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Summary: A first-ever systematic study of L-shell ) i
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opacity is underway and will provide new understanding
of atomic processes in hot, dense plasmas.
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- New measurements of nickel and 1o [ SCO-RCGZ model
chromium opacity support the accuracy of 30 - Ni @ Anchor 2
previous iron data and provide important 20 |-
clues on data-model discrepancies. or |
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Models for solar interior structure disagree with ) i,

helioseismology observations.
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Convection-Zone (CZ) Boundary

Models are off by 10-30 o

Models depend on:

« Composition (revised in 2005%)
 EOS as a function of radius
* The solar matter opacity

* Nuclear cross sections

Question: Is opacity uncertainty the cause of the disagreement?

*M. Asplund et al, Annu. Rev. Astro. Astrophys. 43, 481 (2005).



Iron opacity measurements help determine if ) e

opacity model inaccuracies cause the solar problem
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Iron contributes about 20% of the total solar
opacity at the convection/radiation boundary
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CZB condition:
T,=182 eV
n,=9x10%2 cm=3

Fe

opacity fraction

Atomic Number
CEA OPAS calculation

1Badnell et al., MNRAS (2005)

2Seaton et al., MNRAS (1994)



The Z-pinch Dynamic Hohlraum provides a bright  (dh) &
X-ray source to heat and backlight opacity samples.

Framing Pinhole Camera Images

Hohlraum characteristics

« Peak current 26 MA

« Radiation Temp >250 eV during heating phase

e Pulse duration ~3.5 ns FWHM

« Radiation Temp ~350 eV during stagnation phase
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The Z-pinch Dynamic Hohlraum provides a bright  (dh) &
X-ray source to heat and backlight opacity samples.

Framing Pinhole Camera Images
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The Z opacity platform satisfies many challenging (g i,
. . . Laboratories
requirements for reliable opacity measurements.
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Requirements:

Heat Fe to uniform conditions = Powerful radiation
Measure Fe conditions independently—> Mg spectra
Bright backlight - 350 eV Planckian at stagnation

Measure transmission accurately—> multiple spectra

Z x-ray source
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The Z opacity platform satisfies many challenging (g i,
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requirements for reliable opacity measurements.
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The Z opacity platform satisfies many challenging (g i,

requirements for reliable opacity measurements.

Z-axis
KAP crystal, |
X-ray film A -9° | 490 é
slits
aperture
Half-moon

sample

Z x-ray source
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Transmission: T, =1,/ | , | | Opacity: k, =-In(T,)/pL

Requirements:

Heat Fe to uniform conditions = Powerful radiation
Measure Fe conditions independently—> Mg spectra
Bright backlight - 350 eV Planckian at stagnation

Measure transmission accurately—> multiple spectra




Hundreds of spectra over multiple shots are used to
assess reproducibility and achieve high precision.

The array of opacity _—
spectrometers is lowered into

Attenuated (I)

Unattenuated (1)

h
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24 spectrarecorded on a single shot

Loisel et al., Rev. Sci. Instrum. (2012)



Mg K-shell spectra are mixed in with the iron to ) i,
determine the plasma conditions.
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Mg'°+ 1s-3p Line Profile
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Inferred plasma conditions systematically depend (g e
on the model used to fit the Mg K-shell spectra
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Mg Hey line shape at n_ = 4e22 e/cc
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lLee et al., JQSRT (1988)

2Mancini et al., Comput. Phys. Commun. (1991)



Increasing the back-side tamper mass increases (g i,
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the sample temperature and density
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Modern best-effort models agree very well with the (g o
Z iIron data at Anchor 1 conditions
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Modern best-effort models disagree with the Ziron (gy) s
data at Anchor 2 conditions
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A solar mixture plasma using Z iron data has ~ 7% (@ )
higher Rosseland mean opacity than using OP iron

OP! solar mix, with Z iron data N
K = 8.16 cm?/g

opacity (cm?/q)
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« A 7% Rosseland increase partially resolves the solar problem, but the
measured iron opacity by itself cannot account for the entire discrepancy

« Other elements and regions deeper in the sun could contribute

193 eV, 3.3 e22 e/cc Asplund09 solar abundances 1Seaton et al., MNRAS (1994)



No systematic error has been found that explains () i
the model-data discrepancy of Fe at Anchor 2

Random error determination: average many spectra from multiple experiments

Systematic error evaluation: Experiment tests; Post-processed simulations

More than eleven different potential systematic errors were investigated:

=

Sample contamination — True opacity potentially lower than inferred opacity
Tamper shadowing _

Fe self emission
Tamper self emission
Extraneous background _

= True opacity potentially higher than inferred opacity

Sample areal density errors
Transmission errors

Spatial non-uniformities True opacity potentially either lower or higher
Temporal non-uniformities [~ than inferred opacity

Departures from LTE
Plasma diagnostic errors

— 21
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1D simulations reproduce the measured conditions  (gy) sk
. oratories
and rule out some systematic errors

Te Ne
[eV] [10%lcm-3] e
2
Data 18243 3143 €
n
C
Simulated 18347 3543 ,*_“—‘ 0.4 Mg
Data - N 0.2 - Simulated data
Model fit
O0EL s s sl s s sl y g s sl a s sl a g gl s
7.0 7.5 8.0 8.5 9.0 9.5
Simulated data: Wavelength [A]
1. Model drive radiation
* 3D view factor code Systematic error investigations:
*  Measured radiation
2. 1-D Helios simulation Following effects are found to be negligible
3. Radiation transport
e Simulated T,(t,z), n.(t,z) * Sample/tamper self-emission
* Backlighter: B,{t,xy) «  Tamper attenuation
4. Add noise

* Time- and space-integration

Nagayama et al, Phys. Rev. E (2016).



1D simulations reproduce the measured conditions  (gy) sk
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Systematic error investigations:

Following effects are found to be negligible up to 12.5 A

* Tamper attenuation

Nagayama et al, Phys. Rev. E (2016).



Incorrect sample areal density or multi-dimensional ) ik
hydrodynamic evolution would impact the opacity
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In-situ areal density inference agrees with pre-shot (g) i,

RBS measurements

Pre-shot Rutherford
backscattered spectrum
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In-situ areal density from strength
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RBS spectrum provided by K. Hubbard and I. Usov, LANL



Measurements of nickel and chromium rule-out ) e
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many systematic uncertainty hypothesis.
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Measurements of nickel and chromium rule-out ) e,
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many systematic uncertainty hypothesis.
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Measurements of nickel and chromium rule-out ) e,

many systematic uncertainty hypothesis.
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Fractional population Fractional population

Fractional population

Measurements of iron, nickel, and chromium i) e,

provide important clues on the underlying physics.
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Measurements of iron, nickel, and chromium
provide important clues on the underlying physics.

Calculated relative populations
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We will continue to scrutinize these results and ) i
. . oratories
extend the measurements. Future work will include:

= Additional Ni and Cr measurements for improved confidence and
precision.

= Additional material thicknesses to complete Beers-law scaling and validate
reproducibility of the results

= Time-gated opacity measurements to rule-out any late-time effects such
as long-lived sample self-emission or other plasma emission that
contributes to the background.
= Each of these effects results in an increase of the measured transmission
(decrease in inferred opacity)

= Also validate time-dependent simulations of sample evolution

= Multi-dimensional radiation-hydrodynamics simulations including the
integrated z-pinch source formation, sample heating, and backlighting.

= Search for effects we aren’t presently considering

= Complementary experiments on the NIF.

= First measurements of Fe at Anchor 1 scheduled for FY17, Anchor 2 in FY18.
33
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opacity is underway and will provide new understanding
of atomic processes in hot, dense plasmas.
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