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Introduction
Optimization under uncertainty
Surrogate model

Optimization under uncertainty

We consider an optimization problem under uncertainty as follows:

min Q(x,¢) (1)

e X C R" is a deterministic set of feasible solutions
e £ €5 C R™ with a distribution F where S is the support of ¢

e Q(x,£) is a cost function in x that depends on a random
vector &
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Optimization under uncertainty

Robust optimization

When only the support S is known, its worst-case problem is:

(RO) min max Q(x,&) (2)

x€X €€S

J.Cheng et al. Surrogate-based Optimization SIAM UQ 2016 4 /25



Introduction
Optimization under uncertainty
Surrogate model

Optimization under uncertainty

Robust optimization
When only the support S is known, its worst-case problem is:

(RO) min max Q(x,&) (2)

xeX E€S

Stochastic optimization
When the distribution F is known, one popular model is as follows:

(SP)  mip EF[Q(x, &) ©
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Optimization under uncertainty

Distributionally robust optimization

When the distribution F is partially known, such as support, first
and second moments, we have anther optimization problem:

(DRO)  min max EF[Q(x, ¢)] (4)

e D is an ambiguity set of F that encompasses the partial
information on F, such as support, first and second moments.
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Surrogate model

Why surrogate modeling?

e For some applications, the evaluation of the objective and
constraint functions is computationally expensive
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Surrogate model

Why surrogate modeling?
e For some applications, the evaluation of the objective and
constraint functions is computationally expensive

Idea
e Constructing approximation models, known as surrogate
models, that mimic the behavior of the target model as closely
as possible while being computationally cheaper to evaluate
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Polynomial model

Polynomials
A general polynomial with degree d € Z,:

H(E) = ) hat? (5)

laj<d

® h, is the coefficient and a € ZT
o =Rl
o la|=>"a
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Polynomial model for Optimization under uncertainty

Distributionally robust optimization

We recall the targeted distributionally robust optimization
problems as follows:

min max EF[Q(x, €] (6)
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Polynomial model for Optimization under uncertainty

Distributionally robust optimization

We recall the targeted distributionally robust optimization
problems as follows:

min max EF[Q(x, €] (6)
G(x) = max Er[H(x,£)] (7a)
st. Q(x, &) < H(x,&), VEes (7b)

e H(x,&) strongly dominates function Q(x, &) on the support S

* maxrep EF[Q(x,§)] < G(x)
e mingex G(x) provides an upper bound for problem (10)
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Polynomial model for Optimization under uncertainty

Surrogate model

We focus on polynomial surrogate models with degree d € Z, for
function Q(x, &), i.e.,

H(x,£) = ) ha(x)& (8)

la|<d

e Zero-degree polynomial surrogate: H(x,&) = ho(x)
e First-degree polynomial surrogate: H(x, &) = ho(x) + h1(x)T¢

e Second-degree polynomial
surrogate:H(x, &) = ho(x) + h1(x) 7€ + €T ha(x)¢&
where ho(x) € R, hi(x) is a vector and h(x) is a matrix.
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Polynomial model for Optimization under uncertainty

Robust optimization

When d = 0, the surrogate model becomes

)r(nei)rg ho(x) (9a)
st Q(x,8) < hy(x), VEeS (9b)

which is the robust variant of problem (3).
Remark: it also shows that: the RO problem is more conservative
than the DRO problem.
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Polynomial model for Optimization under uncertainty

Distributionally robust optimization

We recall the distributionally robust variant of problem (3)

min max EF[Q(x, €] (10)

where D is an ambiguity set of F.

J.Cheng et al. Surrogate-based Optimization SIAM UQ 2016 11 /25



Polynomial model for Optimization under uncertainty

Distributionally robust optimization

Assumption 1

The distributional uncertainty set accounts for information about
the convex support &, mean p in the strict interior of S, and an
upper bound ¥ > 0 on the covariance matrix of the random vector

PeS)=1
EF[(6 —p)(€—p)T] =X
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Polynomial model for Optimization under uncertainty

Distributionally robust optimization

Theorem

Under Assumption 1, if Q(x,&) is F-integrable for any F € D and
H(x,£) is convex in & for any x € X, then problem (7) with the
surrogate model of second-degree polynomial is equivalent to the
distributionally robust optimization, i.e.,

minyex maxrep EF[Q(x, )]
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e Second-degree polynomial,
H(x, &) = ho(x) + hi(x) & + €T hy(x)€
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e Second-degree polynomial,
H(x,€) = ho(x) + h1(x) 7€ + €T ha(x)¢
e Since H(x,&) is convex in £ for any x € X, we have hy(x) = 0.
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Sketch of Proof

e Second-degree polynomial,

H(x, &) = ho(x) + hi(x) & + €T hy(x)€
e Since H(x,&) is convex in £ for any x € X, we have hy(x) = 0.
e Assumption 1 implies that Epé¢T < ¥ + pup”
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e Second-degree polynomial,
H(x,€) = ho(x) + h1(x) 7€ + €T ha(x)¢
e Since H(x,&) is convex in £ for any x € X, we have hy(x) = 0.
e Assumption 1 implies that Epé¢T < ¥ + pup”
e The subsequent formulation of problem (7) is
o) () (E 4 ") o hal) (122)
st Q(x,€) < ho(x) + m(x)TE+ETh(x)E, VEES

(12b)
ha(x) = 0, ho(x) € R, hi(x) € R™, (12¢)
xe X (12d)

where “o” is the inner product defined by Ae B =3, . A;Bj;.
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Polynomial model for Optimization under uncertainty

Sketch of Proof

With the results of Lemma 1 in [1], problem (10) is equivalent to
the following problem:

minv r+vip+(Z4+ppn’)eV (13a)
X,r,v,

st Q&) <r+vie4+eTve, veeS (13b)

V>=0,reR,veR™ (13¢)

xeX (13d)

It is easy to find that problem (12) is equivalent to problem (13).
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Polynomial model for Optimization under uncertainty

Distributionally robust optimization

We consider a more general ambiguity set, the same as that of [1]:

Assumption 2

The distributional uncertainty set accounts for information about
the convex support &, mean p in the strict interior of S, and an
upper bound £ > 0 on the covariance matrix of the random vector

§
PeS)=1
D(S,1,T) = { F| (Brld] - ) S Eele] =) < ¢ . (19)
Er[(€ — p)(€—p)T] = poX

where p1, p2 > 0.
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Polynomial model for Optimization under uncertainty

Distributionally robust optimization

Accordingly,the corresponding polynomial surrogate problem is:

min max _ ho(x)+
x€X,ho(x),h1(x),h2(x)=0  Er[¢],E£[6€T]
hi(x) "EE[¢] + EF[€T] @ ho(x) (152)
st Q(x, &) < ho(x) + hi(x)Te+ETh(x)E, VeesS
(15b)
(Er[€] = )= H(EFE] — 1) < ;1 (15¢)
Er[(€ — p) (€ — )] = poX (15d)
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Polynomial model for Optimization under uncertainty

Theorem

Under Assumption 2, if Q(x,§) is F-integrable for any F € D, then
the corresponding polynomial surrogate problem, i.e, problem (15)
is equivalent to the distributionally robust optimization, i.e.,
minkex maxrep EF[Q(x,&)].
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e Given x € X, ho(x), h1(x) and hp(x) = 0, the inner maximum
problem of problem (15) is equivalent to the following form:

max ho(x) + hi(x)"p + P e hy(x) (16a)
st. (p—w) T p—p)<m (16b)

pp’ P = +p p+up’ —pu’  (16¢)

where p and P are substitutes for the variables E£[¢] and
Er[£€T] respectively

the first inequality of constraint (16¢) results from the fact
Er[€]EF[ET] < EF[€€T].
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e Since ho(x) = 0, P* = poX +p pu+pup” — pu’ is a valid
optimal solution since it maximizes the objective.
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e Since ho(x) = 0, P* = poX +p pu+pup” — pu’ is a valid
optimal solution since it maximizes the objective.

e Then after replacing q = Z%l(p — ), problem (16) is
simplified to

max ho(x) -+ ha(x) T+ 17 ha(R)a + pa¥ @ ho(x)

+ M) T + 26T h(x)]Z2q (17a)
st. q'q<p (17b)
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e By Cauchy-Schwarz inequality

1 1
v [m(x)" + 21T ha(x)]E2q < \/pr||E2 [ (x) + 2ha(x)] |
>pP1

2§ [ () +2ho(x)p]
112 [y (x)+ 2k (x)1] |

The equality is satisfied when q* = |/p1
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Polynomial model for Optimization under uncertainty

Sketch of Proof

e By Cauchy-Schwarz inequality

1 1
v [m(x)" + 21T ha(x)]E2q < \/pr||E2 [ (x) + 2ha(x)] |
>pP1

1
The equality is satisfied when q* = /p1 22 [ (x)+2ho(x)u]
152 [y (x)+2h2 (<)l
e The surrogate problem is equivalent to

ho(x) + hi(x) "o + (up” + p2X) © ha(x)
+ /P12 [ha(x) + 22 (x)u]|

st Q(x, &) < ho(x) + hi(x)TE+ETh(x)E, VeesS
ha(x) = 0, ho(x) € R, hi(x) e R",x € X

min
x,ho(x),h1(x),h2(x)

which is the same as problem (5) in [1].
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Polynomial model for Optimization under uncertainty

DRO with higher-order moments

Suppose we know the higher-oder moment information, i.e.,
M, = E[¢7] = E[¢§]*¢5%...62r],a € A C N™. The corresponding
polynomial surrogate of problem (10) is

Xren)i(r)h ; haMa (19a)
st. Q(x,€) <Y haf?, VEES (19b)
acA

which is also the dual problem of the DRO with the moment
information ([? ]).
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Conclusions

Summary

Conclusions and Future work

e We present a surrogate-based approximation for the general
distributionally robust optimization(DRO) problem.

e We show that the surrogate-based approximation provided an
upper bound of the DRO minimization problem.

e We prove that when the surrogate is polynomial, the
surrogate-based approximation becomes exact for the DRO
problem with support, first and second moments information.

e We provide a different angel to approximate DRO problem not
from the primal-and-dual perspective ([2, 4]).
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