

Surrogate-based model for optimization under uncertainty

Jianqiang Cheng, Richard L.-Y. Chen, Habib Najm, Ali Pinar,
Cosmin Safta, and Jean-Paul Watson

Sandia National Laboratories
Livermore, CA and Albuquerque, NM

SIAM UQ Lausanne, Switzerland
April 5-8, 2016

Outlines

① Introduction

Optimization under uncertainty

Surrogate model

Outlines

① Introduction

Optimization under uncertainty

Surrogate model

② Polynomial model for Optimization under uncertainty

Outlines

① Introduction

Optimization under uncertainty

Surrogate model

② Polynomial model for Optimization under uncertainty

③ Conclusions

Optimization under uncertainty

We consider an optimization problem under uncertainty as follows:

$$\min_{\mathbf{x} \in X} Q(\mathbf{x}, \xi) \quad (1)$$

- $X \subset \mathbb{R}^n$ is a deterministic set of feasible solutions
- $\xi \in \mathcal{S} \subset \mathbb{R}^m$ with a distribution F where \mathcal{S} is the support of ξ
- $Q(\mathbf{x}, \xi)$ is a cost function in \mathbf{x} that depends on a random vector ξ

Optimization under uncertainty

Robust optimization

When only the support \mathcal{S} is known, its worst-case problem is:

$$(RO) \quad \min_{\mathbf{x} \in X} \max_{\xi \in \mathcal{S}} Q(\mathbf{x}, \xi) \quad (2)$$

Optimization under uncertainty

Robust optimization

When only the support \mathcal{S} is known, its worst-case problem is:

$$(RO) \quad \min_{\mathbf{x} \in X} \max_{\xi \in \mathcal{S}} Q(\mathbf{x}, \xi) \quad (2)$$

Stochastic optimization

When the distribution F is known, one popular model is as follows:

$$(SP) \quad \min_{\mathbf{x} \in X} \mathbb{E}_F[Q(\mathbf{x}, \xi)] \quad (3)$$

Optimization under uncertainty

Distributionally robust optimization

When the distribution F is partially known, such as support, first and second moments, we have another optimization problem:

$$(DRO) \quad \min_{\mathbf{x} \in X} \max_{F \in \mathcal{D}} \mathbb{E}_F[Q(\mathbf{x}, \xi)] \quad (4)$$

- \mathcal{D} is an ambiguity set of F that encompasses the partial information on F , such as support, first and second moments.

Surrogate model

Why surrogate modeling?

- For some applications, the evaluation of the objective and constraint functions is computationally expensive

Surrogate model

Why surrogate modeling?

- For some applications, the evaluation of the objective and constraint functions is computationally expensive

Idea

- Constructing **approximation** models, known as surrogate models, that mimic the behavior of the target model as closely as possible while being **computationally cheaper** to evaluate

Polynomial model

Polynomials

A general polynomial with degree $d \in \mathbb{Z}_+$:

$$H(\xi) = \sum_{|\mathbf{a}| \leq d} h_{\mathbf{a}} \xi^{\mathbf{a}} \quad (5)$$

- $h_{\mathbf{a}}$ is the coefficient and $\mathbf{a} \in \mathbb{Z}_+^m$
- $\xi^{\mathbf{a}} = \xi_1^{a_1} \xi_2^{a_2} \dots \xi_m^{a_m}$
- $|\mathbf{a}| = \sum_{i=1}^m a_i$

Distributionally robust optimization

We recall the targeted distributionally robust optimization problems as follows:

$$\min_{\mathbf{x} \in X} \max_{F \in \mathcal{D}} \mathbb{E}_F[Q(\mathbf{x}, \xi)] \quad (6)$$

Distributionally robust optimization

We recall the targeted distributionally robust optimization problems as follows:

$$\min_{\mathbf{x} \in X} \max_{F \in \mathcal{D}} \mathbb{E}_F[Q(\mathbf{x}, \xi)] \quad (6)$$

$$\mathcal{G}(\mathbf{x}) = \max_{F \in \mathcal{D}} \mathbb{E}_F[H(\mathbf{x}, \xi)] \quad (7a)$$

$$\text{s.t. } Q(\mathbf{x}, \xi) \leq H(\mathbf{x}, \xi), \quad \forall \xi \in \mathcal{S} \quad (7b)$$

- $H(\mathbf{x}, \xi)$ strongly dominates function $Q(\mathbf{x}, \xi)$ on the support \mathcal{S}
- $\max_{F \in \mathcal{D}} \mathbb{E}_F[Q(\mathbf{x}, \xi)] \leq \mathcal{G}(\mathbf{x})$
- $\min_{\mathbf{x} \in X} \mathcal{G}(\mathbf{x})$ provides an upper bound for problem (10)

Surrogate model

We focus on polynomial surrogate models with degree $d \in \mathbb{Z}_+$ for function $Q(\mathbf{x}, \xi)$, i.e.,

$$H(\mathbf{x}, \xi) = \sum_{|\mathbf{a}| \leq d} h_{\mathbf{a}}(\mathbf{x}) \xi^{\mathbf{a}} \quad (8)$$

- Zero-degree polynomial surrogate: $H(\mathbf{x}, \xi) = h_0(\mathbf{x})$
- First-degree polynomial surrogate: $H(\mathbf{x}, \xi) = h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi$
- Second-degree polynomial surrogate: $H(\mathbf{x}, \xi) = h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi$

where $h_0(\mathbf{x}) \in \mathbb{R}$, $h_1(\mathbf{x})$ is a vector and $h_2(\mathbf{x})$ is a matrix.

Robust optimization

When $d = 0$, the surrogate model becomes

$$\min_{\mathbf{x} \in X} h_0(\mathbf{x}) \quad (9a)$$

$$\text{s.t. } Q(\mathbf{x}, \xi) \leq h_0(\mathbf{x}), \quad \forall \xi \in \mathcal{S} \quad (9b)$$

which is the robust variant of problem (3).

Remark: it also shows that: the RO problem is more conservative than the DRO problem.

Distributionally robust optimization

We recall the distributionally robust variant of problem (3)

$$\min_{\mathbf{x} \in X} \max_{F \in \mathcal{D}} \mathbb{E}_F[Q(\mathbf{x}, \xi)] \quad (10)$$

where \mathcal{D} is an ambiguity set of F .

Distributionally robust optimization

Assumption 1

The distributional uncertainty set accounts for information about the convex support \mathcal{S} , mean μ in the strict interior of \mathcal{S} , and an upper bound $\Sigma \succ 0$ on the covariance matrix of the random vector ξ

$$\mathcal{D}(\mathcal{S}, \mu, \Sigma) = \left\{ F \left| \begin{array}{l} \mathbb{P}(\xi \in \mathcal{S}) = 1 \\ \mathbb{E}_F[\xi] = \mu \\ \mathbb{E}_F[(\xi - \mu)(\xi - \mu)^T] \preceq \Sigma \end{array} \right. \right\}. \quad (11)$$

Distributionally robust optimization

Theorem

Under Assumption 1, if $Q(\mathbf{x}, \xi)$ is F -integrable for any $F \in \mathcal{D}$ and $H(\mathbf{x}, \xi)$ is convex in ξ for any $\mathbf{x} \in \mathbf{X}$, then problem (7) with the surrogate model of second-degree polynomial is equivalent to the distributionally robust optimization, i.e.,

$$\min_{\mathbf{x} \in \mathbf{X}} \max_{F \in \mathcal{D}} \mathbb{E}_F[Q(\mathbf{x}, \xi)].$$

Sketch of Proof

- Second-degree polynomial,

$$H(\mathbf{x}, \xi) = h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi$$

Sketch of Proof

- Second-degree polynomial,

$$H(\mathbf{x}, \xi) = h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi$$

- Since $H(\mathbf{x}, \xi)$ is convex in ξ for any $\mathbf{x} \in \mathbf{X}$, we have $h_2(\mathbf{x}) \succeq 0$.

Sketch of Proof

- Second-degree polynomial,
$$H(\mathbf{x}, \xi) = h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi$$
- Since $H(\mathbf{x}, \xi)$ is convex in ξ for any $\mathbf{x} \in \mathbf{X}$, we have $h_2(\mathbf{x}) \succeq 0$.
- Assumption 1 implies that $\mathbb{E}_F \xi \xi^T \preceq \Sigma + \mu \mu^T$

Sketch of Proof

- Second-degree polynomial,
$$H(\mathbf{x}, \xi) = h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi$$
- Since $H(\mathbf{x}, \xi)$ is convex in ξ for any $\mathbf{x} \in \mathbf{X}$, we have $h_2(\mathbf{x}) \succeq 0$.
- Assumption 1 implies that $\mathbb{E}_F \xi \xi^T \preceq \Sigma + \mu \mu^T$
- The subsequent formulation of problem (7) is

$$\min_{\mathbf{x}, h_0(\mathbf{x}), h_1(\mathbf{x}), h_2(\mathbf{x})} h_0(\mathbf{x}) + h_1(\mathbf{x})^T \mu + (\Sigma + \mu \mu^T) \bullet h_2(\mathbf{x}) \quad (12a)$$

$$\text{s.t.} \quad Q(\mathbf{x}, \xi) \leq h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi, \quad \forall \xi \in \mathcal{S} \quad (12b)$$

$$h_2(\mathbf{x}) \succeq 0, h_0(\mathbf{x}) \in \mathbb{R}, h_1(\mathbf{x}) \in \mathbb{R}^m, \quad (12c)$$

$$\mathbf{x} \in \mathbf{X} \quad (12d)$$

where “ \bullet ” is the inner product defined by $A \bullet B = \sum_{i,j} A_{ij} B_{ij}$.

Sketch of Proof

With the results of Lemma 1 in [1], problem (10) is equivalent to the following problem:

$$\min_{\mathbf{x}, r, \mathbf{v}, V} \quad r + \mathbf{v}^T \boldsymbol{\mu} + (\boldsymbol{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^T) \bullet V \quad (13a)$$

$$\text{s.t.} \quad Q(\mathbf{x}, \xi) \leq r + \mathbf{v}^T \xi + \xi^T V \xi, \quad \forall \xi \in \mathcal{S} \quad (13b)$$

$$V \succeq 0, r \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^m \quad (13c)$$

$$\mathbf{x} \in \mathbf{X} \quad (13d)$$

It is easy to find that problem (12) is equivalent to problem (13).

Distributionally robust optimization

We consider a more general ambiguity set, the same as that of [1]:

Assumption 2

The distributional uncertainty set accounts for information about the convex support \mathcal{S} , mean μ in the strict interior of \mathcal{S} , and an upper bound $\Sigma \succ 0$ on the covariance matrix of the random vector ξ

$$\mathcal{D}(\mathcal{S}, \mu, \Sigma) = \left\{ F \mid \begin{array}{l} \mathbb{P}(\xi \in \mathcal{S}) = 1 \\ (\mathbb{E}_F[\xi] - \mu)^T \Sigma^{-1} (\mathbb{E}_F[\xi] - \mu) \leq \rho_1 \\ \mathbb{E}_F[(\xi - \mu)(\xi - \mu)^T] \preceq \rho_2 \Sigma \end{array} \right\}. \quad (14)$$

where $\rho_1, \rho_2 \geq 0$.

Distributionally robust optimization

Accordingly, the corresponding polynomial surrogate problem is:

$$\min_{\mathbf{x} \in \mathbf{X}, h_0(\mathbf{x}), h_1(\mathbf{x}), h_2(\mathbf{x}) \succeq 0} \max_{\mathbb{E}_F[\xi], \mathbb{E}_F[\xi \xi^T]} h_0(\mathbf{x}) + \\ h_1(\mathbf{x})^T \mathbb{E}_F[\xi] + \mathbb{E}_F[\xi \xi^T] \bullet h_2(\mathbf{x}) \quad (15a)$$

$$\text{s.t. } Q(\mathbf{x}, \xi) \leq h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi, \quad \forall \xi \in \mathcal{S} \quad (15b)$$

$$(\mathbb{E}_F[\xi] - \mu)^T \Sigma^{-1} (\mathbb{E}_F[\xi] - \mu) \leq \rho_1 \quad (15c)$$

$$\mathbb{E}_F[(\xi - \mu)(\xi - \mu)^T] \preceq \rho_2 \Sigma \quad (15d)$$

Theorem

Under Assumption 2, if $Q(\mathbf{x}, \xi)$ is F -integrable for any $F \in \mathcal{D}$, then the corresponding polynomial surrogate problem, i.e., problem (15) is equivalent to the distributionally robust optimization, i.e.,

$$\min_{\mathbf{x} \in X} \max_{F \in \mathcal{D}} \mathbb{E}_F[Q(\mathbf{x}, \xi)].$$

Sketch of Proof

- Given $\mathbf{x} \in \mathbf{X}$, $h_0(\mathbf{x})$, $h_1(\mathbf{x})$ and $h_2(\mathbf{x}) \succeq 0$, the inner maximum problem of problem (15) is equivalent to the following form:

$$\max_{\mathbf{p}, \mathbf{P}} \quad h_0(\mathbf{x}) + h_1(\mathbf{x})^T \mathbf{p} + \mathbf{P} \bullet h_2(\mathbf{x}) \quad (16a)$$

$$\text{s.t.} \quad (\mathbf{p} - \mu)^T \Sigma^{-1} (\mathbf{p} - \mu) \leq \rho_1 \quad (16b)$$

$$\mathbf{p} \mathbf{p}^T \preceq \mathbf{P} \preceq \rho_2 \Sigma + \mathbf{p}^T \mu + \mu \mathbf{p}^T - \mu \mu^T \quad (16c)$$

where \mathbf{p} and \mathbf{P} are substitutes for the variables $\mathbb{E}_F[\xi]$ and $\mathbb{E}_F[\xi \xi^T]$ respectively

the first inequality of constraint (16c) results from the fact $\mathbb{E}_F[\xi] \mathbb{E}_F[\xi^T] \preceq \mathbb{E}_F[\xi \xi^T]$.

Sketch of Proof

- Since $h_2(\mathbf{x}) \succeq 0$, $\mathbf{P}^* = \rho_2 \Sigma + \mathbf{p}^T \boldsymbol{\mu} + \boldsymbol{\mu} \mathbf{p}^T - \boldsymbol{\mu} \boldsymbol{\mu}^T$ is a valid optimal solution since it maximizes the objective.

Sketch of Proof

- Since $h_2(\mathbf{x}) \succeq 0$, $\mathbf{P}^* = \rho_2 \Sigma + \mathbf{p}^T \mu + \mu \mathbf{p}^T - \mu \mu^T$ is a valid optimal solution since it maximizes the objective.
- Then after replacing $\mathbf{q} = \Sigma^{\frac{-1}{2}}(\mathbf{p} - \mu)$, problem (16) is simplified to

$$\begin{aligned} \max_{\mathbf{q}} \quad & h_0(\mathbf{x}) + h_1(\mathbf{x})^T \mu + \mu^T h_2(\mathbf{x}) \mu + \rho_2 \Sigma \bullet h_2(\mathbf{x}) \\ & + [h_1(\mathbf{x})^T + 2\mu^T h_2(\mathbf{x})] \Sigma^{\frac{1}{2}} \mathbf{q} \end{aligned} \quad (17a)$$

$$\text{s.t.} \quad \mathbf{q}^T \mathbf{q} \leq \rho_1 \quad (17b)$$

Sketch of Proof

- By Cauchy-Schwarz inequality

$$\max_{\mathbf{q}^T \mathbf{q} \leq \rho_1} [h_1(\mathbf{x})^T + 2\mu^T h_2(\mathbf{x})] \Sigma^{\frac{1}{2}} \mathbf{q} \leq \sqrt{\rho_1} \|\Sigma^{\frac{1}{2}} [h_1(\mathbf{x}) + 2h_2(\mathbf{x})\mu]\|$$

The equality is satisfied when $\mathbf{q}^* = \sqrt{\rho_1} \frac{\Sigma^{\frac{1}{2}} [h_1(\mathbf{x}) + 2h_2(\mathbf{x})\mu]}{\|\Sigma^{\frac{1}{2}} [h_1(\mathbf{x}) + 2h_2(\mathbf{x})\mu]\|}$.

Sketch of Proof

- By Cauchy-Schwarz inequality

$$\max_{\mathbf{q}^T \mathbf{q} \leq \rho_1} [h_1(\mathbf{x})^T + 2\mu^T h_2(\mathbf{x})] \Sigma^{\frac{1}{2}} \mathbf{q} \leq \sqrt{\rho_1} \|\Sigma^{\frac{1}{2}} [h_1(\mathbf{x}) + 2h_2(\mathbf{x})\mu]\|$$

The equality is satisfied when $\mathbf{q}^* = \sqrt{\rho_1} \frac{\Sigma^{\frac{1}{2}} [h_1(\mathbf{x}) + 2h_2(\mathbf{x})\mu]}{\|\Sigma^{\frac{1}{2}} [h_1(\mathbf{x}) + 2h_2(\mathbf{x})\mu]\|}$.

- The surrogate problem is equivalent to

$$\begin{aligned} \min_{\mathbf{x}, h_0(\mathbf{x}), h_1(\mathbf{x}), h_2(\mathbf{x})} & h_0(\mathbf{x}) + h_1(\mathbf{x})^T \mu + (\mu \mu^T + \rho_2 \Sigma) \bullet h_2(\mathbf{x}) \\ & + \sqrt{\rho_1} \|\Sigma^{\frac{1}{2}} [h_1(\mathbf{x}) + 2h_2(\mathbf{x})\mu]\| \\ \text{s.t. } & Q(\mathbf{x}, \xi) \leq h_0(\mathbf{x}) + h_1(\mathbf{x})^T \xi + \xi^T h_2(\mathbf{x}) \xi, \quad \forall \xi \in \mathcal{S} \\ & h_2(\mathbf{x}) \succeq 0, h_0(\mathbf{x}) \in \mathbb{R}, h_1(\mathbf{x}) \in \mathbb{R}^m, \mathbf{x} \in \mathbf{X} \end{aligned}$$

which is the same as problem (5) in [1].

DRO with higher-order moments

Suppose we know the higher-order moment information, i.e., $\mathcal{M}_a = \mathbb{E}[\xi^a] = \mathbb{E}[\xi_1^{a_1} \xi_2^{a_2} \dots \xi_m^{a_m}]$, $a \in \mathcal{A} \subset \mathbb{N}^m$. The corresponding polynomial surrogate of problem (10) is

$$\min_{x \in X, h} \sum_{a \in \mathcal{A}} h_a \mathcal{M}_a \quad (19a)$$

$$\text{s.t.} \quad Q(x, \xi) \leq \sum_{a \in \mathcal{A}} h_a \xi^a, \quad \forall \xi \in \mathcal{S} \quad (19b)$$

which is also the dual problem of the DRO with the moment information ([?]).

Summary

Conclusions and Future work

- We present a surrogate-based approximation for the general distributionally robust optimization(DRO) problem.
- We show that the surrogate-based approximation provided an upper bound of the DRO minimization problem.
- We prove that when the surrogate is polynomial, the surrogate-based approximation becomes exact for the DRO problem with support, first and second moments information.
- We provide a different angle to approximate DRO problem not from the primal-and-dual perspective ([2, 4]).

Reference I

- [1] E. Delage and Y. Ye. Distributionally robust optimization under moment uncertainty with application to data-driven problems. *Operations research*, 58(3):595–612, 2010.
- [2] K. Isii. On sharpness of tchebycheff-type inequalities. *Annals of the Institute of Statistical Mathematics*, 14(1):185–197, 1962.
- [3] J. B. Lasserre. *Moments, positive polynomials and their applications*, volume 1. World Scientific, 2009.
- [4] A. Shapiro. On duality theory of conic linear problems. In *Semi-infinite programming*, pages 135–165. Springer, 2001.

Thank you for your attention!