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ABSTRACT

Graph Neural Networks (GNNs) have made significant
advances on several fundamental inference tasks. As a result,
there is a surge of interest in using these models for making
potentially important decisions in high-regret applications.
However, despite GNNs’ impressive performance, it has
been observed that carefully crafted perturbations on graph
structures (or nodes attributes) lead them to make wrong
predictions. Presence of these adversarial examples raises
serious security concerns. Most of the existing robust GNN
design/training methods are only applicable to white-box set-
tings where model parameters are known and gradient based
methods can be used by performing convex relaxation of the
discrete graph domain. More importantly, these methods are
not efficient and scalable which make them infeasible in time
sensitive tasks and massive graph datasets. To overcome these
limitations, we propose a general framework which leverages
the greedy search algorithms and zeroth-order methods to
obtain robust GNNss in a generic and an efficient manner. On
several applications, we show that the proposed techniques
are significantly less computationally expensive and, in some
cases, more robust than the state-of-the-art methods making
them suitable to large-scale problems which were out of the
reach of traditional robust training methods.

Index Terms— Graph neural networks, adversarial train-
ing, robustness, greedy algorithm, large-scale learning

1. INTRODUCTION

Graph structured representations are one of the most com-
monly encountered data structure that naturally arises in
nearly all scientific and engineering application [1]. With the
widespread use of networks neuroscience, molecular chem-
istry and other fields, it is not surprising that machine learning
on graph data has become a key learning tool. Specifi-
cally, Graph neural networks (GNNs) have made significant
advances on several fundamental tasks ranging from node
classification to graph classification [2, 3]. Despite GNNs’
impressive performance on inferring from graph data, their

susceptibility to test-time adversarial examples (i.e., carefully
crafted perturbations to fool these models) is a major hur-
dle in a universal acceptance of GNN solutions in several
high-regret applications. These results are consistent with the
adversarial attacks on audios and images [4, 5, 6, 7, 8, 9].

Recently, a few attempts have been carried out in the
robust machine learning community to devise robust GNN
training methods, e.g., adversarial training. Existing ro-
bust training methods for graph data [10, 11] utilize convex
relaxation to make the search domain continuous so that
first-order methods can be used. Unfortunately, these ap-
proaches are highly inefficient (or time consuming) due to
additional computations involved in the relaxation procedure
and are infeasible to large-scale graphs. Furthermore, in
practice the gradient information may not even be available,
e.g., either due to inaccessible of the model parameters or
model itself is discrete and non-continuous. In such scenar-
ios, existing robust training methods fall short. To overcome
these drawbacks, this paper proposes a general framework
which leverages the greedy search algorithms and zeroth-
order methods to obtain robust GNNs. Specifically, to ad-
dress the inefficiency/scalability issue, we propose Greedy
Topology Attacking method so that gradient-based adversar-
ial training becomes plausible for massive size graphs. Next,
to address the unavailability of gradient information issue, we
propose Zeroth-order based Greedy Attack for gradient-free
adversarial training. Benchmarking on node classification
tasks using GNNs, our Greedy Topology Attack method can
achieve similar performance with current state-of-the-art at-
tacks with significant speed up subject to the same topology
perturbation budget. This demonstrates the effectiveness
of our attack generation method through the lens of greedy
search algorithm. Next, by leveraging our proposed greedy
topology attack, we benchmark the robustness of our adver-
sarial training technique for GNNs under different attacks and
applications. We show that the proposed adversarial training
technique is significantly less computationally expensive and,
in some cases, more robust than the state-of-the-art methods
making them suitable to large-scale problems.



2. RELATED WORKS

Some recent attentions have been paid to the vulnerability
of GNNs. The authors in [12] investigated test-time non-
targeted adversarial attacks on both graph classification and
node classification problem by adding or deleting edges from
a graph. The authors in [13] considered both test-time (eva-
sion) and training-time (data poisoning) attacks on node clas-
sification task. Different with [12], the node attributes were
allowed to modify in [13]. Their algorithm is for targeted at-
tacks on single node. It was shown that small perturbations on
the graph structure and node features are able to misclassified
the target node. In [14], training-time attacks on GNNs were
also studied for node classification by perturbing the graph
structure. The authors solved a min-max problem in training-
time attacks using meta-gradients and treated the graph topol-
ogy as a hyper-parameter to optimize.

On the defense side, very recent work [11] proposed ad-
versarial training on GNNs, however, this method needs to
perform convex relaxation, probabilistic sampling and bisec-
tion which pay extra computational cost and is not feasible to
large graph datasets. Different from the adversarial training,
[10] considered the problem of certifiable robustness and also
achieved robust model under a pre-specific bound.

3. PROBLEM STATEMENT

A GNN predicts the class of an unlabeled node under the
graph topology. The k-th layer computation in a GNN can
be formalated as

H® =4 (AH(k—1>(W(k—1>)) : (1)

where H(Y) = X is the node feature matrix. Here A is de-
fined as a normalized adjacency matrix A=D"YV2AD-1/2,
where A = A+Tand A € {0,1}N*N refers to the adjacency
matrix. We refer readers to [2] for more details about GNN.
o is the ReLU activation function and W is weight matrices.

3.1. Adversarial Training for Graphs

Following [15], we consider an adversarial variant of standard
Empirical Risk Minimization (ERM), where we minimize the
risk over adversarial examples:

mln‘lj{/mzemai(/lénclze LA W X, yr) 2)

The training loss L is cross-entropy error over all training data
(X,yr). A’ is the perturbed adjacency matrix by the adver-
sarial attack. Here C are the constrains such as the maximum
number of edges that can be perturbed, A’ should be symmet-
ric and most importantly, A’ € {0, 1}V*V,

Intuitively, adversarial training injects adversarial exam-
ples into training data via inner maximization problem to
increase robustness of outer risk minimization (or training)

problem. The performance of adversarial training heavily
depends on (a) the quality of the adversarial examples, and
(b) the efficiency/scalability of the attack algorithms. Note
that discrete constraint C in problem (3) make the gradient de-
scent inapplicable. As mentioned before, current approaches
to handle these constraints are computationally inefficient
in solving inner optimization problem. Therefore, we first
propose efficient algorithms to generate adversarial attacks
via greedy algorithms.

3.2. Efficient Adversarial Example Generation

In this section, we propose two approaches to generate adver-
sarial examples based on greedy algorithms and zeroth-order
methods.

3.2.1. Greedy Topology Attack

We fix node attributes X and only consider edge perturbations
as the adversarial attack. We find the perturbed adjacency
matrix A’ to minimize the negative of training loss

—L(f(A W, X, yr))
subjectto A’ € C.

minimize
A/

3)

Next, we introduce our Greedy Topology Attack (GTA) in
Algorithm 1 which is able to handle discrete constraints.

Algorithm 1 Greedy topology attack (GTA)
1: Input: graph G = (A, X), number of maximum edges
can be changed M, greedy search step n, label y,

: Output: Modified adversarial adjacency matrix A’

A+ A

R+ 10

. while || A" — Aljo < 2M do

> Compute gradient of Eq. (3)

gar < VaL(f(A W, X, yr))

S+ V4o (-24+1)

e < top n elements in S if they are not in R

A’ « remove or insert edge e from/to A’

R < add e in record R

: end while

. return: A’

R RN

—_ = = =

To satisfy the symmetric attribute of A, we only perturb
the upper triangular part of the matrix A and replicate it to
the lower triangular part. This is the reason that in Line 4
we have 2M. In Line 6, we compute the gradient over A’ of
Eq. (3). In Line 7, we conduct element-wise product between
the gradient g4+ and a flipped adjacency matrix (0 becomes
1, and 1 becomes -1). This step actually help us express the
edge that can be removed or inserted from/to A’ also with the
gradient value. In Line 8, we speed up the greedy search pro-
cess. By calculating the g4/ once, we select at most n edges
to be changed in A’, this improvement accelerate the whole



attacking method around n times. The sensitivity between
the attacking performance and choice of n will also be shown
in experiment part. Line 9 records all the modified edges to
avoid sometimes change repeatedly.

Overall, our attack method utilize the gradient informa-
tion but also satisfies the strict constraints compared to the
conventional gradient descent methods. The proposed greedy
search step also helps in terms of the convergence speed.

3.2.2. Zeroth-Order Greedy Topology Attack

Note although during training stage, we usually use sparse
matrix to store A, when optimizing graph over A’, g4 may
be very dense, so that even efficient method like GTA may
not be feasible to extremely large graph. Thus, to further im-
prove the efficiency of GTA, we also address the expensive-
ness of obtaining gradient issue via zeroth-order methods. As
an extension to our GTA method, we propose Zeroth-order
Greedy Topology Attack (ZO-GTA) to improve the feasibility
on large graph. We summarize our ZO-GTA in Algorithm 2.

Algorithm 2 Greedy topology attack (GTA)

1: Input: graph G = (A, X), number of maximum edges
can be changed M, greedy search step n, label y,
Output: Modified adversarial adjacency matrix A’
A — A
L) « training loss £(A"; W, X, yr1.)
t1
while | A" — Al < 2M do
A’ < random choice n elements in A" and flip them.
L' <+ training loss L(A; W, X, yr.)
if L' > L'~! then
continue
else
A’ + flip again the n elements in A’
13: end if
14: end while
15: return: A’

R e A A o

— = =
M e e

Intuitively, we continuously check randomly flipped n
nodes to see whether they can help us maximize £ or not. If
yes, we keep the n nodes flipped, otherwise, we try this pro-
cedure again. The ZO-GTA evade to calculate the gradients
in problem 3 and preserve the discrete nature of A’ as well.

3.3. Algorithm for GNN Adversarial Training

With the aid of our effective attack methods, the robust train-
ing for GNNs (see (2)) will be solved in this section.

Note that the inner maximization problem in (2) is ex-
actly same as Eq. (3). Thus, our GTA methods can approx-
imate this inner optimization. For the outer minimize func-
tion, we follow [2] by using gradient descent to update W.
This formulation aims to minimize the training loss for the

worst case topology perturbations. We summarize our robust
training method for GNNs in Algorithm 3.

Algorithm 3 Robust training for solving problem (2)

1: Input: graph G = (A, X)), number of maximum edges
can be changed N, greedy search step n, learning rates
0, and iteration numbers 7', label y,
Output: W
randomly initialize W (%)
fort=1,2,...,7T do
inner minimization over A”: given W
GTA (3) and obtain A’
6: outer maximization over WW: given A’, obtain

(=1 running

W=Ww'" - BVw LA, W X )

7. end for
8: return W

Note that this robust training algorithm is general enough
to accommodate any existing attack method as long as con-
straint A’ € C in the inner minimization step is satisfied. For
example, one can replace GTA with ZO-GTA or CE-PGD at-
tack [11] in Algorithm 3 to get different variants of robust
models. Different attack methods will results in robust mod-
els with different degrees of robustness.

4. EXPERIMENTS

4.1. Experimental Setup

In this section, our experimental results are presented for
both GTA and robust training on graph convolutional net-
works (GCN) [2] on three popular datasets: Cora, Citeseer
and Pubmed [16]. The datasets statistics are summarized in
Table 1.

Table 1. Dataset statistics summary [17]

Dataset ‘ Nodes (N) Edges Classes Features
Cora 2,708 5,429 7 1,433

Citeseer 3,327 4,732 6 3,703

Pubmed 19,717 44,338 3 500

We demonstrate the misclassification rate (namely, 1-
prediction accuracy on unseen test nodes) of the proposed
GTA and ZO-GTA method. To provide reliable results, we
repeat these experiments 5 times based on different splits of
training/testing nodes and report mean + standard deviation
of the performance. We follow [14, 11] where for test nodes’
predicted labels (not their ground-truth label, generate by an
independent pre-trained model) can be used during the attack.
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Fig. 1. Misclassification rate (in %) of GTA/ZO-GTA on Cite-
seer/Cora datasets vs n. n is choosing from 0.01NV to 0.2]V.

4.2. Attack Performance

As we mentioned in Section 3.2.1 and 3.2.2, the hyper pa-
rameter n affects the speed and the performance of our fi-
nal model. First we fix M = 0.05N in each dataset. Next,
we conduct the experiment by searching n € [0.01N,0.2N]
which means we attack a graph by around 5 to 100 iterations.
The results are shown in Figure 1. As we can see, the misclas-
sification rate drop as n increases. However, the smaller the
n is, more iterations we need to execute the attack. Also, we
can conclude that GTA preforms better than ZO-GTA. This is
intuitive as ZO-GTA is an approximate scheme as compared
to GTA which use gradient information. Therefore, in the
following experiments we set n = 0.05/N. We compare our
GTA and ZO-GTA methods with DICE (‘delete edges inter-
nally, connect externally’) [18], CE-PGD and CW-PGD [11].
We follow the hyper parameters and experimental settings as
given in in [11] for a fair comparison. The attack results and
run time are reported in Table 2 and Table 3, respectively.

Table 2. Misclassification rates (in %) of GTA, ZO-
GTA, DICE, CE-PGD and CW-PGD over Cora Citeseer and
Pubmed datasets. No result means that the method is not fea-
sible for this dataset.)

‘ Cora Citeseer Pubmed
Clean ‘ 182401 289403 169+0.5
GTA 25.8+0.1 352+0.1 193+04
ZO-GTA | 249+0.3 33.1+0.3 188405
DICE 189+0.3 298+04 17.44+0.6
CE-PGD | 28,0+0.1 36.0+0.2 -
CW-PGD | 278 +£04 37.1+0.5 -

It can be clearly seen that GTA and ZO-GTA perform
competitively with gradient methods, i.e., CE-PGD and CW-

PGD and yield significantly better computational efficiency.

Table 3. Running time (in seconds) of GTA, ZO-GTA, DICE,
CE-PGD and CW-PGD over Cora Citeseer and Pubmed
datasets. No result means that the method is not feasible for
this dataset.

| Cora  Citeseer Pubmed

GTA 37+1 361 109 £5

7Z0-GTA 19+3 21+3 43 +5
CE-PGD | 147 +4 144+4 -
CW-PGD | 151 +£5 142+2 -

4.3. Defense Performance

We next show the improved robustness of GCN by lever-
aging our proposed robust training algorithm against differ-
ent topology attacks. We set 7' = 1000, 5 = 0.01 and
M = 0.05N. We evaluate Algorithm 3 on Cora dataset to
compare it with [11]. GTA is used to solve the inner maxi-
mization problem since it yields better misclassification rate
comapred to ZO-GTA. To test the robustness of the models,
we use both GTA and CE-PGD attacking methods to attack
them. Results in Table 4 show that the GTA based robust
training is competitive with CE-PGD based robust training.
However, recall the results in Table 3, GTA is much more
computationally efficient than CE-PGD which helps our GTA
method to handle time sensitive tasks and massive graphs.

Table 4. Misclassification rates (in %) of two robust training
methods against GTA and CE-PGD attack on Cora dataset.
‘clean-’ means test without attack.

‘ GTA training CE-PGD training

clean-nature | 18.240.1

clean-robust | 18.1+0.2 18.0£0.3

GTA attack 20.4+0.3 20.8+0.4
CE-PGD attack | 22.7+3 22.0+0.2

5. CONCLUSION

In this paper, we first introduce two GNN attacking method
GTA and ZO-GTA based on the greedy search and zeroth-
order algorithms. The proposed approaches are shown to be
competitive with state-of-the-art attacks. Next a general and
efficient framework of robust training on graph neural net-
works is proposed. Our experimental results show that the
proposed robust training method is significantly computation-
ally less expensive while achieving high robustness to various
adversarial attacks. This makes them an potentially viable
candidate to handle large-scale and time sensitive problems.
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