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sCO2 Brayton Cycles Recuperation &=
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J. Dyreby, S. Klein, G. Nellis, and D. Reindl, “Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With
Recompression,” Journal of Engineering for Gas Turbines and Power, vol. 136, no. 10, p. 101701, Jul. 2014.




Scalable SCO2 CBC Systems )

" PCHEs )
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J.P. Gibbs, P. Hejzlar, & M.J. Driscoll. (2006). Applicability of Supercritical CO2 Power Conversion Systems to GEN IV Reactors (Topical
Report No. MIT-GFR-037) (p. 97). Cambridge, MA: Center for Advanced Nuclear Energy Systems MIT Department of Nuclear Science and
Engineering.
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Approximate Cost Scaling

Fo is a pressure cost factor
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Cost = CESDU Fmat Fp FiUAsp Pelec

Cespy IS the UA-specific cost value [S$/(kW/K)]
F...t is @ material cost factor

F. is an adjustment for inflation

UA,, is the cycle power-specific UA [kW/(K-MWe)]

P

olec 1S the cycle power level [MWe]
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ESDU, “Selection and Costing of Heat Exchangers,” Engineering Sciences Data Unit, ESDU 92013, Dec. 1994.




Heat Exchanger Development Gaps @&
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Readiness Levels /. &'/ & & & &' &' &/ & &SRS S o o TiT/*C
Molten Salt Reactor NE 3 4-5 { 6-8 |68 2 {24 700 to 850
Sodium Fast Reactor (SFR) NE 3 6-8 [6-8: 2 {24 550
Lead Fast Reactor (LFR) NE 3 45 | 68 [6-8) 2 24 550 to 800
Helium Gas Reactor (GFR, VHTR] NE 4-5 2 3 45 ! 68 (-8 2 ;24 700 to 1000
Nuclear Shipboard Propulsion NE 6-8 | 6-8 200 to 300
Direct CSP Tower EE 4-5 45 : 68 |68} 2 124 500 to 1000
CSP Tower with Thermal Storage EE 2 3 4-5 | 6-8 [6-8) 2 24 500 to 1000
CSP Trough with Thermal Storage EE 68 68! 2 124 300 to 600
CSP Dish Generator EE 2 4-5 4-5 | B-8 2-4 500 to 1000
Direct Geothermal Plant GT 2 68 |68 2 |24 100 to 300
Indirect Geothermal Plant GT 4-5 6-8 |6-8; 2 24 100 to 300
Direct Natural Gas Combustion FE | 3-5 | 4 2 3 45 : 68 |68 2 {24 1100 to 1500
Integrated Gasification Coal FE | 3-5 2 3 45 | 68 (B8} 2 24 1100 to 1500
Pulverized Coal Fluidized Bed FE 4 3 45 {68 |68} 2 {24 550 to 900
Waste Heat Recovery FE 4 6-8 |68 2 124 230 to 650
Gas Turbine Bottoming FE 4 6-8 [6-8: 2 24 230 to 650
Municipal waste to energy FE 4 6-8 |6-81 2 124 230 to 650
10 MWe Pilot FE 4 45 | 68 (-8 2 |24 550 to 700
50 MWe Demonstration FE 4 4-5 ¢ 6-8 |6-8! 2 {24 550 to 700
N/A Gas Liquid Solid >750; 750 | 650 ; 550 .
sC02 Heating from Various Sources Recuperation MDMT / °C =C02 Cooling




Development Gaps Addressed
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Technology
Readiness Levels T/ c
Molten Salt Reactor NE () as\ifes\[68 2 {24 700 to 850
N
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Lead Fast Reactor (LFR) NE P 3 45 ) 68 {68 2 24 550 to 800
Helium Gas Reactor (GFR, VHTR) NE (ia5)) 2 3 asles [esi 2 {24 700 to 1000
Nuclear Shipboard Propulsion NE ~— il i 6-8 |6-8 200 to 300
Direct CSP Tower EE P ( 4-5 ) 45]d6s |l6s 2 124 500 to 1000
CSP Tower with Thermal Storage EE 2 ()™~ as|ile-s [|e-s 2-4 500 to 1000
CSP Trough with Thermal Storage EE — 68 (|8 2 24 300 to 600
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Key Development Metrics )

= Economics Echogen

= How do we optimize designs

(11 O -
and reduce fabrication costs? [A] 30% reduction

in HX cost would
have [a]

meaningful impact

on system cost.”

= Efficiency vs. Effectiveness
= Efficiency vs. pressure drop
= Manufacturing techniques

. Failure MOdes = 4—;C0]d Shock Hot Shock — J1 (Mpa)
= How do we accommodate I \“\\ o
thermal stress and fatigue? 1R S st
. % Z \)( | o -, . — J5 (Mpa)
= Pressure containment g & = W we =5 wm  mw 5w @

(material vs. geometry) s /s N/~ i TR
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[1] T. Held, “Performance & cost targets for sCO2 heat exchangers,” presented at the National Energy Technology Laboratory - EPRI
Workshop on Heat Exchangers for Supercritical CO2 Power Cycles, San Diego, CA, USA, 15-Oct-2015.

[2] F. Pra, P. Tochon, C. Mauget, J. Fokkens, and S. Willemsen, “Promising designs of compact heat exchangers for modular HTRs
using the Brayton cycle,” Nuclear Engineering and Design, vol. 238, no. 11, pp. 3160-3173, Nov. 2008.
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The Printed Circuit Heat Exchanger @
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Methods of Heat Exchanger Design (M.

= Effectiveness — NTU / LMTD Methods

= Uses analytical solutions to various heat exchanger configurations
= Explicit solution method with reasonable accuracy

= Compact Heat Exchanger Correlations
= Correlations developed from experimental data for several geometries
= Explicit accurate solution but for a limited number of correlations

= Sub-Heat Exchanger Method

= |mplements method 1 multiple times to capture property variations
= |mplicit solution needing fewer nodes / iterations than 1D solutions

1D Channel Solutions
= Simulates channels identically or in parallel to determine performance
= |terative, intensive solution with the highest accuracy and flexibility

= More complex methods also exist (2D, 3D, CFD)




Effectiveness - NTU Derivation
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Assume:

= Externally adiabatic

= Incompressible flow

= Constant specific heat capacity

= Enthalpy independent of pressure
Finite difference method

= Establish control volumes

Coupled differential equations
=  Hot and cold-side temperatures
General solution

=  Relate temperatures, UA, C’s

Effectiveness-NTU formulation

= NTU ==, and ( = 2

min max

" € = q./[Cmin(TH,in - TC,in)]

G. Nellis and S. A. Klein, Heat Transfer. Cambridge; New York: Cambridge University Press, 20009.




Effectiveness - NTU Solution ) £,
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G. Nellis and S. A. Klein, Heat Transfer. Cambridge; New York: Cambridge University Press, 20009.




Sub-Heat Exchanger Method )

HX | HX 2 HX N

_ Ty T Ias Tyn L1
A e oo e -
lav | i/ N QN |
T 1 I .2 l T .3 T CN l TC',NH

¢ =1 i ~ Hiva = Divide into a series of HXers
MAX(1e-4 [K], |T; — Tiy1| SIGN(h; — hit1))
3 = Extends e-NTU method
+ MIN(Cai C)(Tai = Triva) = Assumptions apply to each
in[(L=5Ce) sub-heat exchanger (Ax)
NTU, = 1__68 for Cp < 1 ]
e = Best method to obtain UA
te accurately and quickly with
UA; = NTU;MIN(Cy 1, C,1) variable property flows

G. Nellis and S. A. Klein, Heat Transfer. Cambridge; New York: Cambridge University Press, 20009.




ASME BPVC Design Equations ) ..
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M. Carlson, T. Conboy, D. Fleming, and J. Pasch, “Scaling Considerations for SCO2 Cycle Heat Exchangers,” in Proceedings of the
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Dusseldorf, Germany, 2014, pp. 1-5.




Non-Dimensionalized Equations ) ..

Section of a printed circuit heat exchanger
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M. Carlson, T. Conboy, D. Fleming, and J. Pasch, “Scaling Considerations for SCO2 Cycle Heat Exchangers,” in Proceedings of the
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Dusseldorf, Germany, 2014, pp. 1-5.




PCHE Core Pressure Containment @&
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M. Carlson, T. Conboy, D. Fleming, and J. Pasch, “Scaling Considerations for SCO2 Cycle Heat Exchangers,” in Proceedings of the
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Dusseldorf, Germany, 2014, pp. 1-5.




PCHE Core Pressure Containment

Max Cross-Sectional Area Ratio
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Half-Cylindrical Headers ) .
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Thermal-Hydraulics ) B,
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PCHE Design Software
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‘Dnu-utlnﬁr.

Heat Exchanger Data Sheet ‘

Side A (straight)

Side B (Z-side)

solutionScope$=[All design steps [mech, therme, TH] |

Step 1. Side A and B Stream Compositions (by mass %)

Choose the fluid set: |Refprop Fluid(s)

First 8 fluid components: E"‘l WATERFLD

Refprop Fluid(s)

B o

Summary of PCHE Design

[z2]us [RizazDFLD] Job Number
[]s1  [ACETONEFLD [e]ea  [BOTENEFLD] RunDate
e Sub-hxer model e e s T
Elm El"“ Code Used | AEME Cooe Sestion VIll Chicion 12613
o [~ [Eoeerm Core Length (et headers) L= " I7]
Core Width (bet headers) W= """ [m]
BUTANE FLD
[  [EOANERD) (e S
« ASME BPVC o o Core oo Secion B A< )
[a]ess [s]es  [TBUTENEFLD Side A Surface Area  As,= " [m]
[Fomng val & var 51 [ Side B Surface Area  Asg= " [ .
Wietted Volume [core + hdrs)  Voleey = ™" [
. Fouling Factor: Ry, <8000 [m R s S0t m™ -
d Sln Ie tWO' hase - : Metal Mass {core + hdrs) M= """ [kg]
g ! p 1 Step 2. Specify Fluid Flow Rates Heat Transfer Rate (Duty) 4= """ [W]
I e e Conductanoe-AreaProdut Ussen =
Up= ™ ] U= e il Side AMAWP MAWP, = " [P3]
- " : Side B MAWP MAWPg = """ [Fa]
Supercrltlcal fIOWS Step 3. Specify Inlet State for Sides A and B MAWT (same 2s MOMT)  MAWT = [
Inlet Pressure P 37-170E+08] [Fa] Pz J2330E-07| IP4] Number of Etched Plate Pairs Myows = [
Inlet Temperature T, J5728] K] Tewm 281 K] Side A Channels per Plate Mgy o= * [
Inlet Qualty (£100 = sup or sub) Qo= " Qo= ™ Side B Channets per Plate  Nowps= *[]
. Outlet Pressure  Page= """ [Fa] Pase= """ [Fa] Number of Un-stched Plates My, = *
d OVEI’ 400 ﬂ u |dS Outlet Tempersture  Tau:= " K] T {5642) 1 Step 9. Other Controls
Outlet Quality (100 =sup or sub) = Qaou= o= " Max Active core volume width  Wacymax =0.1597] [m]

Step 4. Specify the Allowable Pressure Drop Max Active core volume height  Hagy may =|E| [m]

PressureDrop  dPsum,= " [Pa] dPsumg = """ [Fa] Extra width provided  Wayira 0] [m]
Drop ! Operating Pressure  dPas = "' [%] dFg = " ] Extra height provided  Haxira 90]ml]
Step 5. Specify Header Orientations Step 6. Specify the Performance Measure
Header Axis Orientation  [Vertical Vertical

Choose Measure Type | Side B Outlet Temperature

Step 7. Specify Core Channel G
tep 7. Specify Core Channel Geometry Diffusion Bonding Joint Efficiency Epg 50.7]

Channel Width  w,, < 0.001289][m] wg 50.001289] m]
Header Cylinder Joint Efficiency  Eqy 071
Channel Deoth .. J0.000763] [m d J0.0007863] fm1 —




PROTOTYPE PCHE DESIGN




Heat Exchanger Data Sheet ) .

Parameter Unit Side A (Straight) Side B (2)

Fluid water water
 MassFlowRate  kg/s(bm/r)  15(12000) 15 (12000)
© Volumetric Flow Rate ~ m’s (gpm) ~ 15e-3(24)  15e-3(24)
©Inlet Temperature  °C(F) 82(180) 37(98)
 InletPressure  kPa(ps) 300(44) 300 (44)
 pressureDrop  KkPa(ps)  55(7.9)  62(9.0)
 Fouling Factor m-KW 85 Be5
"""""" MAWP  MPa(ps)  20(2900)
- mAawr <R 550 (1000)
~ pwy KWy, Btwhr) 103 (3500000
Height x Width x Length ~ m(in)  0.15x0.15x0.46 (6X 6 x 18)
© Active Surface Area  mi(n) 1213
© Material - 316LStainless Steel




		Parameter

		Unit

		Side A (Straight)

		Side B (Z)



		Fluid

		-

		water

		water



		Mass Flow Rate

		kg/s (lbm/hr)

		1.5 (12000)

		1.5 (12000)



		Volumetric Flow Rate

		m3/s (gpm)

		1.5e-3 (24)

		1.5e-3 (24)



		Inlet Temperature

		°C (°F)

		82 (180)

		37 (98)



		Inlet Pressure

		kPa (psi)

		300 (44)

		300 (44)



		Pressure Drop

		kPa (psi)

		55 (7.9)

		62 (9.0)



		Fouling Factor

		m2-K/W

		8e-5

		8e-5



		MAWP

		MPa (psi)

		20 (2900)



		MAWT

		°C (°F)

		550 (1000)



		Duty

		kWth (Btu/hr)

		103 (350000)



		Height x Width x Length

		m (in)

		0.15 x 0.15 x 0.46 (6 x 6 x 18)



		Active Surface Area

		m2 (in2)

		1.2 (13)



		Material

		-

		316L Stainless Steel
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Design for Multiple Phases ) .

1. Pressure Containment
= Evaluated by hydrostatic pressure testing

2. Single-phase Thermal Hydraulics
=  Evaluated in the NESL water test loop

3. Supercritical Thermal Hydraulics
=  Evaluated in the NESL sCO2 loop

4. Fatigue Lifetime (to failure)
= Tested by thermal cycling under pressure




Instrumentation

20.83

©$0.25

4.00
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National
Laboratories

h

4.000 Long 0.25 @ 0.045 Thickness Swagelok 314L Tube (sim.

5 Pairs of holes w/o tubes

F

3.00

5.00

7.00

9.00

18.00

32.83

5 Pairs of holes w/o fubes

Support from base when handling and mounting.

1.000 @ 0.120 Thickness Swagelok 316L Tube (sim.)

/—ﬁé ®
N

6.00
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Instrumentation — Tap Locations  @®i=.

/.00




HEAT EXCHANGER TEST PLATFORM
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PCHE Instrumentation oo




PCHE PERFORMANCE COMPARISON




Performance Testing ) ..

110

=—Hot inlet
w==Cold outlet
——Hot cutlet

=—=Cold inlet

—m T
=,
-
i
5 80
'
e
Lh]
o
£ 70 -
&
m m
Cooling on Heat to 110 F Shutdown
ﬂ] T T T T T T
o 1000 2000 3000 4000 S000 6000 F000
Time / [s]

SEARCH appears conservative by at
least 10% on ¢, UA, effectiveness




Performance Comparison ) .

Time Range Description

0-750 Baseline, prepare to start test. Hot flow started first, wait to reach steady state.

750-1500 Start cooling flow; keep at maximum rate until loop below 70°F

1500-6500 Increased heater power gradually (5-10% increments) to 100% = 110°F

6500-7000 Shut off heater power, cooling remains on.

g/W UA / (W/K) g
Time/s SEARCH Measured SEARCH Measured SEARCH Measured
...4200 44000 7% 8100 +13% __ 43% . 6%
.4700 44000 +12% 8200 +23%  43% +11%
..2100 54000 t13% 8400  _*#26% _ 43% 2%
2400 61000 +14% 8500 _ #28% _ _ 44% . 3%
5700 67000 +14% 8600 +27% 44% +13%




		

		q̇ / W

		UA / (W/K)

		



		Time / s

		SEARCH

		Measured

		SEARCH

		Measured

		SEARCH

		Measured



		4200

		44000

		+7%

		8100

		+13%

		43%

		+6%



		4700

		44000

		+12%

		8200

		+23%

		43%

		+11%



		5100

		54000

		+13%

		8400

		+26%

		43%

		+12%



		5400

		61000

		+14%

		8500

		+28%

		44%

		+13%



		5700

		67000

		+14%

		8600

		+27%

		44%

		+13%



		6260

		67000

		+16%

		8700

		+32%

		44%

		+15%








		Time Range

		Description 



		0-750

		Baseline, prepare to start test. Hot flow started first, wait to reach steady state.



		750-1500

		Start cooling flow; keep at maximum rate until loop below 70°F.



		1500-6500

		Increased heater power gradually (5-10% increments) to 100% = 110°F.



		6500-7000

		Shut off heater power, cooling remains on.








Calculated vs. Meas. Pressure Drop @Ez.

200000

180000 —|Pressure Drop Comparison
SEARCH vs. Prototype MCHE

160000

140000

120000

100000

80000

60000

Calculated Pressure Drop / Pa

¢ Hot Total dP
B Cold Total dP

40000

20000 . - N

) Underprediction

0 I I I I I I I I I |
0 20000 A0000 60000 20000 100000 120000 140000 160000 180000 200000

Measured Pressure Drop / Pa




Pressure Drop Prediction Capability @

200000
180000 .
_ Pressure Drop Comparison
o
£ 160000 SEARCH vs. Prototype MICHE
3 w
S
8§ 140000 +—— e
| . =" =
o .- . N
2 & Hot Total dP -’ / !
@ 120000 = :
2 B Cold Total dP T m / /
. 7/
g 100000 Hot dP - SEARCH - / k4
— R R
© Cold dP - SEARCH 7 <
o ’ ’
—. 80000 : -
3 .
| .
Q 60000 ah
[ -
| .
: .
@ 40000
| =
a
20000
U I I I I I I I 1
5 10 15 20 25 30 35 40 45
Volumetric Flow Rate / gpm




Conclusions ) i,

= Based on our first set of tests:
= SEARCH is within 25% accuracy on key metrics
* Thermal performance is predicted conservatively
" Pressure drop is under-predicted in some regimes

= These results have already been applied

= Testing is planned after loop upgrades
= Additional thermal-hydraulic observations
" [ntermediate state (T & P) profiles
" Future test phases (sCO2, fatigue)




BACKUP SLIDES




The Argument for SCO2 Brayton @

Versus Helium and Steam 50

v
o

1. Higher efficiency

=  Sodium Fast Reactor
operating at 550 °C

FY
o

N
o

Power Cycle Efficiency (%)
w
o

/ / elium
y A

= Concentrated Solar
Power up to 700 °C

=
o

o

200 400 600 800 1000

[ CCS G as |f| e d Coa I an d Heat Source Temperature (°C)

di

Natural Gas up to 1150 °C

He

Turblne (300 MWe)

2. Compact turbomachinery
=  Smaller system footprint

Tm

-
= Possibly reduced cost Steam Turbine 5-CO, 00 mwe)

(300 MWe)




Current Electrical Generation ) B

U.S. 2013 Electricity Generation By Type

= Electrical Generation
= Dominated by fossil

Renewables
12.9%

= Nuclear is a critical part

Nuclear

= Expected that natural
gas and nuclear will
grow; coal will shrink

= Two main technologies

= Steam Rankine cycle
= Coal, Nuclear, CCNG

= Gas Brayton cycle

U.S. 2000 Water Withdrawals by Market

Domestic, 1%

Mining, 1%

Public Supply, 13%
Irrigation, 40%

Livestock, 1%

= Natural gas

Aguaculture, 1%

Thermoelectric, 39%
Industrial, 5%




Supercritical CO, (sCO,) Brayton Cycle (@JEx.

5-stage Dual Turbine a8

Lo i

= Key Advantages over Steam

= Smaller turbomachinery

= Single-phase fluid (no quality issues) 6, '
3-stage Single Turbine
Hi #_Lo

20 meter Steam Turbine (300 MWe) 1 meter sCO, (300 MWe)
(Brayton Cycle)

= Recuperation becomes practical

h
(=]

- Cycle Efficiencies vs. Source Temperatury

CO2, RCBC, reheat,/
~intercooling A WhatCosts__
Steam —1C02, simple CBC

w
uw

= Key Advantages over Gas

= High efficiency at low temperatures

w
o

s
wn

Iy
(=]

" Lower compression work

Cycle Gross Efficiency [%]
w
v

”
. 30
= Smaller turbomachinery 600 °C Goal:
25 ===RCBC, reheat, intercooling 1/10t the cost
20 ===simple CBC 1/100t% the volume
—=Today Of conventional
15 —Steam steam Rankine
10 -
300 400 500 600 700 800

Temperature [°C]




Current SCO2 CBC HXers ) &,

CO, Loop Fill
Pump

Turbine Throttle Valves

Turbine Bypass Line

Turbine-Compressor

Control Valve
Compressor

Recirculation Line

Turbine-Generator

IST REC

Echogen Heat
Exchangers

Coriolis Flow Meter - I ST P R E

G. O. Musgrove, C. Pittaway, D. Shiferaw, and S. Sullivan, “Tutorial: Heat Exchangers for Supercritical CO2 Power Cycle Applications,”
San Antonio, Texas, USA, 03-Jun-2013.




Commercial Unit Potentlal ) B
[Key Requirements: \

v" High Pressure
v" High Temperature
v' Corrosion Resistant
v High Reliability
v' Compact Geometry
( Scalable to 150 Mwy

Coil-Wound | Shell and Tube
10 to 300 [m?3/m?3] 10 to 200 [m2/m3]

Plate-Fin Prmted Clrcun Shell and Plate
200 to 800 [m?/m3] 200 to 5000 [m?/m3] 100 to 600 [m?/m?3]




PCHE Thermal-Hydraulic Performance @

0.12F
® 807z
o O1r 6527
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Carlson, M. (2012). Measurement and Analysis of the Thermal and Hydraulic Performance of Several Printed Circuit Heat
Exchanger Channel Geometries (Master of Science). University of Wisconsin - Madison, Madison, WI.
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PHE
120 to 660

PFHE
(b) 800 to 1500
(d) 700 to 800

= :‘ Jg%fb?);o%)o ]
HEAT EXCHANGER COMPACTNESS

_ A, 4¢
Surface Area Density: f = ARrR
h
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Potential Applications ) .

VEHICULAR
MARINE Honeywell AGT1500
Rolls-Royce WR-21 M1 Abrams Tank

Coal / Nuclear

Type 45 Destroyer
Steam Rankine P _ :

>
= |
“ . v - .
¥ birton
Klima- og keleteknik
_ _ STATIONARY
GenlV Nuclear Refrigeration Solar Turbines
Commercial, Cryogenic Mercury 50

Sodium Fast Reactor
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Effectiveness and Scaling Behavior ®k=.

Heat Transfer Rate
Heat Transfer Surface Area

*Temperature Differential*
Hot Inlet Cold Inlet
\ 4

v Voo

g = UAAT = S(Tfp)min(TH,m —T¢ in)
A

T A
Overall Heat Transfer Coefficient \

Minimum of the hot- and

Effectiveness )
cold-side flow mass flow
Mass Flow Rate rate and specific heat
capacity product
Specific Heat Capacity (capacitance rates)




Fundamental Scaling Behavior ) ..

Heat Transfer Rate
Heat Transfer Surface Area

*Temperature Differential*

Vol

g = UAAT

!

Overall Heat Transfer Coefficient




Fundamental Scaling Behavior ) ..
G = UAAT

Overall Heat Transmission Coefficient

Fluid Transmission Surface Fluid
(Btu/ftZ hr °F) (W/m? K)

Water Cast Iron Air or Gas 14 79
Water Mild Steel Air or Gas 20 1.3
Water Copper Air or Gas 2.3 13.1
Water Cast Iron Water 40-50 230 - 280
Water Mild Steel Water 60-70 340 - 400
Water Copper Water 60 - 80 340 - 455

Air Cast lron Air 1.0 a7

Air Mild Steel Air 14 79
Steam Cast lron Air 20 1.3
Steam Mild Steel Air 25 142
Steam Copper AIr 3.0 17
Steam Cast Iron Water 160 910
Steam Mild Steel Water 185 1050
Steam Copper Water 205 1160
Steam Stainless Steel Water 120 630



Effectiveness and Scaling Behavior @

Heat Transfer Rate

Hot Inlet Cold Inlet

v Voo

q = UAAT = e(m¢cp) . (Th,in — Tc,in)
N AN A

S

Minimum of the hot- and

Effectiveness )
cold-side flow mass flow
Mass Flow Rate rate and specific heat
capacity product
Specific Heat Capacity (capacitance rates)




Other Useful e-NTU Scaling

= Configuration matters most for C; = 1; counter-flow is best

Sandia
National

h

= Effectiveness is asymptotic with NTU (size); 1 for counter-flow

= Configuration matters less as C; approaches O

1 T T T T T T T T
I | ]
‘ _ ‘ counter-flow |
cross-flow, both fluids unmixed ]
0.8
206 I Aé-—— 7 ]
GJ ) —'—_'_'_'_'__ 4
8 04 Z : , /
E - parallel-flow| shell-and-tube, cross-flow, 1
I single pass one fluid mixed]
0.2
[ Ce=1 ]
0 1 2 3 4

Number of transfer units

C.=1

Effectiveness

0.8

0.2

0.6}

0.4}

Number of transfer units

C,=0.25

' o
shell-and-tube, cross-flow,
single pass  one fluid mixed-|

parallel-flow
Cr=0.25]
0 1 2 3 4 5

Laboratories



Sandia

Pressure Drop Correlations ) S

AP = z APfriction + 2 APlocal + z APatccelerattion + z APbody forces

m Ly 1G>
Body Forces APrvson = fdhsﬂ?
y
iout Pout + iinpin . .
APgravity = ( )LSW(Q) Blasius Kondrat'ev

Lout + lin

f=0316Re—025 W) f=0.188Re—022
= | ocal Form Losses

AP L Haaland Filonenko
local — K =f< equwalent)
&2~ I\ e 1 & i
(181080 | (22) " +82]) f = G8210g10 Re, — 1,687
= Acceleration Difference
AP GZ( 1 1 ) Colebrook Equation
pout pin i _ <E+ 2.51)
\/7_ 0810\ 37 Re\/?




Heat Transfer Correlations ) .

Constant Property Supercritical Fluids
Dittus-Boelter Correlation Jackson’s Correlation
_ n p.-m _ 0.82 p,.05 [Pw 03 S "
Nu = C Re"Pr » Nu = 0.0183Re)®? Pr{ (pb) <cp,b>
GnielirﬁﬁRCorlng)aPtion Pitla Correlation
8 €= r Nulenielinski + NublGnielinski kw
N B =
: » < 2 K,

1+ 12.7\/% (Pr§ _ 1)
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