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Abstract 

 

Genetic algorithms provide attractive options for performing nonlinear multiobjective 

combinatorial design optimization, and they have proven very useful for optimizing 

individual systems.  However, conventional genetic algorithms fall short when 

performing holistic portfolio optimizations in which the decision variables also 

include the integer counts of multiple system types over multiple time periods.  When 

objective functions are formulated as analytic functions, we can formally differentiate 

with respect to system counts and use the resulting gradient information to generate 

favorable mutations in the count variables.  We apply several variations on this basic 

idea to an idealized “hanging chain” example to obtain ≫1000x speedups over 

conventional genetic algorithms in both single- and multiobjective cases.  We develop 

a more complex example of a notional military portfolio that includes combinatorial 

design variables and dependency constraints between the design choices.  In this case, 

our initial results are mixed, but many variations are still open to further research. 
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1 INTRODUCTION 
 

In the field of optimization, evolutionary algorithms (EAs) and gradient descent (GD) techniques 

represent two very important yet seemingly unassociated methodologies [1]. Speaking broadly, 

evolutionary algorithms iteratively generate populations of solutions that change over time via 

operations akin to genetic mutation (subtle changes in the solution properties) and crossover 

(combining properties of parent solutions to create new children). These populations evolve over 

time guided by a “survival of the fittest” criterion (often Pareto dominance) that propagates good 

solutions to subsequent generations while dropping bad solutions. Gradient decent algorithms, on 

the other hand, generally start with a single solution that is iteratively updated by “moving” some 

distance in a direction suggested by the derivative of the objective function(s) – i.e., always 

moving “downhill” from the current solution location in a minimization problem. 

    Not only are the mechanics of these two approaches quite distinct, but so too are the types of 

problems to which they are typically applied. Evolutionary algorithms are generally favored 

when seeking near globally optimal solutions to a problem with many competing objective 

functions which may be non-differentiable. Gradient descent methods are customarily used to 

find a locally optimal solution to a single objective function that must be differentiable. EAs can 

be thought of as zeroth-ordered techniques in that they require no information about directions of 

improvement from objective function gradients; they instead discover these directions by 

modifying, combining, and propagating the genes of improving solution population members. 

GD approaches are first-order techniques that explicitly require gradient information to obtain 

directions of improvement. Because of this, EAs are typically able to escape from local minima 

and eventually converge towards the overall globally optimal solution(s) whereas GD methods 

are normally trapped in the nearest local minima. The tradeoff, however, is that EAs only “drift” 

towards optimal solutions while GD algorithms can quickly “hone in” on the local optimal by 

directly following gradients. 

    The goal of this research is to solve a very challenging and previously intractable type of 

optimization problem which we refer to as Holistic Portfolio Optimization (HPO) – a type of 

optimization that combines elements of optimal system design and optimal portfolio composition 

together within a single problem. In order to solve these types of problems, we develop a new 

framework that captures the desirable aspects of both EAs and GD methods simultaneously by 

using first-order gradient information where possible as an additional means of updating an EA 

solution population – an approach we refer to as Directed Mutation. It is important to note that 

we do not replace the standard genetic operations of mutation and crossover; instead we employ 

Directed Mutation in synergy with these operations in order to dramatically increase the speed of 

EA convergence towards globally optimal solutions. To complicate matters, the HPO problems 

we intend to solve usually involve large numbers of integer variables (specifically, the number of 

systems in a portfolio at a certain time). Thus, the gradient information leveraged by Directed 

Mutation must be able to not only provide directions of improvement, but also preserve 

integrality of the decision variables that are mutated. While other works have studied similar 

ideas around the combination of gradient information and evolutionary algorithms (often focused 

on EAs with real-valued variables and a single objective function [2, 3, 4, 5, 6, 7]), this research 

is unique in its application of these techniques to both 1) integer-valued decision variables and 2) 

multiple competing objective functions. 

    The remainder of this report is laid out as follows. Section 2 provides a more thorough 

description of holistic portfolio optimization problems and how they compare to more traditional 
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system design optimization and portfolio optimization. Section 3 covers the implementation of 

Directed Mutation within a genetic algorithm framework known as JEGA. Section 4 introduces 

an HPO problem surrogate called the Minimum Elastic Catenary Energy (MECE) problem – a 

relatively simple optimization problem with intuitive optimal solutions and gradient 

interpretations that provides a testbed for Directed Mutation approaches. This section discusses 

various methods by which objective function gradients can be incorporated and aggregated into 

both single and multi-objective MECE solvers and demonstrates impressive speedups over a 

standard GA. Section 5 introduces a notional HPO problem that involves optimal city-scale 

counterinsurgency operations using a portfolio of unmanned aerial vehicles (UAVs), ground 

vehicles, and soldiers. Attempts at applying the techniques that worked so well on the MECE 

have so far been inconclusive when applied to this HPO: some speedups are observed early in 

the evolution, but it remains an open question as to why these speedups are lost as the evolution 

progresses. Finally, Section 6 summarizes our work and provides suggestions for continued 

investigation. 
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2 MOTIVATION 
 

The Directed Mutation methodology described in this report was developed to enable Holistic 

Portfolio Optimization – the ability to optimize not only the composition of a portfolio through 

time, but also the design of individual items within the portfolio in order to achieve more 

desirable overall behavior. This type of problem is extremely challenging and is typically not 

tractable at scale with current optimization methods. A large scale portfolio may contain 

hundreds of possible “systems” (we use this term generically to mean any item within a portfolio 

which itself may have many possible configurations, such as a truck, a project, or even a person). 

Each system within the portfolio may contain dozens of component parts each with dozens of 

possible realizations (for instance, a truck configuration may choose from among several 

possible engines, drivetrains, chassis, etc.). The task of optimizing the integer numbers of 

systems in the portfolio across many time periods (typically 10 to 30) and simultaneously 

optimizing the design choices of the systems induces an astronomically huge search space – one 

that cannot be addressed by current methods. 

    Because of this intractability, it is standard practice to separate the optimization of individual 

systems from the optimization of the overall portfolio composition. This separation limits the 

portfolio optimization to fixed system configurations; it is blind to the full trade space of design 

possibilities – some of which might be preferable. This separation also implies that the system 

design optimization is blind to broader portfolio considerations such as ideal price or timing of 

system availability relative to other systems. Because these separate problems are in reality 

highly interdependent, preselecting a fixed system design (even a Pareto optimal design that 

balances competing design objectives) for incorporation into the portfolio optimization can 

create highly suboptimal solutions from a holistic, unseparated perspective.  

    A real-world example of the deleterious effects of disjoint system design and portfolio 

optimization can be seen in the development and ultimate cancellation of the U.S. Army’s 

Ground Combat Vehicle (GCV) program – a large-scale acquisition program designed to replace 

the Bradley Infantry Fight Vehicle. During initial GCV development, two separate tools were 

designed by Sandia National Labs to address the system design optimization and portfolio 

optimization challenges faced by the Army’s ground combat fleet – the Whole System Trades 

Analysis Tool (WSTAT) and the Capability Performance Analysis Tool (CPAT), respectively.   

Though GCV designs were heavily informed by WSTAT and the fleet modernization plan was 

continually informed by CPAT, the ultimate GCV design did not conform to the overall budget 

and performance needs of the entire fleet – especially after the introduction of severe 

sequestration budget cuts. This separation of system design and portfolio optimizations led to 

case studies where the CPAT fleet optimization determined it was optimal to avoid fielding 

GCV, even though the GCV configurations was a Pareto optimal solution from the WSTAT 

trade space. This was not a problem of incompatible tools, but rather a symptom of the disjoint 

system design and portfolio optimizations. In essence, the GCV design was a good tradeoff from 

the standpoint of the individual system, but it was a poor tradeoff from the standpoint of the 

entire fleet. Thus, in February 2014 the GCV program was terminated – having already spent 

over $1 billion. 

    Examples such as this motivate our use of Directed Mutations as an enabling framework for 

HPO. To lay a foundation for subsequent discussion, the remainder of this section presents a 

more formal description of system design optimization, portfolio optimization, and holistic 

portfolio optimization – comparing and contrasting the elements of each and motivating the 
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rationale for Directed Mutations as a promising approach for speeding up evolutionary 

algorithms when applied to HPO.  

 

2.1 System Design Optimization 
 

The goal of system design optimization (SDO) is to discover configurations for a single system 

that optimally balance many competing design objectives (such as performance, cost, risk, 

design margin, etc.). Rather than producing a single “best” solution, SDO presents decision 

makers with many different solutions that each balance the competing objectives in unique ways 

(a set of system designs that is referred to as the Pareto optimal trade space). SDO is predicated 

on the ability to decompose a system into component subsystems where each subsystem has 

multiple potential design choices (or parts) that could be used. SDO explores this combination of 

subsystem choices (creating specific system configurations) in order to find the best designs in 

multiple competing objectives [12]. A general formulation for SDO is as follows: 

 

SDO: max 𝑓1(𝒙),  𝑓2(𝒙) , … ,  𝑓𝑛(𝒙)  
    s. t.  𝒙 ∈ Ω̃                          

                                   𝑥𝑖 ∈ {𝑑𝑒𝑠𝑖𝑔𝑛𝑖,1, … , 𝑑𝑒𝑠𝑖𝑔𝑛𝑖,𝑛𝑖
}. 

 

    Here, the vector of design decisions 𝒙 represents the decomposition of the system into 

subsystems, and each discrete variable 𝑥𝑖 determines the design selected for subsystem 𝑖. The 

objective functions 𝑓1(𝒙) through 𝑓𝑛(𝒙) can be general, nonlinear measures evaluated based on 

the selection of subsystem designs (here and throughout this paper we use the ∎̃ notation to 

indicated a nonlinear function or system of constraints). The constraints 𝒙 ∈ Ω̃ represent a wide 

variety of nonlinear restrictions including subsystem design necessitations or obviations (i.e., 

“Engine 1” is not allowed to be selected with “Drivetrain 3”). 

    Due to the nonlinear, multi-objective nature of SDO, these problems are often solved via 

evolutionary algorithms. When the number of objective functions is small (generally on the order 

of 5 or 6) and there are relatively few constraints (less than a few dozen), classical EA 

approaches such as genetic algorithms achieve good results.  

 

2.2 Portfolio Optimization 
 

In contrast to SDO, the goal of portfolio optimization (PO) is to find the single best 

“modernization plan” that schedules which systems should be included in the portfolio, how 

many should be included, and when they should be incorporated [13]. In contrast to SDO which 

employs design variables to represent systems, PO uses fixed system designs and schedules the 

inclusion or exclusion of these fixed designs through time to find the single best solution that 

optimizes the portfolio design goal (such as maximize performance or minimize risk). Often 

when SDO and PO are performed independently, the portfolio optimization occurs subsequent to 

the system design optimization – incorporating as inputs the fixed properties of the system 

configuration(s) chosen by decision makers from each SDO trade space. The portfolio schedules 

are typically subject to numerous business rules that constrain the allowable behavior of the plan 

(such as budgets, production limits, etc.). A general PO problem can be formulated as follows:  
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PO: max   𝐹̅(𝒚)  
           s. t.  𝒚 ∈ Ω̅ 

                                                                                𝑦𝑗,𝑡 ∈ ℤ+   ∀𝑗 ∈ {1, … , 𝑆}, 𝑡 ∈ {1, … , 𝑇}. 
 

    Here, the integer decision variable 𝑦𝑗,𝑡 indicates how many systems of type 𝑗 should be in the 

portfolio at time 𝑡. Because 1) there may be many systems, 2) the integer number of systems may 

be quite large, and 3) the number of business rules may also be very large, the typical solution 

methodology for PO is based on Mixed Integer Linear Programming (MILP), which employs a 

tree-based search strategy to intelligently enumerate and explore candidate solutions to produce a 

global optimal solution (or a near optimal solution with gap information). MILP techniques are 

very mature optimization approaches and can solve extremely large-scale problems with tens-of-

thousands of integer variables and hundreds-of-thousands of constraints. The restriction, 

however, is that only a single linear objective function, 𝐹̅(𝒚), can be specified and all 

constraints, 𝒚 ∈ Ω̅, must be linear (we use the ∎̅ notation throughout this paper to indicate a 

linear function or set of constraints).    

 

2.3 Holistic Portfolio Optimization 
 

As previously mentioned, the goal of holistic portfolio optimization is to combine the SDO and 

PO problems into a unified optimization – simultaneously answering 1) what the design of 

individual systems should look like, 2) which of these systems should be integrated into the 

portfolio, 3) how many should be included, 4) when they should be incorporated, and 5) how the 

system designs should evolve over time. In addition, HPO must address multiple competing 

portfolio-level goals simultaneously – finding a Pareto optimal trade space of portfolio plans that 

balance these objectives (such as portfolio performance, portfolio cost, portfolio risk, etc.). Note 

that in contrast to the trade space of a single system produced by SDO, the HPO trade space is a 

population of comprehensive portfolio plans – each plan incorporating multiple systems (each 

with multiple subsystems) and balancing the portfolio-level objectives in a unique way. A 

general formulation for HPO is shown below, combining elements from the SDO and PO 

formulations:    

 

HPO: max    𝐹̃1(𝒛),  𝐹̃2(𝒛) , … , 𝐹̃𝑁(𝒛)                                        
s. t.   𝒛 = (𝒙, 𝒚)                                                  

𝒙 ∈ Ω̃                                                
𝒚 ∈ Ω̅                                                
𝒛 ∈ Φ̃                                                

                                                           𝑥𝑖,𝑗,𝑡 ∈ {𝑑𝑒𝑠𝑖𝑔𝑛𝑖,1, … , 𝑑𝑒𝑠𝑖𝑔𝑛𝑖,𝑛𝑖
}   ∀𝑗 ∈ { 1, … , 𝑆}, 𝑡 ∈ {1, … , 𝑇}    

             𝑦𝑗,𝑡 ∈ ℤ+   ∀𝑗 ∈ {1, … , 𝑆}, 𝑡 ∈ {1, … , 𝑇}. 
 

    Here the decision variables 𝒙 and 𝒚 serve similar roles as they do in SDO and PO, 

respectively, where 𝑥𝑖,𝑗,𝑡 gives the design selection of subsystem 𝑖 for system 𝑗 at time 𝑡 and 𝑦𝑗,𝑡 

gives the integer number of systems 𝑗 in the portfolio at time 𝑡. The nonlinear system design 

constraints 𝒙 ∈ Ω̃ and the linear portfolio business rules 𝒚 ∈ Ω̅ are also incorporated from SDO 

and PO, along with a new set of general nonlinear restrictions 𝒛 ∈ Φ̃ which co-constrain system 

design and system count decisions (e.g., the number of systems of type 𝑗 might be limited by 
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tight production constraints if Engine 1 is chosen for subsystem 𝑖). Finally, note that the 

potentially nonlinear objectives 𝐹̃1(𝒛) through 𝐹̃𝑁(𝒛) are functions of both system counts and 

system design decisions.   

    This HPO problem is extremely challenging as it combines aspects of multiple simultaneous 

SDOs and one PO – each of which are suited to very different solution approaches. The large 

integer variables 𝑦𝑗,𝑡 and the considerable number of linear business rules 𝒚 ∈ Ω̅ are well suited 

for MILP approaches. However, the multiple nonlinear objective functions, the nonlinear design 

restrictions 𝒙 ∈ Ω̃, and design/count co-restrictions 𝒛 ∈ Φ̃ preclude MILP techniques. On the 

other hand, while HPO’s nonlinear and multi-objective nature suggests an EA approach, standard 

EAs will have great difficulty solving over 1) the large integer variables 𝑦𝑗,𝑡 and 2) the large 

numbers of overall constraints. A great deal of literature is dedicated to the study of highly 

constrained evolutionary optimization [8, 9, 10, 11], however little attention is given to the 

difficulties of large integer decision variables – especially over multiple objective functions. 

Hence, it is this first difficulty (evolution over large integer decision variables) that we focus on 

in this research via the use of Directed Mutation – guiding evolution over the large integer 

decision variables to greatly speed population convergence towards Pareto optimal trade spaces.  
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3 DIRECTED MUTATION IMPLEMENTATION 
 

To test the idea that gradient-guided mutations improve evolutionary convergence for HPO 

problems, we use the John Eddy Genetic Algorithm (JEGA) [14] as our EA framework. JEGA 

provides several advantages in that 1) the source code is readily available, 2) the algorithm is 

computationally efficient and had been matured over many years, and 3) it has already been 

implemented within Sandia optimization tools for system design and portfolio optimization 

(Whole System Trades Analysis Tool [WSTAT] [12] and Technology Management 

Optimization [TMO] [15, 16], respectively). 

 
 

Figure 1. Standard JEGA algorithm flow. 

 

    To illustrate our implementation of Directed Mutations, we first give a brief overview of the 

baseline JEGA algorithm using Figure 1 as a guide and in the context of SDO optimization. 

Starting with the current population of solutions (typically the initial population is randomly 

generated), population members are passed to both the Crossover and Mutation operators. 

Crossover combines properties of randomly selected “parent” solutions together to make new 

“child” solutions. For example, suppose that the current population has Parent 1 = (Engine 1, 

Drivetrain 1, Chassis 1, Brake 1) and Parent 2 = (Engine 2, Drivetrain 2, Chassis 2, Brake 2). 

The Crossover operator might create Child = (Engine 2, Drivetrain 2, Chassis 1, Brake 1) by 

combining the first part of Parent 2’s “gene” with the second part of Parent 1’s gene. The number 

of child solutions, the number of breakpoints (where parent genes are joined together) and even 

the number of parents are all JEGA parameters that can be set for the Crossover operator. 

    Whereas Crossover recombines the already existing genes of current population members, the 

Mutation operator modifies the genes of population members, thus creating new genetic material 

by altering a randomly selected design variable. For example, when the solution (Engine 1, 

Drivetrain 1, Chassis 1, Brake 1) enters the Mutation operator, it might be changed to (Engine 3, 

Drivetrain 1, Chassis 1, Brake 1). The number of mutated solutions and the manner of mutation 

can be set by parameters for the Mutation operator.  

    Next, the offspring solutions from Crossover and Mutation, along with the original solutions 

from the current population, are sent to a Domination Check operator. When comparing two 
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solutions, we say that one solution is “dominated” by the other if it is as bad as or worse than the 

other solution in all objective functions. The Domination Check operator uses this Pareto 

dominance condition and serves as a survival-of-the-fittest mechanism to cull some or all of the 

dominated solutions (some dominated solutions may be retained in order to preserve a minimum 

number of solutions or to avoid overly-rapid shrinkage of the population). 

     The surviving solutions are then sent to the Niching operator, whose task is to further cull the 

solutions and provide a sparse, evenly-spaced representation of the current population. This is a 

necessary procedure due to the usually enormous size of the true discrete Pareto population; even 

for a modest SDO problem this full population would not fit within computer memory and so 

needs to be represented in a sparse yet representative manner. 

    Finally, the Convergence operator compares the population output from Niching with 

populations from a number of previous generations – tracking changes in the breadth, progress, 

and density of the populations and terminating the algorithm if solution populations are no longer 

changing or improving (or if other limits such as run time or number of generations is met). 

Otherwise, the niched population becomes the new Current Population and the cycle repeats until 

termination criteria are achieved. 

    Figure 2 demonstrates how we incorporate the new Directed Mutation operator within the 

traditional JEGA algorithm loop. As previously mentioned, our desire is not to replace traditional 

genetic operations: Directed Mutation should work in synergy with Crossover and Mutation. 

With this goal in mind, we implement Directed Mutation as a supplement to the other two 

genetic operators. Directed Mutation operates on the offspring solutions emerging from 

Crossover and Mutation. In theory, this arrangement allows improvements found by Mutation 

and Crossover to be immediately improved upon using gradient information – speeding up 

algorithm convergence. Note that both the original offspring solutions (unaltered by Directed 

Mutation) and the gradient mutated solutions (as well as the current population) are all sent to 

the Domination Check operator. This ensures that all solutions (current generations, mutated 

solutions, crossover children, and gradient mutated solutions) all compete on equal footing for 

propagation to subsequent generations. 

 

 
 

Figure 2. JEGA algorithm flow augmented with directed mutation. 
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    As with the other operators, Directed Mutation is implemented as a modular procedure within 

the flow of the overall genetic algorithm – allowing many potential gradient-guided schemes to 

be quickly built, tested, and refined. The computational experiments that follow in the next 

sections investigate a broad variety of gradient-guided techniques. All tests, however, fall within 

the general framework outlined in Figure 2: only the specific methodology within the Directed 

Mutation operator varies.  
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4 HANGING CHAIN PROBLEM 
 

Before designing, formulating, and testing the value of Directed Mutations on HPO problems, 

we first examine the effect of gradient guidance on a simpler optimization. This surrogate for 

HPO problems is informally referred to as the “hanging chain” problem, which in the context of 

physics and geometry, is the equilibrium orientation that a chain acquires when suspended at 

both ends and drooping under the force of gravity. This equilibrium shape (also known as a 

catenary) brings into balance the forces of gravity and tension at each point along the chain and 

assumes an appearance similar to a parabola, though it is actually modeled by a hyperbolic 

cosine. In the context of optimization, the hanging chain problem can be thought of as the 

orientation in space that minimizes the total potential energy of the system (gravitational 

potential energy).  

    This hanging chain problem serves as an excellent HPO surrogate for several reasons. First, 

the optimal solution is intuitive. We commonly encounter real-world catenaries in such examples 

as electrical power lines, simple suspension bridges, and rope barriers. Second, the optimal 

orientation of a hanging chain can be solved directly (and very efficiently) via the hyperbolic 

cosine. Thus, the convergence of an evolutionary algorithm towards the true optimal can be 

precisely and accurately quantified – allowing excellent computational comparison of various 

Directed Mutation schemes. Third, if the hanging chain problem is formulated in “segments” 

(i.e., the chain is discretized into separate pieces wherein the optimization must find the optimal 

spatial coordinates for the links between each piece), then genetic algorithms can have great 

difficulty converging to the optimal solution. This difficulty is due not only to the size of the 

search space (which can be very large if each link’s spatial coordinates can realize a broad range 

of values), but also due to the degree of colocation required in the independent decision variables 

of adjoining segments (more on this in the following subsection). 

    Finally, if the spatial coordinates of each segment are restricted to take on integer values, then 

the hanging chain mirrors HPO even more closely in that the adjoining spatial positions of each 

segment mimics the adjoining temporal counts of the number of systems in the portfolio. That is, 

just as the optimal hanging chain has a “smooth” shape through space, the number of systems in 

an optimal portfolio plan often has a “smooth” shape through time (systems are not arbitrarily 

purchased, divested, and purchased again – incurring unnecessary costs).  

 

4.1 Single Objective Minimum Elastic Catenary Energy Problem 
  

As a formal example of a hanging chain problem, we introduce the Minimum Elastic Catenary 

Energy (MECE) problem, which consists of 𝑛 links connected end-to-end by springs and 

hanging from both ends under gravity.  The goal of MECE is to minimize a single objective 

function – the potential energy of the system – by optimally locating the integer x and y-

coordinates, (𝑥𝑖, 𝑦𝑖), of the links connecting springs 𝑖 and 𝑖 + 1.  The MECE problem can be 

formulated as follows: 
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MECE: min   𝑓(𝒙, 𝒚)                                                            

 s. t.  𝑓(𝒙, 𝒚) = ∑ 𝑝𝑖

𝑛−1

𝑖=1
+ ∑ 𝑦𝑖

𝑛

𝑖=1
   

                               𝑝𝑖 = (√(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 − 𝑅)
2

 

0 ≤ 𝑥𝑖 ≤ 𝐿                             
0 ≤ 𝑦𝑖 ≤ 𝐻                            
𝑥𝑖, 𝑦𝑖 ∈ ℤ,                               

 

where the nonlinear objective function 𝑓(𝒙, 𝒚) gives the total potential energy of the hanging 

chain, which is a sum of the spring compression or stretching potential energy plus the 

gravitational potential energy (i.e., the height, 𝑦𝑖, of each link). The decision variables 𝑥𝑖 and 𝑦𝑖 

give the Cartesian coordinates of the 𝑖𝑡ℎ link, and these positions are restricted to lie on the 

integer grid. The constants 𝐿, 𝐻, and 𝑅 give the distance between the two supporting posts, the 

height of these posts, and the rest length of each spring in the system, respectively. The spring 

compression/stretching potential energy, 𝑝𝑖, is calculated via Hooke’s law (i.e. proportional to 

the square of the spring deformation distance from rest length) where the spring constant is 2 for 

simplicity. Lastly, the fixed positions (𝑥0, 𝑦0) = (0, 𝐻) and (𝑥𝑛, 𝑦𝑛) = (𝐿, 𝐻) define where the 

spring system attaches to the left and right post, respectively. Figure 3 shows a near-optimal 

MECE system with 9 springs and 8 link locations.  

 

 
 
Figure 3. A MECE system of 9 springs hanging under gravity and supported at each end. 

 

    As previously mentioned, genetic algorithms can have difficulty converging to an optimal 

MECE solution due to 1) problem size and 2) variable coordination. To see the first difficulty, 

consider Figure 3 where 𝐿 = 200 and 𝐻 = 300. Under this modestly granular discretization; 

each of the eight x-variables can take on 201 possible values while each of the eight y-variables 

can take on 301 values, yielding a search space of 2018 ∗ 3018 ≈ 1.8 × 1038. The general 

search space size of (𝐿𝐻)𝑛 can be astronomical even with modest 𝐿, 𝐻, and 𝑛. 

    The second difficulty, variable coordination, is perhaps more subtle yet more pernicious – 

arising from both the nature of Mutation and Crossover as well as the implicit structure of 

MECE. To gain intuition into this difficulty, consider Figure 4 which presents a suboptimal 

MECE solution both before and after a single mutation operation on the y-coordinate of the third 

link. Note that even though the mutation brings the third link closer to its globally optimum 
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location, the post-mutation system actually has more potential energy than the original due to 

increased stretching of the springs attached to the mutated link. What might be more helpful is a 

coordinated update of links 2 through 6 that moves all five links up simultaneously towards their 

optimal location, but the probability is exceedingly remote that five independent mutations 

would all act 1) on the same solution, 2) on the proper links, and 3) in the proper direction. 

Crossover, on the other hand, is able to update many links simultaneously by joining part of one 

solution with part of another, but recall that Crossover does not create new genetic material. 

Rather, Crossover recombines existing genetic material in new ways. Thus, the expectation that it 

would be able to generate coordinated improvements to solutions presupposes that the 

coordinated genes already exist in the solution population. 

  

 
Figure 4. Without coordination, single mutations often increase total potential energy.  

 

    These same difficulties are also present to an even higher degree in HPO problems. Tracking 

the composition of the portfolio through time requires integer decision variables for each system 

type at each time period – yielding a combinatorially explosive search space. In addition, 

mutations to an HPO schedule increase or decrease the system count of an individual system in a 

single time period, thus causing the same types of problem as outlined in Figure 4. Transitioning 

from a current portfolio plan to a new, improved plan typically involves simultaneous, 

coordinated changes across many temporally adjacent time periods. It is for these reasons that 

we employ MECE as a simpler yet still challenging surrogate for HPO. Figure 5 demonstrates 

these computational challenges in an MECE system with 𝑛 = 30 by plotting the best solutions 

from generations 100, 1000, 100,000, and 1,000,000. Notice that there is significant 

improvement during the first 1000 generations, but convergence towards the optimal (dotted 

line) configuration is greatly stifled beyond generation 10,000 (almost no progress is made 

between 100,000 and 1,000,000). In order to realize improvements beyond the generation 

1,000,000 solution, a great number of coordinated changes must occur (for example, the entire 

left side of the chain system must slide further to the left), and under mutation these changes are 

astronomically improbable. 
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Figure 5. JEGA convergence of an MECE system towards the optimal solution. 

 

    These difficulties are what motivate our desire for gradient coordination of EA mutations, and 

it is another advantage of the MECE problem that gradient information at each link is readily 

computable and has an intuitive interpretation – namely, the gradient is the negative of the net 

force vector exerted on that link. Conveniently, the principle of locality provides that the force 

on each link is only dependent on gravity (a constant in the negative y-direction) and the two 

springs connected to that link as depicted in Figure 6 – no other parts of the system need to be 

considered. (This locality property may or may not be present in a full HPO problem and 

depends on the nature of the underlying value model.) The force exerted by the two springs is 

calculated via Hooke’s law, which applies a force along the coil axis proportional to the 

deformation of the spring from rest length (pushing if the spring is compressed and pulling if the 

spring is stretched). In other words,  𝐹⃑𝑁𝑒𝑡𝑖
= 𝐹⃑𝑆𝑝𝑟𝑖𝑛𝑔𝑖

+ 𝐹⃑𝑆𝑝𝑟𝑖𝑛𝑔𝑖+1
+ 𝐹⃑𝐺𝑟𝑎𝑣𝑖𝑡𝑦 = − (

𝜕𝑓̃

𝜕𝑥𝑖
,

𝜕𝑓̃

𝜕𝑦𝑖
). 

 
Figure 6. The MECE gradient at each link is the negative of the net force on that link. 

 

    This simple force derivation at each link provides a powerful means by which to update the 

hanging spring system (i.e. Directed Mutations). In the next subsection, we outline several 

methods in which these gradients are used to guide mutations within the genetic algorithm. 

Broadly speaking, overall potential energy of the MECE system can be reduced by moving each 
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link in the direction of its net force. How to best utilize these gradients (or an aggregation 

thereof) is investigated next. 

 

4.1.1 Directed Mutation Operators 
 

    For this investigation, we performed computational experiments on four distinct approaches, a 

“null” baseline method, and a “combination” approach for employing MECE gradient 

information within the genetic algorithm. Each experiment used the general algorithm flow 

outlined in Figure 2; only the nature of the Directed Mutation operator was varied. These 

methods used different degrees of gradient aggregation (using the net force from more than one 

link), and the difference between these approaches can be most simply summarized by 

comparing how the 𝑖𝑡ℎ updated link location (𝑥𝑖, 𝑦𝑖)
∗ is derived from the original location 

(𝑥𝑖, 𝑦𝑖) and the net force 𝐹⃑𝑁𝑒𝑡𝑖
. Recall that an additional complicating factor is that the updated 

link position must be integer to satisfy the MECE integrality constraint. 

 The Baseline method does not update the link locations, i.e., (𝑥𝑖, 𝑦𝑖)∗ = (𝑥𝑖, 𝑦𝑖). This 

method is used so that our computational timing results can fairly compare the 

potential speedup of gradient methods over the standard GA approach with no gradient 

information incorporated. 

 The Everyman method updates each coordinate in a local manner (i.e. “every man for 

himself”) where (𝑥𝑖, 𝑦𝑖)
∗ = (𝑥𝑖, 𝑦𝑖) + 𝑟𝑜𝑢𝑛𝑑[𝛼 ⋅ 𝐹⃑𝑁𝑒𝑡𝑖

] and 𝛼 defines a user-chosen 

scaling factor. This method lets every link follow its own local gradient as closely as 

possible while adhering to the MECE integrality constraints. Here and throughout the 

rest of this paper, the 𝑟𝑜𝑢𝑛𝑑[∙] function operates so that each element of the input 

vector is rounded up or down independently.  

 The LP Norm method is similar to the Everyman approach, but greater care is taken in 

creating a more universally applicable scaling factor. Here, (𝑥𝑖 , 𝑦𝑖)
∗ = (𝑥𝑖, 𝑦𝑖) +

 𝑟𝑜𝑢𝑛𝑑[𝛽 ⋅ 𝐹⃑𝑁𝑒𝑡𝑖
] such that  𝛽 =

𝛼

‖𝐹⃑𝑁𝑒𝑡𝑖
‖

𝑝

 where 𝛼 is again a user-selected scaling 

factor and ‖∙‖𝑝 is the standard p-norm of the force vector where 𝑝 is also chosen by the 

user. This idea behind this approach is that by employing the p-norm, we can find a 

scaling rule that works well across many problems whether the force vector is large or 

small. 

 The Boxcar method uses a sliding summation of the net forces to the left and right of 

the 𝑖𝑡ℎ link. Here (𝑥𝑖, 𝑦𝑖)
∗ = (𝑥𝑖 , 𝑦𝑖) + 𝑟𝑜𝑢𝑛𝑑[𝛼 ⋅ 𝐺⃑𝑖] where 𝐺𝑖 = ∑ 𝐹⃑𝑁𝑒𝑡𝑗

𝑖+𝑏
𝑗=𝑖−𝑏 , 𝛼 is a 

user-selected scaling factor, and 𝑏 is a user-selected “boxcar radius” that determines 

how far to the left and right to consider net forces for updating the 𝑖𝑡ℎ link. For 

example, if 𝑏 = 0, then the method reverts to the Everyman approach. If 𝑏 = 1, then 

each link is updated considering the net force on that link, as well as the force on the 

link to its right and left. In this manner, the net force on a section of the chain is 

employed in updating the link locations. 

 The Block Cumulative method locates the contiguous sections (blocks) of the hanging 

chain with the largest cumulative force in the x and (independently) in the y direction 

and moves those entire sections in the desired direction. Let 𝐵𝑥 and 𝐵𝑦 be the blocks 

having the greatest absolute value cumulative x and y force, respectively. Appendix A 

outlines how 𝐵𝑥 and 𝐵𝑦 can be efficiently computed by tracking the cumulative forces 
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across the chain (a simple method that scales linearly with the number of links n). 

Once we have 𝐵𝑥 and 𝐵𝑦, then the maximized cumulative forces in x and y is 𝐶𝐹𝑥 =

− ∑
𝜕𝑓̃

𝜕𝑥𝑖
𝑖∈𝐵𝑥

 and 𝐶𝐹𝑦 = − ∑
𝜕𝑓̃

𝜕𝑦𝑖
𝑖∈𝐵𝑦

, respectively (i.e. the sum of the x and y forces in 

the 𝐵𝑥 and 𝐵𝑦 blocks). Finally, the position of the 𝑖𝑡ℎ link is updated as (𝑥𝑖, 𝑦𝑖)
∗ =

(𝑥𝑖, 𝑦𝑖) + 𝑚 ⋅ (𝑑𝑥𝑖, 𝑑𝑦𝑖) where m is a user-entered integer move distance,  

𝑑𝑥𝑖 = {

0 𝑖𝑓 𝑖 ∉ 𝐵𝑥

1 𝑖𝑓 𝑖 ∈ 𝐵𝑥 ⋀ 𝐶𝐹𝑥 > 0 
−1 𝑖𝑓 𝑖 ∈ 𝐵𝑥 ⋀ 𝐶𝐹𝑥 < 0

, and 𝑑𝑦𝑖 = {

0 𝑖𝑓 𝑖 ∉ 𝐵𝑦

1 𝑖𝑓 𝑖 ∈ 𝐵𝑦 ⋀ 𝐶𝐹𝑦 > 0 

−1 𝑖𝑓 𝑖 ∈ 𝐵𝑦 ⋀ 𝐶𝐹𝑦 < 0

. 

 Finally, the Block+Everyman method simultaneously combines the two approaches of 

Block Cumulative and Everyman – in theory, coupling the possible advantages of local 

and aggregate gradient rules. Specifically, the link update procedure produces two new 

solutions – one given by (𝑥𝑖, 𝑦𝑖)
1 = (𝑥𝑖, 𝑦𝑖) + 𝑚 ⋅ (𝑑𝑥𝑖, 𝑑𝑦𝑖) where m, 𝑑𝑥𝑖, and 𝑑𝑦𝑖 

are defined as in the Block Cumulative method and the other given by (𝑥𝑖 , 𝑦𝑖)
2 =

(𝑥𝑖, 𝑦𝑖) +  𝑟𝑜𝑢𝑛𝑑[𝛼 ⋅ 𝐹⃑𝑁𝑒𝑡𝑖
] where 𝛼 is a scaling factor as in the Everyman method. 

 

4.1.2 Computational Results 
 

    In this subsection, we examine the computational performances of the various Directed 

Mutation methods against the Baseline GA with no gradient information. All methods were 

applied to a MECE problem with 𝑛 = 30 links, a spring rest length of 𝑅 = 10, a post height of 

𝐻 = 300, and a post separation of 𝐿 = 200. Hence the MECE must optimally locate all 30 links 

in a 201 by 301 grid – resulting in a search space of size 2.8 × 10143. Figure 7 demonstrates how 

the various gradient methods converge towards the optimal potential energy of 6257.53. 

 

 
Figure 7. Computational results showing the improvement in MECE potential energy as a 
function of the generation (log-log scale). The inset shows convergence towards the final 

optimal value. 
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    Since each of the gradient methods uses at least one user-defined parameter, we performed 

computation tests of a wide range of values. Figure 7 displays the one or two best realizations of 

those parameters for each method. Note that a few methods were able to make substantial 

improvement in the first generation, but the overall quality of each approach is demonstrated by 

the efficiency of convergence below the 6500 energy level (as shown by the Figure 7 inset). 

Observe that most methods perform about as well as the Baseline approach during the early 

generations. This is likely due to the fact that early generation solutions still have a high degree 

of randomness (see the “Generation 100” panel of Figure 5) that results in incoherent, looped, 

and kinked chain solutions. These solutions have springs that are highly stretched beyond their 

rest length – inducing large link forces that are unlikely to point in the direction of ultimate 

global optimality. Beyond generation 1000, however, every gradient approach vastly 

outperforms the baseline method. We attribute this delayed improvement to the eventual 

emergence of more coherent chain solutions (see the “Generation 1000” panel of Figure 5) 

whose gradients are able to more reliably guide link locations towards global optimality. 

Interestingly, the unaggregated methods – Everyman and LP Norm – and the slightly aggregated 

Boxcar method all perform roughly equivalently, while the highly aggregated Block Cumulative 

method converges much more quickly. By far the most successful method is the 

Block+Everyman approach which converges to the true optimal solution just after generation 

100 – nearly an order of magnitude fewer generations than the next fastest approach. 

    While Figure 7 displays the convergence by generation, this does not tell the entire story. It is 

possible that Directed Mutation approaches spend more time per generation due to the increased 

computation needed to acquire and use the gradient information, and this slowdown per 

generation results in slower overall convergence when measured in CPU time. Figure 8 displays 

the CPU time required to reach a certain generation and indeed shows that the Baseline is faster 

per generation than all the Directed Mutation methods. For example, when running to a fixed 

100,000 generations, the Baseline takes about 58 seconds while the Directed Mutations 

approaches range from 123 to 196 seconds – two to three times longer. It is not surprising that 

the longest time to 100,000 generations is the most complicated Block+Everyman approach. 

(Unfortunately, these CPU timing results were not performed on the same CPU: all Direct 

Mutation methods were run on a Xeon X550 @ 2.67GHz – which is no longer available for 

experiments – while the Baseline was run on an even more powerful Xeon E5-1650 @ 3.2GHz. 

Thus, we are conservative in showing the difference between the CPU timing of Baseline versus 

Directed Mutation in that the Baseline is faster on a per generation basis due to improved 

hardware.)  

    Nevertheless, the results in Figure 8 are very encouraging in that the CPU Time slowdown per 

generation is not large enough to overcome the increased efficiency in energy improvement per 

generation. For instance, the Baseline takes 57.7 seconds to run 100,000 generations to reach an 

energy level of 6,358.9. The Block+Everyman approach reaches a lower energy of 6,326.3 in 

only 80 generations and 0.16 seconds – giving a speedup of 1250x in generations and 360x in 

CPU time. Thus, it is worth spending extra CPU time per generation to get greater improvements 

in energy level. The next subsection devotes more careful attention to the measurement of 

speedup in 1, 2, and 3-objective problems. 
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Figure 8. CPU time per generation for the Baseline and Directed Mutation methods.  

 

    In summary, for the single objective MECE problem, Directed Mutation methods provide 

substantial enhancement to the Genetic Algorithm. All tested methods found a lower energy 

level than the baseline in less CPU time and fewer generations, and the combination of both 

large block updates and individual link updates in the Block+Everyman method was the most 

efficient of these approaches. The only caveat, however, is that Directed Mutation gradients 

don’t seem to provide measurable benefit during the early generations when solutions are 

inherently more random. But beyond these early generations, every gradient method we devised 

was a substantial improvement over the baseline. 

 

4.2 Multi-Objective Minimum Elastic Catenary Energy Problem 
 

    The multi-objective version of the MECE problem is very similar in physical structure to the 

single objective problem. The system is again comprised of a chain of linked springs hanging 

from both ends. Now however, the orientation of the links (i.e. their locations in x and y) must 

simultaneously minimize two or more energy functions.  There are many possible ways to form 

these different energy functions, and we differentiate our objective functions by using individual 

spring rest lengths and gravitational fields. Formally, the multi-objective MECE with m 

objectives is given by: 

 

Multi − Objective MECE:   min   𝑓1̃(𝒙, 𝒚), … , 𝑓𝑚(𝒙, 𝒚)                                  

                                                          s. t.  𝑓𝑗(𝒙, 𝒚) = ∑ 𝑝𝑗,𝑖

𝑛

𝑖=1
+ ∑ 𝑔𝑗(𝑥𝑖 , 𝑦𝑖)

𝑛−1

𝑖=1
   

                                                                          𝑝𝑗,𝑖 = (√(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 − 𝑅𝑗)
2

 

                   0 ≤ 𝑥𝑖 ≤ 𝐿          
                   0 ≤ 𝑦𝑖 ≤ 𝐻         
                   𝑥𝑖 , 𝑦𝑖 ∈ ℤ,            

 

where the nonlinear objective functions 𝑓𝑗(𝒙, 𝒚) give the total potential energy of the hanging 

chain under an objective-specific spring rest length 𝑅𝑗 and gravitational potential energy function 
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𝑔𝑗. As in the single objective MECE, the decision variables 𝑥𝑖 and 𝑦𝑖 give the integer Cartesian 

coordinates of the 𝑖𝑡ℎ link, and the constants 𝐿 and 𝐻 give the distance between the two 

supporting posts and the height of these posts, respectively.  

    While less physically intuitive than the single objective case, the multi-objective MECE is 

very important for investigating Directed Mutation methods under many competing objectives. 

In the previous subsection, we were able to demonstrate that Directed Mutations provide 

significant improvement over the baseline GA when applied to the single objective MECE. 

However, it is not guaranteed that these improvements will carry over into the multi-objective 

version. For example, the computational burden of Directed Mutations over many objectives is 

increased as one must now compute the gradient with respect to each objective. Also, and 

perhaps more importantly, each objective’s gradient will generally result in a direction of 

improvement that conflicts with the directions suggested by other objectives. Thus, devising a 

link update procedure that adequately makes use of these conflicting gradient directions is a key 

concern. 

    Another difficulty arising in the multi-objective MECE is the complication in defining and 

measuring improvement in computational performance. In the single objective case, we could 

trivially compare goodness of solutions by observing which one had the lowest energy level. 

Thus, we could compare Directed Mutation approaches by seeing which one produced the lowest 

potential energy in the fewest generations or the shortest CPU time. In the multi-objective 

MECE, we still wish to compare Directed Mutation methods on a per-generation or per-CPU-

time basis, but here each solution has several associated energy levels. Furthermore, unlike the 

single objective case where each generation has a single best energy score, here each generation 

consists of a set of solutions that best balance all the different objective energies in different 

ways and are all relatively non-dominated with respect to each other.  

    To devise a fair method that compares the relative goodness of sets of non-dominated 

solutions, consider two sets of MECE link solutions 𝑆1 = {(𝒙, 𝒚)1
1, (𝒙, 𝒚)2

1, … , (𝒙, 𝒚)𝑘1

1 } and 

𝑆2 = {(𝒙, 𝒚)1
2, (𝒙, 𝒚)2

2, … , (𝒙, 𝒚)𝑘2

2 } and m objective functions 𝑓1 through 𝑓𝑚. In general, a point 

𝒔1 ∈ 𝑆1 dominates a point 𝒔2 ∈ 𝑆2 if 𝑓𝑖(𝒔1) ≤  𝑓𝑖(𝒔2)  ∀𝑖 = 1 … 𝑚 and at least one inequality 

holds strictly (i.e. the solution 𝒔1 has at least as low or lower energy score in every objective 

function). Let 𝐷1 equal the number of solutions in 𝑆1 that are dominated by a solution from 𝑆2 

and 𝐷2 equal the number of solutions from 𝑆2 that are dominated by a solution in 𝑆1. Using 

these relative domination counts, we say that 𝑆1 is better than  𝑆2 if and only if 𝐷1 < 𝐷2. For our 

computational experiments, suppose two Directed Mutations methods run for 1000 generations 

and produce sets 𝑆1 and 𝑆2, where 𝐷1 < 𝐷2. Then we would say that the first method 

outperformed the second over those 1000 generations. 

 

4.2.1 Multi-Objective Directed Mutation Operators 
 

    For the multi-objective MECE, we investigated two distinct approaches for integrating 

multiple conflicting objective function gradients – comparing these to a Baseline method that 

does not use gradients. Each experiment uses the general algorithm flow in Figure 2 and 

implements the Block+Everyman approach (since that was the most successful single objective 

Directed Mutation approach); we only vary the manner in which the multiple objective gradients 

are employed and/or combined.  

 The Baseline Directed Mutation operator does not update link locations. Since net 

force information is not used for any of the objective functions, this approach does not 
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calculate gradients – providing a fair computational comparison for the next two 

approaches (it would be unfair to calculate gradients but not use them). 

 The Independent Directed Mutation operator takes each solution, choses one 

objective function uniformly at random, calculates the gradient of only the selected 

objective, and finally applies the Block+Everyman approach to update the link 

locations of that solution. The rationale for this method is that the computational 

savings of calculating only 1 of the m gradients overcomes the fact that each solution 

improves in only 1 objective at a time. As the optimization runs, an equal number of 

solutions will improve independently in each of the objective gradient directions – in 

theory providing a balanced improvement in all objective functions. 

 The Convex Combination approach is the conceptual opposite of the Independent 

method. Here, all objective gradient vectors are calculated for each solution. The 

gradients are then aggregated together with a random, normalized, nonnegative set of 

multipliers (e.g., 0.5, 0.2, 0.3 in the case of 3 objectives), which produces a convex 

combination of the objective gradients. This convex combination of the gradients is 

then used to update the links using the Block+Everyman approach. The potential 

advantage of this method is that the convex combination of gradients might enable 

simultaneous improvement in multiple objectives (if the gradient directions are not in 

conflict), but the drawbacks are that every gradient must be computed for every 

solution and conflicting gradients might cancel out and leave no suggested direction. 

 

4.2.2 Computational Results 
 

    In this subsection, we examine the computational performances of the multi-objective 

Directed Mutation methods against the Baseline GA with no gradient information. All methods 

were applied to a multi-objective MECE problem with 𝑛 = 30 links, a post height of 𝐻 = 300, 

and a post separation of 𝐿 = 200, and up to 3 competing objective functions – each differing  by 

choice of spring rest length and gravitational potential energy functions. Table 1 gives a 

summary of the 3 objective function parameters. The first objective has the longest springs and 

uses the standard gravitational potential energy (i.e. the gravity vector pulls downward with 

constant force). The second objective uses the shortest springs and has a gravitational force that 

pulls both down and to the right. Finally, the third objective has intermediate spring rest lengths 

and has a gravitational force that pulls downward but with decreasing force from left to right 

(each successive link has 10% less gravity than the preceding link).   

 
Table 1. Multi-objective MECE Objective Parameters 

Objective 

Function 

Spring Rest 

Length 

Gravitational Potential Energy 

Function 

Minimum 

Energy 

𝑓1(𝒙, 𝒚) 𝑅1 = 20 𝑔1(𝑥𝑖 , 𝑦𝑖) = 𝑦𝑖 3786.99 

𝑓2(𝒙, 𝒚) 𝑅2 = 5 𝑔2(𝑥𝑖, 𝑦𝑖) = −0.5𝑥𝑖 + 0.866𝑦𝑖 5214.16 

𝑓3(𝒙, 𝒚) 𝑅3 = 12 𝑔3(𝑥𝑖, 𝑦𝑖) = 2(0.9𝑖)𝑦𝑖 3700.50 

 

    Figure 9 displays the x and y coordinate link locations of the optimal hanging chain solution 

for each of the 3 objective functions. The optimal solution to the first objective is symmetric 

about the x-axis and hangs down to the “ground” due to the longer spring rest length (also 
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satisfying the 𝑦𝑖 ≥ 0 constraint). The optimal solution to the second objective hangs the highest 

(due to the shortest rest length) and is skewed to the right due to the gravitational force pulling 

both down and to the right. The optimal solution to the third objective is skewed to the left due to 

the decreasing gravitational force from left to right.  

 
Figure 9. The optimal MECE configurations for the 3 objective functions 

 

    The goal of the multi-objective MECE is to find hanging chain configurations that 

simultaneously balance all three objectives. Clearly, no single solution can minimize all 

objective functions at once, and thus the optimization produces a set of non-dominated solutions 

that each provides a unique balance of the objectives. Figure 10 displays progress snapshots (at 

generations 300, 450, and 3000) of the GA towards the true Pareto frontier both for the Baseline 

(black) and the Independent Directed Mutation method (red) for the 3-objective MECE. 

Solutions are plotted in objective function space (i.e., every dot is a hanging chain solution 

plotted according to its energy level in the 3 objective functions).   

 
Figure 10. The progress of the Baseline and Independent Direct Mutation operators at 

generations 300, 450, and 3000 compared to the true Pareto frontier. 
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    Notice that the snapshots in Figure 10 indicate a substantial speedup of the Independent 

method over the Baseline. At each of the generations 300, 450, and 3000, the red set of solutions 

(Independent approach) appears much closer to the true Pareto set than the corresponding black 

set (Baseline). In fact, the Independent method at generation 3000 has almost completely 

characterized the true Pareto set, whereas the black Baseline set is still well-removed from the 

Pareto and does not encompass its full extent in potential energy space. For the remainder of this 

subsection, we focus on more precisely measuring this speedup for MECE problems with 1, 2, 

and 3 objectives. 

    Computational experiments indicate that the Independent and Convex Combination methods 

perform almost identically on a per-generation basis. In other words, given that both approaches 

run for a set number of generations, the resulting sets of non-dominated solutions are nearly 

equivalent. This implies that movement in only one objective gradient at a time (i.e. the 

Independent approach) averages out over the generations to be equivalent to simultaneous 

movement in all directions (i.e. the Convex Combination method). Thus, since the Independent 

method is computationally cheaper per solution (only 1 gradient calculation), we employ this 

approach for a careful comparison of speedup over the Baseline method. 

    To measure this speedup, we adopt the following procedure for MECE with 1, 2, and 3 

objectives. First we run the GA using the Baseline method to a set number of generations (10, 

100, 1K, 10K, 100K, and 1M) – measuring the CPU time required and preserving the resulting 

non-dominated set of solutions (call this set 𝑆1). Next, we run the GA with the Independent 

Direct Mutation method until the resulting non-dominated set (call this set 𝑆2) surpasses the 

Baseline set (i.e. 𝐷2 < 𝐷1 as described in the previous subsection). We save the number of 

generations and CPU time for 𝑆2 to surpass 𝑆1 and use this information to calculate speedup 

ratios. For example, if the Baseline runs for 1000 generations in 20 seconds, and the Independent 

method surpasses this in 100 generations taking 5 seconds, then we would measure a speedup of 

10x in generations (1000 generations / 100 generations) and 4x in CPU time (20 second / 5 

seconds). 

    Figure 11 shows the speedup ratios per generation for 1, 2, and 3-objective MECE problems. 

The log-log plot shows a remarkably consistent speedup across the three problems, meaning that 

gradient improvement retains its utility into higher dimensional problems. The potential issue of 

conflicting gradient information does not seem to be apparent; gradient information is very 

valuable in both single objective and multi-objective MECE. More impressive is the magnitude 

of the speedup ratios. For example, when comparing the speedup over the Baseline method run 

to 1 million generations, the Independent Directed Mutation method shows a speedup of roughly 

10,000x – meaning that the gradient method surpassed the quality of the Baseline’s 1 millionth 

generation in only 100 generations. 

    The same impressive speedups are also observed in Figure 12 when comparing CPU time. 

Here, the 1, 2, and 3-objective speedups are slightly less consistent, as the multi-objective cases 

take about 10,000 Baseline generations before they start realizing speedups. But by the millionth 

Baseline generation, the CPU speedups of the Independent Directed Mutation are between 2000x 

and 12,000x. 
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Figure 11. The speedup per generation of the Independent method vs. the Baseline 

 

 
Figure 12. The speedup per CPU time of the Independent method vs. the Baseline 

 

    These impressive speedups in both generations and CPU time should likely be attributed to a 

combination of compounding factors. First, these speedups do indicate the great utility of 

gradient information for augmenting MECE solution information within the GA. Second, these 

speedups also exhibit the overall failure of the Baseline method to approach true optimality for 

the MECE problem. As described at the beginning of this section, the Baseline method must 

depend on fortuitous but highly unlikely combinations of mutations to coordinate multiple link 

updates in a desired manner. Since these lucky mutations almost never happen, the evolution of 

the Baseline GA tends to stall out. Because the Directed Mutations do not experience this stalling 

out, we observe the more and more impressive speedups as we run the Baseline to more and 

more generations.   
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5 MILITARY PORTFOLIO EXAMPLE 
 

    The hanging chain examples in the previous sections demonstrated the utility of using 

objective function gradient information to direct mutations in GAs when the decision variables 

include integer counts arrayed over time.  Moreover, the latter examples showed that the benefits 

extend to cases where there is more than one objective function.  In order to further develop the 

applicability of our methods to more practical situations, we sought to apply them in the case of a 

more complex example.  In addition to being somewhat larger, the example contains system 

technology choices in the form of more general combinatorial variables along with dependency 

constraints between the technology choices. 

    A good example portfolio optimization problem will have more variables than the hanging 

chain example but not so many that it is no longer a good research vehicle.  Likewise, it will be 

nonlinear, nonconvex, and have multiple objectives.  Moreover, it will contain some non-trivial 

interactions between decision variables, objectives, and systems.  Therefore, the following are 

the key features we sought to capture in our example: 

 

 Technology options (i.e., “which type” decisions) 

 Technology variables (i.e., “how many” decisions) 

 Nonlinear objective functions 

 Multiple, conflicting objectives 

 Dependency constraints 

 System-of-systems interactions 

 

    In order to convey to others the importance of this line of research, we also wanted an example 

that would be interesting, contemporary, relevant, and illustrative.  It turns out that the military 

acquisition domain is ideal for developing such an example, especially when a portfolio must be 

considered.  To begin with, military acquisition programs are large and complex.  They must 

consider research, development, testing, and evaluation (RDT&E) costs in addition to purchase 

and operation and sustainment (O&S) costs.  A holistic military force contains multiple 

interacting platforms.  Its performance metrics must be evaluated in the context of one or more 

potential missions and must therefore be analyzed in the context of the corresponding concept of 

operations (CONOPS).  In a sufficiently rich example, many other modeling challenges will 

arise.  This provides opportunities to develop other modeling techniques along the way.  It will 

also illustrate some of the thinking processes that go into creating a portfolio optimization model. 

    The example that we settled on is that of a fictitious military portfolio containing unmanned 

aerial vehicles (UAVs), vehicles, and soldiers.  It builds on the idea of systems as platforms upon 

which new technologies are developed and deployed over time.  The technologies involved are 

intended to be generic but reminiscent of technologies that could exist or be developed.  We are, 

of course, abstracting away many other operational and logistical details which would be 

important in a real mission.  Furthermore, the example may be unrealistic in certain ways, but 

that should not detract from the overall applicability of our research results.  Exact details, 

realism, and technology specifics are not terribly important at this level of modeling, and we 

avoid many of the difficulties that adding them would entail. 
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5.1 Model Description and Portfolio CONOPS 
 

    The overall mission of the UAV-Vehicle-Soldier portfolio is to contain a growing insurgency 

in a city-sized region.  The situation is modeled as follows.  The region contains discrete cells of 

insurgents and that the number of cells is growing over time due to spread and spontaneous self-

organization.  Each insurgent cell is localized to within a single “sector” and the region consists 

of 1000 sectors.  The portfolio mission lasts five years, and due to its dynamic nature, decisions 

on portfolio size and composition are made on a quarterly basis instead of yearly.  Thus, the 

number of insurgent cells (𝐼𝑡) and the system count decision variables are indexed by an integer 𝑡 

representing the quarter number in the range 1–20.  Each quarter, the overall change in the 

number of insurgent cells depends on a fast daily dynamics which will be described next.  The 

detailed mathematical model is developed in section 5.3. 

    The basic CONOPS of the portfolio is as follows.  The UAVs fly daily reconnaissance 

missions over the region in order to gather intelligence regarding suspected locations of 

insurgent cells.  Later that same day, squads of soldiers are dispatched to as many of the 

suspected locations as possible given the number of soldiers and the required number of soldiers 

in a squad.  Each squad can head out on foot but will go in a vehicle if enough are available.  The 

average time it takes to reach each location depends on a typical distance to all 1000 sectors.  

Upon arrival at their destination, each squad will determine if there is really a cell present, and if 

so, mitigate the threat by capturing or killing the cell members.  Cells are assumed to move every 

day, so the probability of successfully mitigating a cell is modeled as a combination of the 

probability that the squad will arrive intact and the probability that the cell has not yet completed 

its daily mission and moved on.  The third factor depends on how quickly the squads arrive 

relative to the average time it takes for cells to perform their daily mission. 

 

The assumed parameters for the model as described above are summarized in Table 2. 

 
Table 2. Global Model Parameters 

Parameter Notation Value Units 

Initial Insurgents 𝐼0 50 cells 

Insurgent Spread Rate 𝛼 1/365 cells per cell per day (day
-1

) 

Spontaneous Insurgents 𝐼spon 0.1 cells/day 

Maximum Insurgents 𝐼max 2,000 cells 

Number of Sectors 𝑁sec 1,000 – 

Number of Quarters 𝑡max 20 – 

Days per Quarter 𝑁𝑄 90 – 

Insurgent Mission Time 𝑇𝐼 3 hours 

Typical Insurgent Distance 𝐷 8 miles 

 

Parameters for the platforms in the portfolio will be given in the next section. 

 

5.2 Portfolio Decision Variables 
 

Initially, the portfolio consists of a certain number of basic UAVs, vehicles, and soldiers.  

However, in order to meet the mission objectives, it is generally necessary to change the 

portfolio composition over time by changing the system technologies and/or varying the numbers 
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of each type of system.  As mentioned previously, the systems in the portfolio are considered to 

be platforms upon which different technologies will be deployed over time.  New platforms can 

be developed, acquired, and deployed alongside or in place of the original systems in the 

portfolio.  Similarly, new technologies can be developed and acquired to augment or replace 

whatever technologies are already on each platform.  For example, each original UAV has a 

basic sensor which could be replaced by new sensor without changing the underlying UAV 

platform.  Changing the portfolio over time is a design optimization problem, and here we 

describe the decision variables.  The decision variables are of two rather different types: 

technology options and technology variables.  Treating both types of decision variables 

simultaneously is what we mean by holistic portfolio optimization. 

 

5.2.1 Technology Options (Technology Development Program Choices) 
 

    We envision that there are three acquisition programs under consideration: (1) a UAV sensor 

upgrade program, (2) a future vehicle program, and (3) a vehicle armor program.  For each 

contemplated technology, there is a decision variable for which of the 20 quarters the 

corresponding systems could first be acquired (if at all).  We will call that quarter the program 

start date although the required corresponding program development, tooling, and first 

production is assumed to occur in the years leading up to that time. 

    For the sensor and armor program start dates, there are simultaneous one-time-only design 

decisions on which type to develop: sensor A, B, or C, and armor X, Y, or Z.  It is assumed that 

there are no further design choices to be made for the future vehicle.  However, we assume any 

newly developed armor will only work on the new vehicle, so we add dependency constraints 

that none of the armor programs can start before the future vehicle program. 

    Finally, at any time, it is possible to acquire “advanced” soldiers who have better equipment 

and are more highly trained than “basic” soldiers.  However, this can be done without needing to 

introduce a corresponding program development decision variable since it is assumed that the 

corresponding equipment and training courses have already been developed. 

 

The key parameters that describe these technologies are given in Table 3. 

 
Table 3. Platform Parameters 

Parameter Notation Units 
Required sensor scan time per pass 𝑇𝑃 seconds 

Required number of sensor passes 𝑁𝑃 – 

Detections per hour per original UAV (depends on original UAV sensor type) 𝑢 = 3600/(𝑇𝑃𝑁𝑃) hour
-1 

Detections per hour per upgraded UAV (depends on upgraded UAV sensor type) 𝑢′ = 3600/(𝑇𝑃
′ 𝑁𝑃

′ ) hour
-1 

Number of basic soldiers to make a squad 𝑁𝑆 – 

Number of advanced soldiers to make a squad 𝑁𝑆
′ – 

Average speed of an initial vehicle 𝑣𝑉 MPH 

Average speed of a future vehicle 𝑣𝑉
′  MPH 

Speed reduction due to armor (depends on armor type) 𝑣𝑟  MPH 

Average speed of an armored future vehicle (depends on armor type) 𝑣𝑉
′′ = 𝑣𝑉

′ − 𝑣𝑟 MPH 

Average speed of a basic soldier 𝑣𝑆 MPH 

Average speed of an advanced soldier 𝑣𝑆
′  MPH 

Probability of arrival of unarmored vehicle (𝑉 or 𝑉′) 𝑝0 – 

Probability of arrival of armored vehicle 𝑉′′ (depends on armor type) 𝑝𝑉
′′ – 
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5.2.2 Technology Variables (System Counts) 
 

    Given the set of technology choices outlined above, there are up to seven distinct types of 

systems that could be present in the portfolio in any given quarter: (1) original UAVs, (2) 

upgraded UAVs, (3) initial vehicles, (4) future vehicles, (5) armored future vehicles, (6) basic 

soldiers, and (7) advanced soldiers.  The corresponding count decision variables along with their 

assumed range of allowed integer values are given in Table 4. 

 
Table 4. System Count Decision Variables 

Description Notation Integer Range Initial Count 

count of original UAVs 𝑈 0 – 50 10 

count of upgraded UAVs 𝑈′ 0 – 50 0 

count of initial Vehicles  𝑉 0 – 300 20 

count of future Vehicles 𝑉′ 0 – 300 0 

count of armored future Vehicles 𝑉′′ 0 – 300 0 

count of basic Soldiers 𝑆 0 – 1500 200 

count of advanced Soldiers 𝑆′ 0 – 1000 0 

any subset of the above count variables 𝑿𝑡 – – 

 

    Each of these decision variables is implicitly indexed by 𝑡, but for clarity, we leave out the 

subscript.  Note that the count variables for systems containing new technology should be zero 

before the technology program start date (and some could even be zero on or after the start date). 

 

It should be apparent from the preceding discussion that there are many ways to represent a set 

of coordinated acquisition decisions for a portfolio.  Our example was designed in part to 

illustrate a number of these techniques. 

    Finally, it’s worth noting that the multiplicity of technology variables over time coupled with 

the large number of choices for each variable is the chief reason for the huge search spaces found 

in holistic portfolio optimization problems.  Search spaces of such size severely tax a basic GA.  

From the data in tables above, we can compute the size of the technology variable search space: 

(51×51×301×301×301×1501×1001)
20

 = 3.57×10
340

.  Including the technology options (while 

ignoring the dependency constraints), the overall size of the search space rises to 2.79×10
345

. 

 

5.3 Portfolio Metrics 
 

    A “value model” specifies the calculations for metrics by which we value the design of 

something.  The calculations could be specified, for example, by formulas or iterative 

algorithms.  In general, it’s possible to define arbitrarily many numerical metrics as objectives in 

a multiobjective optimization problem.  The result of the optimization is a set of Pareto optimal 

designs which show the optimal tradeoffs among all the metrics.  It’s also possible to group 

metrics together in various ways to simplify the trade space.  For our military portfolio example, 

we wanted to keep it relatively simple for trade space visualization proposes while still 

demonstrating a general capability.  Thus we chose to group all our metrics according to costs 

and performance.  The costs group contains all the metrics related to cost while the performance 

group contains all the rest. 
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5.3.1 Costs Group 
 

    The costs group contains the cost in each of the 20 quarters as well as the total cost over the 

entire program.  To simplify the accounting, inflation and discount factors are assumed to cancel 

out.  Quarterly costs will be called “budgets” to reflect the fact that they usually have hard limits.  

The total cost over the entire timeframe is simply the sum of the 20 quarterly budgets.  It would 

be a redundant metric except for the fact that it is treated separately by the GA’s fitness assessor 

as described below. 

    The costs group also contains a “phantom cost” metric which is included as a technicality to 

improve the convergence of the GA.  Before a given program start date, the corresponding 

system counts are “phantoms” that may not be zero although they are always interpreted as zero 

in the metric calculations.  This means that there are many equivalent solutions, and the search 

space is much larger than it really needs to be.  The phantom cost metric is simply the additional 

cost that would be incurred if the phantom systems were real (without changing the RDT&E 

costs since they only apply to the real systems).  Its intended effect is to force any phantom 

system counts to zero and thereby reduce the size of the search space and speed convergence. 

 

5.3.2 Performance Group 
 

    Recall that the overall mission of the portfolio is to contain an insurgency, so we would like to 

define a single “insurgency” metric which captures the performance of the portfolio over the 

entire timeframe.  First, we need a model of what is bad about an insurgency.  To that end, each 

day, each cell is considered to bring a fixed amount of harm to the region.  So the insurgency 

metric should take into account the number of insurgent cells as well as the amount of time they 

are present.  When they are present is not considered important.  With these considerations, a 

reasonable quantity for the insurgency is simply the sum of the number of cells over the 20 

quarters.  Additional metrics could be developed to represent goals of other missions of the 

portfolio. 

    In addition to the insurgency metric, we include the technology dependency constraints in the 

performance group.  Solutions which violate these constraints have lower fitness, so the GA will 

favor solutions that satisfy the most dependency constraints. 

 

5.3.3 Fitness and Metric Formulations  
 

    Candidate designs in a GA evolve depending on fitness functions rather than directly on the 

metrics themselves.  Each metric group is scored by a fitness which is a weighted sum of the 

fitness associated with each component metric.  The weights are proportional to the length of the 

time with which they are associated; specifically, either one quarter or 20 quarters.  The 

individual fitness functions for each metric are parameterized by a “limit” value and an 

“objective” value.
1
  The limit is chosen to represent a value of the metric which is considered to 

be “poor.”  The objective is chosen to represent a value of the metric which is considered to be 

“good.”  Dependency constraints are either satisfied or not so do not require any parameter 

adjustments. 

                                                 
1
 Strictly speaking, there are more than two parameters for each fitness function, but the other parameters are left 

with their default values. 
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    In order to use gradient-directed mutations, we demand that every metric be formulated 

piecewise in terms of closed-form formulas.  This may not be possible since metrics are 

sometimes defined and calculated in terms of highly iterative numerical routines of some sort 

(Monte Carlo integration, agent-based simulations, or numerical integration of differential 

equations).  However, even in some of these cases it may be possible to calculate gradients as 

part of the simulation (for example, by using automatic differentiation).   

    Fortunately, if we base our metric formulations as much as possible on economics and 

physics, we can frequently develop closed-form, analytic approximations for the metrics.  In that 

case, it is possible to formally differentiate all the metrics with respect to all the system counts.  

Since the fitnesses are smooth functions of the metrics, we can then in turn find the gradient of 

the fitness of each group by using the chain rule.  Where the derivatives are discontinuous, we 

can pick an arbitrary element of the subgradient (such as a sequential average of the gradients 

from each piece). 

 

5.3.4 Cost and Budget Formulation 
 

    The total cost over the entire timeframe is simply the sum of the 20 quarterly budgets.  The 

budget in each quarter is modeled in turn as the sum of three types of cost contributions: (1) 

initial system purchases, (2) quarterly costs of systems in inventory, and (3) RDT&E costs.  

Initial system costs include the platform and any corresponding mounted technologies.  The 

quarterly costs include O&S costs as well as system replacement costs based on the initial cost 

amortized over the average lifetime of the system.  RDT&E costs are only incurred if the 

program is started sometime during the 20 quarters, and if so, they are modeled as the same total 

being evenly spread over the quarters up to and including the program start date.  Hence, the 

quarterly RDT&E costs can be reduced by extending the development time. 

    If assets are upgraded in a given quarter, only the newly mounted technologies contribute to 

the budget since the underlying platform has already been paid for.  If the portfolio is divested of 

systems or technologies, their purchase costs are simply lost.  In other words, we assume neither 

proceeds from sale nor disposal costs.  This means it probably does not make financial sense to 

reduce the number of systems in one quarter and buy them soon thereafter: it is probably cheaper 

to pay the intervening quarterly costs. 

    Since the marginal cost of buying one more system is zero or some non-zero constant 

depending on whether the asset counts are falling or rising, it means that the budgets must be 

expressed as piecewise multilinear functions of the number of assets.  However, both the budgets 

and total costs can still be formally differentiated with respect to system counts on each 

multilinear piece.  At the boundaries where the pieces come together, we use an average of the 

derivatives from each piece. 

    The fitness of the costs group is the sum of the fitnesses of the 20 budgets and the fitness of 

the total cost.  The budget limits are modeled as being hard, but the fitness of each one is 

weighted approximately 1/20
th

 as much as the fitness of the total cost (only approximately 

because on an actual calendar, the quarters may vary in length by a day or two).  The cost limit is 

soft and is set to only 80% of the sum of the budget limits.  This makes the GA tend to prefer 

portfolio designs in which not all budgets are pegged at their absolute limits. 
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5.3.5 Performance Formulation and System of Systems Physics 
 

    While the budget and cost calculations are straightforward to model based on economics 

(especially since we are not doing any discounting), the same is not true for performance metrics.  

To the extent possible, we would like performance metrics to be based on an analysis of the 

“physics” of the portfolio: that is, they should reflect quantitative cause and effect relationships.  

It helps to make sure such relationships are naturally formulated in a way that is dimensionally 

consistent between factors and terms.  Ideally, dimensional consistency can be attained using 

parameters that can, at least in principle, be measured rather than parameters that must be tuned.  

If we are successful, we will obtain performance metrics that are formulated piecewise in terms 

of closed-form formulas.  Each piece will almost always be an analytic formula expressed in 

terms of the portfolio decision variables, and it will then be possible to use gradient-directed 

mutations. 

    Building on the CONOPS described above, we will now formulate the insurgency metric 

based on an analysis following the guidelines above.  We are given the initial number of 

insurgent cells, 𝐼0, and we need to derive an expression for the number of cells in each 

subsequent quarter as a function of the portfolio composition over time.  We think of 𝐼𝑡 as being 

the number of cells at the end of quarter 𝑡.  It will depend on the number of cells at the beginning 

of the quarter (i.e., from the end of the previous quarter) along with the daily dynamics implied 

by the composition of the portfolio during the quarter: 𝐼𝑡 = 𝐼𝑡(𝐼𝑡−1, 𝑿𝑡). 

    We start by assuming that when the squads are dispatched to mitigate cells, the probability of 

a successful engagement has a decaying exponential dependence on the time taken for the UAVs 

to detect the cells plus the time to travel to the cells. 

 

𝑃(𝐼𝑡−1, 𝑿𝑡) = 𝑃(𝐼𝑡−1, 𝑈, 𝑈′, 𝑉, 𝑉′, 𝑉′′, 𝑆, 𝑆′) = exp (−
𝑇𝐷 + 𝑇𝑇

2𝑇𝐼
). 

 

The arguments to the function reflect the fact that both the detection time and travel time depend 

in detail on the composition of the portfolio.  The total time to detect all cells only depends on 

the number and type of UAVs along with the number of sectors.  It is simply the number of 

sectors divided by the total rate of cell detection by all UAVs: 

 

𝑇𝐷(𝑿𝑡) = 𝑇𝐷(𝑈, 𝑈′) =
𝑁𝑆

𝑢𝑈 + 𝑢′𝑈′
. 

 

    In contrast, the travel time does not depend on the UAVs.  It depends on the number of 

insurgent cells as well as the number of vehicles, and soldiers: 

𝑇𝑇(𝐼𝑡−1, 𝑿𝑡)  = 𝑇𝑇(𝐼𝑡−1, 𝑉, 𝑉′, 𝑉′′, 𝑆, 𝑆′).  We break it down in the following paragraphs. 

    The total distance traveled by all squads is the number of squads times the given average 

distance traveled by each squad: 𝑄 × 𝑑.  It can be approximated by the average travel time 

multiplied by a sum total average velocity of all squads.  This is a reasonable approximation if 

the faster squads tend to be dispatched to the more distant cells so that the travel times are all 

about the same.  Rearranging gives the average travel time: 

 

𝑇𝑇(𝑿𝑡) =
𝑄𝑑

𝑣𝑇(𝑿𝑡)
. 
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    The sum total average velocity 𝑣𝑇(𝑉, 𝑉′, 𝑉′′, 𝑆, 𝑆′) of all the squads depends on the number of 

vehicles and soldiers and can be derived as follows.  At most one squad is sent out to each cell, 

so the number mobilized squads is given by 

 

 
𝑄(𝐼𝑡−1, 𝑿𝑡) = min ( 𝐼𝑡−1,

𝑆

𝑁𝑆
+

𝑆′

𝑁𝑆
′). 

(1) 

 

    Squads are always put in vehicles when possible, so given the total number of vehicles, 

𝑉𝑇(𝑿𝑡) = 𝑉 + 𝑉′ + 𝑉′′, the number of squads in vehicles will be 

 

𝑄𝑉(𝐼𝑡−1, 𝑿𝑡) = min(𝑄(𝐼𝑡−1, 𝑿𝑡), 𝑉𝑇(𝐼𝑡−1, 𝑿𝑡)) = min (𝐼𝑡−1, 𝑉𝑇 ,
𝑆

𝑁𝑆
+

𝑆′

𝑁𝑆
′). 

 

The remainder of the squads will be on foot: 

 

𝑄𝐹(𝐼𝑡−1, 𝑿𝑡) = 𝑄(𝐼𝑡−1, 𝑿𝑡) − 𝑄𝑉(𝐼𝑡−1, 𝑿𝑡). 
 

The total speed of all squads will be determined by the average of the speeds of the vehicle and 

foot squads weighted according to the fraction of each.  Therefore, we need the following 

fractions where 𝑆𝑇(𝑿) = 𝑆 + 𝑆′ is the total number of soldiers: 

 

𝑓𝑉(𝑿) = 𝑉/𝑉𝑇

𝑓𝑉
′(𝑿) = 𝑉′/𝑉𝑇

𝑓𝑉
′′(𝑿) = 𝑉′′/𝑉𝑇

𝑓𝑆(𝑿) = 𝑆/𝑆𝑇

𝑓𝑆
′(𝑿) = 𝑆′/𝑆𝑇 .

 

 

Furthermore, we model the effect of the reduced probabilities of arrival (𝑝0 and 𝑝𝑉′′) as a 

corresponding reduction in average speed.  Putting this all together gives the total average speed 

of all squads: 

 

𝑣𝑇(𝑿𝑡) = [(𝑣𝑉𝑓𝑉 + 𝑣𝑉
′ 𝑓𝑉

′)𝑝0 + 𝑣𝑉
′′𝑓𝑉

′′𝑝𝑉
′′]𝑄𝑉 + [𝑣𝑆𝑓𝑆 + 𝑣𝑆

′ 𝑓𝑆
′]𝑄𝐹. 

 

The upshot of the forgoing discussion is that we have analytic expression for 𝑇𝐷(𝑿𝑡) and 𝑇𝑇(𝑿𝑡) 

and therefore have an analytic expression for 𝑃(𝑿𝑡). 

 

By using the parameters in Table 2 we can derive an equation that gives the daily change in the 

number of cells.  First consider the increment in the insurgency in the first day of quarter 𝑡 (i.e., 

starting with 𝐼𝑡−1 insurgents from the previous day).  Assuming the daily mitigation happens 

before the daily spread and spontaneous generation, we can write 

 

Δ𝐼𝑑(𝐼𝑡−1, 𝑿𝑡) = 𝐼spread + 𝐼spon

= 𝛼(𝐼𝑡−1 − 𝑃𝑄) + 𝐼spon

= 𝛼(𝐼𝑡−1 − 𝑃(𝐼𝑡−1, 𝑿𝑡)𝑄(𝐼𝑡−1, 𝑿𝑡)) + 𝐼spon
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If we assume the subsequent change in the number of cells is approximately the same for all 𝑁𝑄 

days in the quarter, we obtain 

 

𝐼𝑡(𝐼𝑡−1, 𝑿𝑡) = (𝐼𝑡−1 − 𝑃𝑄) + 𝑁𝑄[𝛼(𝐼𝑡−1 − 𝑃𝑄) + 𝐼spon]

= (1 + 𝑁𝑄𝛼)(𝐼𝑡−1 − 𝑃(𝐼𝑡−1, 𝑿𝑡)𝑄(𝐼𝑡−1, 𝑿𝑡)) + 𝑁𝑄𝐼spon.
 

 

In any given military theatre, the number of cells would not grow without bound because of the 

limited regional population along with other unspecified feedbacks.  To reflect these 

considerations, we add a cap of 𝐼max to the dynamics by fiat: 

 

 𝐼𝑡(𝐼𝑡−1, 𝑿𝑡) = min(𝐼max, (1 + 𝑁𝑄𝛼)(𝐼𝑡−1 − 𝑃(𝐼𝑡−1, 𝑿𝑡)𝑄(𝐼𝑡−1, 𝑿𝑡)) + 𝑁𝑄𝐼spon). (2) 

 

Finally, this equation is used recursively to calculate the insurgency metric which is the total 

number of cells over all quarters: 𝐼 = ∑ 𝐼𝑡𝑡 . 

    Unfortunately, the formulation for Δ𝐼𝑑 above only considered the daily change in the number 

of cells after mitigation has taken place which means Δ𝐼𝑑 is always ≥ 0.  The resulting dynamics 

given by equation (2) corresponds to a CONOPS in which the squads are only dispatched in the 

first day of each quarter, and then the growth in the number of cells is the same every day 

throughout the quarter. 

    The overall change in the number of cells in the first day should have been calculated as 

follows: 

 

𝐼𝑑(𝐼𝑡−1, 𝑿𝑡) = 𝐼unmitigated + 𝐼spread + 𝐼spon

= (𝐼𝑡−1 − 𝑃𝑄) + 𝛼(𝐼𝑡−1 − 𝑃𝑄) + 𝐼spon.
 

 

Thus, 

 

𝛥𝐼𝑑(𝐼𝑡−1, 𝑋𝑡) = 𝐼𝑑 − 𝐼𝑡−1 = −𝑃𝑄 + 𝛼(𝐼𝑡−1 − 𝑃𝑄) + 𝐼spon. 
 

The presence of the extra −𝑃𝑄 term means that Δ𝐼𝑑 can be < 0.  This makes more sense and 

reflects how effective the daily CONOPS could be. 

    Note from equation (1) that the number of squads 𝑄 is either proportional to 𝐼𝑡−1 or capped by 

the constant number of soldiers in quarter 𝑡, so the daily dynamics formula is bounded by terms 

linear in 𝐼𝑡−1 without any negative feedback terms.  Therefore, if it is iterated recursively, the 

number of cells will not change linearly throughout the quarter but will grow or shrink 

exponentially.  After 90 iterations, essentially any exponential divergence will swamp reality.  

This exposes the fact that we have not captured a realistic CONOPS for this portfolio.  In spite of 

these shortcomings in the derivations above (or perhaps because of them), equation (2) actually 

gives reasonable-looking behavior.  So for purposes of illustration in this research, it will suffice 

as a definition of the insurgency metric in what follows. 
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5.3.6 Model Parameters 
 

    The sections above laid out the notation for model parameters and decision variables along 

with formulas for the performance metrics.  Calculation of cost metrics was described in section 

5.3.4.  To demonstrate an optimization using the example, we need data for parameters and 

initial system counts.  Actual data could be used if this were a real example, but since our 

example was only designed for purposes of research and illustration, we generated notional data. 

    Cost data are separate for each platform or technology deployed on a platform.  Each asset has 

a unit purchase price and yearly O&S costs.  Technologies that have yet to be developed also 

have RDT&E costs which are spread out evenly during the years leading up to the first 

acquisition.  Finally, each asset is assumed to have an average time over which it needs to be 

replaced whether it be due to age, damage, or retirement.  The yearly replacement cost is 

estimated as the initial price divided by the mean loss time.  The corresponding data are given in 

Table 5 and Table 6. 

 
Table 5. UAV and Soldier Cost Data 

Cost Item UAV 
Sensor 

0 

Sensor 

A 

Sensor 

B 

Sensor 

C 

Basic 

Soldier 

Advanced 

Soldier 

Price (@, $) 3,000k 100k 200k 500k 1,000k 20k 40k 

O&S Cost(@, $/qtr) 1,000k 5k 10k 30k 50k 50k 70k 

Mean Loss Time (qtr) 8 16 12 10 10 15 12 

RDT&E Cost 0 0 4,000k 7,000k 10,000k 0 0 
 

 
Table 6. Vehicle and Armor Cost Data 

Cost Item 
Initial 

Vehicle 

Future 

Vehicle 
Armor 0 

Armor 

X 

Armor 

Y 

Armor 

Z 

Price (@, $) 1,000k 1,500k 0 30k 60k 100k 

O&S Cost(@, $/qtr) 30k 20k 0 0 0 10k 

Mean Loss Time (qtr) 20 25 ∞ ∞ ∞ 5 

RDT&E Cost 0 20,000k 0 1,000k 2,000k 4,000k 

 

No data is required to describe the UAVs themselves, but for the various UAV sensors, we need 

to know scan times and the number of passes required.  For soldiers, the number required to form 

a squad as well as the squad foot speed are parameters. These data are given in Table 7. 

 
Table 7. UAV Sensor and Soldier Technology Data 

Technology 

Specification 

Sensor 

0 

Sensor 

A 

Sensor 

B 

Sensor 

C 

Basic 

Soldier 

Advanced 

Soldier 

Scan Time (s) 20 18 18 20 – – 

# Passes Required 5 4 3 2 – – 

Average Speed (MPH) – – – – 3 5 

Soldiers per Squad     6 4 
 

 

For vehicles and any associated armor (Armor 0 means none), we need to know average speed 

and arrival probability data.  These are given in Table 8. 
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Table 8. Vehicle and Armor Technology Data 

Technology 

Specification 

Initial 

Vehicle 

Future 

Vehicle 

Armor 

0 

Armor 

X 

Armor 

Y 

Armor 

Z 

Average Speed (MPH) 25 33 – – – – 

Speed Reduction (MPH) – – 0 4 8 6 

Arrival Probability – – 0.5 0.7 0.95 0.99 

 

5.4 Implementation Details and Results 
 

    The model described above was implemented using Sandia’s Technology Management 

Optimization (TMO) application [15, 16] which is based on the same JEGA software used for 

the hanging chain experiments.  It adds a graphical user interface (GUI) with a number of 

convenient features which facilitate setting up optimization problems for solution using a GA. 

TMO is especially suited to optimization problems with a time-based component such as our 

holistic portfolio optimization problems, and one of its main outputs shows solutions in a form 

that looks much like a Gantt chart. 

    A key feature of TMO is the ability to use an “external evaluator” which is custom software to 

evaluate complex metrics of each new offspring in the evolving population of trial solutions.  A 

recent addition to the external evaluator capability resulting from our research is the ability to 

generate arbitrary new offspring in addition to evaluating them.  A basic GA generates new 

population members using the processes of random initial generation, random mutation, and 

random crossover.  The upgraded external evaluator capability allows us to generate new 

population members using any algorithm we choose—random or deterministic—including 

algorithms that use directed mutations, with or without taking advantage of gradient information. 

 

5.4.1 Basic Military Portfolio Implementation 
 

    For a baseline experiment, the TMO GUI was used to set up a 20 quarter timeframe while 

decision variables and dependency constraints were defined corresponding to those described in 

section 5.2.  An external evaluator was written to read in the data in Tables 5–8 from a 

spreadsheet and then evaluate the budget, cost, phantom cost, and insurgency metrics as 

formulated in section 5.3.  The dependency constraint objectives are evaluated internally by 

TMO.  Finally, budgets, total cost, and phantom cost were assigned to the costs group while 

insurgency and dependency constraints were assigned to the performance group.  Limit and 

objective parameters for each metric were entered into according to Table 9. 

 
Table 9. TMO Parameters 

TMO Parameter Value Units 

Budget Limit 50,000k $/quarter 

Budget Objective 10,000k $/quarter 

Cost vs. Budget Efficiency 80% – 

Total Mission Cost Limit 800,000k $ 

Total Mission Cost Objective 160,000k $ 

Insurgency Limit 2,000 cell-quarters 

Insurgency Objective 200 cell-quarters 
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    An initial population of candidate portfolio decisions is randomly generated by TMO.  An 

example of one member of this initial population is shown in Figure 13.  Time is broken out 

horizontally into 20 consecutive quarters.  The first three rows show the acquisition program 

decisions while the remaining seven rows show the integer system count decisions. 

 

 
Figure 13. A random initial portfolio. 

 

    This figure represents a particular set of decisions, not necessary good ones (we sometimes 

refer to such a set of decisions as a “portfolio” or a “solution” even though it’s really only a 

possible plan for a future portfolio).  In this instance, Sensor C is chosen for development and 

can be added to the UAVs starting in the second quarter of 2017.  Similarly, the future vehicle 

and Armor Y for it can be purchased in the last quarter of 2020.  The system counts are randomly 

chosen from the ranges defined in Table 4.  Recall that any system counts before the 

corresponding program start quarter are phantoms and therefore ignored for budget, cost, and 

performance purposes.  Clearly this portfolio is far from optimal because of the repeated 

investment and divestment decisions for all seven systems. 

 

5.4.2 Basic Genetic Algorithm Results 
 

    To establish a baseline for performance, we used the basic GA built into TMO to perform the 

multiobjective optimization of this holistic portfolio.  Figure 14 shows the trade space of fitness 

values of the solutions in the current best estimate of the Pareto efficient frontier.  This result 

took about 12 hours to evolve on a current desktop computer.  Each dot represents a non-

dominated solution meaning that the cost fitness cannot be improved without reducing the 

performance fitness and vice versa.  The solutions represented by green dots are “feasible” 

meaning that all dependency constraints are satisfied and all of their metrics are at or better than 

the limit values defined in Table 9.  The solutions represented by the red dots have at least one 

constraint or limit violation.  The large green dot represents the single best solution as 

determined by the highest sum of the costs fitness and performance fitness. 
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Figure 14. Optimized trade space of non-dominated holistic portfolio designs. 

 

    The large green dot in Figure 14 corresponds to the decisions shown in Figure 15.  It’s worth 

pointing out a few salient features of this set of decisions.  Sensor C will be developed and 

deployed to upgrade all UAVs in the first quarter with no original UAVs left in the portfolio at 

any time.  Since neither of the other two acquisition program decisions was exercised, the non-

zero counts of the Future Vehicle and Future Armored Vehicle are phantoms.  Those numbers 

are small because the phantom cost metric tends to force phantom counts to zero (all phantom 

counts should be identically zero in a truly Pareto optimal solution).  With a few exceptions, 

system count profiles are lower, monotonically decreasing, and much smoother than they were 

initially.  These features arise from the tendency to reduce budgets and overall costs while still 

maintaining an acceptable level of performance. 

 

 
Figure 15. A partially optimized portfolio. 
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    Figure 16 shows the same portfolio over time with the quarterly budgets lined up below (in 

blue).  The total cost is the sum of the budgets (i.e., the area under the curve).  The horizontal red 

line in the budget graph is the budget limit for every quarter while the horizontal green line is the 

budget objective for every quarter.  Since all the budgets are below the red line, they are 

considered feasible.  The expenditure in the first quarter is much larger than the rest because it 

includes the full RDT&E cost of Sensor C ($10,000k from Table 5).  The budget is held at an 

intermediate level during most of the timeframe.  The budget falls to zero by the end because of 

the decisions to divest all assets. 

 

 

 
Figure 16. Quarterly budgets aligned to the portfolio. 
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    In the process of calculating the integrated insurgency metric, the external evaluator also 

records the number of cells in each quarter.  The results are shown in Figure 17.  It shows the 

same portfolio over time as before with the quarterly number of insurgent cells aligned below (in 

green).  Recall that the insurgency metric is the sum of the number of cells (i.e., the area under 

the curve).  There are no limits or objectives for the quarterly numbers of cells, just for the total 

insurgency size.  In this scenario, the number of cells is quickly driven down to fewer than 20.  

Note that the insurgency limit of 2000 in Table 9 is equivalent to an average of 100 cells in each 

of the 20 quarters while the insurgency objective of 200 is equivalent to an average of 10 cells in 

each quarter.  As the end of the timeframe approaches, the area under the curve is small enough 

that the optimization gives up on maintaining the portfolio and divests all its assets which saves 

on costs.  The portfolio over time is still optimal in the sense that total insurgency size is held 

within desired levels while keeping a favorable balance with costs.  This behavior seems 

surprising at first, but it also makes sense in light of the way the multiobjective optimization was 

formulated.  It also recapitulates the historical observation that pulling out of a peacekeeping 

mission may allow undesirable elements to resurface. 

 

 

 
Figure 17. Number of insurgent cells aligned to the portfolio. 

 

5.4.3 Gradient Calculations and Interpretations 
 

    The single best solution above took 12 hours to compute and still contains decisions that are 

clearly suboptimal.  We know they are suboptimal because we can intuitively see that changing 

the system counts in certain ways will improve one or more of the metrics without hurting any 

others.  In particular, we know we would do well if we change the system counts in the general 

direction determined by the partial derivative of the phantom cost with respect to those system 

counts.  There are subtleties to be sure, but by using the gradient information judiciously, 

directed mutations can be designed to target poor decisions in the system counts. 
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    Of course, in order to generate gradient-directed mutations, we need to calculate the partial 

derivatives of all the metrics with respect to all of the system counts.  The calculations are too 

extensive to spell out in the main line of the text, but an example is given in Appendix B.  There 

we consider the contribution of the 20 original UAV counts (𝑈𝑡) to 21 metrics: the 20 quarterly 

budgets and the total cost.  The partial derivatives of those 21 metrics with respect to 𝑈𝑡 are 

calculated at the same time as the metrics. 

    To get an idea of what the resulting partial derivatives look like and how they work, an 

example is shown in Figure 18.  The top part of the figure shows 𝑈𝑡 over the 20 quarters.  The 

lower part of the figure is aligned with the top and shows the instantaneous change in the total 

cost of the portfolio per unit addition of UAVs in any given quarter (𝜕𝐶/𝜕𝑈𝑡).  Note how the 

change in portfolio cost depends on which quarter the UAV is added.  Perhaps surprisingly, the 

change in cost is not even always positive. 

 

 

 
Figure 18. Partial cost gradient w.r.t. # UAVs aligned to the # UAVs. 
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    The typical values of the individual partial derivatives can be explained as follows.  Refer 

back to the costs in the UAV and Sensor 0 columns of Table 5.  If the number of UAVs in any 

given quarter is a peak, higher than either surrounding quarter, the full cost of the UAV and its 

sensor are incurred: ($3000k +  $1000k + $3000k/8 +  $100k +  $5k + $100k/16 =
$4486.25k).  If the number of UAVs in any given quarter is a valley, lower than either 

surrounding quarter, then the purchase cost of the UAV is saved while the yearly costs are still 

incurred (−$3000k +  $1000k + $3000k/8 −  $100k +  $5k + $100k/16 = −$1713.75k).  

If the number of UAVs in any given quarter is a slope, rising or falling, there are no purchase 

savings and the extra yearly costs are incurred ($1000k +  $3000k/8 +  $5k +  $100k/16 =
$1386.25k).  Deviation from these typical values happen because, for example, the total number 

of UAVs (original plus upgraded) might be a peak yet the number of original UAVs is a slope 

meaning that the cost of the original sensor does not contribute to the total cost gradient in that 

quarter.  Another way it can happen is if the cost function is at the boundary between two pieces 

of the domain in which case an element of the subgradient is chosen (generally the average of the 

gradients of the two pieces). 

    The partial derivatives are the components of the total cost gradient, and they tell us in general 

what to do to cut cost.  Directed mutations should tend to move the UAV numbers by an amount 

proportional to the direction and magnitude of the force (which is opposite to the cost gradient).  

In Figure 18, the partial derivatives are more positive than negative, so cost can be reduced by 

generally reducing the number of UAVs.  This is an intuitive result which we knew already.  

Comparing the alternating gradient sizes in the bottom half of Figure 18 with the UAV numbers 

in the top suggests another way to cut the total cost: shave off the peaks and fill in the valleys 

of 𝑈𝑡.  This is much like in the hanging chain problem where alternating spring forces on the 

links tend to smooth out kinks in the chain.  Again, this is an intuitive result because it would 

clearly be costly to rapidly invest and divest in a given asset type. 

    Although there are 23 metrics in the military portfolio example, there are ultimately only two 

composite objectives to be optimized: costs fitness and performance fitness.  These group 

fitnesses have the form of a weighted sum of the fitnesses of the individual metrics, where 𝑓𝑖(… ) 

is the fitness function for metric 𝑀𝑖: 

𝑓(𝑀1, 𝑀2, … , 𝑀23) = ∑ 𝑤𝑖𝑓𝑖(𝑀𝑖)
𝑖

 

 

The gradient of the group fitness can then be computed using chain rule where the gradients are 

taken with respect to all system counts.  In the case of the military portfolio example, there are 

140 system count variables. 

 

∇𝑓 = ∑ 𝑤𝑖∇𝑓𝑖(𝑀𝑖)
𝑖

= ∑ 𝑤𝑖

𝑑𝑓𝑖

𝑑𝑀𝑖
∇𝑀𝑖

𝑖
 

 

This is why we need to calculate the gradients of the individual metrics. 

 

 

5.4.4 Gradient-Directed Mutations Implementation 
 

    To apply the gradient-directed mutations technique to the example military portfolio, the TMO 

model does not need to change at all: it’s just a matter of replacing the external evaluator.  As 
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before, the evaluator is called on each new member of the population to evaluate all the metrics.  

However, the evaluator is now also responsible for injecting new members into the population, 

much as the built-in mutation and crossover operators do in a basic GA.  If the new member of 

the population is itself not an injection, one or more copies are made, modified, and injected into 

the population (note: the newly injected members are immediately returned to the evaluator for 

metric evaluation). 

    Each copy can be thought of as containing arrays of all the system counts over the 20 quarter 

timeframe.  At the same time it is calculating the metrics, the evaluator calculates gradient arrays 

for the group fitness functions with respect to all the arrays of counts.  Several different mutation 

subroutines were created to use the resulting gradient information to modify the copies.  In 

essence, each subroutine takes in information much like that shown in Figure 18: an array of 

counts of any single system along with a corresponding array of partial derivatives.  The 

direction of improvement should be indicated by positive derivatives since the objective 

functions are usually fitnesses.  The subroutine then modifies the array of counts belonging to the 

copy. 

    The following mutation subroutines were developed.  System count variables are left 

unchanged unless otherwise specified.  Any counts that become negative as a result of mutation 

are truncated to zero: 

 

 BlockMutate.  This implements the “Block Cumulative” operator that was described in 

section 4.1.1 for the hanging chain problem. 

 RandomMutate.  This was mainly defined for testing purposes and ignores the 

gradients.  It simply increments each count by 1, 0, or -1 with equal probability. 

 FitnessAsProbabilityMutate.  Each positive gradient component is divided by the 

largest positive component, and the result is interpreted as a probability.  The analogous 

procedure is performed for negative components.  Each count is incremented or 

decremented in the corresponding direction with the corresponding probability. 

 StratifiedMutate.  This is most similar to the “LP Norm” operator for the hanging chain 

problem.  Here, the full range of the 20 fitness gradient components is divided into equal-

sized strata, and each count is incremented, decremented, or left unchanged according to 

what stratum its corresponding component falls into.  If the all components are positive, 

there are two strata, and the top stratum is incremented.  The natural opposite procedure 

is followed if all components are negative. If the components span both positive and 

negative values, there are three strata, and the top stratum is incremented while bottom 

stratum decremented. 

 

    Any combination of system type, fitness function, and directed mutation subroutine can be 

applied to mutate each copy.  Multiple combinations can be applied individually or in any 

sequence.  Clearly, many other such mutation subroutines could be defined and tested to fully 

exploit the information contained in the gradients. 

 

5.4.5 Gradient-Directed Mutations Genetic Algorithm Results and Discussion 
 

    Several attempts were made at using the mutation subroutines defined above to speed the GA 

evolution over the baseline, but the results achieved so far are incomplete.  Note that the UAV-

Vehicle-Soldier portfolio is a highly interdependent system of systems in the sense that at least a 
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few of all three type of systems must be present for the portfolio to perform effectively.  

Typically, progress towards a stable Pareto frontier seems to be faster at first relative to the basic 

GA implementation.  Then, the cost and budget objectives seem to dominate the initial evolution 

with the result that some of the system counts are driven to zero.  It then takes a long time to 

recover solutions which restore performance.  What can also happen is that two of the three types 

of systems may have counts of zero in any given period at which point, the gradients of 

performance are zero.  That means that the gradients cannot point the way to better portfolios.  If 

only one of the types of system counts is zero, the performance will be zero but the gradient can 

still be non-zero because of the way the subgradients are chosen. 

    Although our results to date have been mixed, we have reasons to believe that gradient-

directed mutation techniques will prove to be a potent way to speed up the evolution of holistic 

portfolio optimization problems using GAs.  Most importantly, we have barely begun to explore 

the space of gradient-directed mutation operators and how they are combined and sequenced.  

We had a number of false starts before we found a way to get gradient-directed mutations to 

work well on the hanging chain problem.  Moreover, due to the unexpected complexity of our 

military portfolio example, there may very well still be bugs in our implementation.  Given the 

novelty of the approach, there is still room for improvement in how we develop these models.  

Developing good examples that can be used as templates would be one way to improve our 

process. 

    Another reason has to do with the purity of the gradient-directed mutations that we are 

injecting.  Currently, the TMO implementation only performs directed mutation on top of the 

internal point mutation and crossover operators without the benefit of an intervening selection 

step.  More often than not, the offspring generated by uncoordinated random mutation and 

crossover are less fit than the parents.  This is especially true in the case of a portfolio problem 

where the space of bad decisions in the vicinity of a partially optimized design is so much larger 

than the space of good decisions.  In contrast, directed mutations are specifically designed and 

coordinated to increase fitness.  If they are applied after the usual mutation and crossover 

operations, they will frequently have to overcome a senseless disadvantage before they can begin 

to help.  To the extent that directed mutations are just another source of genetic variation, they 

should be applied in parallel to point mutation and crossover. 

    Yet a third reason has to do with how we formulated the portfolio metrics.  In particular, we 

frequently used functions such as min(… ) which have abrupt changes in behavior whereas in the 

real world, such changes may actually be smooth and gradual.  We also did not consider multiple 

missions or other ways that systems provide value.  For example, vehicles probably would 

contribute to a more comprehensive portfolio performance metric even if there were no UAVs.  

We could even relax the detailed causal analysis and instead formulate metrics in a more 

phenomenological way.  One such formulation that we considered but did not pursue is based on 

homogeneous functions that are sometimes used in economics.  This would be desirable if a 

metric were known to have a certain power law scaling with respect to overall portfolio size.  For 

example, if it were known that the performance would double if all the system counts were 

doubled.  Linear functions have this property, but so does a homogeneous function of the first 

degree: 

 

𝐹(𝑈, 𝑉, 𝑆) = 𝑎𝑈 + 𝑏𝑉 + 𝑐𝑆 + 𝑑𝑈𝛼𝑉1−𝛼 + 𝑒𝑉𝛽𝑆1−𝛽 + 𝑓𝑈𝛿𝑉𝛾𝑆1−𝛿−𝛾 + ⋯ 
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    The linear terms reflect the value of individual systems.  The non-linear terms capture value 

interactions between systems, and interactions are important to consider when evaluating 

systems of systems.  Homogenous functions of other degrees (𝑝) could be used if there were 

diminishing returns (𝑝 < 1) or synergies between systems (𝑝 > 1): 

 

𝐺(𝑈, 𝑉, 𝑆) = 𝑎𝑈𝑝 + 𝑏𝑉𝑝 + 𝑐𝑆𝑝 + 𝑑𝑈𝛼𝑉𝑝−𝛼 + 𝑒𝑉𝛽𝑆𝑝−𝛽 + 𝑓𝑈𝛿𝑉𝛾𝑆𝑝−𝛿−𝛾 + ⋯ 
 

    Finally, note that even richer homogeneous functions can be defined through composition of 

homogeneous functions.  Metric reformulations along any of the lines above could reduce the 

complexity of the gradient calculations.  More importantly, they would help eliminate “flat” 

regions of the metric functions where the gradients don’t provide any information about how to 

update the portfolio.  This would likely improve the behavior of the gradient-directed mutation 

technique. 
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6 CONCLUSIONS 
 

    GAs provide powerful approaches to solving optimization problems that contain combinatorial 

decision variables and nonlinear or multiple objectives.  Of course, there are still optimization 

problems which tax their abilities, holistic portfolio optimization being one.  We are therefore 

interested in creating new ways to extend GA performance and applicability in challenging areas.   

    By analogy with nature, conventional GAs only generate population diversity through random 

genetic variation in the form of mutation and crossover.  Better designs are then created via 

selection.  However, adding new population members based on new genetic variation operators 

will almost always speed the optimization on a per-generation basis and frequently on a CPU-

time basis.  Moreover, random variation is not “intelligent” in any way and does not take 

advantage of problem structure or performance clues to direct better designs. 

    The general direction of better performance is suggested by gradients of objective functions 

with respect to numerical decision variables provided the objective function can be expressed as 

an analytic function of those variables.  We developed the relatively simple “hanging chain” 

model as a research vehicle to explore this idea.  Finding the shape of a hanging chain is a 

standard problem in the calculus of variations, and this model allowed us to tap into our physical 

intuition about force and energy to help develop various algorithms for using the gradients to 

generate effective mutations.  By combining gradient information across multiple links, we were 

even able to coordinate variation in multiple count decision variables. 

    Some algorithms involved adding one or more parameters including a relaxation parameter.  

Tuning the relaxation parameter allows us to find effective steps sizes for moving the links in the 

chain.  However, an interesting thing about optimizing over integers is that they define a natural 

scale to the size of the mutations; namely, one unit.  Since the range of possible integer values in 

a portfolio problem is somewhat limited (typically a few hundred at most), we can use the 

minimum step and still reach the optimum in a reasonable number of generations. 

    By studying the hanging chain problem, we discovered a number of interesting things.  For 

example, we learned that different genetic variation operators can be much more effective 

together than individually.  In this sense, they are synergistic.  Furthermore, we observed that 

genetic variation operators are more or less effective during different epochs of the optimization.  

The “every man for himself” method does a good job of removing large kinks in the first few 

generations.  Then crossover helps combine parts of different chains that happen to be closer to 

the optimal shape.  Eventually, the standard mutation operators run out of steam, and the 

gradient-directed mutation operators can fine tune the solution. 

    Measuring the speedup of one GA over another is not entirely straightforward.  To begin with, 

time could be measured in a number of ways: the number of function evaluations, the number of 

generations, CPU time, or wall clock time.  Then, the speedup might be defined in terms of a 

ratio of times for a certain level of performance or a ratio of performance distance from optimal 

given a certain amount of time.  It’s not always possible to do the latter since the true optimum is 

not generally known.  Ultimately, we measured the wall clock time it took for the slower 

algorithm to reach a certain point and took the ratio with how long it took for the faster algorithm 

to achieve the same or better results.  In the case of multi-objective optimization, it’s not totally 

unambiguous when one Pareto frontier becomes better than another, so we had to define 

somewhat arbitrary rules (albeit conservative rules).  Finally, the progress of the baseline 

conventional GAs virtually stops beyond some point which makes the gradient-directed speedup 

appear to increase the more baseline generations are run.  Because of this, we can run the 
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baseline single-objective hanging chain problem for a week and claim a speedup of million or 

more.  In the case of the multiobjective hanging chain, we can claim speedups of at least a 

thousand. 

    In the case of multiobjective optimization, we found that gradient-directed mutations not only 

sped convergence, they also produced qualitatively better results.  In particular, the set of non-

dominated solutions that was obtained had a greater spread over the space of metrics.  This is 

important because it gives decision-makers the fuller picture of the possible trade space. 

    In order to develop our methods further, we developed a notional example of a contemporary 

military portfolio along with its defined mission.  The example adds complexity in the form of 

combinatorial decision variables, dependency constraints between those variables, and more 

types of platforms.  To simplify the interpretation of the trade space, it also demonstrates the 

combination of multiple metrics into fitness functions to be maximized in contrast to energy 

functions to be minimized.  The example tells a good story while illustrating a number of 

modeling and analysis techniques which should prove useful to others who want to develop 

holistic portfolio optimization models. 

    We discovered that defining holistic portfolio metrics for the example military portfolio was 

surprisingly difficult.  Conventional sequential portfolio optimization involves defining metrics 

for individual systems and then defining another set of metrics for the portfolio as a whole given 

the optimized designs of the individual systems.  In both cases, formulating metrics is a non-

trivial task.  However, in order to realize the benefits of holistic portfolio optimization, metrics 

must be defined which capture the system-of-systems interactions between the design of the 

individual systems and the counts of those systems over time.  This makes defining good metrics 

much harder still.  Doing it right requires careful consideration of the CONOPS of one or more 

missions. 

    One of the things that make GAs attractive is that they are relatively easy to implement.  Part 

of the price of speeding them up using gradient-directed mutations is that the implementation 

becomes much harder and the evaluation of each new design is slowed.  Once we had analytic 

formulas for our example military portfolio metrics, implementing them was not hard, but it did 

become rather complicated to interleave the calculation of their derivatives.  Some of the 

difficulty stemmed from the need to keep track of the multitude of cases and the subgradient 

calculations between cases.  However, the main complicating factor was the complex way the 

insurgency metric depended on the decision variables: the number of insurgent cells depends 

implicitly on the earlier numbers of cells, not just explicitly on the decision variables.  This 

necessitated an iterative application of the chain rule.  In the end, the gradient calculations 

increased the evaluation time by roughly a factor of ten.  Better tools are needed to make the 

calculation of derivatives simpler and more efficient.  We believe that automatic differentiation 

may offer a good approach. 

     We have demonstrated the utility of gradient-directed mutations for holistic portfolio 

optimization over time where both the system technologies and the counts of systems are 

decision variables.  While HPO is still proving difficult when combinatorial variables are 

included, we are still at an early stage in the research.  With further development, gradient-

directed mutations may even help in traditional combinatorial optimization problems.  

Ultimately, we believe that there is great promise in taking advantage of problem structure to 

give hints to GAs in the form of intelligently informed mutations.  Success in this effort would 

open up new approaches to operations research problems more generally. 
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APPENDIX A:  MAX BLOCK CUMULATIVE FORCE ALGORITHM 
 

    In the description of the Block Cumulative Directed Mutation in section 4.1.1, we claim to 

have an efficient method (scaling linearly with the number of links n) for finding the set of 

contiguous links (i.e., a block) having maximal force in the x and y directions. For the Block 

Cumulative method, this block of links is then moved in the direction indicated by the 

cumulative force on that block – providing a means to coordinate many link updates 

simultaneously. In this Appendix, we document the method by which we capture this block. 

    Suppose we have already calculated the net force on each link and now wish to find the block 

of links with the maximal cumulative (absolute value) force in the y direction (this method 

would proceed analogously for the block of links having maximal x-force). To do this, we form a 

new vector that tracks the cumulative y-force at each link from left to right across the chain. 

Here, the cumulative y-force on the i
th

 link is the sum of the y forces on and to the left of link i. 

Next, we find the two positions along the chain having the largest and smallest cumulative y-

force (call these links 𝑖𝑚𝑎𝑥 and 𝑖𝑚𝑖𝑛, respectively). If there is a tie in the extremes (minimum or 

maximum) cumulative force, any of the selected links could be chosen.  Finally, if 𝑖𝑚𝑖𝑛 < 𝑖𝑚𝑎𝑥 

then the set of links having maximum y-force is given by 𝐵𝑦 = {𝑖𝑚𝑖𝑛 + 1, 𝑖𝑚𝑖𝑛 + 2, … , 𝑖𝑚𝑎𝑥}. 

Otherwise if 𝑖𝑚𝑎𝑥 < 𝑖𝑚𝑖𝑛 then the set of links is 𝐵𝑦 = {𝑖𝑚𝑎𝑥 + 1, 𝑖𝑚𝑎𝑥 + 2, … , 𝑖𝑚𝑖𝑛}. In essence 

we chose the set of links starting one to the right of the leftmost extreme and continuing to the 

rightmost extreme. 

    Since the procedure consists only of calculating a cumulative force vector of size n and 

finding the minimum and maximum in this vector, the overall complexity of the procedure is 

𝑂(𝑛). To see this more clearly, consider Figure 19 below which plots and example y force on 

each link of a MECE chain with n=8. The left-to-right cumulative y force on each link is 

displayed underneath the system, and the minimum and maximum cumulative y forces are 

highlighted in red. Thus, the contiguous block with the largest cumulative force occurs from link 

2 to link 6.  

 

 

 

 
Figure 19. A MECE system with forces in the y coordinate. The cumulative force from left 

to right demonstrates how to find the block of links with maximal force. 
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APPENDIX B:  BUDGET, COST, AND GRADIENT CALCULATIONS 
 

    Since the portfolio metrics are defined piecewise, there are many cases to evaluate, and it’s 

frequently simpler to express the calculations in program code form rather than in formulae.  The 

external evaluator is written in VisualBasic.NET, and the figures below show the code for each 

quarter inside a loop indexed by quarter t.  Partial derivatives of any metric with respect to a 

system count (at constant values of the other 139 system counts) are represented by identifiers 

with an underscore (_) in the name.  The identifier prefix B means budget in the current quarter, C 

means the total cost over all quarters, and U means the count of original UAVs.  So the notations 

“B_U(0, t)” and “C_U(t)” respectively denote the partial derivatives of B and C with respect to 

U in the current (“0”) quarter, t.  It also happens that the system counts in the previous (“1”) 

quarter affect the budget in the current quarter.  So the notation “B_U(1, t)” denotes the 

derivative of B with respect to U in the previous quarter, t-1. 

    Figure 20 contains the code for calculating contributions to the budget from the counts of all 

UAV platforms along with the partial derivatives of the budget with respect to the count of 

original UAVs.  Since the platforms are the same for original and upgraded UAVs, any increase 

in the total number of UAVs means the budget in this quarter will increase in proportion to the 

UAV platform purchase price.  Decreases in the total count of UAVs reduce the quarterly costs, 

but since there are no proceeds from divestment, the purchase price is not recovered.  This 

implies a “kink” in the budget due to purchases, so we average the partial derivatives across the 

kink using a “subgradient factor” of one-half, corresponding to the midpoint of the subgradient at 

the kink.  The quarterly costs don’t have a kink, so they add a constant to the partial derivative. 

 
budget(t) += QuarterlyCost("UAV") * numOriginalUAVs(t) 

budget(t) += QuarterlyCost("UAV") * numUpgradedUAVs(t) 

Dim deltaTotalUAVs As Double = numOriginalUAVs(t) + numUpgradedUAVs(t) _ 

                         - numOriginalUAVs(t - 1) - numUpgradedUAVs(t - 1) 

If deltaTotalUAVs >= 0 Then 

    budget(t) += Price("UAV") * deltaTotalUAVs 

 

    Dim subGradientFactor As Double = If(deltaTotalUAVs = 0, 0.5, 1) 

    B_U(0, t) += subGradientFactor * Price("UAV") 

    B_U(1, t) -= subGradientFactor * Price("UAV") 

End If 

B_U(0, t) += QuarterlyCost("UAV") 

Figure 20. UAV platform contributions to the budgets and their gradients. 

 

    Figure 21 contains the code for calculating contributions to the budget from the original UAV 

sensors.  Note that the original UAV counts are used as the original sensor counts since they are 

the same.  As before, only increases in the counts increase the budget due to purchases while 

quarterly costs are incurred in any case.  The sensor price and quarterly cost contribute to the 

partial derivatives in direct analogy with the platform purchase and quarterly costs. 
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budget(t) += QuarterlyCost("Sensor 0") * numOriginalUAVs(t) 

Dim deltaOriginalUAVs As Double = numOriginalUAVs(t) - numOriginalUAVs(t - 1) 

If deltaOriginalUAVs >= 0 Then 

    budget(t) += Price("Sensor 0") * deltaOriginalUAVs 

 

    Dim subGradientFactor As Double = If(deltaOriginalUAVs = 0, 0.5, 1) 

    B_U(0, t) += subGradientFactor * Price("Sensor 0") 

    B_U(1, t) -= subGradientFactor * Price("Sensor 0") 

End If 

B_U(0, t) += QuarterlyCost("Sensor 0") 
Figure 21. Original sensor contributions to the budgets and their gradients. 

 

    After all the budgets and budget gradients are calculated, then the total cost and partial 

derivatives of total cost with respect to U in each period can be calculated as shown in Figure 22. 

Obviously, the partial derivative of cost with respect to U in the current quarter depends on the 

partial derivative of B in the current quarter with respect to U in the current quarter.  But less 

obviously, it also depends on the partial derivative of B in the next quarter with respect to U in the 

current quarter (unless it’s the last quarter in which case there isn’t a next quarter). 

 
cost += budget(t) 

 

C_U(t) = B_U(0, t) 

If t <> 20 Then 

    C_U(t) += B_U(1, t + 1) 

End If 
Figure 22. Example total cost and total cost gradient calculations. 
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