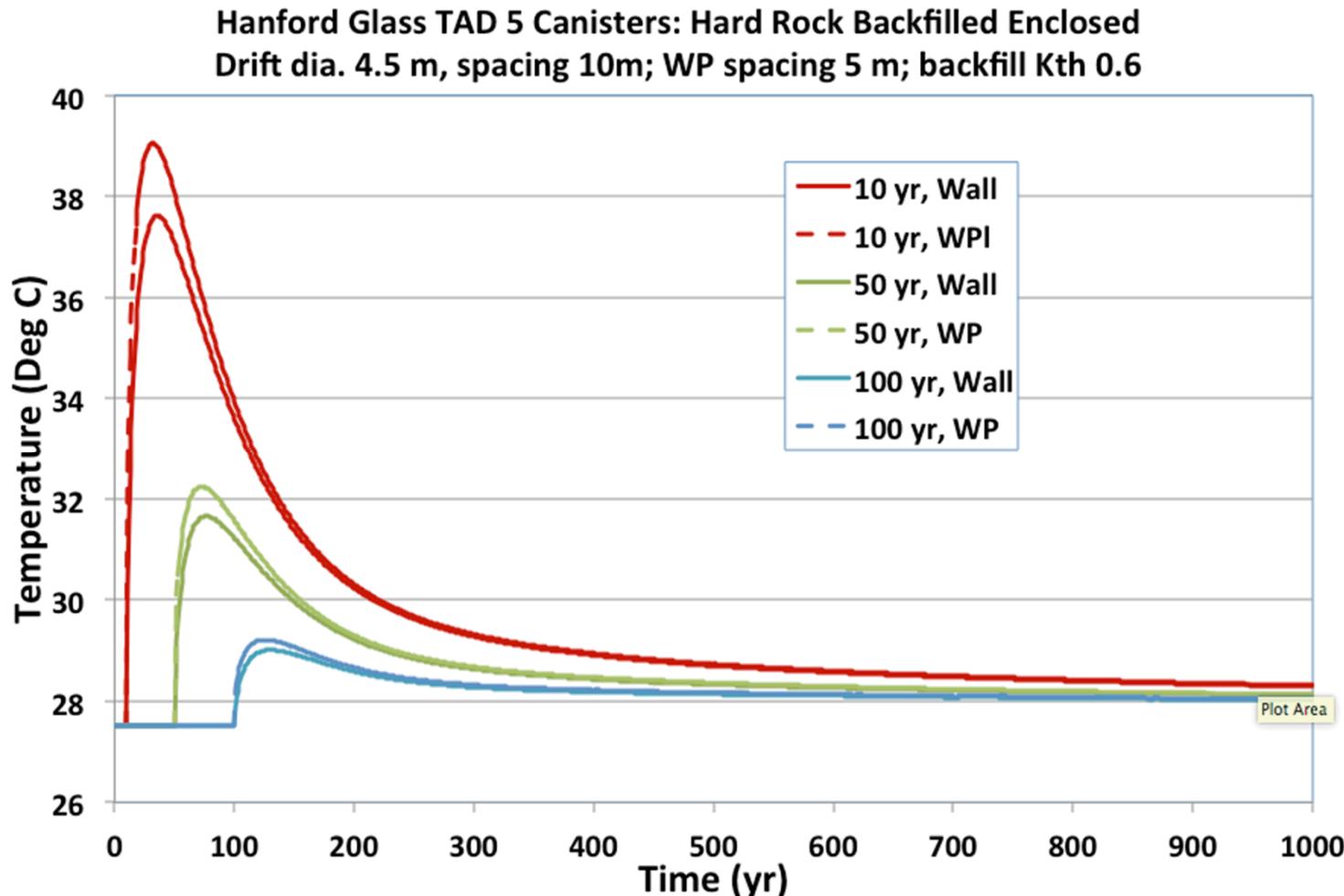
Used Fuel Disposition

Creating a Design Concept

Inventory

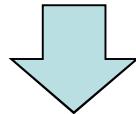
- *Dimensions*
- *Quantity*
- *Thermal output*

Disposal Media

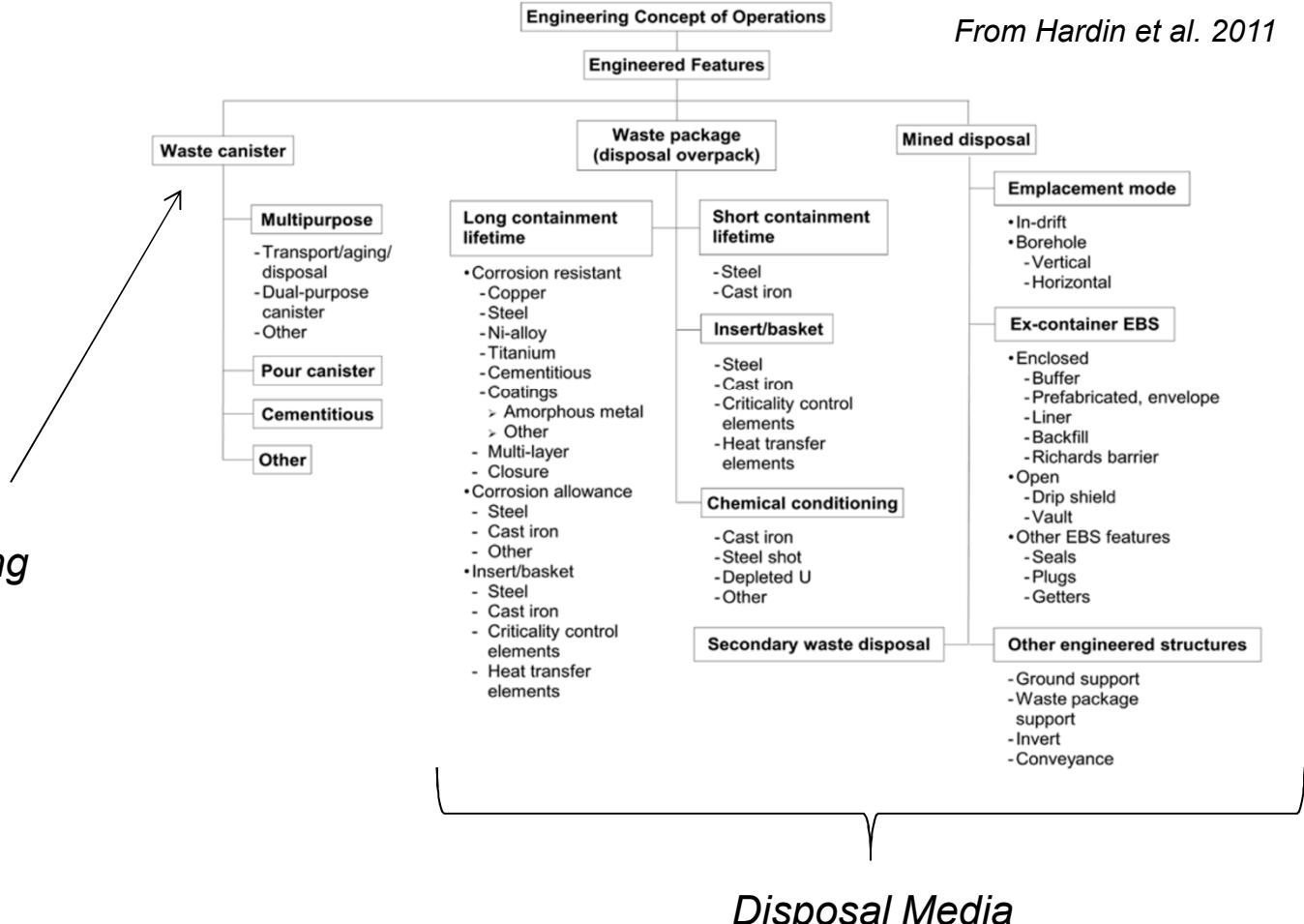

- **Host Rock Constructability**
 - Excavation method, ground support, DRZ
 - Construction and sealing cost
- **Saturated Zone, Fractured-Rock**
 - Low-permeability backfill and seals needed
- **Nominal and Disturbed Performance**
 - Uncertainty in fractured-rock hydrology
 - Possible future glaciation
- **Natural Barrier**
 - Potentially old groundwater, small head gradients (nominal)
- **Engineered Barriers**
 - Clay-based buffer
 - Corrosion-resistant packaging ($>>10^5$ yr containment within buffer)
 - Extensive international R&D

- **Multi-Container Overpack Strategy for HLW**
 - Fewer (<5,000) less costly, corrosion-resistant overpacks
 - Unshielded
- **In-Drift Axial Emplacement**
 - Minimize excavated volume, facilitate handling of heavy packages
 - Small package-package spacing (e.g., 2 m)
 - Backfilling strategy: Packages placed on plinths of compacted clay, then backfilled with pelletized clay
 - Pre-constructed buffer strategy: Each package location prepared with compacted clay blocks and a steel liner; packages slide into liner (e.g., NUHOMS)
- **Clay-Based Backfill and Sealing of Accesses**
- **Constructability Challenges**
 - Remote operation in unshielded environments
 - Keeping buffer blocks dry
 - Handling large, heavy packages (up to 2 m OD × 5 m L)

- **Bedded or Domal Salt Constructability**
 - Opening stability
 - Salt backfill
- **Superior Heat Dissipation**
- **Nominal and Disturbed Performance**
 - Releases dominated by human intrusion
- **Natural Barrier**
 - Insignificant groundwater abundance and mobility (nominal)
 - Brine saturation (esp. human intrusion)
- **Engineered Barriers**
 - Backfill and seals
 - Robust containment during operations
 - Emplacement borehole behavior (e.g., heavy liners)


- **Direct Disposal of Pour Canisters**
 - HLW glass stability in operational environment
- **Robust Overpacking of Other Waste Forms**
 - Carbon steel overpack (e.g., DSNF)
- **Just-in-Time Drift Construction**
 - Minimize handling of crushed salt
- **In-Drift Emplacement (axial or transverse)**
 - Relatively small, lightweight canisters (e.g., 6 MT HLW)
 - Immediate backfilling with crushed salt
- **Constructability Challenges**
 - Remote operation in unshielded environments

Preliminary Results Thermal Analysis


Inventory

- Dimensions
- Quantity
- Thermal output

Design Concepts

- Packing spacing

References

Carter, J. T., Luptak, A. J., Gastelum, J., Stockman, C., and Miller, A. 2013. Fuel Cycle Potential Waste Inventory for Disposition, FCRD-USED-2010-000031 Rev 6.

DOE (US Department of Energy) 2014. Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel. October, 2014.

DOE (US Department of Energy), 2015. Report on Separate Disposal of Defense High-Level Radioactive Waste, March 2015.

Hardin, E., J. Blink, H. Greenberg, M. Sutton, M. Fratoni, J. Carter, M. Dupont and R. Howard 2011. Generic Repository Design Concepts and Thermal Analysis (FY11). FCRD-USED-2011-000143 Rev. 2. December, 2011. U.S. Department of Energy, Used Fuel Disposition R&D Campaign.

SNL (Sandia National Laboratories) 2014. Evaluation of Options for Permanent Geologic Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy. FCRD-UFD-2013-000371. SAND2014-0187P; SAND2014-0189P. Revision 1. Albuquerque, New Mexico: Sandia National Laboratories.