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Electric Grid Operations - 14-bus model
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Electric Grid Operations - 118-bus model




Efficient Operation

@ Unit Commitment/Economic Dispatch (UC/ED): schedule
thermal generating units with the objective is to minimize overall
production costs

o satisfy forecasted demand for electricity; reserve margins are
universally imposed to ensure that sufficient capacity is available in
case demand is higher

e respect constraints on both transmission (e.g., thermal limits) and
generator infrastructure

@ Stochastic UC/ED model: typically minimize the expected cost
across load scenarios, thus ensuring sufficient flexibility to meet a
range of potential load realizations during operations.

@ reliance on reserve margins is reduced, yielding less costly
solutions than deterministic UC/ED

e computationally difficult due to the large number of samples needed
to achieve “converged” solutions

C. Safta (csafta@sandia.gov) SIAM UQ 2016 April 7, 2016 4/1



@ Stochastic Economic Dispatch
@ Uncertainties in Wind Power Generation

e Low-dimensional Representation of Uncertainties in Wind Power
via Karhunen-Loeve Expansion (KLE)

@ Use Polynomial Chaos Expansion to represent optimal cost

@ Accuracy of Polynomial Chaos Representations
o Computational Saving Compared to Traditional Approaches

@ Summary

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
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Stochastic Economic Dispatch
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Consider uncertain renewables p’.(¢£(w)) and demand Di(&(w)).
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Stochastic Unit Commitment

@ G and T: index sets of generating

min  c*(x) + c!(x) + O(x) units and time periods
st. xed, @ X and x: set of unit commitment
x € {0, 1}I6IXIT] constraints and vector of unit

commitment decisions

@ ¢“(x) and ¢?(x): generating unit
start-up and shut-down costs

@ QO(x): the expected generation cost

Classical approach, compute
S|

@(x)_< |S|Zans

using a finite number of renewable generation and load realizations

(i.e., scenarios) s € S
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Random Fields (RFs)

@ Arandom field W(x,w) is a function on a product space D x 2
—aRVatanyxeD
— an infinite dimensional object

@ In many physical systems, uncertain field quantities, described by
RFs, have an underlying smoothness due to correlations

o Can be represented with a small no. of stochastic degrees of
freedom

@ /,-Optimal representation — second-order statistics
— Karhunen-Loéve expansion (KLE)
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Random Fields Representation — KLE

@ KLE for a RF with a continuous covariance function
W(x,w) = pu(x) + Y /N (w)fi(x)
k=1

@ 1(x) is the mean of W(x,w) at x

@ )\, and fi(x) are the eigenvalues and eigenfunctions of the
covariance

E(xr,x2) = ((Wlxr,w) — p(x)][W(, w) — p(x2)])

@ The n; are uncorrelated zero-mean unit-variance RVs

1
) = o= /D W (x, )i () d
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Uncertainties in Wind Power Generation

Typical daily wind profiles
for Jan 2004-2006 at site
#15414 (NREL Western
Wind Dataset)

Rated power output at the
g : same site
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Low-dimensional Representation of Uncertainties in

Wind Power via Karhunen-Loeve Expansion (KLE)
W (t,w) = log(W) = (Wy(t,w)) + Y v/ Mfe(t)me(w)
k=1

KLE RVs are approx. normally Reconstruct daily samples via
distributed truncated KLE

— 15414
60 e 16238
e 3560
50— 8 12 16 20 24
N

@ Wind sites that are geographically close can employ the same
stochastic coefficients for the main modes
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Extract Covariance Structure from Daily Wind Profiles

Propose a covariance model:

ti — 4\
- ()
c

Site 16238 Estimate parameters via
regression
Wind Site I a
15414 | 11.3 | 0.96
16238 10.3 | 0.95
3560 10.5 | 1.15
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Generate Wind Power Realizations Consistent with

Historical Data

Weather Forecast: te, n

day-ahead wind
Covariance
matrix ¥

speed profile

@ We employed data available for download from the Belgium
Electricity Grid Operator ELIA

@ Typical errors between predicted day-ahead wind power profiles
and actual values are about op = 35%.

¢
modes Py (n)

e errors are independent of the time of the day.
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Stochastic Economic Dispatch

O(xm) = min DD IACAED DI

teT geG teT iEN

s.t.

M m+ Y P+ > fi-D £ =Di—d,

reRr; g€G; ecE ; ecE;.

@ Need to compute (Q(x,n)) (and other higher moments) more
efficiently and more accurately than MC aproaches.
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Dependence of Q on n

m—1 771‘ - m
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@ Tests show a smooth dependence n — Q for the range of
uncertainties explored in this study

@ We will pursue a Polynomial Chaos approximation for Q.

C. Safta (csafta@sandia.gov) SIAM UQ 2016 April 7, 2016 15/1



Accurate Representation of Q(x, ) using Polynomial

Chaos Expansions (PCE)

0(x,m) ~ S o ck(x)Ti(n)

PCE coefficients are evaluated via
Galerkin projection:

_(0Wy)
w0
= @1@ . O(x,m)W(n)p(n) dn.

Given the PCE representation, the
expected cost is:

(Q(x,m)) = co
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Compute PCE coefficients
via sparse quadrature
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Validate PCE Approximation

100 X|Q p—Q1/{(Q) [%]

sample #

@ IEEE 118-bus test system augmented with the three wind
generators

@ 16-dimensional PCE

@ Tested 1st through 4th order approximations (shown with
blue,red,green,black).
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Expected Cost: PCE vs MC
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@ Relative L, error is estimated with respect to the adjacent higher
accuracy value of the same type.

@ The PCE approach shows superior accuracy compared to MC for
the same number of samples.
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We present methods for efficient representation of uncertainty in power
grids, with emphasis on the Stochastic Economic Dispatch (SED)

problem.
@ We model wind uncertainty via Karhunen-Loeve (KL) expansions.

e About 6 modes are sulfficient to represent 24-hour wind speed

samples
e Dimensionality of the stochastic space is further reduced for wind

sites that are geographically close.

@ We represent the dependency of the SED solution on the
uncertainty in renewables via Polynomial Chaos expansion (PCE)
models.

e For the examples considered here, if superior accuracy is needed,
the PCE approach is significantly cheaper (one order of magnitude
or more) for the evaluation of expected cost compared to Monte
Carlo approaches.
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