
1

Hyper-Heuristics to Automatically Target Code to
Computer Architectures

Jesse Hughes

Faculty Advisor

Dr. Daniel Tauritz, Department of Computer Science

Natural Computation Laboratory

March 25, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2016-2954R

2

Abstract

With each new generation of High Performance Computing (HPC) architecture, the gap
between peak theoretical performance and the observed performance is growing. The goal of
this research is to develop a tool to utilize hyper-heuristics to target code to a computational
environment. In order to test this, sorting algorithms will be evolved on several different
architectures. The final solutions will then migrate to all other architectures and their fitnesses
compared. If the natively-evolved algorithms out-perform all others, then it can be concluded
that the tool successfully targeted its solutions to the architecture of origin. This is the first step
towards creating a program-agnostic tool for optimizing code to the native environment. The
results are pending testing on the high performance cluster. If it can be shown that the tool is
able to optimize solutions for the environment, then the door opens to automatically
optimizing entire programs.

1 Introduction

Computing architectures are constantly evolving but software is decreasingly being optimized
for the nuances of these shifting environments. These evolving environments have led to an
increasingly large gap between the theoretical peak performance and the actual observed
performance. Software functionality is the primary focus of programmers across the board, as it
should be: Non-functional properties - power consumption, execution time, and memory
efficiency - are secondary goals and often difficult to integrate into the development cycle. This
is a major failing of the modern software development process: it would be counter-productive
to force programmers to spend time on non-functionality when the time demands are already
so high for purely functional programming.

Furthermore, the layers of abstraction created by compilers, interpreters, and target platform
result in an exceedingly complicated system. Small changes on the source code propagate
downwardly on compilation and lead to starkly different behaviors at execution time [1].
Thusly, there is an apparent need for automated code optimization and targeting. The goal of
this research is to develop and test a tool with hyper-heuristics for automatically optimizing
code as a first step towards the automated optimization of entire programs. By evolving within
the environment to be targeted and using the efficiency metric – run time and cache efficiency
– as the fitness scale, the evolutionary process will be guided by the nuances of that machine.

While code optimization is not a new concept in the field of Evolutionary Computing, targeting
code to an architecture is. This research is performed with the intent of developing a
methodology for exploiting memory hierarchies and other nuances of an HPC architecture.
Once this has been established as feasible, the door will open to optimizing whole programs
and services.

In order to achieve generality, the class of problem to be solved is the Search algorithm. These
algorithms are generally memory-intensive and there exists a large amount of space to explore

3

for optimization. The primitives will start as python “opcodes” which are abstractions of lower-
level assembly functions. If these fail to have the resolution necessary for architecture
exploitation, then the primitives will gradually shift layers of abstraction lower until the
necessary resolution is captured. These macro functions will be an assortment of assembly-like
functions in order to restrict the search space.

Modern compilers and interpreters are built upon layers of abstraction that have given modern
languages the advanced functionality and simplicity programmers have come to expect. With
each additional coupling of functions into macro operations some generalization was
introduced. The sum of all these generalities has led to a wide arsenal of macro functions to
choose from, but has made writing code while targeting specific hardware impractical.

To counter this trend, this hyper-heuristic was developed and tested to explore its potential for
use in architecture-targeted code generation. This would be the first step towards automating
the optimization of entire modules and programs. This would have a significant impact in
almost any area of computation. It would allow for some de-coupling of functional and non-
functional programming paradigms thus enabling developers to more efficiently address the
functionality of their code without forfeiting efficient resource utilization.

2 Implemented Concepts

To create this optimization tool, several different concepts have been implemented from the
field of Evolutionary Computing (EC).

2.1 Evolutionary Algorithm

An evolutionary algorithm (EA) is essentially a way of guiding a population of individuals within
some environment that has limited resources. Competition for these resources creates an
environment of natural selection in which the fittest individuals are more likely to contribute to
the next generation [2].

The average life cycle of an EA can be seen in Figure 1. The EA initializes an initial population of
individuals. These individuals are evaluated and the parents are chosen. Then, the EA performs
recombination and mutation to generate the child population. These are combined with the
general population and from this the survivors for the next generation are chosen. This cycle
continues until the termination criteria is met (often when an individual of the population has
reached peak fitness or the set max number of evaluations has been exceeded).

4

2.2 Genetic Program

A genetic program (GP) is a specific type of EA where, instead of attempting to maximize payoff
of the input to a known model, the intention is to optimize the model itself. This is the case
when both the input and expected output are known, and the model itself is not. These models
are the individuals of the population and their fitness evaluation depends on the quality of their
output with respect to the expected output from a specific input [3]. Genetic programs are
usually represented with primitives in the form of functions, inputs, and outputs in varying
orientations.

2.3 Hyper-Heuristic

A hyper-heuristic is a heuristic (a technique for finding an approximate solution) which searches
a space of heuristics, as opposed to a space of solutions directly [4]. Within our research, the
hyper-heuristics implemented are considered genetic algorithm hyper-heuristics. They are
evolving populations of computer programs represented as arrays. The contents of the indexes
of these arrays correspond to the primitive functions selected for this problem domain.

2.4 Linear Genetic Program

The representation chosen for the genetic program is Linear GP. Linear GP is in contrast to tree
GP where, instead of representing individuals as trees where the nodes are functions and the
leaves inputs, the individual is an array or linear graph [5].

Figure 1: EA Lifecycle

5

3 Related Work

In David R. White, et. al.’s paper, “Evolutionary Improvement of Programs”, it is demonstrated
that it is possible to optimize functions to perform better than their base counterparts [1]. It is
shown that, using hyper-heuristics and seeding, it is possible to generate algorithms with non-
obvious optimizations. These optimizations are placed into the domain of “non-functional”
improvements: lower power consumption, better memory utilization, and execution time.
What this research has failed to do is to show whether or not similar methods actually target
the architecture they are evolved upon. The question also arises whether it is possible to better
tune these systems to focus on memory hierarchy. This research directly addresses this
question and attempts to show that architectures can be targeted with hyper-heuristics.

In work performed by Eric Schulte et. al., titled, “Post-compiler Software Optimization for
Reducing Energy”, it was shown that compiled code can be optimized for lowering power
consumption [6].Their approach, coined as a Genetic Optimization Algorithm, targets
measurable non-functional aspects of software execution that can be improved without
altering functional requirements. While novel, this approach limits to what extent the code can
be optimized. Once compiled, the functional flow of the algorithm is locked into place. Any
novel deviations algorithmically can no longer occur and possible improvements are therefore
lost. My research is operating on raw code in an attempt to find useful algorithmic and data-
handling approaches for improving upon the non-functional aspects of the program.

With respect to HPC systems specifically, Thomas Weise et. al. performed research on the
possibility of evolving distributed algorithms using genetic programming (GP) [7]. It was shown
that GP is capable of improving the performance of software on distributed systems. This
demonstrates that the networking hierarchy within distributed systems can be exploited, but
their work fails to analyze what benefits targeting the processor hierarchy specifically. The
major difference between my research and previous work is determining whether or not a
hyper-heuristic is capable of performing optimization on a low enough level to exploit the
individual nuances of each environment. With this knowledge in hand, it will be possible to
explore new avenues of automated hardware targeting in HPC systems and beyond.

The driving force behind much of the Genetic Programming community’s interest in software
optimization stems from the research done by William B. Langdon and Mark Harman. In their
work, they found that they were able to optimize a software package of 50,000 lines of C++
code to gain a performance increase by a factor of 70 (the program ran 70X faster after
optimization with their methodology than it did compiled from source) [8]. This further
demonstrates that modern compilers are failing to optimize code to its full potential. Langdon’s
work is the proof that software can be optimized, but not that it can be targeted. The purpose
of this research is to take the first step towards optimizing whole programs with the
architecture being the target environment and fitness metric.

6

4 Methodology

To test the extent to which a hyper-heuristic can optimize code to an architecture a problem
space with significant memory requirements and room for optimization will be used. Another
criterion for this problem class is that, due to the amount of computation to be devoted to
evolution, it needs to be calculable in linear time. With these factors in mind, the problem class
chosen is sorting.

This tool is intentionally problem-agnostic. Linear GP will be utilized due to its ease of
implementation and implicit parsimony pressure on non-effective code [5]. This parsimony
pressure will remove operations that have no effect on the output and performance quickly
throughout the sort.

In order to remain problem-agnostic, the fitness function and primitives will be kept separate
from the structure of the hyper-heuristic. This way, testing a different problem class will be as
simple as swapping out fitness functions and potentially the primitives.

This tool will be tested on The Forge at Missouri University of Science and Technology. The
Forge is the queueing system available to all students for accessing the school’s high-
performance computing cluster. In Table 1, the three different architectures present are shown.
The two AMD processors are not likely to show large differences in performance due to their
similarities. The biggest differences are expected to occur between the two AMD processors
and the Intel Processor due to their architectural differences.

Processor Type Version

AMD Opteron 6174

AMD Opteron 6238

Intel Xeon E5-2698 v3
Table 1: Processor List

For the first phase, jobs will run until at least 30 optimizations have been performed on each of
the architectures. A table of host names with their respective processors will be used to specify
where the job is run and will distribute their operation across as many different individual
nodes as possible. This will be to ensure that any manufacturing or age-related defects in the
processors have minimal effect on the results.

7

During evolution, the hyper-heuristic will be assumed to have converged once the difference
between average fitness of the last 100 solutions and the current individual is near zero. At this
point, the global best solution will be placed into a file and the program terminated.
Convergence is guaranteed to occur due to the limits of the environment being the
performance ceiling – solutions cannot improve their performance indefinitely.

In the second phase, the generated solutions will be pitted against each other on each of the
architectures. Once each solution has been run on each of the processors, the results will be
collected for analysis. In order to ensure accurate data, each solution will be tested on a data
set of 30 different arrays and their performance averaged. An abstraction of this solution
trading is shown in Figure 2.

Once the data has been collected, it will be analyzed. The results from the second phase of
testing will be compared to each other within the same computing architecture. The
performance of each of the 30 solutions will be averaged across their respective average
performance across the test data sets. These averages (of the 30 solutions) will be compared to
the others tested in the same environment.

If the native solutions (those evolved on the architectures in question) are found to have
performed significantly better than those evolved within the other two environments, then it
can effectively be concluded that the code was optimized to the architecture. This is only if this
significance exists across all three environments (that is, there is no set of 30 solutions better
on all architectures, etc.)

Figure 2: Abstraction of Solution Trading Between Processors

8

5 Preliminary Results

Preliminary testing of sorting algorithm generation has shown that the hyper-heuristic is
capable of successfully generating working solutions. Using the Hamming distance as a fitness
function, it has produced solutions capable of successfully sorting arrays using the chosen set of
primitive functions. An example solution is shown in Figure 3. The array “instrs” is the
representation of the individual’s primitives and the loop below it is the translator for this array
to the function calls each number represents. The numbers and their mapped primitives can be
seen in Table 2.

import os

import sys

sys.path.insert(0, "/mnt/dfs/jbhf39/Users/jbhf39/Research/HyHeCoAr/python_lgp")

import instructions

data = [47, 16, 30, 81, 37, 4, 36, 64, 17, 15, 69, 60, 18, 2, 96, 38, 25, 75, 80, 31, 72,

59, 92, 10, 41, 66, 26, 52, 98, 42, 44, 20, 68, 7, 54, 12, 71, 9, 33, 77, 73, 50, 99, 13,

93, 89, 1, 94, 19, 35, 14, 91, 95, 49, 70, 6, 65, 48, 34]

instrs = [2, 0, 1, 7, 5, 7, 5, 5, 3, 0, 0, 6, 7, 5]

_continue = True

program_counter = 0

main_program = instructions.Instructions(data)

while _continue:

 main_program.call(instrs[program_counter])

 program_counter = main_program.get_instr_index()

 if(program_counter >= len(instrs)):

 _continue = False

print "sorting fitness:" + str(main_program.get_sortedness())

Figure 3: Generated solution

Genotype
Number

Corresponding
Function

Action

0 min Sets the ‘j’ counter to the index of the smallest valued index in
the array at an index greater or equal to ‘i’

1 swap Swaps the values of the array at index ‘i’ and ‘j’

2 inc_i Increments ‘i’ by one

3 comp_i If the value at index ‘i’ is less than the value at last index then
set program counter to zero

4 reset_reg Set ‘i’ and ‘j’ equal to zero

5 inc_j Increments ‘j’ by one

6 comp_j If the value at index ‘j’ is less than the value at the last index
then set the program counter to zero

7 max Sets the ‘j’ counter to the index of the largest valued index in
the array at an index greater or equal to ‘i’

Table 2: Primitives and Numerical Mappings

9

During testing, Valgrind (a programming tool for memory debugging, memory leak detection,
and profiling) was used to easily simulate the cache sizes of a processor. By running the
solutions within this program, it was possible to simulate cache misses (calling a variable that is
not in the faster memory). This data created a search gradient to utilize for ranking the
architectural efficiency of each solution.

In Figure 4, the number of evaluations performed versus the average and max fitness of the
population are plotted from a standard experiment using Valgrind. The fitness value is a unit-
less combination of both the sorting proficiency of the individual as well as its memory
efficiency. The graph shows a sharp increase in fitness until the population reaches a local
maximum and then makes incremental improvements for the remainder of the experiment.

The major drawback of Valgrind is the high overhead it adds to the simulation. Though it
provided a useful metric to use in place of actual wall time, it is by no means a perfect
simulation. It forces some amount of estimation and abstraction when interpreting the data for
the fitness calculation. This highlights the necessity for actual testing on the cluster and on
physical hardware.

6 Discussion

Pending the results from testing on the High Performance Cluster, it can be shown that
targeting an architecture is possible. The methodology used can then be utilized to further
automate the optimization of entire programs to an architecture. This automation would allow
programmers to de-couple the functional and non-functional aspects of their development
cycles. During the coding stages of development, the focus of coding would be on satisfying the
functional constraints of the project. After these were met, the code would presumably be

Figure 4: Evaluations vs. Fitness

0

20000

40000

60000

80000

100000
7

5

4
2

5

7
2

5

1
0

7
5

1
4

7
5

1
8

7
5

2
2

7
5

2
6

7
5

3
0

7
5

3
5

2
5

3
9

2
5

4
3

7
5

4
7

7
5

5
1

7
5

5
6

2
5

6
0

2
5

6
4

7
5

6
8

7
5

7
2

7
5

7
7

2
5

8
1

2
5

8
5

2
5

8
9

7
5

9
3

7
5

9
8

2
5

Fi
tn

es
s

(1
0

0
0

0
0

 b
ei

n
g

m
ax

im
u

m
)

Evaluations

Evaluations vs. Fitness

 Average (n = 50) Max

10

deployed. In these environments, it would be possible to then utilize this tool to optimize the
code to the architecture it would be running upon.

7 Future Work

The hope of this research is that it will act as a fundamental proof-of-concept to set the stage
for the next phase of investigation. This phase will be testing the scalability of this methodology
to entire libraries and programs. The biggest challenge in transitioning from this phase of
research would be determining what level of code granularity would be most effective for
optimization.

In addition, more work can be performed on the sorting fitness algorithm. While using the
Hamming distance provides insight into the quality of the sort, it gives misleading results for
many edge cases that more sophisticated algorithms can capture.

8 Acknowledgements

Acknowledgements go out to my faculty advisor, Dr. Daniel Tauritz and Dr. William Siever from
Western Illinois University for their guidance and support throughout my experience on this
project. I’d also like to thank Rebecca Curtis for laying much of the groundwork for this project
and Ryan Wood for his incredible technical assistance and contributions to this project.

11

References

[1] D. R. White, A. Arcuri and J. A. Clark, "Evolutionary Improvement of Programs," IEEE Transactions on

Evolutionary Computation, vol. 15, no. 4, pp. 515-538, August 2011.

[2] A. E. Eiben and J. E. Smith, "What is an Evolutionary Algorithm?," in Introduction to Evolutionary

Computing, New York, Springer-Verlag Berlin Heidelberg, 2007, pp. 15-35.

[3] A. E. Eiben and J. E. Smith, "Genetic Programming," in Introduction to Evolutionary Computing, New

York, Springer-Verlag Berlin Heidelberg, 2007, pp. 101-114.

[4] P. Ross, "Hyper-heuristics," in Search Methodologies: Introductory Tutorials in Optimization and

Decision Support Techniques, Boston, Kluwer, 2005, pp. 529-556.

[5] M. Brameier, "On Linear Genetic Programming," Dissertation, University of Dortmund, Dortmund,

Germany, 2004.

[6] E. Schulte, J. Dorn, S. Harding, S. Forrest and W. Weimer, "Post-compiler Software Optimization for

Reducing Energy," Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 639-652, March 2014.

[7] T. Weise and K. Tang, "Evolving Distributed Algorithms with Genetic," IEEE Transactions on

Evolutionary Computation, vol. 16, no. 2, pp. 242-265, April 2012.

[8] W. B. Langdon and M. Harman, "Optimizing Existing Software with Genetic Programming," IEEE

Transactions on Evolutionary Computation, vol. 19, no. 1, pp. 118-135, February 2015.

