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What is different? ) e

We’re not solving the same problems today that we solved 10
years ago!

= Different questions are being asked
= What is the uncertainty in my answer?
= What is the optimal design?
= How credible is my result?
= What are the most important parameters affecting my result?
= Can |l improve my models?
= How can | impact decisions (e.g., design, economic, safety, etc.)?

= Different computer hardware
= Big datal
-> Big data problems



Tropical Storm Isaac Forecast (8 PM Sat, 8/25/12)
“Cone of Uncertainty”

Note: T - oes not show
Ul Source: http://www.nhc.noaa.goy L2
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33 Hours Later! (5 AM Mon, 8/27/12) )
Storm Headed Straight for Louisiana
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Overlay of Saturday/Monday Forecasts ) i,

Source: hitp:/jwww.nhc.noaa.gov

Actual path has a 1-in-3
probability of going

outside the cone of
uncertainty
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Credibility Measures — Do Any Exist?

(...that apply to computational simulation)

= TRL - Technical Readiness Level

=  Widely used to assess maturity of evolving technologies
prior to incorporation into system

= Many definitions (DOE, DoD, NASA, ...)
= CMMI - Capability Maturity Model Integration

= Carnegie Mellon Software Engineering Institute (SEI)

= Models, appraisal methods, training to improve process
performance (typically software development)

= Predictive Maturity (for computational mod/sim)
= CAS — Credibility Assessment Scale (NASA)
= PMI - Predictive Maturity Index (Los Alamos)
= PCMM - Predictive Capability Maturity Model (Sandia)
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& Operations TRL9
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Science-Based Discovery & Prediction

Theory Software
(Math Models) = (Computational Models)
[ O
v
. [ J o . .
Experiments Simulation
(Field/Test Data) (Numerical Results /

“Simulated Data”)




It’s simple, right? iL

Theory
(Math Models)

Science-based engineering models typically involve:

« Multiscale

» Multiphysics
« Time-dependent, nonlinear PDEs
« Complex materials

* Turbulence

* Nonlocal effects

« Contact

« Complex chemistry

 Phase change

* Closure laws Vit Trtie. W Tustare
* Uncertainty representation /

« Stochastic models PWR Fuel Assembly and Control Rod
» Manufacturing and design (inc. risk and uncertainty)

» Decision support
Etc...
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It’s simple, right?

i Sandia
National
Laboratories

Software
(Computational Models)

Our science & engineering codes typically require:

« Advanced discretizations (finite element, finite volume, etc)
« Geometry/mesh I/O and data structures
* Nonlinear/linear solvers

« Time integrators

* Physics-coupling modules (data locality)
« Adaptivity

» Performance/scalability

* Third-party libraries

« Layers of software testing

« Adjoints

 Embedded optimization and UQ

« Embedded meshing and geometry

« Etc.

dels)




It’s simple, right?

Software
(Computational Models)

Toward Exascale:
 New programming models

» Layers of parallel execution

 MPI (between nodes) + threads (on node)

» Asynchronous Many Task (AMT) (in between)
 New challenges

* Minimizing data movement!

» Resilience/fault tolerance

» Performance portability

Beyond Exascale (Beyond Moore):
* Quantum computing
* Neuromorphic (brain-inspired) computing

— Empeqaaeq optmizaton ana ow.
- Embedded meshing and geometry
- Etc.

MOORE’S LORE

For the past five decades, the number of transistors per microprocessor
chip — a rough measure of processing power — has doubled about every

two years, i

n step with Moore's law (top). Chips also increased their ‘clock

speed’, or rate of executing instructions, until 2004, when speeds were
capped to limit heat. As computers increase in power and shrink in size, a
new class of machines has emerged roughly every ten years (bottom).

10% -

108 -

105-

10*

102-

1

102+
1960

o ® a3
Transistors per chip )

[ ]
]
Clock speeds (MHz)
T

1974 1988 2002 2016

100,
mmi.
100 5
100
10°;
100
107+
10¢

Size (mm?)

10°
105
102
100+
10,
ik
il

..... Mainframe

it

ute’
mP

d
d4de
I

o

1950

1960 1970 1980 1990 2000 2010 2020

enatre
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It’s simple, right? h) S

Simulation
(Numerical Results /“Simulated Data”)

Our numerical simulations typically require:

« Boundary/Initial conditions (w/ uncertainties)

» Choice of models & model parameters (w/ uncertainties)
« Choice of numerical algorithms & solvers
» Solver & geometric tolerances

« Mesh & time step convergence
 Optimization and inversion

« Sensitivity analysis

* Reduced-order modeling

» Uncertainty quantification

» Quantity-of-interest extraction

« Data storage, retrieval, visualization

* New (disruptive) analysis workflows




(Actually, it’s complex!)

Experiments
(Field/Test Data)

Tests and experiments face new challenges:

« Sparse/incomplete data

* Noisy data

« Poorly characterized uncertainties

* Quantity-of-interest extraction

« Data storage, retrieval, visualization
» Cost, safety

Exper * Etc.

(Field/T
...along with new technology and opportunities:

 Embedded sensors

« Non-invasive tests

 Remote sensing

« Data overload (and at the wrong scales...)!
Etc.
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V&V Connects the Dots... ) e,

Code Verification

Theory (Is the implementation correct?) Softwarg
(Math Models) = (Computational Models)
[ O
Solution Verification
(Is the answer accurate enough?)
v
. ¢ <€ > . .
Experiments o " Simulation
(Field/Test Data) Validation (Numerical Results /

(Is the theory accurate enough?) “Simulated Data”)




Using Data to Improve Models &
Experiments

Code Verification

Theory (Is the implementation correct?) SOftware,
(Math Models) = (Computational Models)
[ O
Solution Verification
Design of Experiments (Is the answer accurate enough?)
Model Calibration v
(Inverse Problem)

. ¢ <€ > o . .
Experiments o Simulation
(Field/Test Data) Validation (Numerical Results /

(Is the theory accurate enough?) “Simulated Data”)

Design of Experiments: Simulation data steers new experiments
Model Calibration: Experimental data used to estimate model parameters

New challenges in optimization and data science
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Beyond Forward Simulation...

Our systems will be “swimming in data”

Big Data Problems
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Beyond Forward Simulation...

Our systems will be “swimming in data”

(Big Data) Problems

In some cases we’ll be “data starved”
Big (Data Problems)




Back to the Question of Models... @

Ask an engineer...

= “lt’s all about the (science-based) models”

From dictionary.com:

Engineering

The art or science of making practical application of the knowledge of
pure sciences, as physics or chemistry, as in the construction of engines,
bridges, buildings, mines, ships, and chemical plants.

Sandia
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Back to the Question of Models... [

Ask an engineer...

= “lt’s all about the (science-based) models”

Ask a statistician...

= “It’s all about the data”

The “truth” is...
= (.later...)




Simulations today must go “Beyond

Forward Solve...”
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Simulation
(Numerical Results /“Simulated Data”)

Our numerical simulations typically require:

* Boundary/Initial conditions (w/ uncertainties)

al Models)

brification

« Choice of models & model parameters (wW/ uncertainties)  yer accurate enough?)

« Choice of numerical algorithms & solvers
» Solver & geometric tolerances
« Mesh & time step convergence

A

(FA

 Optimization and inversion

« Sensitivity analysis

* Reduced-order modeling

» Uncertainty quantification

* Quantity-of-interest extraction

« Data storage, retrieval, visualization
* New (disruptive) analysis workflows

 Etc.

N
Results /

Usually requires an
ensemble of computations

20



Optimization and Inversion: =
ROL: Rapid Optimization Library

Laboratories
. - : [/
* ROL is a Trilinos package for large-scale continuous 89/1_
optimization, a.k.a. nonlinear programming (NLP).

* Released in Trilinos 12.2 in August, 2015

Size of parameter space
Information | Methods

Function samples Global search or
(incl. finite diff’s) steepest descent

Analytic Hessians

(hand-coded or AD) |  ° >0 =0 50 | Newton-Krylov

®* Derivative-based methods

°* Embedded and matrix-free methods:
* Direct access to application data structures: vectors, etc

* Direct use of application methods: (non)linear solvers, etc
I ———————




ROL Supports Four Basic Problem Types

Generic PDE-constrained problem

min J(z,u) c(z,u) =0 20 S 2 S 2y

Z,U . . .
simulation variable
optimization variable

815 ~ ~

Bound constrained

Unconstrained problems
_ min f(x)
min f (x) X

X subject to a<x<b

" J

B Typo ~ ~

Equality + Bounds

Equality constrained

mxin £ (x) mxin f(x)

| ) subject to c(x) = 0 [/
subject to c(x) =0 a<x<hb 894—




Example: Greenland Ice Sheet Modeling

Balance between accumulation of new ice and loss of ice to the ocean is influenced by

accumulation, temperature surface topography
__-_—-——""

flow law

calvinglaw - Greenland
= surface ice
N " velocity

: o , & aroughness . - .
£7 . L g AT A 1 sliding law
shelf geometry R - gheed smmﬁ/ ey 9
melt/freeze distribution% % bed topography
EEAMEQ geothermal flux

« Sandia’s Albany/FELIX* First Order Stokes solver; Qol: Ice Surface Velocity
« NCAR'’s Community Ice Sheet Model (CISM); Qol: Sea Level Rise

There are several sources of uncertainty, most notably:

« Climate forcings (e.g., surface mass balance).
« Basal friction = our initial focus

« Bedrock topography

» Geothermal heat flux

* Model parameters




Large-Scale Optimization with ROL: kN
Inverting for the Basal Friction

GOAL: Invert for unknown model parameters (basal friction) to match
observational data (observed surface velocity of ice).

STRATEGY: Solve large scale PDE constrained optimization problem.
ALGORITHM: Reduced gradient method, where gradient is computed using
adjoints and optimization is solved using BFGS.

TOOLS: ROL for optimization and Albany/FELIX for assembly, Trilinos for solvers.
SIGNIFICANCE: Basal friction determines ice sheet sliding

and affects ice sheets mass balance and sea level rise.

OPTIMIZATION PROBLEM:

| ice sheet

. obs|? 2
— [ = _ d d -
min 7 (3) / p lu(B) — u®|"ds + Oé/ VB|“ ds p basal friction 8
> >
u(3) > ice velocity solution of the flow p
model (First Order Stokes) as a 894_ ﬂA[b_&ﬂQ M

function of the basal friction 8




Results: Basal Friction Inversion for )
Greenland Ice Sheet

ROL ALGORITHM: Problem size: Geometry: Morlighem et al.,
* Limited Memory BFGS # Unknowns: 36 M Nature Geo., 2014
e Backtrack line search # Parameters: 1.6 M Resolution: 1km.

beta (KPa yr/m)
5300

-100
10
1
0.1

0.01

Recovered basal friction (kPa yr/m) Surface velocity magnitude (m/yr)
I ———————



15t 25 iterations of optimization () &=,
(121 total for convergence)




Greenland Ice Sheet Modeling:
Consider the Uncertainty in Basal Law

Balance between accumulation of new ice and loss of ice to the ocean is influenced by

accumulation, temperature surface topography

surface velocity

ina | flow law
calving law
9 oy

' ’ : ‘ e : ‘ roughness i |
shelf geometry v IS caiments A PR ’A sliding law
melt/freeze distribution % é bed topography

geothermal flux

Greenland
surface ice
velocity

Procedure:
Start with the basal friction from ROL’s deterministic inversion, then do the following:

1. Spatial dimension reduction via Karhunen-Loeve expansion (KLE)

2. Statistical emulation via polynomial chaos expansion (PCE)

3. Emulator-based Bayesian inference using preconditioned Markov Chain Monte
Carlo (MCMC)




Dakota
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Dakota: Design exploration and UQ for science and engineering

A suite of iterative mathematical and statistical methods that interface to
computational models.

Dakota makes iterative parametric analysis practical for black-box simulations
to answer questions regarding:

= Sensitivity: Which are the crucial factors/parameters?

= Uncertainty: How safe, reliable, or robust is my system?

= Optimization: What is the best performing design or control?
= Calibration: What models and parameters best match data?

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

A

Model Design
neED

. Code !



Multi-Fidelity UQ with Dakota

Parameters LO
Parameters HI

Response LO
Response HI

[ Low Fidelity ]
> Model

[High Fidelity]
Model

= High fidelity simulation is expensive — want fewer of these
= Low fidelity model is (relatively) cheap — run more of these

= Cycle between them to converge on (high-fidelity) statistics at lowest cost




Construction of PCE Emulator

Basal Friction
(From ROL
Inversion)

Qol: Surface velocity

" High Fidelity
> Model:
Albany/FELI
X Ice Sheet
\. Code /

« Dakota constructs PCE of Quantity of Interest (surface velocity)
« 3-order polynomial
» Required 286 Albany/FELIX solves

« This becomes the low-fidelity model (our “emulator”)




KLE of Spatial Random Field for Basal
Friction

Karhunen-Loeve expansion (KLE): B(x,m)= i\/fiéi(co)d)i(x)

Assume analytic spatial covariance kernel —
(Gaussian) for random field C(rl, ,/2) — o i) /L

and integrate over domain for eigenvalues, eigenvectors (4., @)).
Length scale (L) balances feature resolution vs. #modes required in truncated KLE.

. 0 R
KLE modes (first 10):
° 10 045 4
20 030 0
o 015 ©
40 o
0.00
50 0
-0.15
60 [
~0.30
70 o
-0.45
80 0
0 10 20 30 40 0 10 20 30 40

Dimension-reduced inference of KLE coefficients:
Assume uniform priors on KLE coefficient distributions of KLE coefficients & ~ [-1,1]




Bayesian Calibration of Basal Friction

Satellite Data

Basal Friction
{70D KL Expansion)

Computed surface velocity

fLow Fidelity\
> Model:

PCE

\ Emulator )

= Emulator-based Bayesian inference using preconditioned MCMC
= Uses Dakota’s QUESO package developed by UT-Austin

(0 |d)ocm(0)L(d|6)

\ N

Posterior distributi

Observed Likelihood function which
Data Incorporates the model
Model parameters Prior parameter




Prediction of Sea-Level Rise using
Calibrated Basal Friction

KLE mode priors (green) and (calibrated) posteriors (blue)

67 PDF of Sea Level Rise (SLR) after 50 yrs
Mode 1 016

I~ @

I Prior informed
Il Posterior informed ||

probability
(]
o
=
=

Forward

0 —0.5 0.0 0.5 1.0 Z
KLE coefficient 1 =
2 o.08}
K=l
e
[=%

Propagation ooy
(NCAR’s CISM:  oo4}
Community lce .|
Sheet Model)

[y

n =3 lo — Y

Mode 2

probability
— (%] (X e

000,6—=0 o 20 40 60 8 100 120 140

sea level rise (mm)

91.(] —0.5 0.0 0.5 1.0
KLE coefficient 2

Possible paths for adaptation:
* Increase spatial resolution (reduce KLE truncation error by increasing # of modes)

* Improve UQ accuracy (reduce PCE error by increasing # of CISM simulations)
I ———————



Toward Exascale: Many-Task Workflows

Analysis
Analysis Data (samples, ensembles, gradients, ...)

Mesh

Kokkos,
Darma,

Taalin 0S

« Each box represents a
family of fine-grained tasks

« Using C++ templates and
operator overloading, we ooy vy v
can high-level analysis data Physics1 Physics2 PhysicsN

» Derivatives
(Trilinos:Sacado)

Assembly



Toward Exascale: I\/Iany -Task Workflows

Kokkos,
7«1[20 ~ Darma,

Each box represents a
family of fine-grained tasks

Using C++ templates and
operator overloading, we
can high-level analysis data
» Derivatives
« Ensembles of UQ
samples
(Trilinos:Stokhos)

A

Analysis

Analysis Data

.

(samples, ensembles, gradients, ...)

TR TR T TR

Physics1 Physics2 PhysicsN

Assembly

Solve

Qol




Toward Exascale: Many-Task Workflows

>/ e W Kokkos,
nS Darma,

Each box represents a
family of fine-grained tasks

Using C++ templates and
operator overloading, we
can high-level analysis data
» Derivatives
 Ensembles of UQ
samples

We can insert analysis
tasks anywhere, e.g.,
« LHS UQ for Physics
Task 1
« PCE UQ for Physics
Task 2

\

Analysis
|

Analysis Data (samples, ensembles, gradients, ...)

|
ANalysis ANalysis ANalysis

TTA TTH A T TR

Physics1 Physics2 PhysicsN

naySIS naySIS naySIS

Assembly




Acceleration of Stochastic Sampling Methods )
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GOAL: determine statistical information about an output of
interest that depends on the solution of a stochastic PDE

—V - (A(x,y))Vu) = f Output: F(y) = [[u(-,y)|2
Quantity of interest: | [F(y)] = [ F(y)p(y)dy

Anisotropic diffusion problem
Y —> N-dimensional random vector with pdf p

A —> uncertain parameter: diffusivity tensor A(X,y) = diag(a(x,y), a2, as)

N
a(x,y) =a+ &exp{ > \//\nbn(x)yn} truncated KL expansion
n=1

Stochastic collocation (SC) methods:
 Compute discrete approximations for a set of M samples: {uh(x, ym)}ﬁ,{:l

: . M
e Construct a polynomial over random dim: u%c (x,y) = Zm:l UR (X, Ym ) Vm (¥)

FULLY NON-INTRUSIVE: use PDE solvers as black boxes HOW TO IMPROVE
VERY EXPENSIVE for large-scale problems! PERFORMANCE?? | __




Acceleration of Stochastic Sampling Methods

IDEA: in scientific simulations there is a huge amount of data
that can be reused (computational mesh, matrix graph, ...)

STRATEGY: REUSE data propagating multiple samples at a time

ALGORITHM: EMBEDDED ENSEMBLE PROPAGATION
e propagation of ensembles of samples of size §

* each sample dependent quantity is replaced with a length-S array

CONSEQUENCES: reduction of COMPUTATION, MEMORY USAGE, MEMORY TRAFFIC

Ensemble Multigrid Preconditioned
CG Solve Speedup (Cray XK7 CPU)

==Ensemble Size = 4

o 3.5 _ . <@~Ensemble Size = 8
o} .

\ 1 [ Ensemble Size = 16
5 3.0 f‘ &4

=<=Ensemble Size = 32

825 Y/ 4 N

(7, ] X -
2.0 finite element
1.5 . mesh 64x64x64
1.0

1 8 64 512 4096
Compute Nodes

13.0

11.0
3 9.0
® 7.0

1]
Q.

“ 5.0

Ensemble Multigrid Preconditioned
CG Solve Speedup (NVIDIA K20X GPU)

.

/ ~“~Ensemble Size = 16

/' i ==Ensemble Size = 32

3.0

1.0

finite element
mesh 64x64x64

1

2 4 8
Compute Nodes

ISOTROPIC Diffusion Problem - for every sample the linear solver #its is the same
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Acceleration of Stochastic Sampling Methods ) e,

ISOTROPIC diffusion: the way samples are grouped together is not relevant
ANISOTROPIC diffusion: the convergence behavior DEPENDS on the sample

* the way samples are grouped affects the convergence of the ensemble system
* idea: group together samples with similar #its
» fact: similar ANISOTROPY LEVEL - similar #ITS

STRATEGY: 1. order the samples for increasing anisotropy level
2. group them in ensembles of size §

250r E I
® anisotropy level

" iteraions { anisotropy level:
200 i o s ' o ' ' i

Amax (A(X,Y))
Amin (A(X,¥))

HOO

150- Anisotropic Diffusion Problem

64x64 finite element mesh
AMG Preconditioned CG

100~

number of iterations

"l Comparison of the orderings based on the

. | qrdered samples | anisotropy level and the #its

0 50 100 150 200 250




Acceleration of Stochastic Sampling Methods )
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ASSESSING THE COMPUTATIONAL SAVING

Note: the #its of the ensemble system is always greater than the one of each sample within
the ensemble = increase in computational work induced by the ensemble propagation

S covariance S R ordering R no-ordering
S SITS; et et £ b
R i—1 Gaussian 8 1.374 170
M Gaussian 16 1.469 2.197
Z ltSk
k=1 Gaussian 32 1.652 2.852
ITS: #its for the ith ensemble  Exponential 8 1.274 1.448
its: #its for the k™ sample Exponential 16 1.337 1.673
Exponential 32 1.427 1.847
v-Exponential 8 1217 1.503
v-Exponential 16 1.272 1.794
v-Exponential 32 1.384 2.223

Note: the increase in work is mitigated by the computational savings induced by the
ensemble propagation = the achieved speed-up is reduced by a factor of R




Back to the Question of Models... @&

Ask an engineer...

= “lt’s all about the (science-based) models”

Ask a statistician...

= “It’s all about the data”

The “truth” is...

= Both are critical to developing science-based models!




Sandia

Closing Thoughts ) .

We’re not solving the same problems today that we solved 10
years ago!

= “Beyond forward solve...” —single-point solutions and
workflows no longer sufficient

= Fusion of models and data

Computer architectures are changing! D

= Exascale is on the horizon

= Beyond Moore’s Law
Big data problems!
= New communities of experts

Big opportunities lie ahead!
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https://trilinos.org

Jiginos

//,
89/4_ https://trilinos.org/packages/rol/

https://dakota.sandia.gov




