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Abstract. Currently deployed Intelligence, Sensing, and Reconnaissance (ISR) systems fall 

along the spectrum of autonomy in operations, ranging from those systems that collect and 

analyze data autonomously to those systems that require humans for effective collection 

operations. This paper outlines two traits of ISR systems that require relatively less human 

involvement in operations, introducing the measurement of an operation’s 

Understanding-to-Data Ratio (UDR) to help determine the appropriateness of automating a 

system in a given operating context. Human and automated capabilities in existing systems are 

contrasted, with the strengths of each identified. Finally, a spectrum of system capability and 

human involvement is proposed for considering tradeoffs involved with new acquisitions in the 

ISR domain, with an emphasis on the interface between human operators and automation in 

partially autonomous systems. 

Introduction 

Intelligence, Sensing, and Reconnaissance (ISR) systems have been used since the beginnings 

of warfare, with humans traditionally performing all activities in the Tasking, Collection, 

Processing, Exploitation, and Dissemination (TCPED) chain. Throughout the twentieth 

century, the Collection and Processing stages began to involve a greater number of electronic 

systems, including wired communication systems, optical systems, radio, radar, infrared and 

multi-spectral systems, digital communication systems, and eventually satellite-based, 

sea-based, and air-based capabilities of all kinds. Some of these collection systems were simply 

an interface from a real-time human operator to an electronic medium (e.g., wiretaps), while 

other collection systems required little human activity or intervention beyond monitoring state 

of health and occasional updates to tasking (e.g., satellite-based film photography). With 

today’s more capable collection systems collecting more data than ever before, higher demand 

for ISR systems (GAO 2008), and an increasing demand for solutions requiring less manpower 

(Lingel et al., 2008), a desire for more automated solutions is a natural response. This idea is 

often couched in terms of reducing “human in-the-loop” requirements by increasing a system’s 

automated processing capabilities to substitute for the traditionally human activities of data 

integration and decision-making. The notional spectrum in Figure 1 shows this concept of 

“Fully Automated” operations as opposed to “Human In-the-Loop” operations, with examples 

of past (e.g., film-based satellite photography, humans) and current (e.g., unmanned vehicles, 

ballistic missile defense) ISR systems that use automation to varying degrees.  
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Figure 1. A simple spectrum implicitly used in discussions of ISR system automation. 

This paper approaches the need for traversing left on this spectrum by examining the following 

questions:  Do certain system attributes necessitate lower human involvement in electronic 

collection systems? Are there common traits of those systems requiring less manpower in 

operations?  In answering these questions, the present work addresses two traits that have 

enabled automated systems to succeed in certain modern environments: 1) Limited real-time 

feedback needed for effective collection; and 2) A high Understanding-to-Data Ratio (UDR) of 

operations (i.e., in some tightly-defined contexts, relatively large amounts of situational 

understanding can be derived from very specific data collects).  Each of these attributes will 

now be examined vis-à-vis its contribution to reducing and/or eliminating human 

responsibilities in the operations of ISR systems. 

Trait 1: Limited real-time feedback needed for effective collection. 

A collection system’s ability to adapt to real-time events in operation is a primary driver of the 

level of human involvement required for effective collection. The need for this ability can stem 

from a collection system’s mobility as well as the desired level of dynamic tasking for a 

collection system. Mobile systems such as ground and air vehicles may need to respond to 

real-world events more quickly than a stationary radio antenna or a satellite with a 

fixed-pointing payload. The less mobile a collection system is, though, the less necessary it is 

to have real-time feedback in operations for effective collection. In addition, an unmanned 

aerial vehicle (UAV) may be tasked with collecting pictures or video of stationary and/or 

moving targets, with tasking subject to change at a moment’s notice depending on external 

needs or in-scene developments (i.e., dynamic tasking). A radio antenna, however, may only 

ever be tasked with receiving and recording certain frequencies around the clock (i.e., fixed 

tasking). Less dynamic tasking necessitates less real-time feedback in operations for effective 

collection.  

The more mobile a system is, and/or the more its tasking is intended to adapt to developing 

situations, the more essential human operators’ real-time feedback becomes. As Lowenthal 

writes, “…Technical collection is less than precise. The problem underscores the importance of 

processing and exploitation” (2014, p. 71). Real-time (albeit partial) processing and 

exploitation by human operators ensures that dynamic collection systems operate collect the 

right signals in the right way at the right time. This incorporation of real-time feedback into a 

collection system precludes wholesale replacement of humans by automation, since real-time 

feedback in open environments – especially from exploitation, a particularly creative 

problem-solving activity – is a uniquely human skill. With respect to this adaptable ability, 

Sterman nicely summarizes the differences between (human) mental models and (automated) 

computer models: “A mental model is flexible; it can take into account a wider range of 

information than just numerical data; it can be adapted to new situations and be modified as 



 

new information becomes available...[Computer models] are unable to deal with relationships 

and factors that are difficult to quantify, for which numerical data do not exist, or that lie 

outside the expertise of the specialists who built the model” (Sterman 1991). 

Thus the incorporation of real-time feedback into a collection system’s tasking and operations 

requires efficient and effective real-time processing and exploitation of collected data, which in 

turn requires humans to be “in the loop”, with a high level of situational awareness. Lowenthal 

comments on the necessity of analysts’ judgments in identifying more valuable collections: 

“…the analysts’ expertise should be an integral part of collection sorting” (2014, p. 114). The 

necessity of humans for processing and exploitation activities brings into view the second trait 

of interest for present purposes, which is the Understanding-to-Data Ratio (UDR) of an 

operation. 

Trait 2: High Understanding-to-Data Ratio (UDR) 

A second trait of ISR systems requiring less human involvement is the high 

Understanding-to-Data Ratio (UDR) of an operation with respect to the system’s collection 

ability and its operating environment. The concept of UDR is analogous to the measure of 

Signal-to-Noise Ratio (SNR) commonly used in engineered systems such as antennas and 

visual detectors. One key difference is that while SNR measures a system’s capability 

regardless of operating context, UDR measures an operation – that is, a system operating in a 

given context. The amount of Understanding (i.e., the Signal), for the purposes of the present 

concept, is proportional to the fidelity of high-level situational questions being answered by an 

ISR system in operation: vague or imprecise ideas imply a lower understanding of a problem, 

while narrowly defined questions and targets imply a high degree of understanding (e.g., an 

operation whose goal is “to know what’s going on at location X” has a much lower 

understanding of what its goals are than an operation whose goal is “to know whether there is a 

vehicle at location X”). The Data (i.e., the Noise) is the low-level (usually electronic) 

collections used in the ISR operation. UDR is then the measure of how much the data can be 

extrapolated to answer high-level questions related to situational understanding. In “From Data 

to Wisdom”, Ackoff defines a hierarchy of human sensing and thought which relates the 

concepts of data, information, knowledge, understanding, and wisdom (1989). This hierarchy 

is shown in Figure 2 below. 

 

Figure 2. The heirarchy of human sensing and thought proposed by Ackoff (1989). 

Each ascending level of the hierarchy distills the level below it, resulting in general, top-level 

models (i.e., understanding and wisdom) which humans use to make sense of and predict 

events in the world at large (note that the idea of distillation and integration parallels the CPE 

activities of the TCPED chain). This process happens somewhat automatically, albeit 



 

supplemented by deliberate questioning and reflecting. The amount of understanding one has 

about a given problem or situation often simply comes through direct experience and 

observation (i.e., data collection). Occasionally, distilled high-level models (i.e., understanding 

and wisdom) can extrapolate from a seemingly small amount of data, which is indicative of a 

high Understanding-to-Data Ratio. In other words, in a high UDR operation, one’s level of 

understanding about a given situation is relatively high, while the data required to make 

immediate judgments is relatively low. 

Unlike SNR’s quantitative measures of both Signal and Noise, UDR as a measure is somewhat 

limited by one’s ability to define and measure the level of one’s understanding. Quantitative or 

even qualitative measures of understanding are not plentiful, since the upper levels of Ackoff's 

heirarchy reflect the (mostly unobservable) states, processes, and relationships of the human 

psyche. Lonergan describes understanding as “not the mere apprehension of any [data], not the 

mere memory of all, but a quite distinct activity of organizing intelligence that places the full 

set of clues in a unique explanatory perspective” (1992). When we write about understanding 

or insight, he says, “we write about a moving target, from a moving viewpoint” (1992). Hence 

the inherent difficulty in definition and measurement. With respect to ISR systems and 

operations, though, there exist (or should exist) some qualitative ideas of what type of 

understanding a system is intended to provide in a given context – e.g., specific occurrence of a 

singular event in a specific context, or broad situational awareness in various contexts. 

A key consideration of this point is that narrower goals of understanding (i.e., specific 

questions about a limited number of objects or events) imply a higher UDR operation, since 

narrower goals imply a clearer, more tightly scoped definition (i.e., a higher degree of 

understanding) of the “problem” motivating the system design in the first place. A clear grasp 

of a simpler problem allows one to glean answers from specific data collects due to basic 

assumptions that allow extrapolation of the data’s implications. On the other hand, a more 

general problem – for example, explanation of human behavior over time – prevents simple 

assumptions from being used (or from being very reliable), implying a lower understanding of 

the basic problem, and thus a lower UDR operation. This seemingly small amount of 

distinction between types of understanding can be useful enough in distinguishing relative 

levels of UDR operations, as following examples demonstrate. 

The divisor of the UDR measure, data, is relatively easily described numerically, having 

multiple established quantitative measures. One such measure is richness, in which the number 

of types of data observed are known, but the relative abundance of each is not known (Gotelli 

and Colwell 2001). Another is diversity, in which the number of types of data observed and 

their relative abundance are both known (Peet 1974, Jost 2006). And closely related to this 

latter measure is entropy, one of the foundations of information theory (Shannon 1948). These 

measurements can all be used to inform and compare the UDR measurements of different 

systems, since systems are generally designed around a limited range of data collection types. 

Collecting more data – whether a larger amount or more varied types – can only lower the UDR 

of an operation, making automation more difficult (if there is no corresponding gain in 

understanding of the essential problem being solved by the data collection). This latter point is 

likely counterintuitive to those who would suggest that automation is the answer to modern 

“big data” challenges. 

In high UDR operations, questions at the upper-levels of Ackoff’s hierarchy can be almost 

completely informed by relatively specific data collects. Examples of these types of high UDR 

operations include automated collection and analysis systems such as those dealing with radar 

detection, internet traffic, and phone records. The collection systems in each of these areas 



 

expect limited signal types, whether only radio frequencies, IP addresses, or phone numbers 

and metadata. In addition, the analysis (i.e., processing and exploitation) is fairly 

straightforward, since the data collected is directly related to the analysis desired: radar 

signatures, internet traffic, and phone records can all be effectively described by only a handful 

of quantifiable parameters (i.e., relatively low richness or diversity of data being collected, and 

in some cases relatively low entropy as well). Equally importantly, each of these is collected in 

a narrowly-defined operating context, along with very specific goals of identification 

(narrowly defined understanding), which serve as a kind of pre-formed high-level model into 

which the low-level data can be extrapolated. In summary, automated systems such as these 

generally operate in relatively barren datascapes – ignoring or unable to collect different types 

of data – and with very well-defined (and pre-defined) targets in the environment of signals 

collected. These are some of the basic characteristics of high UDR operations, shown in Table 

1 below. 

Table 1: High UDR and Low UDR operations contrasted. 

Traits of High UDR Operations Traits of Low UDR Operations 

 

-Limited set of questions and targets 

-Clearly defined questions and targets 

-Many assumptions about implications of data 

-Designed to infer limited set of outcomes 

-Limited, specific data collects 

-Limited, specific operating contexts 

 

-Unbounded set of questions and targets 

-Ill-defined, evolving questions and targets 

-Assumptions/implications questioned 

-Exploratory and explanatory 

-“Big” data (i.e., streaming HD video) 

-Variety of operating contexts 

Modern weapon systems also incorporate high UDR operations. In their report “Introduction to 

Autonomy in Weapon Systems”, Scharre and Horowitz review various weapons systems with 

respect to which functions require humans to be “in the loop”, “on the loop”, and “out of the 

loop” (2015). While the majority of weapon technology deployed today requires humans to be 

“in the loop”, some systems do operate in highly automated modes with humans simply “on the 

loop”. But according to Scharre and Horowitz: “To date, these [latter modes] have been used 

for defensive situations where the reaction time required for engagement is so short that it 

would be physically impossible for humans to remain ‘in the loop’ and take positive action 

before each engagement and still defend effectively…In all of these cases, automation is used 

to defend human-occupied bases or vehicles from being overwhelmed by a rapid barrage of 

missiles or rockets” (2015). Thus, the only demonstrated military cases of humans “on the 

loop” today are very short-duration, narrowly-defined situations with well-defined and 

predictable targets, in which there are no other options (since a delay on the order of human 

reaction time may be an existential matter).
1
 Based on a few radar pings, these systems can 

effectively launch missile interceptors because the narrowly defined context of operation 

allows the lowest-level data of radar detection to greatly inform certain higher-level models of 

the hierarchy – even up to essential understanding of an existential threat. These radar-based 

systems with predictable targets in very limited operating contexts are prime examples of 

collection and analysis systems in a high UDR operation. 

As an example of an ISR system in a low UDR operation, consider a full-motion video sensor 

mounted on a UAV meant to conduct surveillance in geographical regions around the world. 

                                                 
1
 With respect to these systems, Allenby and Sarewitz (2011) ask the very appropriate question, “Does the word 

‘robot’ signify a type of artifact, a type of capability, or a certain level of computational competence?”  One could 

ask the same question about the more general word ‘automation’. 



 

The UAV collects a large amount of image data (perhaps 30 frames per second at a given 

resolution of pixel values), and may have other types of sensors on board as well. The amount 

and variety of low-level data being collected (i.e., pixel values and other electronic signals) 

immediately lowers the UDR of this operation compared to previous examples. With regard to 

the understanding desired, very diverse information and knowledge – namely, identification of 

almost any type of physical object or spatio-temporal event over time – are intended to be 

gleaned from the system in order to provide a high degree of situational awareness (i.e., broad, 

virtually unbounded understanding of the world at large). Due to this diversity desired from 

collections as well as the diversity of operating contexts, target information is not well-formed, 

and often cannot even be known in advance. Absent are the simple rules for extrapolating data 

to answer higher-level questions, unlike the case of missile interceptors or phone collection 

records. (In addition, all kinds of confounding technical factors can be present when attempting 

to infer knowledge and understanding from this system, including weather conditions that 

affect sensor signals and pixel patterns, sensor movement due to turbulence and platform 

movement, changing lines of sight, perspective geometries, partially or mostly obscured 

objects, and many other factors.) This inability to define (or even bound) the knowledge and 

understanding desired leads to an even lower UDR as compared to previous examples. 

In this type of low UDR collections operation, humans are essential components of the system 

due to their ability to operate effectively in such environments and due to the inability of 

automated systems to cope with factors that ultimately remain unquantifiable and therefore 

un-computable. Sterman’s description of mental models again explains why humans excel in 

this type of low UDR collection operation
 
(1991), while Franchi and Guzeldere, writing about 

state-of-the-art artificial intelligence (AI) methods, are helpful in explaining the inadequacies 

of automation to effectively operate this type of system: “[Artificial intelligence] is a heuristic 

search in a search space game-theoretically defined…explained in terms of satisficing a set of 

rigid constraints by searching heuristically the space that those constraints define” (p. 55). If a 

problem cannot be completely defined in game-theoretic terms,
2
 or if the constraints on a 

problem are vague, unknown, or unquantifiably uncertain, then the heuristic search becomes 

something altogether different than the state-of-the-art artificial intelligence (i.e., automation) 

methods. Humans, on the other hand, easily conduct their own natural, quite effective forms of 

heuristic search to process big data in the form of full motion, high-definition video (i.e., 

human vision) because their situational awareness allows them to continually classify 

lower-level features observed as well as project the currently perceived situation into the future, 

through synthesizing their basic knowledge about the world, human behavior, and many other 

unquantifiable factors. In  low UDR operations such as vision-based surveillance, this ability 

means that humans’ higher-level mental models can help them selectively ignore most of the 

data and focus on only that most relevant (i.e., critical cues) to making sense of a visual scene 

and understanding the scene’s implications (Endsley 1997). 

While humans have spent most of their existence dealing with causal relationships and factors 

that remain unquantified – many of which are arguably unquantifiable in any way that would 

achieve stakeholder consensus (Stone 2002, Ch. 3) – computers and automated systems are 

simply unable to deal with these most basic features of the world at large. Recent advances in 

artificial intelligence (AI) have largely been about automating machine actions in high UDR 

operations (e.g., speech recognition on mobile devices, handwriting recognition in banking 

                                                 
2
 Indeed, often in engineered systems it is the case that the perceptions of the problems motivating a system’s 

creation and operation are not always well known in advance, nor do they remain constant throughout the life of 

the system (Rhodes & Ross 2010, Ricci et al 2014). This is almost certainly the case with any ISR system today. 



 

systems, robotic systems on factory floors), with a view toward eventually automating machine 

actions in low UDR operations (e.g., autonomous vehicles, household robotic systems). But 

efforts to automate machine actions in low UDR operations cannot be approached as a strictly 

technical problem that is detached from human analysis. Franchi and Guzeldere write: 

“’Creating intelligence’ as an engineering project makes it difficult to appreciate the 

complicated nature of human mental life, behavior, culture, and social practices – a territory 

generally studied and much better understood by the humanities and social sciences” (p. 18).  

These “complicated” aspects of life are precisely the information and factors necessary to 

effective ISR operations and effective intelligence analysis, since ISR systems have always 

been purposed with uncovering human actions and intents in varying cultures with varying 

social practices. Even in systems such as autonomous cars, which are “simply” tasked with 

operating safely in human-intensive environments, these “complicated” human matters prove 

to be a major challenge (www.nytimes.com). Even if the current state of autonomous car 

technology is greatly improved, and they become commonplace on roads, their function will 

not include understanding or explaining any developing situation that they see – nor will they 

be equipped to make decisions as to which portions of a scene deserve further investigation. 

Autonomous cars are purpose-built machines, tasked with the purpose of operating a vehicle 

among and around potential obstacles. In contrast, ISR systems are tasked with not simply 

operating, but observing human actions and making sense of them in open-ended environments 

across cultural boundaries, a purpose which the current state of AI – and its state for the 

foreseeable future – cannot begin to address effectively.
3
  

Human involvement in low UDR collection operations has additional benefits beyond 

increasing the local system’s performance. In addition to providing broad and synthesized 

situational awareness in novel and ill-defined environments, humans add tremendous value by 

collaborating with the wider community of other ISR systems in concurrent operation. It is 

often the case that one sensor system perceives only part of a developing real-time situation, 

while other systems can help fill in the gaps of understanding to form a more complete picture. 

On this topic, Ganter comments, “Situational landscapes emit contradictory evidence in 

different ways at different times, so the work requires interactive maneuvers of different 

sensors and thus interactive negotiations of different tribes” (Ganter 2007). Such interactive 

maneuvers, and especially interactive negotiations, require human operators due to the inherent 

vagueness and unquantifiable uncertainties encountered in dynamically evolving situations, as 

well as due to the communicative and political skills required. Though somewhat messy in 

practice, these cooperative activities can enable ISR systems to both harness and provide more 

diverse information from which to make sense of an unfolding situation than a single system 

operating in isolation. 

The Tradeoff: A Spectrum of Three Tightly-Correlated Dimensions 

The observations above regarding the benefits of human involvement in operationally adaptive 

and situationally aware ISR systems lead to the conclusion that these three dimensions of ISR 

systems are inextricably linked. The ability of a system to incorporate and provide situational 

understanding is tightly linked to its operational adaptability, as well as to its incorporation of 

                                                 
3
 Obviously many computer scientists and futurists may disagree, making grandiose claims of imminent leaps in 

artificial intelligence within the next 10-20 years. Such claims today are, of course, substantially no different than 

those of Simon, Newell, and others over the past 40-50 years with respect to digital computers, “thinking 

machines”, and “General Purpose Solvers” (Simon and Newell, 1958; Simon 1996). For a more complete 

treatment on the history of failed predictions about AI, see chapter 1 of (Franchi and Guzeldere 2005). 



 

human operators as processing and cooperating agents. These three relationships are depicted 

in the expanded spectrum shown below inFigure 3. 

 

Figure 3. A modified spectrum for considering ISR system capabilities. 

Each of the three dimensions on the spectrum can be considered separately for new system 

acquisitions, but each of the dimensions is tightly correlated with the others. A reduction of 

human-in-the-loop roles, for example, simultaneously reduces the potential adaptiveness and 

situational awareness of an ISR system. This framework can be used to help make explicit the 

capability tradeoffs involved with any newly proposed system, whether it is envisioned to be a 

fully autonomous system, a human-operated system, or something in between. It can also be 

used to better consider the appropriateness of automation in the various operating 

environments envisioned for a system. 

At first glance, traversing left (i.e., increasing autonomy) on the spectrum might seem to be 

reasonably accomplished by slowly incrementing autonomous behavior step-by-step into new 

systems, while simultaneously decrementing human involvement required. To successfully do 

this, however, the operating contexts and goals must also be incrementally bounded, by 

deconstructing broad surveillance goals and/or operating environments into specific, 

narrowly-scoped contexts and corresponding questions that can be answered by extrapolating 

from low-level data collects. While this latter activity likely sounds straightforward, it most 

assuredly is not. In fact, it displays many traits of so-called “wicked” problems: it likely will 

have no definitive formulation; the solutions will not be true-or-false, but instead good-or-bad; 

there will likely be no immediate or ultimate test of a solution; and there will likely be an 

innumerable set of potential solutions (Rittel and Webber 1973). As previously noted, human 

understanding is difficult to write about, much less formalize in an agreed-upon way (which is 

one reason that measuring the performance of present ISR systems is a nontrivial task). If 

increasing autonomy is desired, however, the goals of operation must be well understood and 

tightly bounded, keeping in mind that this may mean separate systems for separate purposes. 

Another challenge in traversing left, one that is perhaps counterintuitive, is that partial 

automation can lead to several new types of dangers (Inagaki 2011, citing Woods 1989, 

Wickens 1994, Endsley and Kiris 1995, Sarter and Woods 1995, Parasuraman and Riley 1997, 

and Sarter et al 1997). An increase in automation for a system does not imply a decrease in 

human factors considerations for that system – in fact, quite the opposite. For systems intended 

to incrementally reduce human-in-the-loop activities, more design effort will need to be spent 

on human factors considerations, specifically with regard to enabling human operators to stay 

aware of newly automated portions of the system
4
. As Rechtin and Maier state, “The greatest 

                                                 
4
 Leveson comments on the topic of system safety, “The use of computers to enhance safety may actually achieve 

the opposite effect if the environment in which the computer will be used and the human factors are not carefully 

considered. Some people have suggested that the solution is to remove humans from critical loops completely. 

However, in doing this, they are placing unjustified reliance on the ability of programmers to foresee all 



 

leverage in system architecting is at the interfaces. The greatest dangers are also at the 

interfaces” (1991). The obviousness of this statement with respect to the interface between 

autonomous and human actions in a complex system is striking. On human and automated 

processing and their interface, Ware comments, “It is useful to think of the human and 

computer together as a single cognitive entity, with the computer functioning as a kind of 

cognitive co-processor to the brain…Each part of the system is doing what it does best. The 

computer can pre-process vast amounts of information. The human can do rapid pattern 

analysis and flexible decision making” (2008). Scoping these activities early on in the 

conceptual design and requirements definition phases of a new system can provide 

unambiguous guidelines for later interface design and lower-level implementation activities, 

ensuring that the systems’ eventual operations will be leveraging the strengths of these 

fundamentally different types of processing. 

Case Application 

With the above spectrum of tradeoffs in mind, consider a basic ISR investment on a small, local 

scale: that of residential monitoring. Home security has been a concern for as long as people 

have owned homes, with various measures being developed and implemented over thousands 

of years. Many alternatives exist today for monitoring activity in/around a home, ranging from 

personal security guards to video camera packages to proximity sensors, among others. 

Consideration of a new acquisition in this domain can quickly lead to a dizzying array of 

choices, with feature sets that prove to be difficult or impossible to compare amongst each 

other. For the purposes of the present case application, three alternatives are presented, with 

only the aspects considered that are related to the spectrum of tradeoffs depicted in Figure 3. 

Alternative 1. The first alternative homeowners might consider for a new home monitoring 

system is that of a personal security guard company that offers full-time, on-site guards. On the 

spectrum of Figure 3, this system falls on the far right: human-in-the-loop, situationally aware, 

and operationally adaptive. Upon a homeowner’s return, a guard can offer explanatory 

summaries of the day, at various levels of detail, due to his or her situational awareness (e.g., 

“There was a car parked across the street from 10a.m. to 2p.m.”, “You had a package delivered 

at 10a.m.”). Guards are also adaptive – they can allow access for contractors scheduled to work 

on the house, they can interface with neighbors to check out unusual neighborhood activity, 

and they can even give chase to detain or gather more information about a perpetrator if desired. 

Homeowners’ motivating needs for a home monitoring system do not need to be extensively 

defined before hiring a guard, since all they need is a vague idea that “I’d like to know what is 

going on at/around my house while I’m gone.”  Note that this latter statement indicates a low 

UDR of the system’s operation, since there is 1) a low degree of understanding of the problem 

(i.e., tasking/targets/activities are not well defined in advance), and 2) a relatively high degree 

of data collection (audible, olfactory, visible, tactile). This low UDR operation cannot begin to 

be automated without a large amount of effort scoping the problem and clearly identifying the 

tasking, targets, and set of activities that a homeowner wants to know about (e.g., package 

deliveries, entrances/exits from the home, and emergency situations which might require 

different sorts of professionals such as fire response, police response, plumbers, animal 

control). 

                                                                                                                                                        
eventualities and correctly predetermine the best solution under all circumstances. And even highly automated 

systems need humans for supervision, maintenance, and operation” (1992). These statements are equally relevant 

to the problem of automating ISR system operations, especially in low UDR environments. 



 

Alternative 2. The second alternative homeowners might consider is that of a video camera 

package, with several internet-accessible cameras mounted at various locations inside and 

outside the house. This system falls in the center-right side of the automation spectrum of 

Figure 3; there is no need for a full-time human presence at the house (unlike the guard), but in 

addition to (and as a result of) the decrease in human involvement in operations, the system is 

less adaptive and less situationally aware. The tasking has become fixed (even considering 

Pan/Tilt/Zoom), and the context is limited to the information present in the recorded pixels of 

each camera (assuming no saturation of the CCD, obstruction in its field of view, etc). This 

system’s operation has a higher UDR than Alternative 1, since it collects less data, and its 

operation is more scoped in context than Alternative 1. As a result, it has more potential to be 

automated. However, in order to automate this system, the homeowner’s own understanding of 

the motivating problem must be increased so that it can be embodied in logic: targets must be 

defined, and rules must be established for reporting identification and activity of those targets 

throughout the premises. Without these definitions, the UDR remains low (albeit higher than 

Alternative 1), since the fundamental understanding of the motivating problem remains low. 

No homeowner will explicitly consider all (or even many) of the use cases ahead of time, 

before acquiring the system. This means that the system starts in low UDR operation – that is, 

without well-defined targets/activities of interest – and therefore will require the homeowner to 

be intimately involved in monitoring and modifying the system’s operation in order to achieve 

any further levels of automation and thereby move the system left on the spectrum of Figure 3. 

As a simple example of the activities required for increasing the UDR of the system’s operation, 

consider a homeowner’s desire to know if a package has been delivered or not on a regular 

basis. This is a very specific question that can presumably use low-level data collects to 

extrapolate to high-level understanding – if a homeowner has ordered a package and is 

expecting it to be delivered, then the system could send an alert when its picture includes a box 

at the front door. But before package alerts are automated, and even before a computer vision 

algorithm is trained to recognize all sorts of packages (or package delivery workers), the 

problem’s location must be scoped – will packages be delivered only to the front door?  In the 

mailbox?  To the side door? – and then a camera would need to be placed where it has a view of 

each location, so that the operating context of the automated system includes the relevant 

locations. The homeowner will have to decide which locations are worth the investment of a 

camera (or perhaps share a common location with other purposes), and install them 

accordingly. Even this seemingly trivial example can turn into an uncomfortably long process 

and value tradeoffs for what a homeowner might think would be simple automation of their 

existing video system. A far easier question to automate notifications for video cameras is, 

“Did something move on screen?”, but as any owner of video camera systems will tell you, that 

type of automation quickly places humans back in the center of the loop, in order to sort out 

which images are relevant and which are not.) 

Alternative 3. The final alternative considered for this case application is that of an older, 

traditional home security system, with proximity sensors (e.g., doors, windows, pet doors), 

pressure plates, and IR motion sensors. Compared to the first two alternatives presented above, 

this system can answer the fewest questions about the status of a home. The situational 

awareness is severely limited, since the system is designed to answer very specific questions 

about fixed locations (e.g, “Is there a fire in the living room?”, “Did someone open the master 

bedroom window?”). This system lies on the far left side of the automation spectrum in Figure 

3, with fixed tasking and limited contexts and inputs. As a result, it has the ability to be 

automated almost completely – to such a high degree that automated notification of emergency 

responders can be reliably implemented with this type of system. From the start of its 

acquisition and installation, this type of system enforces a limited set of contexts and inputs for 



 

the original problem, which naturally enforces a high UDR and allows for immediate 

automation upon installation. The acquisition and installation process itself is basically the 

process of defining the problem (e.g., “Which windows need sensors installed?”), and once a 

homeowner has answered these questions by installing the appropriate sensors, the answers to 

these original questions can be found by extrapolation from very few, specific data points (a 

handful of  open/closed electronic switches). 

Discussion of the Alternatives. The three alternatives discussed in this case application of 

home monitoring fall along the scale of UDR measure, ranging from very low (security guard) 

to very high (contact-based proximity sensors). The fact that the motivating problem does not 

need to be well-defined with Alternative 1 and Alternative 2, thereby allowing a low UDR of 

operation, is not necessarily a negative aspect. The lack of definition of the problem could be a 

benefit to homeowners, if they were unclear or uncomfortable with scoping their needs and 

working through the necessary activities to further automate the system’s operation. It is only 

when automation is a singular goal that low UDR becomes a problem and must be addressed, 

and addressing it may prove to require an inordinate amount of effort compared to what may 

well be achieved through far simpler means. As an example, Alternative 3 reveals an alternate 

approach: that of beginning with a very high UDR operation. Simple, purpose-built systems 

that lack broad situational awareness can be automated almost immediately, and the choice of 

such systems can also represent grounded portions of a vague motivating problem, helping to 

initially define a problem that a stakeholder might otherwise consider an impenetrable fog. 

The case application of residential security monitoring demonstrates that the measurement of 

an ISR operation’s UDR can be an effective indicator of the up-front effort needed to reduce 

the human-in-the-loop requirements of the operation. Measurement of the UDR can also 

quickly help locate an operation on the spectrum of Figure 3, helping make clear the tradeoffs 

of further increasing automation for a given operation. Further, the apparent simplicity of the 

case application indicates just how complicated it may be to define the fundamental motivating 

problems that real-world ISR operations are intended to address. 

Conclusion 

As demand increases for new ISR solutions that require less manpower, the tradeoffs inherent 

in such a design decision must be made explicit in order for stakeholders to understand how 

capability will be affected. The need for manpower can be reduced – and in some cases even 

eliminated – as has been demonstrated in limited historical and present-day examples. 

However, with this reduction comes a direct reduction in operational adaptability as well as a 

reduction in the situational awareness provided by the system, as analyses of real-world 

examples and the case application show. Automation can be utilized effectively in modern 

processing systems, but it cannot solve those problems which are currently solved by systems 

with low UDR operation and high levels of human involvement. Despite claims to the contrary, 

the goal for ISR systems cannot be to automate humans “out of the loop”
 
– especially in 

operations with real-time tasking and low UDR. With systems that cannot be fully automated, 

Scharre and Horowitz state, “The key place to focus attention is which tasks are being 

automated and which does the human retain” (2015). By focusing on this most critical scoping 

issue early in the lifecycle, and by focusing on the accompanying interface (between automated 

and human components) that keeps situational awareness for human operators, can new ISR 

systems truly deliver value to stakeholders through effective collections operations and 

comprehensive situational awareness. 
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