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Optimization under uncertainty
Surrogate model

Optimization under uncertainty

We consider an optimization problem under uncertainty as follows:

min
x∈X

Q(x, ξ) (1)

• X ⊂ Rn is a deterministic set of feasible solutions

• ξ ∈ S ⊂ Rm with a distribution F where S is the support of ξ

• Q(x, ξ) is a cost function in x that depends on a random
vector ξ

J.Cheng et al. Surrogate-based Optimization SIAM UQ 2016 3 / 25
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Optimization under uncertainty

Robust optimization

When only the support S is known, its worst-case problem is:

(RO) min
x∈X

max
ξ∈S

Q(x, ξ) (2)

Stochastic optimization

When the distribution F is known, one popular model is as follows:

(SP) min
x∈X

EF [Q(x, ξ)] (3)
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Optimization under uncertainty

Distributionally robust optimization

When the distribution F is partially known, such as support, first
and second moments, we have anther optimization problem:

(DRO) min
x∈X

max
F∈D

EF [Q(x, ξ)] (4)

• D is an ambiguity set of F that encompasses the partial
information on F , such as support, first and second moments.
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Surrogate model

Why surrogate modeling?

• For some applications, the evaluation of the objective and
constraint functions is computationally expensive

Idea

• Constructing approximation models, known as surrogate
models, that mimic the behavior of the target model as closely
as possible while being computationally cheaper to evaluate
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Optimization under uncertainty
Surrogate model

Polynomial model

Polynomials

A general polynomial with degree d ∈ Z+:

H(ξ) =
∑
|a|≤d

haξ
a (5)

• ha is the coefficient and a ∈ Zm
+

• ξa = ξa1
1 ξ

a2
2 ...ξ

am
m

• |a| =
∑m

i=1 ai
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Distributionally robust optimization

We recall the targeted distributionally robust optimization
problems as follows:

min
x∈X

max
F∈D

EF [Q(x, ξ)] (6)

G(x) = max
F∈D

EF [H(x, ξ)] (7a)

s.t. Q(x, ξ) ≤ H(x, ξ), ∀ξ ∈ S (7b)

• H(x, ξ) strongly dominates function Q(x, ξ) on the support S
• maxF∈D EF [Q(x, ξ)] ≤ G(x)

• minx∈X G(x) provides an upper bound for problem (10)
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Surrogate model

We focus on polynomial surrogate models with degree d ∈ Z+ for
function Q(x, ξ), i.e.,

H(x, ξ) =
∑
|a|≤d

ha(x)ξa (8)

• Zero-degree polynomial surrogate: H(x, ξ) = h0(x)

• First-degree polynomial surrogate: H(x, ξ) = h0(x) + h1(x)T ξ

• Second-degree polynomial
surrogate:H(x, ξ) = h0(x) + h1(x)T ξ + ξTh2(x)ξ

where h0(x) ∈ R, h1(x) is a vector and h2(x) is a matrix.
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Robust optimization

When d = 0, the surrogate model becomes

min
x∈X

h0(x) (9a)

s.t. Q(x, ξ) ≤ h0(x), ∀ξ ∈ S (9b)

which is the robust variant of problem (3).
Remark: it also shows that: the RO problem is more conservative
than the DRO problem.
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Distributionally robust optimization

We recall the distributionally robust variant of problem (3)

min
x∈X

max
F∈D

EF [Q(x, ξ)] (10)

where D is an ambiguity set of F .
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Distributionally robust optimization

Assumption 1

The distributional uncertainty set accounts for information about
the convex support S, mean µ in the strict interior of S, and an
upper bound Σ � 0 on the covariance matrix of the random vector
ξ

D(S, µ,Σ) =

F

∣∣∣∣∣∣
P(ξ ∈ S) = 1
EF [ξ] = µ
EF [(ξ − µ)(ξ − µ)T ] � Σ

 . (11)
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Distributionally robust optimization

Theorem

Under Assumption 1, if Q(x, ξ) is F -integrable for any F ∈ D and
H(x, ξ) is convex in ξ for any x ∈ X, then problem (7) with the
surrogate model of second-degree polynomial is equivalent to the
distributionally robust optimization, i.e.,
minx∈X maxF∈D EF [Q(x, ξ)].
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Sketch of Proof

• Second-degree polynomial,
H(x, ξ) = h0(x) + h1(x)T ξ + ξTh2(x)ξ

• Since H(x, ξ) is convex in ξ for any x ∈ X, we have h2(x) � 0.

• Assumption 1 implies that EF ξξ
T � Σ + µµT

• The subsequent formulation of problem (7) is

min
x,h0(x),h1(x),h2(x)

h0(x) + h1(x)Tµ+ (Σ + µµT ) • h2(x) (12a)

s.t. Q(x, ξ) ≤ h0(x) + h1(x)T ξ + ξTh2(x)ξ, ∀ξ ∈ S
(12b)

h2(x) � 0, h0(x) ∈ R, h1(x) ∈ Rm, (12c)

x ∈ X (12d)

where “•” is the inner product defined by A • B =
∑

i ,j AijBij .
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Sketch of Proof

With the results of Lemma 1 in [1], problem (10) is equivalent to
the following problem:

min
x,r ,v ,V

r + vTµ+ (Σ + µµT ) • V (13a)

s.t. Q(x, ξ) ≤ r + vT ξ + ξTV ξ, ∀ξ ∈ S (13b)

V � 0, r ∈ R, v ∈ Rm (13c)

x ∈ X (13d)

It is easy to find that problem (12) is equivalent to problem (13).
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Distributionally robust optimization

We consider a more general ambiguity set, the same as that of [1]:

Assumption 2

The distributional uncertainty set accounts for information about
the convex support S, mean µ in the strict interior of S, and an
upper bound Σ � 0 on the covariance matrix of the random vector
ξ

D(S, µ,Σ) =

F

∣∣∣∣∣∣
P(ξ ∈ S) = 1
(EF [ξ]− µ)TΣ−1(EF [ξ]− µ) ≤ ρ1

EF [(ξ − µ)(ξ − µ)T ] � ρ2Σ

 . (14)

where ρ1, ρ2 ≥ 0.
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Distributionally robust optimization

Accordingly,the corresponding polynomial surrogate problem is:

min
x∈X,h0(x),h1(x),h2(x)�0

max
EF [ξ],EF [ξξT ]

h0(x)+

h1(x)TEF [ξ] + EF [ξξT ] • h2(x) (15a)

s.t. Q(x, ξ) ≤ h0(x) + h1(x)T ξ + ξTh2(x)ξ, ∀ξ ∈ S
(15b)

(EF [ξ]− µ)TΣ−1(EF [ξ]− µ) ≤ ρ1 (15c)

EF [(ξ − µ)(ξ − µ)T ] � ρ2Σ (15d)

J.Cheng et al. Surrogate-based Optimization SIAM UQ 2016 17 / 25
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Theorem

Under Assumption 2, if Q(x, ξ) is F -integrable for any F ∈ D, then
the corresponding polynomial surrogate problem, i.e, problem (15)
is equivalent to the distributionally robust optimization, i.e.,
minx∈X maxF∈D EF [Q(x, ξ)].
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Sketch of Proof

• Given x ∈ X, h0(x), h1(x) and h2(x) � 0, the inner maximum
problem of problem (15) is equivalent to the following form:

max
p,P

h0(x) + h1(x)Tp + P • h2(x) (16a)

s.t. (p− µ)TΣ−1(p− µ) ≤ ρ1 (16b)

ppT � P � ρ2Σ + pTµ+ µpT − µµT (16c)

where p and P are substitutes for the variables EF [ξ] and
EF [ξξT ] respectively
the first inequality of constraint (16c) results from the fact
EF [ξ]EF [ξT ] � EF [ξξT ].
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Sketch of Proof

• Since h2(x) � 0, P∗ = ρ2Σ + pTµ+ µpT − µµT is a valid
optimal solution since it maximizes the objective.

• Then after replacing q = Σ
−1
2 (p− µ), problem (16) is

simplified to

max
q

h0(x) + h1(x)Tµ+ µTh2(x)µ+ ρ2Σ • h2(x)

+ [h1(x)T + 2µTh2(x)]Σ
1
2q (17a)

s.t. qTq ≤ ρ1 (17b)
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Sketch of Proof

• By Cauchy-Schwarz inequality

max
qTq≤ρ1

[h1(x)T + 2µTh2(x)]Σ
1
2q ≤ √ρ1||Σ

1
2 [h1(x) + 2h2(x)µ]||

The equality is satisfied when q∗ =
√
ρ1

Σ
1
2 [h1(x)+2h2(x)µ]

||Σ
1
2 [h1(x)+2h2(x)µ]||

.

• The surrogate problem is equivalent to

min
x,h0(x),h1(x),h2(x)

h0(x) + h1(x)Tµ+ (µµT + ρ2Σ) • h2(x)

+
√
ρ1||Σ

1
2 [h1(x) + 2h2(x)µ]||

s.t. Q(x, ξ) ≤ h0(x) + h1(x)T ξ + ξTh2(x)ξ, ∀ξ ∈ S
h2(x) � 0, h0(x) ∈ R, h1(x) ∈ Rm, x ∈ X

which is the same as problem (5) in [1].
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DRO with higher-order moments

Suppose we know the higher-oder moment information, i.e.,
Ma = E[ξa] = E[ξa1

1 ξ
a2
2 ...ξ

am
m ], a ∈ A ⊂ Nm. The corresponding

polynomial surrogate of problem (10) is

min
x∈X,h

∑
a∈A

haMa (19a)

s.t. Q(x, ξ) ≤
∑
a∈A

haξ
a, ∀ξ ∈ S (19b)

which is also the dual problem of the DRO with the moment
information ([? ]).
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Summary

Conclusions and Future work

• We present a surrogate-based approximation for the general
distributionally robust optimization(DRO) problem.

• We show that the surrogate-based approximation provided an
upper bound of the DRO minimization problem.

• We prove that when the surrogate is polynomial, the
surrogate-based approximation becomes exact for the DRO
problem with support, first and second moments information.

• We provide a different angel to approximate DRO problem not
from the primal-and-dual perspective ([2, 4]).
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Thank you for your attention!
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