SANDIA REPORT

SAND2016-1376
Unlimited Release
Printed February 2016

Holistic Portfolio Optimization using
Directed Mutations

Stephen M. Henry, Mark Andrew Smith, John P. Eddy

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: http://www.ntis.gov/search

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
http://www.ntis.gov/search

SAND?2016-1376
Unlimited Release
Printed February 2016

Holistic Portfolio Optimization using Directed
Mutations

Stephen M. Henry, Mark Andrew Smith, John P. Eddy
System Readiness and Sustainment Technologies
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS1188

Abstract

Genetic algorithms provide attractive options for performing nonlinear multiobjective
combinatorial design optimization, and they have proven very useful for optimizing
individual systems. However, conventional genetic algorithms fall short when
performing holistic portfolio optimizations in which the decision variables also
include the integer counts of multiple system types over multiple time periods. When
objective functions are formulated as analytic functions, we can formally differentiate
with respect to system counts and use the resulting gradient information to generate
favorable mutations in the count variables. We apply several variations on this basic
idea to an idealized “hanging chain” example to obtain >>1000x speedups over
conventional genetic algorithms in both single- and multiobjective cases. We develop
a more complex example of a notional military portfolio that includes combinatorial
design variables and dependency constraints between the design choices. In this case,
our initial results are mixed, but many variations are still open to further research.

ACKNOWLEDGMENTS

We are indebted to the LDRD Program and especially the Defense Systems and Assessments
Investment Area for funding this research which has allowed us to pursue some of our
intellectual interests while developing capabilities that will help us in our future national security
engagements. Specifically, we would like to thank Jim Hudgens, Terry Stalker, and the rest of
the Precision Engagement Investment Area Team for listening to our ideas, asking challenging
questions, and alerting us to related happenings across Sandia. Thanks as well to their staff and
those in the LDRD office for keeping us on schedule. Special thanks to Alan Nanco, our
Program Manager and the Precision Decisions POC, for his guidance and support from before
our initial idea submission through to this day. Thanks to our manager, Bruce Thompson for
encouraging us to think of LDRD ideas, helping with transition efforts, and for being supportive
in so many other ways. Finally, we would like to thank Joyce Gearou, Alice Kar¢, and Zachary
De Gregorio in the Energy Technology & System Solutions business operations team. They
provided the cost estimates, spend plans, budget trackers, and landing paths which made a breeze
of the financial aspects of proposing, setting up, managing, and finishing this project.

CONTENTS

INEFOTUCTION ...ttt b e bt b st e e et bbbt e b e e 9

P |V, 0 (A7 4o] o ST PR TSRS 11
2.1 System Design OPtIMIZALIONcccveieiiieiieieeie e e e 12
2.2 POrtfolio OPUIMIZAIONoc.eiiiiiiieeeiee e 12
2.3 Holistic Portfolio OptimiZation...........ccceiieiieieiie e 13
Directed Mutation IMplemMENtatioN..........ccouiiieiiiii i 15

4 Hanging Chain ProbIEM..........coiiiiiieie et 19
4.1 Single Objective Minimum Elastic Catenary Energy Problemccccocoiinininnns 19
4.1.1 Directed Mutation OPEratorscccevverieiieereeiesiee e esie e e re e e eee e nes 23

412 Computational RESUILS........ccooiiiiiiiiiiirieeee e 24

4.2 Multi-Objective Minimum Elastic Catenary Energy Problemccccocovvvevviieinenne. 26
4.2.1 Multi-Objective Directed Mutation Operators.............ccooeveeieeierenenenesennnns 27

4.2.2 Computational RESUILS...........cciieiiiiicieee e 28

5 Military POrtfolio EXAMPIEc.oiiiiiiiiccee e 33
5.1 Model Description and Portfolio CONOPS..........ccccoveieiieiiec e 34
5.2 Portfolio DecCiSion VariabIes...........coiiiiiiieiieie e 34
5.2.1 Technology Options (Technology Development Program Choices).............. 35

5.2.2 Technology Variables (System COUNS)cccovereririniniiiieiee e 36

5.3 POMTOIIO MEITICS ...ttt ettt bbb nneas 36
5.3.1 COSS GIOUP ..cvviiiiieeiieieestee ettt 37

5.3.2 Performance GrOUPccoeiueiieiieieiie e esie e ste ettt et sre e sneennas 37

5.3.3 Fitness and Metric FOrmulationsccccoiveveiinniiene e 37

5.3.4 Cost and Budget FOrMUIAtioNc.cooveiiiiieiieiccicceee e 38

5.3.5 Performance Formulation and System of Systems PhysSicCS............c.cccccvenene. 39

5.3.6 MOEl PArameterscccoveieieieiiesie sttt 42

5.4 Implementation Details and RESUILScooiiiiiiiiii e 43
5.4.1 Basic Military Portfolio Implementation..............c.cccocveviiiiiecic s 43

5.4.2 Basic Genetic Algorithm ReSUILS..........ccovviiiiiiiieee 44

5.4.3 Gradient Calculations and Interpretationsccccovveveiiicieciecicce e 47

5.4.4 Gradient-Directed Mutations Implementation.............cccccoovevereienc s 49

5.4.5 Gradient-Directed Mutations Genetic Algorithm Results and Discussion..... 50

G 03 Tod 1115 o] 1 1SR 53
T RETEIBINCES ...ttt bbb bbb b bbbt b e nas 55
Appendix A: Max Block Cumulative Force Algorithmccccovvveiiiie e 57
Appendix B: Budget, Cost, and Gradient Calculationsccccovveiieiiie e 59
I3 €] 111 o] o USSR 61

FIGURES

Figure 1. Standard JEGA algorithm flOW.ccccoveiiiiii e 15
Figure 2. JEGA algorithm flow augmented with directed mutation.............ccccocvvreiiiiiniinnne. 16
Figure 3. A MECE system of 9 springs hanging under gravity and supported at each end. 20
Figure 4. Without coordination, single mutations often increase total potential energy. 21
Figure 5. JEGA convergence of an MECE system towards the optimal solution. 22
Figure 6. The MECE gradient at each link is the negative of the net force on that link............... 22

Figure 7. Computational results showing the improvement in MECE potential energy as a
function of the generation (log-log scale). The inset shows convergence towards the final optimal

VAIUB. .t b e bbb R et b bbb b b reanes 24
Figure 8. CPU time per generation for the Baseline and Directed Mutation methods. 26
Figure 9. The optimal MECE configurations for the 3 objective functionsccccccevvevvenens 29
Figure 10. The progress of the Baseline and Independent Direct Mutation operators at
generations 300, 450, and 3000 compared to the true Pareto frontier.cccoceveiieiviiecnenee. 29
Figure 11. The speedup per generation of the Independent method vs. the Baseline................... 31
Figure 12. The speedup per CPU time of the Independent method vs. the Baseline.................... 31
Figure 13. A random initial POrtfoli0.ccooveiiiiiiii e 44
Figure 14. Optimized trade space of non-dominated holistic portfolio designs.cccccevvenes 45
Figure 15. A partially optimized portfolio. ...t 45
Figure 16. Quarterly budgets aligned to the portfolio...........ccccvveiiiiiiiicic i 46
Figure 17. Number of insurgent cells aligned to the portfolio............ccoovviiiiniciiicic e 47
Figure 18. Partial cost gradient w.r.t. # UAVS aligned to the # UAVS.........ccccevviveiieiciieseeinns 48
Figure 19. A MECE system with forces in the y coordinate. The cumulative force from left to
right demonstrates how to find the block of links with maximal force.cccocvvviiiiiiiinenns 57
Figure 20. UAV platform contributions to the budgets and their gradients.ccccoceocvivnennnne 59
Figure 21. Original sensor contributions to the budgets and their gradients.c.ccccoevvennens 60
Figure 22. Example total cost and total cost gradient calculations.cccovvviiieneniiennnne 60
TABLES

Table 1. Multi-objective MECE Objective Parameterscccccveiveieiieieeie e e 28
Table 2. Global Model PArametersocueiveieiieeee et 34
Table 3. Platform Parameters.........coeiiiiiiiieieierese ettt e ens 35
Table 4. System Count DeciSion Variables ..o 36
Table 5. UAV and SOIdIier COSt DAta..........cueiiierierieieiiesiseeieee et 42
Table 6. Vehicle and Armor COSt DAta........cccveveieereerieiieiiee e see e nee e e neeenee e 42
Table 7. UAV Sensor and Soldier Technology Data.............ccccoovevieiiiieiicie e 42
Table 8. Vehicle and Armor Technology Data...........cccoviiiiiiiiiiieiesceseee s 43
TabIE 9. TIMO ParaGmBLEIS. ... ccviiiieiieeieeiie sttt sttt sttt st r e be e st e sreenbeenee e 43

CONOPS
CPAT
EA

GA

GD
HPO
JEGA
MECE
MILP
PO

SDO
UAV
WSTAT

NOMENCLATURE

Concept of Operations

Capability Portfolio Analysis Tool
Evolutionary Algorithm

Genetic Algorithm

Gradient Descent

Holistic Portfolio Optimization
John Eddy Genetic Algorithm
Minimum Elastic Catenary Energy
Mixed Integer Linear Programming
Portfolio Optimization

System Design Optimization
Unmanned Aerial Vehicle

Whole Systems Trade Analysis Tool

1 INTRODUCTION

In the field of optimization, evolutionary algorithms (EAs) and gradient descent (GD) techniques
represent two very important yet seemingly unassociated methodologies [1]. Speaking broadly,
evolutionary algorithms iteratively generate populations of solutions that change over time via
operations akin to genetic mutation (subtle changes in the solution properties) and crossover
(combining properties of parent solutions to create new children). These populations evolve over
time guided by a “survival of the fittest” criterion (often Pareto dominance) that propagates good
solutions to subsequent generations while dropping bad solutions. Gradient decent algorithms, on
the other hand, generally start with a single solution that is iteratively updated by “moving” some
distance in a direction suggested by the derivative of the objective function(s) — i.e., always
moving “downhill” from the current solution location in a minimization problem.

Not only are the mechanics of these two approaches quite distinct, but so too are the types of
problems to which they are typically applied. Evolutionary algorithms are generally favored
when seeking near globally optimal solutions to a problem with many competing objective
functions which may be non-differentiable. Gradient descent methods are customarily used to
find a locally optimal solution to a single objective function that must be differentiable. EAs can
be thought of as zeroth-ordered techniques in that they require no information about directions of
improvement from objective function gradients; they instead discover these directions by
modifying, combining, and propagating the genes of improving solution population members.
GD approaches are first-order techniques that explicitly require gradient information to obtain
directions of improvement. Because of this, EAs are typically able to escape from local minima
and eventually converge towards the overall globally optimal solution(s) whereas GD methods
are normally trapped in the nearest local minima. The tradeoff, however, is that EAS only “drift”
towards optimal solutions while GD algorithms can quickly “hone in” on the local optimal by
directly following gradients.

The goal of this research is to solve a very challenging and previously intractable type of
optimization problem which we refer to as Holistic Portfolio Optimization (HPO) — a type of
optimization that combines elements of optimal system design and optimal portfolio composition
together within a single problem. In order to solve these types of problems, we develop a new
framework that captures the desirable aspects of both EAs and GD methods simultaneously by
using first-order gradient information where possible as an additional means of updating an EA
solution population — an approach we refer to as Directed Mutation. It is important to note that
we do not replace the standard genetic operations of mutation and crossover; instead we employ
Directed Mutation in synergy with these operations in order to dramatically increase the speed of
EA convergence towards globally optimal solutions. To complicate matters, the HPO problems
we intend to solve usually involve large numbers of integer variables (specifically, the number of
systems in a portfolio at a certain time). Thus, the gradient information leveraged by Directed
Mutation must be able to not only provide directions of improvement, but also preserve
integrality of the decision variables that are mutated. While other works have studied similar
ideas around the combination of gradient information and evolutionary algorithms (often focused
on EAs with real-valued variables and a single objective function [2, 3, 4, 5, 6, 7]), this research
is unique in its application of these techniques to both 1) integer-valued decision variables and 2)
multiple competing objective functions.

The remainder of this report is laid out as follows. Section 2 provides a more thorough
description of holistic portfolio optimization problems and how they compare to more traditional

system design optimization and portfolio optimization. Section 3 covers the implementation of
Directed Mutation within a genetic algorithm framework known as JEGA. Section 4 introduces
an HPO problem surrogate called the Minimum Elastic Catenary Energy (MECE) problem — a
relatively simple optimization problem with intuitive optimal solutions and gradient
interpretations that provides a testbed for Directed Mutation approaches. This section discusses
various methods by which objective function gradients can be incorporated and aggregated into
both single and multi-objective MECE solvers and demonstrates impressive speedups over a
standard GA. Section 5 introduces a notional HPO problem that involves optimal city-scale
counterinsurgency operations using a portfolio of unmanned aerial vehicles (UAVs), ground
vehicles, and soldiers. Attempts at applying the techniques that worked so well on the MECE
have so far been inconclusive when applied to this HPO: some speedups are observed early in
the evolution, but it remains an open question as to why these speedups are lost as the evolution
progresses. Finally, Section 6 summarizes our work and provides suggestions for continued
investigation.

10

2 MOTIVATION

The Directed Mutation methodology described in this report was developed to enable Holistic
Portfolio Optimization — the ability to optimize not only the composition of a portfolio through
time, but also the design of individual items within the portfolio in order to achieve more
desirable overall behavior. This type of problem is extremely challenging and is typically not
tractable at scale with current optimization methods. A large scale portfolio may contain
hundreds of possible “systems” (we use this term generically to mean any item within a portfolio
which itself may have many possible configurations, such as a truck, a project, or even a person).
Each system within the portfolio may contain dozens of component parts each with dozens of
possible realizations (for instance, a truck configuration may choose from among several
possible engines, drivetrains, chassis, etc.). The task of optimizing the integer numbers of
systems in the portfolio across many time periods (typically 10 to 30) and simultaneously
optimizing the design choices of the systems induces an astronomically huge search space — one
that cannot be addressed by current methods.

Because of this intractability, it is standard practice to separate the optimization of individual
systems from the optimization of the overall portfolio composition. This separation limits the
portfolio optimization to fixed system configurations; it is blind to the full trade space of design
possibilities — some of which might be preferable. This separation also implies that the system
design optimization is blind to broader portfolio considerations such as ideal price or timing of
system availability relative to other systems. Because these separate problems are in reality
highly interdependent, preselecting a fixed system design (even a Pareto optimal design that
balances competing design objectives) for incorporation into the portfolio optimization can
create highly suboptimal solutions from a holistic, unseparated perspective.

A real-world example of the deleterious effects of disjoint system design and portfolio
optimization can be seen in the development and ultimate cancellation of the U.S. Army’s
Ground Combat Vehicle (GCV) program — a large-scale acquisition program designed to replace
the Bradley Infantry Fight Vehicle. During initial GCV development, two separate tools were
designed by Sandia National Labs to address the system design optimization and portfolio
optimization challenges faced by the Army’s ground combat fleet — the Whole System Trades
Analysis Tool (WSTAT) and the Capability Performance Analysis Tool (CPAT), respectively.
Though GCV designs were heavily informed by WSTAT and the fleet modernization plan was
continually informed by CPAT, the ultimate GCV design did not conform to the overall budget
and performance needs of the entire fleet — especially after the introduction of severe
sequestration budget cuts. This separation of system design and portfolio optimizations led to
case studies where the CPAT fleet optimization determined it was optimal to avoid fielding
GCV, even though the GCV configurations was a Pareto optimal solution from the WSTAT
trade space. This was not a problem of incompatible tools, but rather a symptom of the disjoint
system design and portfolio optimizations. In essence, the GCV design was a good tradeoff from
the standpoint of the individual system, but it was a poor tradeoff from the standpoint of the
entire fleet. Thus, in February 2014 the GCV program was terminated — having already spent
over $1 billion.

Examples such as this motivate our use of Directed Mutations as an enabling framework for
HPO. To lay a foundation for subsequent discussion, the remainder of this section presents a
more formal description of system design optimization, portfolio optimization, and holistic
portfolio optimization — comparing and contrasting the elements of each and motivating the

11

rationale for Directed Mutations as a promising approach for speeding up evolutionary
algorithms when applied to HPO.

2.1 System Design Optimization

The goal of system design optimization (SDO) is to discover configurations for a single system
that optimally balance many competing design objectives (such as performance, cost, risk,
design margin, etc.). Rather than producing a single “best” solution, SDO presents decision
makers with many different solutions that each balance the competing objectives in unique ways
(a set of system designs that is referred to as the Pareto optimal trade space). SDO is predicated
on the ability to decompose a system into component subsystems where each subsystem has
multiple potential design choices (or parts) that could be used. SDO explores this combination of
subsystem choices (creating specific system configurations) in order to find the best designs in
multiple competing objectives [12]. A general formulation for SDO is as follows:

SDO: max fl(x)~, X)), , fu(x)
s.t. x €Q
x; € {design,,, ... ,design;, }.

Here, the vector of design decisions x represents the decomposition of the system into
subsystems, and each discrete variable x; determines the design selected for subsystem i. The
objective functions f; (x) through £,(x) can be general, nonlinear measures evaluated based on
the selection of subsystem designs (here and throughout this paper we use the ® notation to
indicated a nonlinear function or system of constraints). The constraints x € Q represent a wide
variety of nonlinear restrictions including subsystem design necessitations or obviations (i.e.,
“Engine 1 is not allowed to be selected with “Drivetrain 3”).

Due to the nonlinear, multi-objective nature of SDO, these problems are often solved via
evolutionary algorithms. When the number of objective functions is small (generally on the order
of 5 or 6) and there are relatively few constraints (less than a few dozen), classical EA
approaches such as genetic algorithms achieve good results.

2.2 Portfolio Optimization

In contrast to SDO, the goal of portfolio optimization (PO) is to find the single best
“modernization plan” that schedules which systems should be included in the portfolio, how
many should be included, and when they should be incorporated [13]. In contrast to SDO which
employs design variables to represent systems, PO uses fixed system designs and schedules the
inclusion or exclusion of these fixed designs through time to find the single best solution that
optimizes the portfolio design goal (such as maximize performance or minimize risk). Often
when SDO and PO are performed independently, the portfolio optimization occurs subsequent to
the system design optimization — incorporating as inputs the fixed properties of the system
configuration(s) chosen by decision makers from each SDO trade space. The portfolio schedules
are typically subject to numerous business rules that constrain the allowable behavior of the plan
(such as budgets, production limits, etc.). A general PO problem can be formulated as follows:

12

PO: max F(y)
s.t. yEQ
Vie €Ly Vj€{1, .., Shte{l,..,T}

Here, the integer decision variable y; . indicates how many systems of type j should be in the
portfolio at time t. Because 1) there may be many systems, 2) the integer number of systems may
be quite large, and 3) the number of business rules may also be very large, the typical solution
methodology for PO is based on Mixed Integer Linear Programming (MILP), which employs a
tree-based search strategy to intelligently enumerate and explore candidate solutions to produce a
global optimal solution (or a near optimal solution with gap information). MILP techniques are
very mature optimization approaches and can solve extremely large-scale problems with tens-of-
thousands of integer variables and hundreds-of-thousands of constraints. The restriction,
however, is that only a single linear objective function, F(y), can be specified and all
constraints, y € Q, must be linear (we use the ® notation throughout this paper to indicate a
linear function or set of constraints).

2.3 Holistic Portfolio Optimization

As previously mentioned, the goal of holistic portfolio optimization is to combine the SDO and
PO problems into a unified optimization — simultaneously answering 1) what the design of
individual systems should look like, 2) which of these systems should be integrated into the
portfolio, 3) how many should be included, 4) when they should be incorporated, and 5) how the
system designs should evolve over time. In addition, HPO must address multiple competing
portfolio-level goals simultaneously — finding a Pareto optimal trade space of portfolio plans that
balance these objectives (such as portfolio performance, portfolio cost, portfolio risk, etc.). Note
that in contrast to the trade space of a single system produced by SDO, the HPO trade space is a
population of comprehensive portfolio plans — each plan incorporating multiple systems (each
with multiple subsystems) and balancing the portfolio-level objectives in a unique way. A
general formulation for HPO is shown below, combining elements from the SDO and PO
formulations:

HPO: max F,(z), F,(2),...,Fy(2)
s.t. z=(x,y)
x€Q
yeQ
zED
Xij¢ € {design;y, ... ,design;n.} Vi€ {1, .., S}te{l,..,T}
Vit €Ly Vj€{1,..,S}te{l,..,T)

Here the decision variables x and y serve similar roles as they do in SDO and PO,
respectively, where x; ; . gives the design selection of subsystem i for system j at time ¢ and y; .
gives the integer number of systems j in the portfolio at time t. The nonlinear system design
constraints x € Q and the linear portfolio business rules y € Q are also incorporated from SDO
and PO, along with a new set of general nonlinear restrictions z € ® which co-constrain system
design and system count decisions (e.g., the number of systems of type j might be limited by

13

tight production constraints if Engine 1 is chosen for subsystem i). Finally, note that the
potentially nonlinear objectives F,(z) through Fy(z) are functions of both system counts and
system design decisions.

This HPO problem is extremely challenging as it combines aspects of multiple simultaneous
SDOs and one PO — each of which are suited to very different solution approaches. The large
integer variables y; . and the considerable number of linear business rules y € Q are well suited
for MILP approaches. However, the multiple nonlinear objective functions, the nonlinear design
restrictions x € §, and design/count co-restrictions z € ® preclude MILP techniques. On the
other hand, while HPO’s nonlinear and multi-objective nature suggests an EA approach, standard
EAs will have great difficulty solving over 1) the large integer variables y;, and 2) the large
numbers of overall constraints. A great deal of literature is dedicated to the study of highly
constrained evolutionary optimization [8, 9, 10, 11], however little attention is given to the
difficulties of large integer decision variables — especially over multiple objective functions.
Hence, it is this first difficulty (evolution over large integer decision variables) that we focus on
in this research via the use of Directed Mutation — guiding evolution over the large integer
decision variables to greatly speed population convergence towards Pareto optimal trade spaces.

14

3 DIRECTED MUTATION IMPLEMENTATION

To test the idea that gradient-guided mutations improve evolutionary convergence for HPO
problems, we use the John Eddy Genetic Algorithm (JEGA) [14] as our EA framework. JEGA
provides several advantages in that 1) the source code is readily available, 2) the algorithm is
computationally efficient and had been matured over many years, and 3) it has already been
implemented within Sandia optimization tools for system design and portfolio optimization
(Whole System Trades Analysis Tool [WSTAT] [12] and Technology Management
Optimization [TMO] [15, 16], respectively).

Crossover))
offspring solutions
> Mutation
\
Current . dominated solutions Domination
Population "n Check

| niched solutions

Niching

Yes

Figure 1. Standard JEGA algorithm flow.

To illustrate our implementation of Directed Mutations, we first give a brief overview of the
baseline JEGA algorithm using Figure 1 as a guide and in the context of SDO optimization.
Starting with the current population of solutions (typically the initial population is randomly
generated), population members are passed to both the Crossover and Mutation operators.
Crossover combines properties of randomly selected “parent” solutions together to make new
“child” solutions. For example, suppose that the current population has Parent 1 = (Engine 1,
Drivetrain 1, Chassis 1, Brake 1) and Parent 2 = (Engine 2, Drivetrain 2, Chassis 2, Brake 2).
The Crossover operator might create Child = (Engine 2, Drivetrain 2, Chassis 1, Brake 1) by
combining the first part of Parent 2’s “gene” with the second part of Parent 1°s gene. The number
of child solutions, the number of breakpoints (where parent genes are joined together) and even
the number of parents are all JEGA parameters that can be set for the Crossover operator.

Whereas Crossover recombines the already existing genes of current population members, the
Mutation operator modifies the genes of population members, thus creating new genetic material
by altering a randomly selected design variable. For example, when the solution (Engine 1,
Drivetrain 1, Chassis 1, Brake 1) enters the Mutation operator, it might be changed to (Engine 3,
Drivetrain 1, Chassis 1, Brake 1). The number of mutated solutions and the manner of mutation
can be set by parameters for the Mutation operator.

Next, the offspring solutions from Crossover and Mutation, along with the original solutions
from the current population, are sent to a Domination Check operator. When comparing two

15

solutions, we say that one solution is “dominated” by the other if it is as bad as or worse than the
other solution in all objective functions. The Domination Check operator uses this Pareto
dominance condition and serves as a survival-of-the-fittest mechanism to cull some or all of the
dominated solutions (some dominated solutions may be retained in order to preserve a minimum
number of solutions or to avoid overly-rapid shrinkage of the population).

The surviving solutions are then sent to the Niching operator, whose task is to further cull the
solutions and provide a sparse, evenly-spaced representation of the current population. This is a
necessary procedure due to the usually enormous size of the true discrete Pareto population; even
for a modest SDO problem this full population would not fit within computer memory and so
needs to be represented in a sparse yet representative manner.

Finally, the Convergence operator compares the population output from Niching with
populations from a number of previous generations — tracking changes in the breadth, progress,
and density of the populations and terminating the algorithm if solution populations are no longer
changing or improving (or if other limits such as run time or number of generations is met).
Otherwise, the niched population becomes the new Current Population and the cycle repeats until
termination criteria are achieved.

Figure 2 demonstrates how we incorporate the new Directed Mutation operator within the
traditional JEGA algorithm loop. As previously mentioned, our desire is not to replace traditional
genetic operations: Directed Mutation should work in synergy with Crossover and Mutation.
With this goal in mind, we implement Directed Mutation as a supplement to the other two
genetic operators. Directed Mutation operates on the offspring solutions emerging from
Crossover and Mutation. In theory, this arrangement allows improvements found by Mutation
and Crossover to be immediately improved upon using gradient information — speeding up
algorithm convergence. Note that both the original offspring solutions (unaltered by Directed
Mutation) and the gradient mutated solutions (as well as the current population) are all sent to
the Domination Check operator. This ensures that all solutions (current generations, mutated
solutions, crossover children, and gradient mutated solutions) all compete on equal footing for
propagation to subsequent generations.

Crossover .
Directed

Mutation

Mutation

|

Current w dominated solutions Domination

Population Check
niched solutions

Niching
Yes

Figure 2. JEGA algorithm flow augmented with directed mutation.

16

As with the other operators, Directed Mutation is implemented as a modular procedure within
the flow of the overall genetic algorithm — allowing many potential gradient-guided schemes to
be quickly built, tested, and refined. The computational experiments that follow in the next
sections investigate a broad variety of gradient-guided techniques. All tests, however, fall within
the general framework outlined in Figure 2: only the specific methodology within the Directed
Mutation operator varies.

17

18

4 HANGING CHAIN PROBLEM

Before designing, formulating, and testing the value of Directed Mutations on HPO problems,
we first examine the effect of gradient guidance on a simpler optimization. This surrogate for
HPO problems is informally referred to as the “hanging chain” problem, which in the context of
physics and geometry, is the equilibrium orientation that a chain acquires when suspended at
both ends and drooping under the force of gravity. This equilibrium shape (also known as a
catenary) brings into balance the forces of gravity and tension at each point along the chain and
assumes an appearance similar to a parabola, though it is actually modeled by a hyperbolic
cosine. In the context of optimization, the hanging chain problem can be thought of as the
orientation in space that minimizes the total potential energy of the system (gravitational
potential energy).

This hanging chain problem serves as an excellent HPO surrogate for several reasons. First,
the optimal solution is intuitive. We commonly encounter real-world catenaries in such examples
as electrical power lines, simple suspension bridges, and rope barriers. Second, the optimal
orientation of a hanging chain can be solved directly (and very efficiently) via the hyperbolic
cosine. Thus, the convergence of an evolutionary algorithm towards the true optimal can be
precisely and accurately quantified — allowing excellent computational comparison of various
Directed Mutation schemes. Third, if the hanging chain problem is formulated in “segments”
(i.e., the chain is discretized into separate pieces wherein the optimization must find the optimal
spatial coordinates for the links between each piece), then genetic algorithms can have great
difficulty converging to the optimal solution. This difficulty is due not only to the size of the
search space (which can be very large if each link’s spatial coordinates can realize a broad range
of values), but also due to the degree of colocation required in the independent decision variables
of adjoining segments (more on this in the following subsection).

Finally, if the spatial coordinates of each segment are restricted to take on integer values, then
the hanging chain mirrors HPO even more closely in that the adjoining spatial positions of each
segment mimics the adjoining temporal counts of the number of systems in the portfolio. That is,
just as the optimal hanging chain has a “smooth” shape through space, the number of systems in
an optimal portfolio plan often has a “smooth” shape through time (systems are not arbitrarily
purchased, divested, and purchased again — incurring unnecessary costs).

4.1 Single Objective Minimum Elastic Catenary Energy Problem

As a formal example of a hanging chain problem, we introduce the Minimum Elastic Catenary
Energy (MECE) problem, which consists of n links connected end-to-end by springs and
hanging from both ends under gravity. The goal of MECE is to minimize a single objective
function — the potential energy of the system — by optimally locating the integer x and y-
coordinates, (x;,y;), of the links connecting springs i and i + 1. The MECE problem can be
formulated as follows:

19

MECE: min f(x,y)
5 n-1 n
s.t. f(x,y)=z, pit) Vi
=1 =1

i
2

pi = (\/(xi+1 —x)% + Yip1 —¥)* — R)

0< X <L

0<y;<H

Xi, Vi € Z,

where the nonlinear objective function f(x,y) gives the total potential energy of the hanging
chain, which is a sum of the spring compression or stretching potential energy plus the
gravitational potential energy (i.e., the height, y;, of each link). The decision variables x; and y;
give the Cartesian coordinates of the it" link, and these positions are restricted to lie on the
integer grid. The constants L, H, and R give the distance between the two supporting posts, the
height of these posts, and the rest length of each spring in the system, respectively. The spring
compression/stretching potential energy, p;, is calculated via Hooke’s law (i.e. proportional to
the square of the spring deformation distance from rest length) where the spring constant is 2 for
simplicity. Lastly, the fixed positions (xg,y,) = (0, H) and (x,, y,,) = (L, H) define where the
spring system attaches to the left and right post, respectively. Figure 3 shows a near-optimal
MECE system with 9 springs and 8 link locations.

L

Figure 3. A MECE system of 9 springs hanging under gravity and supported at each end.

As previously mentioned, genetic algorithms can have difficulty converging to an optimal
MECE solution due to 1) problem size and 2) variable coordination. To see the first difficulty,
consider Figure 3 where L = 200 and H = 300. Under this modestly granular discretization;
each of the eight x-variables can take on 201 possible values while each of the eight y-variables
can take on 301 values, yielding a search space of 2018 x 3018 ~ 1.8 x 1038, The general
search space size of (LH)™ can be astronomical even with modest L, H, and n.

The second difficulty, variable coordination, is perhaps more subtle yet more pernicious —
arising from both the nature of Mutation and Crossover as well as the implicit structure of
MECE. To gain intuition into this difficulty, consider Figure 4 which presents a suboptimal
MECE solution both before and after a single mutation operation on the y-coordinate of the third
link. Note that even though the mutation brings the third link closer to its globally optimum

20

location, the post-mutation system actually has more potential energy than the original due to
increased stretching of the springs attached to the mutated link. What might be more helpful is a
coordinated update of links 2 through 6 that moves all five links up simultaneously towards their
optimal location, but the probability is exceedingly remote that five independent mutations
would all act 1) on the same solution, 2) on the proper links, and 3) in the proper direction.
Crossover, on the other hand, is able to update many links simultaneously by joining part of one
solution with part of another, but recall that Crossover does not create new genetic material.
Rather, Crossover recombines existing genetic material in new ways. Thus, the expectation that it
would be able to generate coordinated improvements to solutions presupposes that the
coordinated genes already exist in the solution population.

‘(xi,yi) prior to mutation

Figure 4. Without coordination, single mutations often increase total potential energy.

These same difficulties are also present to an even higher degree in HPO problems. Tracking
the composition of the portfolio through time requires integer decision variables for each system
type at each time period — yielding a combinatorially explosive search space. In addition,
mutations to an HPO schedule increase or decrease the system count of an individual system in a
single time period, thus causing the same types of problem as outlined in Figure 4. Transitioning
from a current portfolio plan to a new, improved plan typically involves simultaneous,
coordinated changes across many temporally adjacent time periods. It is for these reasons that
we employ MECE as a simpler yet still challenging surrogate for HPO. Figure 5 demonstrates
these computational challenges in an MECE system with n = 30 by plotting the best solutions
from generations 100, 1000, 100,000, and 1,000,000. Notice that there is significant
improvement during the first 1000 generations, but convergence towards the optimal (dotted
line) configuration is greatly stifled beyond generation 10,000 (almost no progress is made
between 100,000 and 1,000,000). In order to realize improvements beyond the generation
1,000,000 solution, a great number of coordinated changes must occur (for example, the entire
left side of the chain system must slide further to the left), and under mutation these changes are
astronomically improbable.

21

Generation 100 Generation 1,000
300 » 300
250 7>\ ‘g’ 250 ,:\s
200 \ / \

o
7
150 7’% 150 \Ah‘*\.i#

100 100

50 50
Energy =17,021.3 Energy = 6,859.6

T T 1 T T T 1
0 50 100 150 200 0 50 100 150 200

Generation 100,000 Generation 1,000,000

300 # | 300 ¢
250 +— \ / — 250
200 200

l i
150 %ﬁ 150

100 100

50 50
Energy =6,416.4 Energy = 6,390.3

T T T | 0 T T T 1

0 50 100 150 200 0 50 100 150 200

Figure 5. JEGA convergence of an MECE system towards the optimal solution.

0

These difficulties are what motivate our desire for gradient coordination of EA mutations, and
it is another advantage of the MECE problem that gradient information at each link is readily
computable and has an intuitive interpretation — namely, the gradient is the negative of the net
force vector exerted on that link. Conveniently, the principle of locality provides that the force
on each link is only dependent on gravity (a constant in the negative y-direction) and the two
springs connected to that link as depicted in Figure 6 — no other parts of the system need to be
considered. (This locality property may or may not be present in a full HPO problem and
depends on the nature of the underlying value model.) The force exerted by the two springs is
calculated via Hooke’s law, which applies a force along the coil axis proportional to the
deformation of the spring from rest length (pushing if the spring is compressed and pulling if the

. = - - - af of
spring is stretched). In other words, Fyet, = Fopring; + Fspring;,, + Foraviey = — (a_xl-'a_yi)'
FNeti
Foprittal :
SPTiaL F, Springit+q
F Gravity

Figure 6. The MECE gradient at each link is the negative of the net force on that link.

This simple force derivation at each link provides a powerful means by which to update the
hanging spring system (i.e. Directed Mutations). In the next subsection, we outline several
methods in which these gradients are used to guide mutations within the genetic algorithm.
Broadly speaking, overall potential energy of the MECE system can be reduced by moving each

22

link in the direction of its net force. How to best utilize these gradients (or an aggregation
thereof) is investigated next.

4.1.1 Directed Mutation Operators

For this investigation, we performed computational experiments on four distinct approaches, a
“null” baseline method, and a ‘“combination” approach for employing MECE gradient
information within the genetic algorithm. Each experiment used the general algorithm flow
outlined in Figure 2; only the nature of the Directed Mutation operator was varied. These
methods used different degrees of gradient aggregation (using the net force from more than one
link), and the difference between these approaches can be most simply summarized by
comparing how the " updated link location (x;,y;)* is derived from the original location
(x;,y;) and the net force ﬁNeti. Recall that an additional complicating factor is that the updated
link position must be integer to satisfy the MECE integrality constraint.

e The Baseline method does not update the link locations, i.e., (x;, ¥;,)* = (x;,¥;). This
method is used so that our computational timing results can fairly compare the
potential speedup of gradient methods over the standard GA approach with no gradient
information incorporated.

e The Everyman method updates each coordinate in a local manner (i.e. “every man for
himself”) where (x;,y;)* = (x;,¥;) + round|a - Fyer,] and a defines a user-chosen
scaling factor. This method lets every link follow its own local gradient as closely as
possible while adhering to the MECE integrality constraints. Here and throughout the
rest of this paper, the round][-] function operates so that each element of the input
vector is rounded up or down independently.

e The LP Norm method is similar to the Everyman approach, but greater care is taken in
creating a more universally applicable scaling factor. Here, (x;,y;)* = (x;,y;) +

round|f - Fyet,| such that B = ——— where a is again a user-selected scaling

e,
factor and [|-||,, is the standard p-norm of the force vector where p is also chosen by the
user. This idea behind this approach is that by employing the p-norm, we can find a
scaling rule that works well across many problems whether the force vector is large or
small.

e The Boxcar method uses a sliding summation of the net forces to the left and right of
the i*" link. Here (x;,)" = (x;,¥;) + round|a - G;] where G; = $i£2_, ﬁNet]_, aisa
user-selected scaling factor, and b is a user-selected “boxcar radius” that determines
how far to the left and right to consider net forces for updating the it* link. For
example, if b = 0, then the method reverts to the Everyman approach. If b = 1, then
each link is updated considering the net force on that link, as well as the force on the
link to its right and left. In this manner, the net force on a section of the chain is
employed in updating the link locations.

e The Block Cumulative method locates the contiguous sections (blocks) of the hanging
chain with the largest cumulative force in the x and (independently) in the y direction
and moves those entire sections in the desired direction. Let B, and B, be the blocks
having the greatest absolute value cumulative x and y force, respectively. Appendix A
outlines how B, and B,, can be efficiently computed by tracking the cumulative forces

23

across the chain (a simple method that scales linearly with the number of links n).
Once we have B, and B,, then the maximized cumulative forces in x and y is CF, =

—ZiEBx% and CF, = —Yes, :—;_, respectively (i.e. the sum of the x and y forces in

the B, and B, blocks). Finally, the position of the i*" link is updated as (x;,y,)* =
(x;,yi) + m - (dx;, dy;) where m is a user-entered integer move distance,

0 if i ¢ B, 0 if i € By
dx;={ 1 ifi€B,ANCE,>0,anddy;=4 1 ifi€B,ACE >0,
-1 ifi€B,ANCE <0 -1 ifi€eB,ACF, <0

Finally, the Block+Everyman method simultaneously combines the two approaches of
Block Cumulative and Everyman — in theory, coupling the possible advantages of local
and aggregate gradient rules. Specifically, the link update procedure produces two new
solutions — one given by (x;, v)! = (x;,y;) + m - (dx;, dy;) where m, dx;, and dy;
are defined as in the Block Cumulative method and the other given by (x;,y;)? =
(xi,y;) + round [a . ﬁNeti] where «a is a scaling factor as in the Everyman method.

4.1.2 Computational Results

In this subsection, we examine the computational performances of the various Directed
Mutation methods against the Baseline GA with no gradient information. All methods were
applied to a MECE problem with n = 30 links, a spring rest length of R = 10, a post height of
H = 300, and a post separation of L = 200. Hence the MECE must optimally locate all 30 links
in a 201 by 301 grid — resulting in a search space of size 2.8 x 10*3. Figure 7 demonstrates how
the various gradient methods converge towards the optimal potential energy of 6257.53.

600000

Best Energy
o
2
8

6750 \ —e—Baseline
/

~3—Everyman (a=.2)

LP Norm (a=.5, p=1)
p 4 LP Norm (a=.5, p=4)
—a—Boxcar (a=.15, b=0)
—&—Boxcar (a=.15, b=2)

—+—Block Cumulative (m=1)

Best Energy
@
g

Block Cumulative (m=3)

== Block+Everyman (a=.2, m=1)

y - r . A K A A
1 10 100 1000 10000 100000
Generations

6000 Eesiii

10 100 1000 10000 100000

Generations

Figure 7. Computational results showing the improvement in MECE potential energy as a
function of the generation (log-log scale). The inset shows convergence towards the final

optimal value.

24

Since each of the gradient methods uses at least one user-defined parameter, we performed
computation tests of a wide range of values. Figure 7 displays the one or two best realizations of
those parameters for each method. Note that a few methods were able to make substantial
improvement in the first generation, but the overall quality of each approach is demonstrated by
the efficiency of convergence below the 6500 energy level (as shown by the Figure 7 inset).
Observe that most methods perform about as well as the Baseline approach during the early
generations. This is likely due to the fact that early generation solutions still have a high degree
of randomness (see the “Generation 100” panel of Figure 5) that results in incoherent, looped,
and kinked chain solutions. These solutions have springs that are highly stretched beyond their
rest length — inducing large link forces that are unlikely to point in the direction of ultimate
global optimality. Beyond generation 1000, however, every gradient approach vastly
outperforms the baseline method. We attribute this delayed improvement to the eventual
emergence of more coherent chain solutions (see the “Generation 1000 panel of Figure 5)
whose gradients are able to more reliably guide link locations towards global optimality.
Interestingly, the unaggregated methods — Everyman and LP Norm — and the slightly aggregated
Boxcar method all perform roughly equivalently, while the highly aggregated Block Cumulative
method converges much more quickly. By far the most successful method is the
Block+Everyman approach which converges to the true optimal solution just after generation
100 — nearly an order of magnitude fewer generations than the next fastest approach.

While Figure 7 displays the convergence by generation, this does not tell the entire story. It is
possible that Directed Mutation approaches spend more time per generation due to the increased
computation needed to acquire and use the gradient information, and this slowdown per
generation results in slower overall convergence when measured in CPU time. Figure 8 displays
the CPU time required to reach a certain generation and indeed shows that the Baseline is faster
per generation than all the Directed Mutation methods. For example, when running to a fixed
100,000 generations, the Baseline takes about 58 seconds while the Directed Mutations
approaches range from 123 to 196 seconds — two to three times longer. It is not surprising that
the longest time to 100,000 generations is the most complicated Block+Everyman approach.
(Unfortunately, these CPU timing results were not performed on the same CPU: all Direct
Mutation methods were run on a Xeon X550 @ 2.67GHz — which is no longer available for
experiments — while the Baseline was run on an even more powerful Xeon E5-1650 @ 3.2GHz.
Thus, we are conservative in showing the difference between the CPU timing of Baseline versus
Directed Mutation in that the Baseline is faster on a per generation basis due to improved
hardware.)

Nevertheless, the results in Figure 8 are very encouraging in that the CPU Time slowdown per
generation is not large enough to overcome the increased efficiency in energy improvement per
generation. For instance, the Baseline takes 57.7 seconds to run 100,000 generations to reach an
energy level of 6,358.9. The Block+Everyman approach reaches a lower energy of 6,326.3 in
only 80 generations and 0.16 seconds — giving a speedup of 1250x in generations and 360x in
CPU time. Thus, it is worth spending extra CPU time per generation to get greater improvements
in energy level. The next subsection devotes more careful attention to the measurement of
speedup in 1, 2, and 3-objective problems.

25

250

200

—e—Baseline

=>é=Everyman (a=.2)

-
o
o
|
|

LP Norm (a=.5, p=1)
LP Norm (a=.5, p=4)

—d—Boxcar (a=.15, b=0)

=
[}
o

CPU Time (s)

—a—Boxcar (a=.15, b=2)
—+—Block Cumulative (m=1)

Block Cumulative (m=3)

50
Block+Everyman (a=.2, m=1)

1 10 100 1000 10000 100000
Generations

Figure 8. CPU time per generation for the Baseline and Directed Mutation methods.

In summary, for the single objective MECE problem, Directed Mutation methods provide
substantial enhancement to the Genetic Algorithm. All tested methods found a lower energy
level than the baseline in less CPU time and fewer generations, and the combination of both
large block updates and individual link updates in the Block+Everyman method was the most
efficient of these approaches. The only caveat, however, is that Directed Mutation gradients
don’t seem to provide measurable benefit during the early generations when solutions are
inherently more random. But beyond these early generations, every gradient method we devised
was a substantial improvement over the baseline.

4.2 Multi-Objective Minimum Elastic Catenary Energy Problem

The multi-objective version of the MECE problem is very similar in physical structure to the
single objective problem. The system is again comprised of a chain of linked springs hanging
from both ends. Now however, the orientation of the links (i.e. their locations in x and y) must
simultaneously minimize two or more energy functions. There are many possible ways to form
these different energy functions, and we differentiate our objective functions by using individual
spring rest lengths and gravitational fields. Formally, the multi-objective MECE with m
objectives is given by:

Multi — Objective MECE: min f;(x,y), ..., fn(x,¥)
n n—-1
s.t. fi(x,y) = Z Pii +Z.) gj(xi,y:)
= i=

l
2
pji = (\/(xi+1 —x)% + Vig1 —Yi)? — Rj)
0<x <L
0<y;<H
Xi, Yi € Z,

where the nonlinear objective functions f;(x,y) give the total potential energy of the hanging
chain under an objective-specific spring rest length R; and gravitational potential energy function

26

gj. As in the single objective MECE, the decision variables x; and y; give the integer Cartesian

coordinates of the i*" link, and the constants L and H give the distance between the two
supporting posts and the height of these posts, respectively.

While less physically intuitive than the single objective case, the multi-objective MECE is
very important for investigating Directed Mutation methods under many competing objectives.
In the previous subsection, we were able to demonstrate that Directed Mutations provide
significant improvement over the baseline GA when applied to the single objective MECE.
However, it is not guaranteed that these improvements will carry over into the multi-objective
version. For example, the computational burden of Directed Mutations over many objectives is
increased as one must now compute the gradient with respect to each objective. Also, and
perhaps more importantly, each objective’s gradient will generally result in a direction of
improvement that conflicts with the directions suggested by other objectives. Thus, devising a
link update procedure that adequately makes use of these conflicting gradient directions is a key
concern.

Another difficulty arising in the multi-objective MECE is the complication in defining and
measuring improvement in computational performance. In the single objective case, we could
trivially compare goodness of solutions by observing which one had the lowest energy level.
Thus, we could compare Directed Mutation approaches by seeing which one produced the lowest
potential energy in the fewest generations or the shortest CPU time. In the multi-objective
MECE, we still wish to compare Directed Mutation methods on a per-generation or per-CPU-
time basis, but here each solution has several associated energy levels. Furthermore, unlike the
single objective case where each generation has a single best energy score, here each generation
consists of a set of solutions that best balance all the different objective energies in different
ways and are all relatively non-dominated with respect to each other.

To devise a fair method that compares the relative goodness of sets of non-dominated
solutions, consider two sets of MECE link solutions S* = {(x,y)1, (x,¥)3, ..., (x,»)%,} and
S% = {(x,)3, (x,)3, ..., (x,¥)%,} and m objective functions f; through f£,.. In general, a point
s' € S* dominates a point s? € S? if fi(s') < fi(s*) Vi=1..m and at least one inequality
holds strictly (i.e. the solution s has at least as low or lower energy score in every objective
function). Let D equal the number of solutions in S* that are dominated by a solution from S?
and D? equal the number of solutions from S? that are dominated by a solution in S. Using
these relative domination counts, we say that S* is better than S2 if and only if D! < D?2. For our
computational experiments, suppose two Directed Mutations methods run for 1000 generations
and produce sets S and S2, where D! < D?. Then we would say that the first method
outperformed the second over those 1000 generations.

4.2.1 Multi-Objective Directed Mutation Operators

For the multi-objective MECE, we investigated two distinct approaches for integrating
multiple conflicting objective function gradients — comparing these to a Baseline method that
does not use gradients. Each experiment uses the general algorithm flow in Figure 2 and
implements the Block+Everyman approach (since that was the most successful single objective
Directed Mutation approach); we only vary the manner in which the multiple objective gradients
are employed and/or combined.

e The Baseline Directed Mutation operator does not update link locations. Since net
force information is not used for any of the objective functions, this approach does not

27

calculate gradients — providing a fair computational comparison for the next two
approaches (it would be unfair to calculate gradients but not use them).

e The Independent Directed Mutation operator takes each solution, choses one
objective function uniformly at random, calculates the gradient of only the selected
objective, and finally applies the Block+Everyman approach to update the link
locations of that solution. The rationale for this method is that the computational
savings of calculating only 1 of the m gradients overcomes the fact that each solution
improves in only 1 objective at a time. As the optimization runs, an equal number of
solutions will improve independently in each of the objective gradient directions — in
theory providing a balanced improvement in all objective functions.

e The Convex Combination approach is the conceptual opposite of the Independent
method. Here, all objective gradient vectors are calculated for each solution. The
gradients are then aggregated together with a random, normalized, nonnegative set of
multipliers (e.g., 0.5, 0.2, 0.3 in the case of 3 objectives), which produces a convex
combination of the objective gradients. This convex combination of the gradients is
then used to update the links using the Block+Everyman approach. The potential
advantage of this method is that the convex combination of gradients might enable
simultaneous improvement in multiple objectives (if the gradient directions are not in
conflict), but the drawbacks are that every gradient must be computed for every
solution and conflicting gradients might cancel out and leave no suggested direction.

4.2.2 Computational Results

In this subsection, we examine the computational performances of the multi-objective
Directed Mutation methods against the Baseline GA with no gradient information. All methods
were applied to a multi-objective MECE problem with n = 30 links, a post height of H = 300,
and a post separation of L = 200, and up to 3 competing objective functions — each differing by
choice of spring rest length and gravitational potential energy functions. Table 1 gives a
summary of the 3 objective function parameters. The first objective has the longest springs and
uses the standard gravitational potential energy (i.e. the gravity vector pulls downward with
constant force). The second objective uses the shortest springs and has a gravitational force that
pulls both down and to the right. Finally, the third objective has intermediate spring rest lengths
and has a gravitational force that pulls downward but with decreasing force from left to right
(each successive link has 10% less gravity than the preceding link).

Table 1. Multi-objective MECE Objective Parameters

Objective Spring Rest | Gravitational Potential Energy | Minimum
Function Length Function Energy
fitky) | Ri=20 91 (x,y) = yi 3786.99
£(x,y) R, =5 | g,(x;v;) = —0.5x; + 0.866y; | 5214.16
(%) Ry =12 g3 (x, y) = 2(0.9))y; 3700.50

Figure 9 displays the x and y coordinate link locations of the optimal hanging chain solution
for each of the 3 objective functions. The optimal solution to the first objective is symmetric
about the x-axis and hangs down to the “ground” due to the longer spring rest length (also

28

satisfying the y; > 0 constraint). The optimal solution to the second objective hangs the highest
(due to the shortest rest length) and is skewed to the right due to the gravitational force pulling
both down and to the right. The optimal solution to the third objective is skewed to the left due to
the decreasing gravitational force from left to right.

o Optimal MECE solutions

300 Yoo,

250 “."'--.....

200 IR P SRR ALY

150

100

50

04

0 50 100 150 200
e f (x,y) Optimal s s o0 f5(x,y) Optimal fa(x,y) Optimal

Figure 9. The optimal MECE configurations for the 3 objective functions

The goal of the multi-objective MECE is to find hanging chain configurations that
simultaneously balance all three objectives. Clearly, no single solution can minimize all
objective functions at once, and thus the optimization produces a set of non-dominated solutions
that each provides a unique balance of the objectives. Figure 10 displays progress snapshots (at
generations 300, 450, and 3000) of the GA towards the true Pareto frontier both for the Baseline
(black) and the Independent Directed Mutation method (red) for the 3-objective MECE.
Solutions are plotted in objective function space (i.e., every dot is a hanging chain solution
plotted according to its energy level in the 3 objective functions).

Progress at Generation 300, 450, and 3000

300

+o-True Pareto

"|® Baseline

e Independent

SR 450y

e b
8000 —4 : .

i ia $-3000
— 3 i .]
B ; 18
g R ;
s~ i . 10*
4000 — e

L

Chain 2 Energy

Chain 1 Energy

Figure 10. The progress of the Baseline and Independent Direct Mutation operators at
generations 300, 450, and 3000 compared to the true Pareto frontier.

29

Notice that the snapshots in Figure 10 indicate a substantial speedup of the Independent
method over the Baseline. At each of the generations 300, 450, and 3000, the red set of solutions
(Independent approach) appears much closer to the true Pareto set than the corresponding black
set (Baseline). In fact, the Independent method at generation 3000 has almost completely
characterized the true Pareto set, whereas the black Baseline set is still well-removed from the
Pareto and does not encompass its full extent in potential energy space. For the remainder of this
subsection, we focus on more precisely measuring this speedup for MECE problems with 1, 2,
and 3 objectives.

Computational experiments indicate that the Independent and Convex Combination methods
perform almost identically on a per-generation basis. In other words, given that both approaches
run for a set number of generations, the resulting sets of non-dominated solutions are nearly
equivalent. This implies that movement in only one objective gradient at a time (i.e. the
Independent approach) averages out over the generations to be equivalent to simultaneous
movement in all directions (i.e. the Convex Combination method). Thus, since the Independent
method is computationally cheaper per solution (only 1 gradient calculation), we employ this
approach for a careful comparison of speedup over the Baseline method.

To measure this speedup, we adopt the following procedure for MECE with 1, 2, and 3
objectives. First we run the GA using the Baseline method to a set number of generations (10,
100, 1K, 10K, 100K, and 1M) — measuring the CPU time required and preserving the resulting
non-dominated set of solutions (call this set S1). Next, we run the GA with the Independent
Direct Mutation method until the resulting non-dominated set (call this set S?) surpasses the
Baseline set (i.e. D? < D! as described in the previous subsection). We save the number of
generations and CPU time for S? to surpass S and use this information to calculate speedup
ratios. For example, if the Baseline runs for 1000 generations in 20 seconds, and the Independent
method surpasses this in 100 generations taking 5 seconds, then we would measure a speedup of
10x in generations (1000 generations / 100 generations) and 4x in CPU time (20 second / 5
seconds).

Figure 11 shows the speedup ratios per generation for 1, 2, and 3-objective MECE problems.
The log-log plot shows a remarkably consistent speedup across the three problems, meaning that
gradient improvement retains its utility into higher dimensional problems. The potential issue of
conflicting gradient information does not seem to be apparent; gradient information is very
valuable in both single objective and multi-objective MECE. More impressive is the magnitude
of the speedup ratios. For example, when comparing the speedup over the Baseline method run
to 1 million generations, the Independent Directed Mutation method shows a speedup of roughly
10,000x — meaning that the gradient method surpassed the quality of the Baseline’s 1 millionth
generation in only 100 generations.

The same impressive speedups are also observed in Figure 12 when comparing CPU time.
Here, the 1, 2, and 3-objective speedups are slightly less consistent, as the multi-objective cases
take about 10,000 Baseline generations before they start realizing speedups. But by the millionth
Baseline generation, the CPU speedups of the Independent Directed Mutation are between 2000x
and 12,000x.

30

Speedup (Generations)

100,000
10,000

1,000

—=—1D

=820

[
(=1
(=3

D

Speedup using Gradients (x)

10

10 100 1,000 10,000 100,000 1,000,000
#Generations for Baseline

Figure 11. The speedup per generation of the Independent method vs. the Baseline

Speedup (Wall Clock Time)

100,000
10,000 /

1,000

—=—1D

Speedup using Gradients (x)
]
=]

m
[=]

\

W m

o O

10 100 1,000 10,000 100,000 1,000,000
#Generations for Baseline

Figure 12. The speedup per CPU time of the Independent method vs. the Baseline

These impressive speedups in both generations and CPU time should likely be attributed to a
combination of compounding factors. First, these speedups do indicate the great utility of
gradient information for augmenting MECE solution information within the GA. Second, these
speedups also exhibit the overall failure of the Baseline method to approach true optimality for
the MECE problem. As described at the beginning of this section, the Baseline method must
depend on fortuitous but highly unlikely combinations of mutations to coordinate multiple link
updates in a desired manner. Since these lucky mutations almost never happen, the evolution of
the Baseline GA tends to stall out. Because the Directed Mutations do not experience this stalling
out, we observe the more and more impressive speedups as we run the Baseline to more and
more generations.

31

32

5 MILITARY PORTFOLIO EXAMPLE

The hanging chain examples in the previous sections demonstrated the utility of using
objective function gradient information to direct mutations in GAs when the decision variables
include integer counts arrayed over time. Moreover, the latter examples showed that the benefits
extend to cases where there is more than one objective function. In order to further develop the
applicability of our methods to more practical situations, we sought to apply them in the case of a
more complex example. In addition to being somewhat larger, the example contains system
technology choices in the form of more general combinatorial variables along with dependency
constraints between the technology choices.

A good example portfolio optimization problem will have more variables than the hanging
chain example but not so many that it is no longer a good research vehicle. Likewise, it will be
nonlinear, nonconvex, and have multiple objectives. Moreover, it will contain some non-trivial
interactions between decision variables, objectives, and systems. Therefore, the following are
the key features we sought to capture in our example:

Technology options (i.e., “which type” decisions)
Technology variables (i.e., “how many” decisions)
Nonlinear objective functions

Multiple, conflicting objectives

Dependency constraints

System-of-systems interactions

In order to convey to others the importance of this line of research, we also wanted an example
that would be interesting, contemporary, relevant, and illustrative. It turns out that the military
acquisition domain is ideal for developing such an example, especially when a portfolio must be
considered. To begin with, military acquisition programs are large and complex. They must
consider research, development, testing, and evaluation (RDT&E) costs in addition to purchase
and operation and sustainment (O&S) costs. A holistic military force contains multiple
interacting platforms. Its performance metrics must be evaluated in the context of one or more
potential missions and must therefore be analyzed in the context of the corresponding concept of
operations (CONOPS). In a sufficiently rich example, many other modeling challenges will
arise. This provides opportunities to develop other modeling techniques along the way. It will
also illustrate some of the thinking processes that go into creating a portfolio optimization model.

The example that we settled on is that of a fictitious military portfolio containing unmanned
aerial vehicles (UAVs), vehicles, and soldiers. It builds on the idea of systems as platforms upon
which new technologies are developed and deployed over time. The technologies involved are
intended to be generic but reminiscent of technologies that could exist or be developed. We are,
of course, abstracting away many other operational and logistical details which would be
important in a real mission. Furthermore, the example may be unrealistic in certain ways, but
that should not detract from the overall applicability of our research results. Exact details,
realism, and technology specifics are not terribly important at this level of modeling, and we
avoid many of the difficulties that adding them would entail.

33

5.1 Model Description and Portfolio CONOPS

The overall mission of the UAV-Vehicle-Soldier portfolio is to contain a growing insurgency
in a city-sized region. The situation is modeled as follows. The region contains discrete cells of
insurgents and that the number of cells is growing over time due to spread and spontaneous self-
organization. Each insurgent cell is localized to within a single “sector” and the region consists
of 1000 sectors. The portfolio mission lasts five years, and due to its dynamic nature, decisions
on portfolio size and composition are made on a quarterly basis instead of yearly. Thus, the
number of insurgent cells (I;) and the system count decision variables are indexed by an integer t
representing the quarter number in the range 1-20. Each quarter, the overall change in the
number of insurgent cells depends on a fast daily dynamics which will be described next. The
detailed mathematical model is developed in section 5.3.

The basic CONOPS of the portfolio is as follows. The UAVs fly daily reconnaissance
missions over the region in order to gather intelligence regarding suspected locations of
insurgent cells. Later that same day, squads of soldiers are dispatched to as many of the
suspected locations as possible given the number of soldiers and the required number of soldiers
in a squad. Each squad can head out on foot but will go in a vehicle if enough are available. The
average time it takes to reach each location depends on a typical distance to all 1000 sectors.
Upon arrival at their destination, each squad will determine if there is really a cell present, and if
so, mitigate the threat by capturing or killing the cell members. Cells are assumed to move every
day, so the probability of successfully mitigating a cell is modeled as a combination of the
probability that the squad will arrive intact and the probability that the cell has not yet completed
its daily mission and moved on. The third factor depends on how quickly the squads arrive
relative to the average time it takes for cells to perform their daily mission.

The assumed parameters for the model as described above are summarized in Table 2.

Table 2. Global Model Parameters

Parameter Notation | Value Units

Initial Insurgents Iy 50 cells

Insurgent Spread Rate a 1/365 | cells per cell per day (day™)
Spontaneous Insurgents spon 0.1 cells/day
Maximum Insurgents [max 2,000 cells

Number of Sectors Nyec 1,000 -

Number of Quarters tmax 20 -

Days per Quarter Ny 90 -

Insurgent Mission Time T; 3 hours

Typical Insurgent Distance D 8 miles

Parameters for the platforms in the portfolio will be given in the next section.

5.2 Portfolio Decision Variables
Initially, the portfolio consists of a certain number of basic UAVSs, vehicles, and soldiers.

However, in order to meet the mission objectives, it is generally necessary to change the
portfolio composition over time by changing the system technologies and/or varying the numbers

34

of each type of system. As mentioned previously, the systems in the portfolio are considered to
be platforms upon which different technologies will be deployed over time. New platforms can
be developed, acquired, and deployed alongside or in place of the original systems in the
portfolio. Similarly, new technologies can be developed and acquired to augment or replace
whatever technologies are already on each platform. For example, each original UAV has a
basic sensor which could be replaced by new sensor without changing the underlying UAV
platform. Changing the portfolio over time is a design optimization problem, and here we
describe the decision variables. The decision variables are of two rather different types:
technology options and technology variables. Treating both types of decision variables
simultaneously is what we mean by holistic portfolio optimization.

5.2.1 Technology Options (Technology Development Program Choices)

We envision that there are three acquisition programs under consideration: (1) a UAV sensor
upgrade program, (2) a future vehicle program, and (3) a vehicle armor program. For each
contemplated technology, there is a decision variable for which of the 20 quarters the
corresponding systems could first be acquired (if at all). We will call that quarter the program
start date although the required corresponding program development, tooling, and first
production is assumed to occur in the years leading up to that time.

For the sensor and armor program start dates, there are simultaneous one-time-only design
decisions on which type to develop: sensor A, B, or C, and armor X, Y, or Z. It is assumed that
there are no further design choices to be made for the future vehicle. However, we assume any
newly developed armor will only work on the new vehicle, so we add dependency constraints
that none of the armor programs can start before the future vehicle program.

Finally, at any time, it is possible to acquire “advanced” soldiers who have better equipment
and are more highly trained than “basic” soldiers. However, this can be done without needing to
introduce a corresponding program development decision variable since it is assumed that the
corresponding equipment and training courses have already been developed.

The key parameters that describe these technologies are given in Table 3.

Table 3. Platform Parameters

Parameter Notation Units
Required sensor scan time per pass Tp seconds
Required number of sensor passes Np —
Detections per hour per original UAV (depends on original UAV sensor type) u = 3600/(TpNp) hour™
Detections per hour per upgraded UAV (depends on upgraded UAV sensor type) | u' = 3600/(TaN3) hour™
Number of basic soldiers to make a squad Ng -
Number of advanced soldiers to make a squad N¢ —
Average speed of an initial vehicle vy MPH
Average speed of a future vehicle vy MPH
Speed reduction due to armor (depends on armor type) v, MPH
Average speed of an armored future vehicle (depends on armor type) v =y — U, MPH
Average speed of a basic soldier Vg MPH
Average speed of an advanced soldier Vg MPH
Probability of arrival of unarmored vehicle (V or V') Do —
Probability of arrival of armored vehicle V'’ (depends on armor type) py -

35

5.2.2 Technology Variables (System Counts)

Given the set of technology choices outlined above, there are up to seven distinct types of
systems that could be present in the portfolio in any given quarter: (1) original UAVSs, (2)
upgraded UAVs, (3) initial vehicles, (4) future vehicles, (5) armored future vehicles, (6) basic
soldiers, and (7) advanced soldiers. The corresponding count decision variables along with their
assumed range of allowed integer values are given in Table 4.

Table 4. System Count Decision Variables

Description Notation | Integer Range | Initial Count
count of original UAVs U 0-50 10
count of upgraded UAVs U’ 0-50 0
count of initial Vehicles % 0-300 20
count of future Vehicles V' 0-300 0
count of armored future Vehicles V" 0-300 0
count of basic Soldiers S 0 - 1500 200
count of advanced Soldiers S’ 0-1000 0
any subset of the above count variables X; - -

Each of these decision variables is implicitly indexed by t, but for clarity, we leave out the
subscript. Note that the count variables for systems containing new technology should be zero
before the technology program start date (and some could even be zero on or after the start date).

It should be apparent from the preceding discussion that there are many ways to represent a set
of coordinated acquisition decisions for a portfolio. Our example was designed in part to
illustrate a number of these techniques.

Finally, it’s worth noting that the multiplicity of technology variables over time coupled with
the large number of choices for each variable is the chief reason for the huge search spaces found
in holistic portfolio optimization problems. Search spaces of such size severely tax a basic GA.
From the data in tables above, we can compute the size of the technology variable search space:
(51x51x301x301x301x1501x1001)%° = 3.57x10%*. Including the technology options (while
ignoring the dependency constraints), the overall size of the search space rises to 2.79x103%.

5.3 Portfolio Metrics

A “value model” specifies the calculations for metrics by which we value the design of
something. The calculations could be specified, for example, by formulas or iterative
algorithms. In general, it’s possible to define arbitrarily many numerical metrics as objectives in
a multiobjective optimization problem. The result of the optimization is a set of Pareto optimal
designs which show the optimal tradeoffs among all the metrics. It’s also possible to group
metrics together in various ways to simplify the trade space. For our military portfolio example,
we wanted to keep it relatively simple for trade space visualization proposes while still
demonstrating a general capability. Thus we chose to group all our metrics according to costs
and performance. The costs group contains all the metrics related to cost while the performance
group contains all the rest.

36

5.3.1 Costs Group

The costs group contains the cost in each of the 20 quarters as well as the total cost over the
entire program. To simplify the accounting, inflation and discount factors are assumed to cancel
out. Quarterly costs will be called “budgets” to reflect the fact that they usually have hard limits.
The total cost over the entire timeframe is simply the sum of the 20 quarterly budgets. It would
be a redundant metric except for the fact that it is treated separately by the GA’s fitness assessor
as described below.

The costs group also contains a “phantom cost” metric which is included as a technicality to
improve the convergence of the GA. Before a given program start date, the corresponding
system counts are “phantoms” that may not be zero although they are always interpreted as zero
in the metric calculations. This means that there are many equivalent solutions, and the search
space is much larger than it really needs to be. The phantom cost metric is simply the additional
cost that would be incurred if the phantom systems were real (without changing the RDT&E
costs since they only apply to the real systems). Its intended effect is to force any phantom
system counts to zero and thereby reduce the size of the search space and speed convergence.

5.3.2 Performance Group

Recall that the overall mission of the portfolio is to contain an insurgency, so we would like to
define a single “insurgency” metric which captures the performance of the portfolio over the
entire timeframe. First, we need a model of what is bad about an insurgency. To that end, each
day, each cell is considered to bring a fixed amount of harm to the region. So the insurgency
metric should take into account the number of insurgent cells as well as the amount of time they
are present. When they are present is not considered important. With these considerations, a
reasonable quantity for the insurgency is simply the sum of the number of cells over the 20
quarters. Additional metrics could be developed to represent goals of other missions of the
portfolio.

In addition to the insurgency metric, we include the technology dependency constraints in the
performance group. Solutions which violate these constraints have lower fitness, so the GA will
favor solutions that satisfy the most dependency constraints.

5.3.3 Fitness and Metric Formulations

Candidate designs in a GA evolve depending on fitness functions rather than directly on the
metrics themselves. Each metric group is scored by a fitness which is a weighted sum of the
fitness associated with each component metric. The weights are proportional to the length of the
time with which they are associated; specifically, either one quarter or 20 quarters. The
individual fitness functions for each metric are parameterized by a “limit” value and an
“objective” value.! The limit is chosen to represent a value of the metric which is considered to
be “poor.” The objective is chosen to represent a value of the metric which is considered to be
“good.” Dependency constraints are either satisfied or not so do not require any parameter
adjustments.

! Strictly speaking, there are more than two parameters for each fitness function, but the other parameters are left
with their default values.

37

In order to use gradient-directed mutations, we demand that every metric be formulated
piecewise in terms of closed-form formulas. This may not be possible since metrics are
sometimes defined and calculated in terms of highly iterative numerical routines of some sort
(Monte Carlo integration, agent-based simulations, or numerical integration of differential
equations). However, even in some of these cases it may be possible to calculate gradients as
part of the simulation (for example, by using automatic differentiation).

Fortunately, if we base our metric formulations as much as possible on economics and
physics, we can frequently develop closed-form, analytic approximations for the metrics. In that
case, it is possible to formally differentiate all the metrics with respect to all the system counts.
Since the fitnesses are smooth functions of the metrics, we can then in turn find the gradient of
the fitness of each group by using the chain rule. Where the derivatives are discontinuous, we
can pick an arbitrary element of the subgradient (such as a sequential average of the gradients
from each piece).

5.3.4 Cost and Budget Formulation

The total cost over the entire timeframe is simply the sum of the 20 quarterly budgets. The
budget in each quarter is modeled in turn as the sum of three types of cost contributions: (1)
initial system purchases, (2) quarterly costs of systems in inventory, and (3) RDT&E costs.
Initial system costs include the platform and any corresponding mounted technologies. The
quarterly costs include O&S costs as well as system replacement costs based on the initial cost
amortized over the average lifetime of the system. RDT&E costs are only incurred if the
program is started sometime during the 20 quarters, and if so, they are modeled as the same total
being evenly spread over the quarters up to and including the program start date. Hence, the
quarterly RDT&E costs can be reduced by extending the development time.

If assets are upgraded in a given quarter, only the newly mounted technologies contribute to
the budget since the underlying platform has already been paid for. If the portfolio is divested of
systems or technologies, their purchase costs are simply lost. In other words, we assume neither
proceeds from sale nor disposal costs. This means it probably does not make financial sense to
reduce the number of systems in one quarter and buy them soon thereafter: it is probably cheaper
to pay the intervening quarterly costs.

Since the marginal cost of buying one more system is zero or some non-zero constant
depending on whether the asset counts are falling or rising, it means that the budgets must be
expressed as piecewise multilinear functions of the number of assets. However, both the budgets
and total costs can still be formally differentiated with respect to system counts on each
multilinear piece. At the boundaries where the pieces come together, we use an average of the
derivatives from each piece.

The fitness of the costs group is the sum of the fitnesses of the 20 budgets and the fitness of
the total cost. The budget limits are modeled as being hard, but the fitness of each one is
weighted approximately 1/20™ as much as the fitness of the total cost (only approximately
because on an actual calendar, the quarters may vary in length by a day or two). The cost limit is
soft and is set to only 80% of the sum of the budget limits. This makes the GA tend to prefer
portfolio designs in which not all budgets are pegged at their absolute limits.

38

5.3.5 Performance Formulation and System of Systems Physics

While the budget and cost calculations are straightforward to model based on economics
(especially since we are not doing any discounting), the same is not true for performance metrics.
To the extent possible, we would like performance metrics to be based on an analysis of the
“physics” of the portfolio: that is, they should reflect quantitative cause and effect relationships.
It helps to make sure such relationships are naturally formulated in a way that is dimensionally
consistent between factors and terms. Ideally, dimensional consistency can be attained using
parameters that can, at least in principle, be measured rather than parameters that must be tuned.
If we are successful, we will obtain performance metrics that are formulated piecewise in terms
of closed-form formulas. Each piece will almost always be an analytic formula expressed in
terms of the portfolio decision variables, and it will then be possible to use gradient-directed
mutations.

Building on the CONOPS described above, we will now formulate the insurgency metric
based on an analysis following the guidelines above. We are given the initial number of
insurgent cells, I,, and we need to derive an expression for the number of cells in each
subsequent quarter as a function of the portfolio composition over time. We think of I, as being
the number of cells at the end of quarter ¢. It will depend on the number of cells at the beginning
of the quarter (i.e., from the end of the previous quarter) along with the daily dynamics implied
by the composition of the portfolio during the quarter: I, = I, (I;_1, X;).

We start by assuming that when the squads are dispatched to mitigate cells, the probability of
a successful engagement has a decaying exponential dependence on the time taken for the UAVs
to detect the cells plus the time to travel to the cells.

D o o e o Tp +Tr
P(l,_1,X,) = P(I_, U, U",V,V', V", S,5") = exp (—)

2T,

The arguments to the function reflect the fact that both the detection time and travel time depend
in detail on the composition of the portfolio. The total time to detect all cells only depends on
the number and type of UAVs along with the number of sectors. It is simply the number of
sectors divided by the total rate of cell detection by all UAVSs:

Ty (X)) = Ty (U, U") = —8
D(t)— D(’)—m

In contrast, the travel time does not depend on the UAVSs. It depends on the number of
insurgent cells as well as the number of wvehicles, and soldiers:
Tr(Ii—1, X)) =Tr(I,—1,V,V',V",5,5"). We break it down in the following paragraphs.

The total distance traveled by all squads is the number of squads times the given average
distance traveled by each squad: Q X d. It can be approximated by the average travel time
multiplied by a sum total average velocity of all squads. This is a reasonable approximation if
the faster squads tend to be dispatched to the more distant cells so that the travel times are all
about the same. Rearranging gives the average travel time:

Qd
vr(Xe)

TT(Xt) =

39

The sum total average velocity v, (V,V', V", S,S") of all the squads depends on the number of
vehicles and soldiers and can be derived as follows. At most one squad is sent out to each cell,
so the number mobilized squads is given by

. s 5 1)
QUt-1,X¢) = min < It—liﬁs + N_s’>

Squads are always put in vehicles when possible, so given the total number of vehicles,
Vr(Xy) =V + V' + V", the number of squads in vehicles will be

S S
Que—1, X)) = min(Q(It—lﬂxt): VT(It—lfxt)) = min <It—1' VT'F + ﬁ)
S S

The remainder of the squads will be on foot:

QF(It—llxt) = Q(It—pXt) - QV(It—l'Xt)-

The total speed of all squads will be determined by the average of the speeds of the vehicle and
foot squads weighted according to the fraction of each. Therefore, we need the following
fractions where S;(X) = S + S’ is the total number of soldiers:

frX) =V/Vr
frX) =V'/Vy
vy (X)) =V" /vy
fs(X) =S/Sr
fs'(X) =5"/Sr.

Furthermore, we model the effect of the reduced probabilities of arrival (p, and p,'’) as a
corresponding reduction in average speed. Putting this all together gives the total average speed
of all squads:

vr(Xe) = [(wfy + vify)po + v ' ov1Qy + [vsfs + vsf51QF.

The upshot of the forgoing discussion is that we have analytic expression for T, (X;) and T (X;)
and therefore have an analytic expression for P(X;).

By using the parameters in Table 2 we can derive an equation that gives the daily change in the
number of cells. First consider the increment in the insurgency in the first day of quarter t (i.e.,
starting with I,_; insurgents from the previous day). Assuming the daily mitigation happens
before the daily spread and spontaneous generation, we can write

Alg(le—, Xe) = spread 4 yspon
= a(l;_, — PQ) + [?P°"
(X(It—l - P(It_l'Xt)Q(It—bXt)) 4 [spon

40

If we assume the subsequent change in the number of cells is approximately the same for all N,
days in the quarter, we obtain

I(I;-1,X;) = (- — PQ) + Nyla(i—; — PQ) + I°P°"]
= (1+Nya)(Ie—1 — P(—1, X)QI;—1, X)) + NpIPom,

In any given military theatre, the number of cells would not grow without bound because of the
limited regional population along with other unspecified feedbacks. To reflect these
considerations, we add a cap of I™#* to the dynamics by fiat:

I:(Ie-1, Xy) = min(I™, (1 + Nyat)(I—1 — P(Ly—1, X)Q(I;—1, X)) + NIsPoM). (2)

Finally, this equation is used recursively to calculate the insurgency metric which is the total
number of cells over all quarters: I = Y, I;.

Unfortunately, the formulation for Al; above only considered the daily change in the number
of cells after mitigation has taken place which means Al is always = 0. The resulting dynamics
given by equation (2) corresponds to a CONOPS in which the squads are only dispatched in the
first day of each quarter, and then the growth in the number of cells is the same every day
throughout the quarter.

The overall change in the number of cells in the first day should have been calculated as
follows:

Id (It—l Xt) — Iunmitigated + Ispread 4 Jspon
(I;—1 — PQ) + a(l;_1 — PQ) + I°P°".

Thus,
Alg(Ie—1, X)) =1y — I—1 = —PQ + a(l;_; — PQ) + I°P°",

The presence of the extra —PQ term means that Al; can be < 0. This makes more sense and
reflects how effective the daily CONOPS could be.

Note from equation (1) that the number of squads Q is either proportional to I,_, or capped by
the constant number of soldiers in quarter t, so the daily dynamics formula is bounded by terms
linear in I,_; without any negative feedback terms. Therefore, if it is iterated recursively, the
number of cells will not change linearly throughout the quarter but will grow or shrink
exponentially. After 90 iterations, essentially any exponential divergence will swamp reality.
This exposes the fact that we have not captured a realistic CONOPS for this portfolio. In spite of
these shortcomings in the derivations above (or perhaps because of them), equation (2) actually
gives reasonable-looking behavior. So for purposes of illustration in this research, it will suffice
as a definition of the insurgency metric in what follows.

41

5.3.6 Model Parameters

The sections above laid out the notation for model parameters and decision variables along
with formulas for the performance metrics. Calculation of cost metrics was described in section
5.3.4. To demonstrate an optimization using the example, we need data for parameters and
initial system counts. Actual data could be used if this were a real example, but since our
example was only designed for purposes of research and illustration, we generated notional data.

Cost data are separate for each platform or technology deployed on a platform. Each asset has
a unit purchase price and yearly O&S costs. Technologies that have yet to be developed also
have RDT&E costs which are spread out evenly during the years leading up to the first
acquisition. Finally, each asset is assumed to have an average time over which it needs to be
replaced whether it be due to age, damage, or retirement. The yearly replacement cost is
estimated as the initial price divided by the mean loss time. The corresponding data are given in
Table 5 and Table 6.

Table 5. UAV and Soldier Cost Data

Sensor | Sensor | Sensor | Sensor | Basic | Advanced
ot st A 0 A B C Soldier | Soldier
Price (@, $) 3,000k | 100k 200k 500k | 1,000k 20k 40k
O&S Cost(@, $/qtr) | 1,000k 5k 10k 30k 50k 50k 70k
Mean Loss Time (qtr) 8 16 12 10 10 15 12
RDT&E Cost 0 0 4,000k | 7,000k | 10,000k 0 0
Table 6. Vehicle and Armor Cost Data
Cost Item Init_ial Futl_Jre Armor 0 Armor | Armor | Armor
Vehicle | Vehicle X Y Z
Price (@, $) 1,000k | 1,500k 0 30k 60k 100k
O&S Cost(@, $/qtr) 30k 20k 0 0 0 10k
Mean Loss Time (qtr) 20 25 00 0 0 5
RDT&E Cost 0 20,000k 0 1,000k | 2,000k | 4,000k

No data is required to describe the UAVs themselves, but for the various UAV sensors, we need
to know scan times and the number of passes required. For soldiers, the number required to form
a squad as well as the squad foot speed are parameters. These data are given in Table 7.

Table 7. UAV Sensor and Soldier Technology Data

Technology Sensor | Sensor | Sensor | Sensor | Basic | Advanced
Specification 0 A B C Soldier | Soldier
Scan Time (S) 20 18 18 20 — —
Passes Required 5 4 3 2 — —
Average Speed (MPH) — — — — 3 5
Soldiers per Squad 6 4

For vehicles and any associated armor (Armor 0 means none), we need to know average speed
and arrival probability data. These are given in Table 8.

42

Table 8. Vehicle and Armor Technology Data

Technology Initial | Future | Armor | Armor | Armor | Armor

Specification Vehicle | Vehicle 0 X Y Z
Average Speed (MPH) 25 33 — — — —
Speed Reduction (MPH) — — 0 4 8 6
Arrival Probability — — 0.5 0.7 0.95 0.99

5.4 Implementation Details and Results

The model described above was implemented using Sandia’s Technology Management
Optimization (TMO) application [15, 16] which is based on the same JEGA software used for
the hanging chain experiments. It adds a graphical user interface (GUI) with a number of
convenient features which facilitate setting up optimization problems for solution using a GA.
TMO is especially suited to optimization problems with a time-based component such as our
holistic portfolio optimization problems, and one of its main outputs shows solutions in a form
that looks much like a Gantt chart.

A key feature of TMO is the ability to use an “external evaluator” which is custom software to
evaluate complex metrics of each new offspring in the evolving population of trial solutions. A
recent addition to the external evaluator capability resulting from our research is the ability to
generate arbitrary new offspring in addition to evaluating them. A basic GA generates new
population members using the processes of random initial generation, random mutation, and
random crossover. The upgraded external evaluator capability allows us to generate new
population members using any algorithm we choose—random or deterministic—including
algorithms that use directed mutations, with or without taking advantage of gradient information.

5.4.1 Basic Military Portfolio Implementation

For a baseline experiment, the TMO GUI was used to set up a 20 quarter timeframe while
decision variables and dependency constraints were defined corresponding to those described in
section 5.2. An external evaluator was written to read in the data in Tables 5-8 from a
spreadsheet and then evaluate the budget, cost, phantom cost, and insurgency metrics as
formulated in section 5.3. The dependency constraint objectives are evaluated internally by
TMO. Finally, budgets, total cost, and phantom cost were assigned to the costs group while
insurgency and dependency constraints were assigned to the performance group. Limit and
objective parameters for each metric were entered into according to Table 9.

Table 9. TMO Parameters

TMO Parameter Value Units
Budget Limit 50,000k | $/quarter
Budget Objective 10,000k | $/quarter
Cost vs. Budget Efficiency 80% —
Total Mission Cost Limit 800,000k $
Total Mission Cost Objective | 160,000k $
Insurgency Limit 2,000 | cell-quarters
Insurgency Objective 200 cell-quarters

43

An initial population of candidate portfolio decisions is randomly generated by TMO. An
example of one member of this initial population is shown in Figure 13. Time is broken out
horizontally into 20 consecutive quarters. The first three rows show the acquisition program
decisions while the remaining seven rows show the integer system count decisions.

4 1stQir’16 2ndQtr'16 3rdQir'16 4thQr'16 IstQtr'17 2nd Qtr'17 3rd Qir'17 4thQir'17 IstQtr'18 2ndQir'18 3rd Qir'18 4th Gr'18 1stQir'19 2nd Qir'19 3rd Qr’19 4th Qir'18 IstQir'20 2nd Qir'20 3rd Gtr'20 4th Qir 20

UAV Sensor Program ‘ Sensor 0 I Sensor C

Future Viehicle Program ‘ Ne Future Vehicle IFuture Vet

Vehicle Armor Program ‘ Armor 0 I Armor Y
Original UAV [22 I 36 6 I 1 I 10 I 39 I 43 I 35 I 30 I = I 1 I 28 I 1 I 46 I 32 I 4 EI 48
Upgraded UAV [37 I 38 I 19 I 21 I 16 I 42 I 15 I 9 I 13 I 34 I 23 I 32 I 14 I 2z I 12 I 47 I 12 I 48 24
Initial Vehicle [253 I 238 I 245 I 243 I 50 I 300 I 135 I 210 I 106 I 23 I 192 I 253 I 222 I 194 I 21 I 21 I 135 60
Future Vehicle [106 I 48 I 106 I 66 I 287 I 70 I 293 I 13 I 73 I 19 I 265 I 12 I 264 I 14 I 272 I 119 I 231 I 68 26
Future Armored [232 I 79 I 238 I 233 I 91 I 62 I 230 I 173 I 9% I 53 I 287 I 78 I 258 I 241 I 189 I 15 I 208 I 22 9%
Basic Soldier [1027 I 141 I 1220 I 1424 I 132 I 1384 I 732 I 930 I 205 I 237 I 1414 I 1281 I 607 I 253 I 462 I 75 I 707 I 557 482
Advanced Soldier [21 I 972 I 41 I 382 I 916 I 385 I 292 I 363 I 50 I 156 I 237 I 599 I 799 I 543 I 168 I 540 I N3 I 749 236 707

Figure 13. A random initial portfolio.

This figure represents a particular set of decisions, not necessary good ones (we sometimes
refer to such a set of decisions as a “portfolio” or a “solution” even though it’s really only a
possible plan for a future portfolio). In this instance, Sensor C is chosen for development and
can be added to the UAVSs starting in the second quarter of 2017. Similarly, the future vehicle
and Armor Y for it can be purchased in the last quarter of 2020. The system counts are randomly
chosen from the ranges defined in Table 4. Recall that any system counts before the
corresponding program start quarter are phantoms and therefore ignored for budget, cost, and
performance purposes. Clearly this portfolio is far from optimal because of the repeated
investment and divestment decisions for all seven systems.

5.4.2 Basic Genetic Algorithm Results

To establish a baseline for performance, we used the basic GA built into TMO to perform the
multiobjective optimization of this holistic portfolio. Figure 14 shows the trade space of fitness
values of the solutions in the current best estimate of the Pareto efficient frontier. This result
took about 12 hours to evolve on a current desktop computer. Each dot represents a non-
dominated solution meaning that the cost fitness cannot be improved without reducing the
performance fitness and vice versa. The solutions represented by green dots are “feasible”
meaning that all dependency constraints are satisfied and all of their metrics are at or better than
the limit values defined in Table 9. The solutions represented by the red dots have at least one
constraint or limit violation. The large green dot represents the single best solution as
determined by the highest sum of the costs fitness and performance fitness.

44

o5l Pareto Solutions of "Result View Manager” EI@
Group "Costs" Fitness
5 10 15
o — PR o i
) 4
o) o
o] t [o
[o
R I
T 8 S T
2 I =
o @]
= _ ‘ L =
3 3
5 5
= I | N 9
CD: 8 8 ('D:
T b ° o
3 - - 3
2 .-
0] \ . 9]
w w
o (]
o o
o o
5 10 15
Group "Costs" Fitness
Total Points: 773 |Feasib|e: 225 |Infeaswb|e: 548 Translate

Figure 14. Optimized trade space of non-dominated holistic portfolio designs.

The large green dot in Figure 14 corresponds to the decisions shown in Figure 15. It’s worth
pointing out a few salient features of this set of decisions. Sensor C will be developed and
deployed to upgrade all UAVs in the first quarter with no original UAVs left in the portfolio at
any time. Since neither of the other two acquisition program decisions was exercised, the non-
zero counts of the Future Vehicle and Future Armored Vehicle are phantoms. Those numbers
are small because the phantom cost metric tends to force phantom counts to zero (all phantom
counts should be identically zero in a truly Pareto optimal solution). With a few exceptions,
system count profiles are lower, monotonically decreasing, and much smoother than they were
initially. These features arise from the tendency to reduce budgets and overall costs while still
maintaining an acceptable level of performance.

4 1stQu'16 2nd Qtr'16 3rd Gir'16 4th Qur'16 1stQur17 2nd Q17 3rd Gir'17 4th Qir'17 1stQu'18 2nd Qir'18 3rd Gir'18 4th Qir'12 1stQtr'19 2nd Qir*19 3rd Qtr'19 4th Gir'19 1stQr'20 2nd Gir'20 3rd Gir 20 4th Qir 20

UAV Sensor Program [Sensor C
Future Viehicle Program ‘ No Future Vehicle
Vehicle Armor Program ‘ Armor 0

Original UAV ‘ o

Upgraded UAY [3 I I 8 I 0

Initial Vehicle [20 I 13 I 16 I 15 I 14 I 13 I 0

Future Vehicle ‘ 0 I 1 I o I 1 I 0

Fwomored | 1 1 T o Lo T o] 1 1 0

Basic Soldier [230 I 201 I 138 I 109 I 98 I £ I 97 I 9% I 80 I 46 I 12 I 5 I 20 I 24 I 2 I 1 I 0

Advanced Soldier [37 I I 16 I 10 I 5 I 4 I 3 I 17 I 38 I 53 I 62 I 63 I] I 68 I 75 I 0

Figure 15. A partially optimized portfolio.

45

Figure 16 shows the same portfolio over time with the quarterly budgets lined up below (in
blue). The total cost is the sum of the budgets (i.e., the area under the curve). The horizontal red
line in the budget graph is the budget limit for every quarter while the horizontal green line is the
budget objective for every quarter. Since all the budgets are below the red line, they are
considered feasible. The expenditure in the first quarter is much larger than the rest because it
includes the full RDT&E cost of Sensor C ($10,000k from Table 5). The budget is held at an
intermediate level during most of the timeframe. The budget falls to zero by the end because of
the decisions to divest all assets.

4 1stQir’16 2ndQtr'16 3rdQur'16 4thQur'16 1stQtr'17 2nd Qir'17 3rd Qr'17 4thQrr'17 1stQr'18 2ndQur'18 3rd Qr'18 4th Qr'18 1stQir'19 2ndQrr'19 3rd Qtr’19 4th Qir'19 1stQir'20 2nd Qtr'20 3rd Qtr'20 4th Q20

LAY Senscr Program ‘[Sensor C

Viehicle Armer Progra ‘ Armor 0

Original UAV ‘ 0

i : I [
s x e s e »] : X
aminas | : e Lo :

\ o e o o n
e (G20 Jm e e (o e [s [Jalal o+ []
omasse (5] @ J e (o e J o) 2 (o) efm)el e (el e (=l -

5.50E+007

5.00E+007 - -

Figure 16. Quarterly budgets aligned to the portfolio.

46

In the process of calculating the integrated insurgency metric, the external evaluator also
records the number of cells in each quarter. The results are shown in Figure 17. It shows the
same portfolio over time as before with the quarterly number of insurgent cells aligned below (in
green). Recall that the insurgency metric is the sum of the number of cells (i.e., the area under
the curve). There are no limits or objectives for the quarterly numbers of cells, just for the total
insurgency size. In this scenario, the number of cells is quickly driven down to fewer than 20.
Note that the insurgency limit of 2000 in Table 9 is equivalent to an average of 100 cells in each
of the 20 quarters while the insurgency objective of 200 is equivalent to an average of 10 cells in
each quarter. As the end of the timeframe approaches, the area under the curve is small enough
that the optimization gives up on maintaining the portfolio and divests all its assets which saves
on costs. The portfolio over time is still optimal in the sense that total insurgency size is held
within desired levels while keeping a favorable balance with costs. This behavior seems
surprising at first, but it also makes sense in light of the way the multiobjective optimization was
formulated. It also recapitulates the historical observation that pulling out of a peacekeeping
mission may allow undesirable elements to resurface.

4 1stQir'16 2ndQtr"16 3rdQir'16 4thQir'16 1stQtr17 2nd Qtr'17 3rd Qtr'17 4thQtr'17 1stQtr'18 2ndQir18 3rd Qir'18 4th Qtr 18 1stQir19 2nd Qtr'19 3rd Qtr°19 4th Qir'19 1stQir'20 2nd Qir'20 3rd Qtr'20 4th Qir 20

UAV Sensor Program Sensor C

Future Viehicle Program No Future Vehicle

Vehicle Armer Program

Original LAV

Upgraded UAV

(
|
|
|
(
Initial Vehicle [2 I 19 I 16
|
|
(
(

Future Vehicle

Future Armored

Basic Soldier

I
: Lo J

230 I 201 I 138 I 109 I 98 I S I 97 I 96 I 80 I 48 I 12
Lo Joe J o e [¢] RN

15

Advanced Soldier 37

@
i
—
a8
—
&
—
=

e a? Q3 b v a Q? [+ P at o3 Qb e at Q? [+ a2 a? Q? [+

Figure 17. Number of insurgent cells aligned to the portfolio.

5.4.3 Gradient Calculations and Interpretations

The single best solution above took 12 hours to compute and still contains decisions that are
clearly suboptimal. We know they are suboptimal because we can intuitively see that changing
the system counts in certain ways will improve one or more of the metrics without hurting any
others. In particular, we know we would do well if we change the system counts in the general
direction determined by the partial derivative of the phantom cost with respect to those system
counts. There are subtleties to be sure, but by using the gradient information judiciously,
directed mutations can be designed to target poor decisions in the system counts.

47

Of course, in order to generate gradient-directed mutations, we need to calculate the partial
derivatives of all the metrics with respect to all of the system counts. The calculations are too
extensive to spell out in the main line of the text, but an example is given in Appendix B. There
we consider the contribution of the 20 original UAV counts (U,) to 21 metrics: the 20 quarterly
budgets and the total cost. The partial derivatives of those 21 metrics with respect to U, are
calculated at the same time as the metrics.

To get an idea of what the resulting partial derivatives look like and how they work, an
example is shown in Figure 18. The top part of the figure shows U, over the 20 quarters. The
lower part of the figure is aligned with the top and shows the instantaneous change in the total
cost of the portfolio per unit addition of UAVSs in any given quarter (0C/dU;). Note how the
change in portfolio cost depends on which quarter the UAV is added. Perhaps surprisingly, the
change in cost is not even always positive.

H#UAV,

50
45
40
35
30
25 -
20 -
15 +
10 +

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d(Cost)/9(#UAV,)

5000000

4000000

3000000

2000000

1000000 -

0

1 2 3 5 6 8 9 11 12 14 16 18 19 20
-1000000

-2000000

-3000000

Figure 18. Partial cost gradient w.r.t. # UAVs aligned to the # UAVS.

48

The typical values of the individual partial derivatives can be explained as follows. Refer
back to the costs in the UAV and Sensor 0 columns of Table 5. If the number of UAVS in any
given quarter is a peak, higher than either surrounding quarter, the full cost of the UAV and its
sensor are incurred: ($3000k + $1000k + $3000k/8 + $100k + $5k + $100k/16 =
$4486.25Kk). If the number of UAVs in any given quarter is a valley, lower than either
surrounding quarter, then the purchase cost of the UAV is saved while the yearly costs are still
incurred (—$3000k + $1000k + $3000k/8 — $100k + $5k + $100k/16 = —$1713.75Kk).
If the number of UAVs in any given quarter is a slope, rising or falling, there are no purchase
savings and the extra yearly costs are incurred ($1000k + $3000k/8 + $5k + $100k/16 =
$1386.25Kk). Deviation from these typical values happen because, for example, the total number
of UAVs (original plus upgraded) might be a peak yet the number of original UAVs is a slope
meaning that the cost of the original sensor does not contribute to the total cost gradient in that
quarter. Another way it can happen is if the cost function is at the boundary between two pieces
of the domain in which case an element of the subgradient is chosen (generally the average of the
gradients of the two pieces).

The partial derivatives are the components of the total cost gradient, and they tell us in general
what to do to cut cost. Directed mutations should tend to move the UAV numbers by an amount
proportional to the direction and magnitude of the force (which is opposite to the cost gradient).
In Figure 18, the partial derivatives are more positive than negative, so cost can be reduced by
generally reducing the number of UAVs. This is an intuitive result which we knew already.
Comparing the alternating gradient sizes in the bottom half of Figure 18 with the UAV numbers
in the top suggests another way to cut the total cost: shave off the peaks and fill in the valleys
of U;. This is much like in the hanging chain problem where alternating spring forces on the
links tend to smooth out kinks in the chain. Again, this is an intuitive result because it would
clearly be costly to rapidly invest and divest in a given asset type.

Although there are 23 metrics in the military portfolio example, there are ultimately only two
composite objectives to be optimized: costs fitness and performance fitness. These group
fitnesses have the form of a weighted sum of the fitnesses of the individual metrics, where f;(...)
is the fitness function for metric M;:

fMy, My, ..., Mz3) = Z.Wifi(Mi)

The gradient of the group fitness can then be computed using chain rule where the gradients are
taken with respect to all system counts. In the case of the military portfolio example, there are
140 system count variables.

V= Y TR =) W T

l

This is why we need to calculate the gradients of the individual metrics.
5.4.4 Gradient-Directed Mutations Implementation

To apply the gradient-directed mutations technique to the example military portfolio, the TMO
model does not need to change at all: it’s just a matter of replacing the external evaluator. As

49

before, the evaluator is called on each new member of the population to evaluate all the metrics.
However, the evaluator is now also responsible for injecting new members into the population,
much as the built-in mutation and crossover operators do in a basic GA. If the new member of
the population is itself not an injection, one or more copies are made, modified, and injected into
the population (note: the newly injected members are immediately returned to the evaluator for
metric evaluation).

Each copy can be thought of as containing arrays of all the system counts over the 20 quarter
timeframe. At the same time it is calculating the metrics, the evaluator calculates gradient arrays
for the group fitness functions with respect to all the arrays of counts. Several different mutation
subroutines were created to use the resulting gradient information to modify the copies. In
essence, each subroutine takes in information much like that shown in Figure 18: an array of
counts of any single system along with a corresponding array of partial derivatives. The
direction of improvement should be indicated by positive derivatives since the objective
functions are usually fitnesses. The subroutine then modifies the array of counts belonging to the
copy.

The following mutation subroutines were developed. System count variables are left
unchanged unless otherwise specified. Any counts that become negative as a result of mutation
are truncated to zero:

e BlockMutate. This implements the “Block Cumulative” operator that was described in
section 4.1.1 for the hanging chain problem.

e RandomMutate. This was mainly defined for testing purposes and ignores the
gradients. It simply increments each count by 1, 0, or -1 with equal probability.

e FitnessAsProbabilityMutate. Each positive gradient component is divided by the
largest positive component, and the result is interpreted as a probability. The analogous
procedure is performed for negative components. Each count is incremented or
decremented in the corresponding direction with the corresponding probability.

e StratifiedMutate. This is most similar to the “LP Norm” operator for the hanging chain
problem. Here, the full range of the 20 fitness gradient components is divided into equal-
sized strata, and each count is incremented, decremented, or left unchanged according to
what stratum its corresponding component falls into. If the all components are positive,
there are two strata, and the top stratum is incremented. The natural opposite procedure
is followed if all components are negative. If the components span both positive and
negative values, there are three strata, and the top stratum is incremented while bottom
stratum decremented.

Any combination of system type, fitness function, and directed mutation subroutine can be
applied to mutate each copy. Multiple combinations can be applied individually or in any
sequence. Clearly, many other such mutation subroutines could be defined and tested to fully
exploit the information contained in the gradients.

5.4.5 Gradient-Directed Mutations Genetic Algorithm Results and Discussion
Several attempts were made at using the mutation subroutines defined above to speed the GA

evolution over the baseline, but the results achieved so far are incomplete. Note that the UAV-
Vehicle-Soldier portfolio is a highly interdependent system of systems in the sense that at least a

50

few of all three type of systems must be present for the portfolio to perform effectively.
Typically, progress towards a stable Pareto frontier seems to be faster at first relative to the basic
GA implementation. Then, the cost and budget objectives seem to dominate the initial evolution
with the result that some of the system counts are driven to zero. It then takes a long time to
recover solutions which restore performance. What can also happen is that two of the three types
of systems may have counts of zero in any given period at which point, the gradients of
performance are zero. That means that the gradients cannot point the way to better portfolios. If
only one of the types of system counts is zero, the performance will be zero but the gradient can
still be non-zero because of the way the subgradients are chosen.

Although our results to date have been mixed, we have reasons to believe that gradient-
directed mutation techniques will prove to be a potent way to speed up the evolution of holistic
portfolio optimization problems using GAs. Most importantly, we have barely begun to explore
the space of gradient-directed mutation operators and how they are combined and sequenced.
We had a number of false starts before we found a way to get gradient-directed mutations to
work well on the hanging chain problem. Moreover, due to the unexpected complexity of our
military portfolio example, there may very well still be bugs in our implementation. Given the
novelty of the approach, there is still room for improvement in how we develop these models.
Developing good examples that can be used as templates would be one way to improve our
process.

Another reason has to do with the purity of the gradient-directed mutations that we are
injecting. Currently, the TMO implementation only performs directed mutation on top of the
internal point mutation and crossover operators without the benefit of an intervening selection
step. More often than not, the offspring generated by uncoordinated random mutation and
crossover are less fit than the parents. This is especially true in the case of a portfolio problem
where the space of bad decisions in the vicinity of a partially optimized design is so much larger
than the space of good decisions. In contrast, directed mutations are specifically designed and
coordinated to increase fitness. If they are applied after the usual mutation and crossover
operations, they will frequently have to overcome a senseless disadvantage before they can begin
to help. To the extent that directed mutations are just another source of genetic variation, they
should be applied in parallel to point mutation and crossover.

Yet a third reason has to do with how we formulated the portfolio metrics. In particular, we
frequently used functions such as min(...) which have abrupt changes in behavior whereas in the
real world, such changes may actually be smooth and gradual. We also did not consider multiple
missions or other ways that systems provide value. For example, vehicles probably would
contribute to a more comprehensive portfolio performance metric even if there were no UAVS.
We could even relax the detailed causal analysis and instead formulate metrics in a more
phenomenological way. One such formulation that we considered but did not pursue is based on
homogeneous functions that are sometimes used in economics. This would be desirable if a
metric were known to have a certain power law scaling with respect to overall portfolio size. For
example, if it were known that the performance would double if all the system counts were
doubled. Linear functions have this property, but so does a homogeneous function of the first
degree:

F(U,V,S) = aU + bV + cS + dU V=% + eVESI=B + fUsyvsi=6-7 + ...

51

The linear terms reflect the value of individual systems. The non-linear terms capture value
interactions between systems, and interactions are important to consider when evaluating
systems of systems. Homogenous functions of other degrees (p) could be used if there were
diminishing returns (p < 1) or synergies between systems (p > 1):

G(U,V,S) = aUP + bVP + cSP + dUSVP~% + eVBSP=F 4 fUSYYSP=0-7 4 ...

Finally, note that even richer homogeneous functions can be defined through composition of
homogeneous functions. Metric reformulations along any of the lines above could reduce the
complexity of the gradient calculations. More importantly, they would help eliminate “flat”
regions of the metric functions where the gradients don’t provide any information about how to
update the portfolio. This would likely improve the behavior of the gradient-directed mutation
technique.

52

6 CONCLUSIONS

GA s provide powerful approaches to solving optimization problems that contain combinatorial
decision variables and nonlinear or multiple objectives. Of course, there are still optimization
problems which tax their abilities, holistic portfolio optimization being one. We are therefore
interested in creating new ways to extend GA performance and applicability in challenging areas.

By analogy with nature, conventional GAs only generate population diversity through random
genetic variation in the form of mutation and crossover. Better designs are then created via
selection. However, adding new population members based on new genetic variation operators
will almost always speed the optimization on a per-generation basis and frequently on a CPU-
time basis. Moreover, random variation is not “intelligent” in any way and does not take
advantage of problem structure or performance clues to direct better designs.

The general direction of better performance is suggested by gradients of objective functions
with respect to numerical decision variables provided the objective function can be expressed as
an analytic function of those variables. We developed the relatively simple “hanging chain”
model as a research vehicle to explore this idea. Finding the shape of a hanging chain is a
standard problem in the calculus of variations, and this model allowed us to tap into our physical
intuition about force and energy to help develop various algorithms for using the gradients to
generate effective mutations. By combining gradient information across multiple links, we were
even able to coordinate variation in multiple count decision variables.

Some algorithms involved adding one or more parameters including a relaxation parameter.
Tuning the relaxation parameter allows us to find effective steps sizes for moving the links in the
chain. However, an interesting thing about optimizing over integers is that they define a natural
scale to the size of the mutations; namely, one unit. Since the range of possible integer values in
a portfolio problem is somewhat limited (typically a few hundred at most), we can use the
minimum step and still reach the optimum in a reasonable number of generations.

By studying the hanging chain problem, we discovered a number of interesting things. For
example, we learned that different genetic variation operators can be much more effective
together than individually. In this sense, they are synergistic. Furthermore, we observed that
genetic variation operators are more or less effective during different epochs of the optimization.
The “every man for himself” method does a good job of removing large kinks in the first few
generations. Then crossover helps combine parts of different chains that happen to be closer to
the optimal shape. Eventually, the standard mutation operators run out of steam, and the
gradient-directed mutation operators can fine tune the solution.

Measuring the speedup of one GA over another is not entirely straightforward. To begin with,
time could be measured in a number of ways: the number of function evaluations, the number of
generations, CPU time, or wall clock time. Then, the speedup might be defined in terms of a
ratio of times for a certain level of performance or a ratio of performance distance from optimal
given a certain amount of time. It’s not always possible to do the latter since the true optimum is
not generally known. Ultimately, we measured the wall clock time it took for the slower
algorithm to reach a certain point and took the ratio with how long it took for the faster algorithm
to achieve the same or better results. In the case of multi-objective optimization, it’s not totally
unambiguous when one Pareto frontier becomes better than another, so we had to define
somewhat arbitrary rules (albeit conservative rules). Finally, the progress of the baseline
conventional GAs virtually stops beyond some point which makes the gradient-directed speedup
appear to increase the more baseline generations are run. Because of this, we can run the

53

baseline single-objective hanging chain problem for a week and claim a speedup of million or
more. In the case of the multiobjective hanging chain, we can claim speedups of at least a
thousand.

In the case of multiobjective optimization, we found that gradient-directed mutations not only
sped convergence, they also produced qualitatively better results. In particular, the set of non-
dominated solutions that was obtained had a greater spread over the space of metrics. This is
important because it gives decision-makers the fuller picture of the possible trade space.

In order to develop our methods further, we developed a notional example of a contemporary
military portfolio along with its defined mission. The example adds complexity in the form of
combinatorial decision variables, dependency constraints between those variables, and more
types of platforms. To simplify the interpretation of the trade space, it also demonstrates the
combination of multiple metrics into fitness functions to be maximized in contrast to energy
functions to be minimized. The example tells a good story while illustrating a number of
modeling and analysis techniques which should prove useful to others who want to develop
holistic portfolio optimization models.

We discovered that defining holistic portfolio metrics for the example military portfolio was
surprisingly difficult. Conventional sequential portfolio optimization involves defining metrics
for individual systems and then defining another set of metrics for the portfolio as a whole given
the optimized designs of the individual systems. In both cases, formulating metrics is a non-
trivial task. However, in order to realize the benefits of holistic portfolio optimization, metrics
must be defined which capture the system-of-systems interactions between the design of the
individual systems and the counts of those systems over time. This makes defining good metrics
much harder still. Doing it right requires careful consideration of the CONOPS of one or more
missions.

One of the things that make GAs attractive is that they are relatively easy to implement. Part
of the price of speeding them up using gradient-directed mutations is that the implementation
becomes much harder and the evaluation of each new design is slowed. Once we had analytic
formulas for our example military portfolio metrics, implementing them was not hard, but it did
become rather complicated to interleave the calculation of their derivatives. Some of the
difficulty stemmed from the need to keep track of the multitude of cases and the subgradient
calculations between cases. However, the main complicating factor was the complex way the
insurgency metric depended on the decision variables: the number of insurgent cells depends
implicitly on the earlier numbers of cells, not just explicitly on the decision variables. This
necessitated an iterative application of the chain rule. In the end, the gradient calculations
increased the evaluation time by roughly a factor of ten. Better tools are needed to make the
calculation of derivatives simpler and more efficient. We believe that automatic differentiation
may offer a good approach.

We have demonstrated the utility of gradient-directed mutations for holistic portfolio
optimization over time where both the system technologies and the counts of systems are
decision variables. While HPO s still proving difficult when combinatorial variables are
included, we are still at an early stage in the research. With further development, gradient-
directed mutations may even help in traditional combinatorial optimization problems.
Ultimately, we believe that there is great promise in taking advantage of problem structure to
give hints to GAs in the form of intelligently informed mutations. Success in this effort would
open up new approaches to operations research problems more generally.

54

10.

11.

12.

13.

14.

15.

16.

7/ REFERENCES

Salomon, R., Evolutionary Algorithms and Gradient Search: Similarities and Differences,
IEEE Transactions on Evolutionary Computation 2, 45-55, 1998.

Bhandari, D., Pal, N.R., and Pal, S.K., Directed Mutation in Genetic Algorithms, Information
Sciences 79, 251 — 270, 1994.

Guan, J. and Aral, M.M., Progressive Genetic Algorithm for Solution of Optimization
Problems with Nonlinear Equality and Inequality Constraints, Applied Mathematical
Modeling 23, 329-343, 1999.

Yi, N., Dechun, T., and Yuzheng, L., Genetic Algorithm Diagnosis of Individual Cell
Frequencies in a Coupled Cavity Chain, Nuclear Instruments and Methods in Physics
Research A 462, 356363, 2001.

Chen, C., Chen, Y., and Zhang, Q., Enhancing MOEA/D with Guided Mutation and Priority
Update Multiobjective Optimization, IEEE Congress on Evolutionary Computation, 209-216,
20009.

Tang, P. and Tseng, M., Adaptive Directed Mutation for Real-Coded Genetic Algorithms,
Applied Soft Computing 13, 600-614, 2013.

Heitzinger, C, and Selberherr, S., An Extensible TCAD Optimization Framework Combining
Gradient Based and Genetic Optimizers, Microelectronics Journal 33, 61-68, 2002.

Smith, AE. and Coit, D.W., Constraint Handling Techniques — Penalty Functions,
Handbook of Evolutionary Computation, C5.2-1 — C5.2-6, 1997.

Michalewicz, Z. and Janikow, C.Z., GENOCOP: A Genetic Algorithm for Numerical
Optimization with Linear Constraints, Communications of the Association for Computing
Machinery 39, Article 175, 1996.

Farmani, R. and Wright, J.A., Self-Adaptive Fitness Formulation for Constrained
Optimization, IEEE Transactions on Evolutionary Computation 7, 445-455, 2003.
Mezura-Montes, E. and Coello, C.A., Constraint-handling in Nature-inspired Numerical
Optimization: Past, Present, and Future, Swarm and Evolutionary Computation 1, 173-194,
2011.

Hoffman, M.J., Henry, S.M., Thompson, B.M, Whole System Trades Analysis Tool (WSTAT)
Overview, SAND2014-20604PE, Sandia National Laboratories, Albuquerque, NM, 2014.
Davis, S.J. et. al., Maximizing the U.S. Army's Future Contribution to Global Security using
the Capability Portfolio Analysis Tool (CPAT), Interfaces 46, in press, 2016.

Eddy, J.P., JEGA - A Tool for Multi-objective Optimization, SAND2006-6659C, Sandia
National Laboratories, Albuquerque, NM, 2006.

Eddy, J.P, Technology Management Optimization (TMO), SAND2010-2622C, Sandia
National Laboratories, Albuquerque, NM, 2010.

Center for Systems Reliability, Technology Management Optimization Fact Sheet,
http://www.sandia.gov/CSR/tools/tmo.html, Sandia National Laboratories, Albuquerque,
NM, 2016.

55

http://www.sandia.gov/CSR/tools/tmo.html

56

APPENDIX A: MAX BLOCK CUMULATIVE FORCE ALGORITHM

In the description of the Block Cumulative Directed Mutation in section 4.1.1, we claim to
have an efficient method (scaling linearly with the number of links n) for finding the set of
contiguous links (i.e., a block) having maximal force in the x and y directions. For the Block
Cumulative method, this block of links is then moved in the direction indicated by the
cumulative force on that block — providing a means to coordinate many link updates
simultaneously. In this Appendix, we document the method by which we capture this block.

Suppose we have already calculated the net force on each link and now wish to find the block
of links with the maximal cumulative (absolute value) force in the y direction (this method
would proceed analogously for the block of links having maximal x-force). To do this, we form a
new vector that tracks the cumulative y-force at each link from left to right across the chain.
Here, the cumulative y-force on the i link is the sum of the y forces on and to the left of link i.
Next, we find the two positions along the chain having the largest and smallest cumulative y-
force (call these links i,,4, and i,,;,, respectively). If there is a tie in the extremes (minimum or
maximum) cumulative force, any of the selected links could be chosen. Finally, if i,,,;, < imax
then the set of links having maximum y-force is given by B, = {ipn + 1, imin + 2, ., bmax}-
Otherwise if iy < imin then the set of links is By, = {ijmax + 1, imax + 2, .., Imin}- IN €SSENCE
we chose the set of links starting one to the right of the leftmost extreme and continuing to the
rightmost extreme.

Since the procedure consists only of calculating a cumulative force vector of size n and
finding the minimum and maximum in this vector, the overall complexity of the procedure is
O(n). To see this more clearly, consider Figure 19 below which plots and example y force on
each link of a MECE chain with n=8. The left-to-right cumulative y force on each link is
displayed underneath the system, and the minimum and maximum cumulative y forces are
highlighted in red. Thus, the contiguous block with the largest cumulative force occurs from link
2 to link 6.

I +1.5 I
2 T : -1.6
+1.7
-1 e +2 +2 +1.1

e—>
*—>
—
&>
N
™

Cumulative Force -1 +0.5 +2.2 +4.2 +6.2 +7.3 +4.9 +3.3
\)

|
Block with maximum cumulative force

Figure 19. A MECE system with forces in the y coordinate. The cumulative force from left
to right demonstrates how to find the block of links with maximal force.

57

58

APPENDIX B: BUDGET, COST, AND GRADIENT CALCULATIONS

Since the portfolio metrics are defined piecewise, there are many cases to evaluate, and it’s
frequently simpler to express the calculations in program code form rather than in formulae. The
external evaluator is written in VisualBasic.NET, and the figures below show the code for each
quarter inside a loop indexed by quarter t. Partial derivatives of any metric with respect to a
system count (at constant values of the other 139 system counts) are represented by identifiers
with an underscore () in the name. The identifier prefix B means budget in the current quarter, c
means the total cost over all quarters, and u means the count of original UAVs. So the notations
“B U(0, t)”and “c_u(t)” respectively denote the partial derivatives of 8 and c with respect to
U in the current (“0”) quarter, t. It also happens that the system counts in the previous (“1”)
quarter affect the budget in the current quarter. So the notation “B U (1, t)” denotes the
derivative of B with respect to u in the previous quarter, t-1.

Figure 20 contains the code for calculating contributions to the budget from the counts of all
UAYV platforms along with the partial derivatives of the budget with respect to the count of
original UAVs. Since the platforms are the same for original and upgraded UAVSs, any increase
in the total number of UAVs means the budget in this quarter will increase in proportion to the
UAV platform purchase price. Decreases in the total count of UAVs reduce the quarterly costs,
but since there are no proceeds from divestment, the purchase price is not recovered. This
implies a “kink” in the budget due to purchases, so we average the partial derivatives across the
kink using a “subgradient factor” of one-half, corresponding to the midpoint of the subgradient at
the kink. The quarterly costs don’t have a kink, so they add a constant to the partial derivative.

budget (t) += QuarterlyCost ("UAV") * numOriginalUAVs (t)
budget (t) += QuarterlyCost ("UAV") * numUpgradedUAVs (t)
Dim deltaTotalUAVs As Double = numOriginalUAVs(t) + numUpgradedUAVs(t)
- numOriginalUAVs(t - 1) - numUpgradedUAVs(t - 1)
If deltaTotalUAVs >= 0 Then
budget (t) += Price("UAV") * deltaTotalUAVs

Dim subGradientFactor As Double = If(deltaTotalUAVs = 0, 0.5, 1)
B U(0, t) += subGradientFactor * Price ("UAV")
B U(l, t) -= subGradientFactor * Price ("UAV")

End If

B U(0, t) += QuarterlyCost ("UAV")

Figure 20. UAV platform contributions to the budgets and their gradients.

Figure 21 contains the code for calculating contributions to the budget from the original UAV
sensors. Note that the original UAV counts are used as the original sensor counts since they are
the same. As before, only increases in the counts increase the budget due to purchases while
quarterly costs are incurred in any case. The sensor price and quarterly cost contribute to the
partial derivatives in direct analogy with the platform purchase and quarterly costs.

59

budget (t) += QuarterlyCost ("Sensor 0") * numOriginalUAVs (t)
Dim deltaOriginalUAVs As Double = numOriginalUAVs(t) - numOriginalUAVs(t - 1)
If deltaOriginalUAVs >= 0 Then

budget (t) += Price("Sensor 0") * deltaOriginalUAVs

Dim subGradientFactor As Double = If(deltaOriginalUAVs = 0, 0.5, 1)
B U(0, t) += subGradientFactor * Price("Sensor 0")
B U(l, t) -= subGradientFactor * Price("Sensor 0")

End If

B U(0, t) += QuarterlyCost("Sensor 0")

Figure 21. Original sensor contributions to the budgets and their gradients.

After all the budgets and budget gradients are calculated, then the total cost and partial
derivatives of total cost with respect to u in each period can be calculated as shown in Figure 22.
Obviously, the partial derivative of cost with respect to u in the current quarter depends on the
partial derivative of B in the current quarter with respect to u in the current quarter. But less
obviously, it also depends on the partial derivative of B in the next quarter with respect to u in the
current quarter (unless it’s the last quarter in which case there isn’t a next quarter).

cost += budget (t)

C U(t) = B U(0, t)
If t <> 20 Then

C U(t) += B U(1, t + 1)
End If

Figure 22. Example total cost and total cost gradient calculations.

60

PR RRPRRPRRRE R

MS0359
MS1188
MS1188
MS1188
MS1188
MS1188
MS1188
MS0899

DISTRIBUTION

D. Chavez, LDRD Office

Alan Nanco

Bruce M. Thompson
Mark A. Smith
Stephen M. Henry
John P. Eddy

Craig R. Lawton
Technical Library

61

1911 (electronic copy)
6114 (electronic copy)
6133 (electronic copy)
6133 (electronic copy)
6133 (electronic copy)
6133 (electronic copy)
6135 (electronic copy)
9536 (electronic copy)

@ Sandia National Laboratories

