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Electric Grid Operations - 14-bus model
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Electric Grid Operations - 118-bus model
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Efficient Operation

Unit Commitment/Economic Dispatch (UC/ED): schedule
thermal generating units with the objective is to minimize overall
production costs

satisfy forecasted demand for electricity; reserve margins are
universally imposed to ensure that sufficient capacity is available in
case demand is higher
respect constraints on both transmission (e.g., thermal limits) and
generator infrastructure

Stochastic UC/ED model: typically minimize the expected cost
across load scenarios, thus ensuring sufficient flexibility to meet a
range of potential load realizations during operations.

reliance on reserve margins is reduced, yielding less costly
solutions than deterministic UC/ED
computationally difficult due to the large number of samples needed
to achieve “converged” solutions
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Outline

Stochastic Economic Dispatch

Uncertainties in Wind Power Generation

Low-dimensional Representation of Uncertainties in Wind Power
via Karhunen-Loeve Expansion (KLE)

Use Polynomial Chaos Expansion to represent optimal cost

Accuracy of Polynomial Chaos Representations
Computational Saving Compared to Traditional Approaches

Summary

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department

of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
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Stochastic Economic Dispatch
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r(ξ(ω)) and demand Dt
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Stochastic Unit Commitment

min
x

cu(x) + cd(x) + Q(x)

s.t. x ∈ X ,
x ∈ {0, 1}|G|×|T|

G and T: index sets of generating
units and time periods

X and x: set of unit commitment
constraints and vector of unit
commitment decisions

cu(x) and cd(x): generating unit
start-up and shut-down costs

Q(x): the expected generation cost

Classical approach, compute

Q(x) = 〈Q(x,η)〉 ≈ 1
|S|

|S|∑
s=1

Q(x,ηs)

using a finite number of renewable generation and load realizations
(i.e., scenarios) s ∈ S
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Random Fields (RFs)

A random field W(x, ω) is a function on a product space D× Ω

– a RV at any x ∈ D
– an infinite dimensional object

In many physical systems, uncertain field quantities, described by
RFs, have an underlying smoothness due to correlations

Can be represented with a small no. of stochastic degrees of
freedom

`2-Optimal representation – second-order statistics
– Karhunen-Loève expansion (KLE)
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Random Fields Representation – KLE

KLE for a RF with a continuous covariance function

W(x, ω) = µ(x) +

∞∑
k=1

√
λkηk(ω)fk(x)

µ(x) is the mean of W(x, ω) at x

λk and fk(x) are the eigenvalues and eigenfunctions of the
covariance

Σ(x1, x2) = 〈[W(x1, ω)− µ(x1)][W(x2, ω)− µ(x2)]〉

The ηk are uncorrelated zero-mean unit-variance RVs

ηk(ω) =
1√
λk

∫
D

W(x, ω)fk(x)dx
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Uncertainties in Wind Power Generation

Typical daily wind profiles
for Jan 2004-2006 at site
#15414 (NREL Western
Wind Dataset)
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Low-dimensional Representation of Uncertainties in
Wind Power via Karhunen-Loeve Expansion (KLE)

WL(t, ω) = log(W) = 〈WL(t, ω)〉+

∞∑
k=1

√
λkfk(t)ηk(ω)

KLE RVs are approx. normally
distributed
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Wind sites that are geographically close can employ the same
stochastic coefficients for the main modes
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Extract Covariance Structure from Daily Wind Profiles

Propose a covariance model:

Σi,j = σiσj exp
[
−
( |ti − tj|

tc

)α]
Site 16238
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Estimate parameters via
regression

Wind Site tc α

15414 11.3 0.96
16238 10.3 0.95
3560 10.5 1.15
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Generate Wind Power Realizations Consistent with
Historical Data

Weather Forecast:
day-ahead wind

speed profile

Typical σP

P (W )
Covariance
matrix Σ

W (t, η)
→ P (W )

ptr(η)

tc, α η

σW (t) KL
modes

We employed data available for download from the Belgium
Electricity Grid Operator ELIA
Typical errors between predicted day-ahead wind power profiles
and actual values are about σP = 35%.

errors are independent of the time of the day.
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Stochastic Economic Dispatch

Q(x,η) = min
f ,p≥0,q≥0,θ
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Need to compute 〈Q(x,η)〉 (and other higher moments) more
efficiently and more accurately than MC aproaches.

C. Safta (csafta@sandia.gov) SIAM UQ 2016 April 7, 2016 14 / 1



Dependence of Q on η

η1 − η2
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Tests show a smooth dependence η − Q for the range of
uncertainties explored in this study

We will pursue a Polynomial Chaos approximation for Q.
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Accurate Representation of Q(x, η) using Polynomial
Chaos Expansions (PCE)

Q(x,η) ≈∑P
k=0 ck(x)Ψk(η)

PCE coefficients are evaluated via
Galerkin projection:

ck(x) =
〈QΨk〉
〈Ψ2

k〉

=
1
〈Ψ2

k〉

∫
Rn

Q(x,η)Ψk(η)p(η) dη.

Given the PCE representation, the
expected cost is:

〈Q(x,η)〉 = c0

Compute PCE coefficients
via sparse quadrature
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Validate PCE Approximation
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IEEE 118-bus test system augmented with the three wind
generators
16-dimensional PCE
Tested 1st through 4th order approximations (shown with
blue,red,green,black).
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Expected Cost: PCE vs MC
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Relative L2 error is estimated with respect to the adjacent higher
accuracy value of the same type.
The PCE approach shows superior accuracy compared to MC for
the same number of samples.
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Summary

We present methods for efficient representation of uncertainty in power
grids, with emphasis on the Stochastic Economic Dispatch (SED)
problem.

We model wind uncertainty via Karhunen-Loeve (KL) expansions.

About 6 modes are sufficient to represent 24-hour wind speed
samples
Dimensionality of the stochastic space is further reduced for wind
sites that are geographically close.

We represent the dependency of the SED solution on the
uncertainty in renewables via Polynomial Chaos expansion (PCE)
models.

For the examples considered here, if superior accuracy is needed,
the PCE approach is significantly cheaper (one order of magnitude
or more) for the evaluation of expected cost compared to Monte
Carlo approaches.
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