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What is different?

We’re not solving the same problems today that we solved 10 
years ago!

 Different questions are being asked
 What is the uncertainty in my answer?

 What is the optimal design?

 How credible is my result?

 What are the most important parameters affecting my result?

 Can I improve my models?

 How can I impact decisions (e.g., design, economic, safety, etc.)?

 Different computer hardware

 Big data!
-> Big data problems

3



Tropical Storm Isaac Forecast (8 PM Sat, 8/25/12)
“Cone of Uncertainty”

Is this credible?

Note: Louisiana looks good

Source: http://www.nhc.noaa.gov



33 Hours Later! (5 AM Mon, 8/27/12)
Storm Headed Straight for Louisiana 

Source: http://www.nhc.noaa.gov



Overlay of Saturday/Monday Forecasts

Source: http://www.nhc.noaa.gov

Actual path has a 1-in-3 
probability of going 
outside the cone of 
uncertainty 

Decision makers (inc.
residents) beware:

How do we report the 
credibility of our 
uncertainty estimates?

How do we report the 
credibility of our 
predictions?



Credibility Measures – Do Any Exist?
(…that apply to computational simulation)

 TRL – Technical Readiness Level
 Widely used to assess maturity of evolving technologies

prior to incorporation into system

 Many definitions (DOE, DoD, NASA, …)

 CMMI – Capability Maturity Model Integration
 Carnegie Mellon Software Engineering Institute (SEI)

 Models, appraisal methods, training to improve process 
performance (typically software development)

 Predictive Maturity (for computational mod/sim)
 CAS – Credibility Assessment Scale (NASA)

 PMI – Predictive Maturity Index (Los Alamos)

 PCMM – Predictive Capability Maturity Model (Sandia)

NASA TRL Definitions



Science-Based Discovery & Prediction   
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Theory
(Math Models)

Experiments
(Field/Test Data)

Software
(Computational Models)

Simulation
(Numerical Results /
“Simulated Data”)



It’s simple, right?
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Experiments
(Field/Test Data)

Simulation
(Numerical Results /
“Simulated Data”)

Theory
(Math Models)

Software
(Computational Models)

Theory
(Math Models)

Science-based engineering models typically involve:

• Multiscale
• Multiphysics
• Time-dependent, nonlinear PDEs
• Complex materials
• Turbulence
• Nonlocal effects
• Contact
• Complex chemistry
• Phase change
• Closure laws
• Uncertainty representation
• Stochastic models
• Manufacturing and design (inc. risk and uncertainty)
• Decision support
• Etc…



It’s simple, right?
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Experiments
(Field/Test Data)

Simulation
(Numerical Results /
“Simulated Data”)

Theory
(Math Models)

Software
(Computational Models)

Software
(Computational Models)

Our science & engineering codes typically require:

• Advanced discretizations (finite element, finite volume, etc)
• Geometry/mesh I/O and data structures
• Nonlinear/linear solvers
• Time integrators
• Physics-coupling modules (data locality)
• Adaptivity
• Performance/scalability
• Third-party libraries
• Layers of software testing
• Adjoints
• Embedded optimization and UQ
• Embedded meshing and geometry
• Etc.



It’s simple, right?
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Experiments
(Field/Test Data)

Simulation
(Numerical Results /
“Simulated Data”)

Theory
(Math Models)

Software
(Computational Models)

Software
(Computational Models)

Our science & engineering codes typically require:

• Advanced discretizations (finite element, finite volume, etc)
• Geometry/mesh I/O and data structures
• Nonlinear/linear solvers
• Time integrators
• Physics-coupling modules (data locality)
• Adaptivity
• Performance/scalability
• Third-party libraries
• Layers of software testing
• Adjoints
• Embedded optimization and UQ
• Embedded meshing and geometry
• Etc.

Beyond Exascale (Beyond Moore):
• Quantum computing
• Neuromorphic (brain-inspired) computing

Toward Exascale:
• New programming models

• Layers of parallel execution
• MPI (between nodes) + threads (on node)
• Asynchronous Many Task (AMT) (in between)

• New challenges
• Minimizing data movement!
• Resilience/fault tolerance
• Performance portability

Reprinted by permission from Macmillan 
Publishers Ltd: Nature News, “The chips are 
down for Moore’s Law,” copyright 2016.

Reprinted by permission from Macmillan Publishers Ltd: 
Nature News, “The chips are down for Moore’s Law,” 
copyright 2016.



It’s simple, right?
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Experiments
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Simulation
(Numerical Results /
“Simulated Data”)

Theory
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Software
(Computational Models)

Simulation
(Numerical Results /“Simulated Data”)

Our numerical simulations typically require:

• Boundary/Initial conditions (w/ uncertainties)
• Choice of models & model parameters (w/ uncertainties)
• Choice of numerical algorithms & solvers
• Solver & geometric tolerances
• Mesh & time step convergence
• Optimization and inversion
• Sensitivity analysis
• Reduced-order modeling
• Uncertainty quantification
• Quantity-of-interest extraction
• Data storage, retrieval, visualization
• New (disruptive) analysis workflows
• Etc.



(Actually, it’s complex!)
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Experiments
(Field/Test Data)

Simulation
(Numerical Results /
“Simulated Data”)

Theory
(Math Models)

Software
(Computational Models)

Experiments
(Field/Test Data)

Tests and experiments face new challenges:

• Sparse/incomplete data
• Noisy data
• Poorly characterized uncertainties
• Quantity-of-interest extraction 
• Data storage, retrieval, visualization
• Cost, safety
• Etc.

…along with new technology and opportunities:

• Embedded sensors
• Non-invasive tests
• Remote sensing
• Data overload (and at the wrong scales…)!
• Etc.



V&V Connects the Dots…
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Theory
(Math Models)

Experiments
(Field/Test Data)

Software
(Computational Models)

Simulation
(Numerical Results /
“Simulated Data”)

Code Verification
(Is the implementation correct?)

Solution Verification
(Is the answer accurate enough?)

Validation
(Is the theory accurate enough?)



Using Data to Improve Models & 
Experiments
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Theory
(Math Models)

Experiments
(Field/Test Data)

Software
(Computational Models)

Simulation
(Numerical Results /
“Simulated Data”)

Code Verification
(Is the implementation correct?)

Solution Verification
(Is the answer accurate enough?)

Validation
(Is the theory accurate enough?)

Design of Experiments: Simulation data steers new experiments

Design of Experiments

Model Calibration: Experimental data used to estimate model parameters

Model Calibration
(Inverse Problem)

New challenges in optimization and data science



Beyond Forward Simulation…

Our systems will be “swimming in data”
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Big Data Problems



Beyond Forward Simulation…

Our systems will be “swimming in data”
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(Big Data) Problems

In some cases we’ll be “data starved”

Big (Data Problems)



Back to the Question of Models…

Ask an engineer…

 “It’s all about the (science-based) models”

From dictionary.com:

Engineering
The art or science of making practical application of the knowledge of 
pure sciences, as physics or chemistry, as in the construction of engines, 
bridges, buildings, mines, ships, and chemical plants.
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Back to the Question of Models…

Ask an engineer…

 “It’s all about the (science-based) models”

Ask a statistician…

 “It’s all about the data”

The “truth” is…

 (…later…)
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Simulations today must go “Beyond 
Forward Solve…”
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Theory
(Math Models)

Experiments
(Field/Test Data)

Software
(Computational Models)

Simulation
(Numerical Results /
“Simulated Data”)

Code Verification
(Is the implementation correct?)

Solution Verification
(Is the answer accurate enough?)

Validation
(Is the theory accurate enough?)

Simulation
(Numerical Results /“Simulated Data”)

Our numerical simulations typically require:

• Boundary/Initial conditions (w/ uncertainties)
• Choice of models & model parameters (w/ uncertainties)
• Choice of numerical algorithms & solvers
• Solver & geometric tolerances
• Mesh & time step convergence
• Optimization and inversion
• Sensitivity analysis
• Reduced-order modeling
• Uncertainty quantification
• Quantity-of-interest extraction
• Data storage, retrieval, visualization
• New (disruptive) analysis workflows
• Etc.

Usually requires an 
ensemble of computations



Optimization and Inversion:
ROL: Rapid Optimization Library

• ROL is a Trilinos package for large-scale continuous 
optimization, a.k.a. nonlinear programming (NLP).

• Released in Trilinos 12.2 in August, 2015

21

• Derivative-based methods

• Embedded and matrix-free methods:

• Direct access to application data structures: vectors, etc

• Direct use of application methods: (non)linear solvers, etc



ROL Supports Four Basic Problem Types
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simulation variable
optimization variable

Generic PDE-constrained problem

Unconstrained problems

min
x

f (x)

Type-U

Equality constrained

min
x

f (x)

subject to c(x) = 0

Type-E

Bound constrained

min
x

f (x)

subject to a x b

Type-B

Equality + Bounds

min
x

f (x)

subject to c(x) = 0
a x b

Type-EB

General inequality constraints c(x) ≥ 0 can be converted to



Example: Greenland Ice Sheet Modeling
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Greenland 
surface ice 
velocity

Balance between accumulation of new ice and loss of ice to the ocean is influenced by 
many factors: 

There are several sources of uncertainty, most notably:

• Climate forcings (e.g., surface mass balance).
• Basal friction  our initial focus
• Bedrock topography
• Geothermal heat flux
• Model parameters 

• Sandia’s Albany/FELIX* First Order Stokes solver; QoI: Ice Surface Velocity
• NCAR’s Community Ice Sheet Model (CISM); QoI: Sea Level Rise

*FELIX=“Finite Elements for Land Ice eXperiments”
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GOAL: Invert for unknown model parameters (basal friction) to match 

observational data (observed surface velocity of ice). 

STRATEGY: Solve large scale PDE constrained optimization problem.

ALGORITHM: Reduced gradient method, where gradient is computed using 
adjoints and optimization is solved using  BFGS.

TOOLS: ROL for optimization and Albany/FELIX for assembly, Trilinos for solvers.

SIGNIFICANCE: Basal friction determines ice sheet sliding 
and affects ice sheets mass balance and sea level rise.

OPTIMIZATION PROBLEM:

Large-Scale Optimization with ROL: 
Inverting for the Basal Friction 

ice sheet

basal friction β

ocean
bedrock

 ice velocity solution of the flow 
model (First Order Stokes) as a 

function of the basal friction β



Results: Basal Friction Inversion for 
Greenland Ice Sheet
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Estimated Computed Target
(obs. velocity)

Surface velocity magnitude (m/yr)Recovered basal friction (kPa yr/m)

ROL ALGORITHM:
• Limited Memory BFGS
• Backtrack line search

Problem size:
# Unknowns: 36 M
# Parameters: 1.6 M

Geometry: Morlighem et al., 
Nature Geo., 2014
Resolution: 1km.
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1st 25 iterations of optimization 
(121 total for convergence)



Greenland Ice Sheet Modeling: 
Consider the Uncertainty in Basal Law
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Greenland 
surface ice 
velocity

Balance between accumulation of new ice and loss of ice to the ocean is influenced by 
many factors: 

Procedure: 
Start with the basal friction from ROL’s deterministic inversion, then do the following:

1. Spatial dimension reduction via Karhunen-Loève expansion (KLE)
2. Statistical emulation via polynomial chaos expansion (PCE)
3. Emulator-based Bayesian inference using preconditioned Markov Chain Monte 

Carlo (MCMC)



 Dakota: Design exploration and UQ for science and engineering

 A suite of iterative mathematical and statistical methods that interface to 
computational models. 

 Dakota makes iterative parametric analysis practical for black-box simulations 
to answer questions regarding:

 Sensitivity: Which are the crucial factors/parameters?

 Uncertainty: How safe, reliable, or robust is my system?

 Optimization: What is the best performing design or control?

 Calibration: What models and parameters best match data?

Dakota

Simulation 
Code

DAKOTA
Optimization

Uncertainty Quant.
Parameter Est.

Sensitivity Analysis

Model
Parameters

Design
Metrics



 High fidelity simulation is expensive – want fewer of these

 Low fidelity model is (relatively) cheap – run more of these

 Cycle between them to converge on (high-fidelity) statistics at lowest cost
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Parameters LO
Parameters HI  

Response LO
Response HI

Low Fidelity 
Model

High Fidelity 
Model

Multi-Fidelity UQ with Dakota 
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Basal Friction
(From ROL 

Inversion)  

QoI: Surface velocity 

High Fidelity 
Model: 

Albany/FELI
X Ice Sheet 

Code 

Construction of PCE Emulator

• Dakota constructs PCE of Quantity of Interest (surface velocity)
• 3rd-order polynomial
• Required 286 Albany/FELIX solves

• This becomes the low-fidelity model (our “emulator”)



Karhunen-Loeve expansion (KLE): 

Assume analytic spatial covariance kernel 
(Gaussian) for random field

and integrate over domain for eigenvalues, eigenvectors (i , i). 
Length scale (L) balances feature resolution vs. #modes required in truncated KLE.

KLE modes (first 10):

Dimension-reduced inference of KLE coefficients:
Assume uniform priors on KLE coefficient distributions of KLE coefficients i ~ [-1,1]

C(r1, r2 )  e(r1r2 )2 /L2

…

(x,) i

i1



 i ()i (x)

KLE of Spatial Random Field for Basal 
Friction



 Emulator-based Bayesian inference using preconditioned MCMC

 Uses Dakota’s QUESO package developed by UT-Austin
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Basal Friction
(10D KL Expansion)  

Computed surface velocity

Low Fidelity 
Model: 
PCE 

Emulator

zBayesian Calibration of Basal Friction 

Satellite Data

)|()()|(  dLd 

Model parameters

Observed 
Data

Likelihood function which 
Incorporates the model

Prior parameter
distribution

Posterior distribution



Mode 1

Mode 2

Possible paths for adaptation:
• Increase spatial resolution (reduce KLE truncation error by increasing # of modes)
• Improve UQ accuracy (reduce PCE error by increasing # of CISM simulations)

KLE mode priors (green) and (calibrated) posteriors (blue)

PDF of Sea Level Rise (SLR) after 50 yrs

Forward

Propagation
(NCAR’s CISM: 
Community Ice 
Sheet Model)

Prediction of Sea-Level Rise using 
Calibrated Basal Friction
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Analysis

Physics1

QoI

Physics2 PhysicsN

Assembly

Solve

Mesh

…

Toward Exascale: Many-Task Workflows

Analysis Data        (samples, ensembles, gradients, …)

• Each box represents a 
family of fine-grained tasks

• Using C++ templates and 
operator overloading, we 
can high-level analysis data

• Derivatives 
(Trilinos:Sacado)

Kokkos,
Darma,
…
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Mesh

Assembly

Physics1

QoI

Physics2 PhysicsN

Solve

…

Assembly

Physics1

QoI

Physics2 PhysicsN

Solve

…

Assembly

Physics1

QoI

Physics2 PhysicsN

Solve

…

Analysis

Toward Exascale: Many-Task Workflows

Analysis Data        (samples, ensembles, gradients, …)

• Each box represents a 
family of fine-grained tasks

• Using C++ templates and 
operator overloading, we 
can high-level analysis data

• Derivatives
• Ensembles of UQ 

samples 
(Trilinos:Stokhos)

Kokkos,
Darma,
…
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Mesh

Analysis Data        (samples, ensembles, gradients, …)

Assembly

Physics1

QoI

Physics2 PhysicsN

Solve

…

Assembly

Physics1

QoI

Physics2 PhysicsN

Solve

…

Assembly

Physics1

QoI

Physics2 PhysicsN

Solve

…

Analysis

Analysis AnalysisAnalysis

AnalysisAnalysisAnalysis

Toward Exascale: Many-Task Workflows

• Each box represents a 
family of fine-grained tasks

• Using C++ templates and 
operator overloading, we 
can high-level analysis data

• Derivatives
• Ensembles of UQ 

samples

• We can insert analysis 
tasks anywhere, e.g., 

• LHS UQ for Physics 
Task 1

• PCE UQ for Physics 
Task 2

• Etc.

Kokkos,
Darma,
…



Acceleration of Stochastic Sampling Methods

GOAL: determine statistical information about an output of 
interest that depends on the solution of a stochastic PDE
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Output:

Quantity of interest:

N-dimensional random vector with pdf ρ

• Compute discrete approximations for a set of M samples: 

• Construct a polynomial over random dim:

FULLY NON-INTRUSIVE: use PDE solvers as black boxes

VERY EXPENSIVE for large-scale problems!
HOW TO IMPROVE 
PERFORMANCE??

uncertain parameter: diffusivity tensor 

truncated KL expansion

Anisotropic diffusion problem

Stochastic collocation (SC) methods:



Acceleration of Stochastic Sampling Methods
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IDEA: in scientific simulations there is a huge amount of data 
that can be reused (computational mesh, matrix graph, …)

STRATEGY: REUSE data propagating multiple samples at a time

ALGORITHM: EMBEDDED ENSEMBLE PROPAGATION

• propagation of ensembles of samples of size S

• each sample dependent quantity is replaced with a length-S array

finite element 
mesh 64x64x64 

finite element 
mesh 64x64x64 

ISOTROPIC Diffusion Problem  for every sample the linear solver #its is the same

CONSEQUENCES: reduction of COMPUTATION, MEMORY USAGE, MEMORY TRAFFIC
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Acceleration of Stochastic Sampling Methods

STRATEGY: 1. order the samples for increasing anisotropy level

2. group them in ensembles of size S

ISOTROPIC diffusion: the way samples are grouped together is not relevant

ANISOTROPIC diffusion: the convergence behavior DEPENDS on the sample

• the way samples are grouped affects the convergence of the ensemble system
• idea: group together samples with similar #its
• fact: similar ANISOTROPY LEVEL  similar #ITS 

anisotropy level: 

Anisotropic Diffusion Problem
64x64 finite element mesh
AMG Preconditioned CG

Comparison of the orderings based on the 
anisotropy level and the #its
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Acceleration of Stochastic Sampling Methods

ASSESSING THE COMPUTATIONAL SAVING

Note: the #its of the ensemble system is always greater than the one of each sample within 
the ensemble  increase in computational work induced by the ensemble propagation

ITS: #its for the ith ensemble
its: #its for the kth sample

Note: the increase in work is mitigated by the computational savings induced by the 

ensemble propagation  the achieved speed-up is reduced by a factor of R

covariance S R ordering R no-ordering

Gaussian 8 1.374 1.793

Gaussian 16 1.469 2.197

Gaussian 32 1.652 2.852

Exponential 8 1.274 1.448

Exponential 16 1.337 1.673

Exponential 32 1.427 1.847

γ-Exponential 8 1.217 1.503

γ-Exponential 16 1.272 1.794

γ-Exponential 32 1.384 2.223



Back to the Question of Models…

Ask an engineer…

 “It’s all about the (science-based) models”

Ask a statistician…

 “It’s all about the data”

The “truth” is…

 (…later…)
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Both are critical to developing science-based models!



Closing Thoughts

We’re not solving the same problems today that we solved 10 
years ago!

 “Beyond forward solve…” – single-point solutions and 
workflows no longer sufficient

 Fusion of models and data

Computer architectures are changing!

 Exascale is on the horizon 

 Beyond Moore’s Law

Big data problems!

 New communities of experts
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Big opportunities lie ahead!
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https://trilinos.org

https://trilinos.org/packages/rol/

https://dakota.sandia.gov


