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Abstract—Profiling the archival storage system in scientific
computing environments has received much less attention com-
pared to the parallel file system, but is equally important since
it stores the final data products safely, for a long duration.
In this paper, we analyze eight years worth of data transfer
logs for accessing the archival file system (HPSS) in the Oak
Ridge Leadership Computing Facility (OLCF), which has been
hosting the world’s largest supercomputers and file systems. Our
analysis encompasses about 135 million data transfer activities to
the 80 PB High Performance Storage System (HPSS), between
2010 and 2017. We analyze the logs from several dimensions,
including studying the workload characteristics (e.g., access pat-
terns, frequency of accesses and temporal behavior), file system
characteristics (e.g., directory depth, file system scaling trends,
file types), and scientific user behavior (e.g., domain-specific usage
and organization). Based on the analysis, we derive insights into
the future evolution of the archive in terms of provisioning,
desired features and functionality from the archive software,
role and right sizing of the archive tiers, quota management,
and the importance of smart and efficient metadata and storage
management. We believe our study will prove useful for both
operating current archival storage and the better provisioning of
future systems.

I. INTRODUCTION

The unprecedented advances in computing technologies,
such as multi-core processors, high bandwidth memory, accel-
erators, and fast networking, have enormously escalated the
computing capability of supercomputers [1]. Evidently, the
average High Performance Linpack (HPL) score of the five
fastest supercomputers has increased by almost five times in
the last five years, i.e., from 17.5 Pflop/s in June 2014 to
84.2 Pflop/s in June 2019 [2]. This massive computing power
has led supercomputers to produce ever more output data
from large-scale scientific simulations [3] and data intensive
applications [4], imposing higher performance and capacity
demands for HPC storage systems. Consequently, HPC storage
systems have not only grown in scale, but also become more
complex in architecture by introducing newer storage tiers,
in addition to the standard parallel file system (PFS) and the
archival storage. These include tiers such as the burst buffer
and the campaign storage system [5], [6].

However, despite such richness in the deep-storage hierar-
chy, the primary role of the archival storage system remains
steady, i.e., the last resort to persist invaluable scientific
outcomes at the bottom of the storage hierarchy. For example,
at the Oak Ridge Leadership Computing Facility (OLCF) [7],
which is home to the Summit system (No. 1 in the Top500
list [2] with 148 Pflop/s and deployed in 2018), the Titan

system (No. 12 in Top500 with 17.59 Pflop/s and deployed
in 2012) and several other analysis clusters, the High Per-
formance Storage System (HPSS) [8] has been constantly
supporting the data archive and backup requirements from
diverse science projects for more than two decades. During
this time, more than 10 supercomputers and PFSs have been
deployed at OLCF. This demonstrates the indispensable role
of the archival storage system. Therefore, we believe that
understanding the workloads of the archival storage system,
or archival workload1 hereafter, is essential not only for
operating the current archival storage system, but also for
designing, developing, and deploying future HPC storage
systems. Unfortunately, however, relatively less attention has
been paid in understanding the archival workload compared to
the PFS I/O workloads [9], [10] in HPC centers. A few prior
reports on production HPC archival workloads do not provide
comprehensive and general insights due to their insufficient
sample periods [11], specialized system environments [12], or
moderate system scales [13].

In this paper, we have analyzed eight years worth of
data transfer log records, from 2010 to 2017, of the HPSS
archival storage system in OLCF, one of world’s largest HPC
supercomputing centers. Specifically, we have analyzed more
than 130 million data transfer activities that 1537 active system
users from diverse scientific backgrounds triggered. Further-
more, during our sample period, the OLCF was operating two
top supercomputers, i.e., Jaguar [14] (No. 1 in 2009 with 1.75
Pflop/s) and Titan [15] (No. 1 in 2012 with 17.59 Pflop/s), and
had performed multiple major upgrades to its centralized PFS,
Spider [16], [17]. From our analysis, we found that the HPC
archival workload exhibits its own distinctive characteristics,
while also sharing some characteristics with enterprise backup
workloads [18]. For instance, almost 40% of the incoming
requests to the OLCF archival storage system were read
requests, significantly higher than the observation from the
enterprise backup storage system [18].

Contributions

We summarize our contributions in this paper as follows.
• We have analyzed eight years worth of data transfer logs

from the production archival storage system running in one
of the world’s largest supercomputing centers. This analysis

1This paper uses the term, archival workload, to indicate all incoming
workloads to the archival storage system for backup and archival purposes.
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Fig. 1: An architectural overview of storage systems in Oak Ridge Leadership Computing Facility (OLCF) [7]. In addition to OLCF system
users, external users from other institutions can also utilize HPSS for storing diverse scientific outcomes, such as large-scale simulation
results and measurement data from scientific observatory devices.

Name FS Capacity Backup Retention Purpose
Spider III GPFS 250 PB No 90 days Scratch
Spider II Lustre 30 PB No 90 days Scratch
Home NFS 56 TB Yes No User Data
HPSS HPSS 160 PB N/A No Backup

TABLE I: Different file systems in OLCF [7]. This table reports
the file system status in early 2019. When a retention period (the
Retention column) is associated with a file system, i.e., Spider III
and Spider II, the system automatically purges files that have not
been accessed for the retention period to keep enough free space.

period is the longest, to the best of our knowledge, in a
scientific computing environment.

• In addition to analyzing incoming and outgoing data transfer
activities, we have also inferred the file system characteris-
tics, e.g., the number of files, directory depth, etc., from the
data transfer logs.

• Besides immediate insights to the archival storage system
itself, we also provide deeper insights from a whole system
design perspective by associating our analysis with other
system components, i.e., the PFS and system users.

• Lastly, our analysis provides valuable insights not only for
better operating current archival storage systems but also for
designing and provisioning future archival storage systems.
The rest of the paper is organized as follows. In § II, we

explain the storage system architecture in OLCF, particularly
focused on the HPSS archival storage system. We then provide
an overview of our analysis methodology in § III, followed by
the analysis results in § IV. We further summarize the insights
from our analysis results in § V. After discussing related work
in § VI, we conclude the paper in § VII.

II. BACKGROUND

This section provides an architectural overview of our
target system environment, focused on the storage system
architecture.

A. OLCF Storage System Architecture

Figure 1 shows the overall architecture of the OLCF [7].
The computing resources in OLCF include the world’s most
powerful supercomputers (Summit [19] and Titan [15]) for
running large-scale scientific simulations, and additional com-
puting clusters for data analysis and visualization of the data
emanating from the simulations. To facilitate a continuous
workflow between the computing resources, OLCF provides

COS Small Medium Large Huge
File Size - 16 MB 16 MB - 8 GB 8 GB - 1 TB 1 TB -

TABLE II: Predefined Class of Service (COS) groups based on
file size. HPSS internally implements differentiated data management
policies, e.g., the number of copies, based on the COS values.

centralized PFSs [20], i.e., GPFS-based Spider III and Lustre-
based Spider II, and all clusters can access these file systems
via consistent namespaces. Furthermore, a separate NFS file
system hosts user home directories. Note that Summit and
Spider III have been deployed in 2018, after the eight-year
period of this study (from 2010 to 2017). Each of the afore-
mentioned file systems implements its own quota and purge
policies to assure sufficient performance and capacity [21],
as shown in Table I. Therefore, for long-term data retention,
users voluntarily need to move their data to High Performance
Storage System (HPSS) [8], an archival storage system. This
indicates that HPSS accumulates invaluable scientific data
products, which users deem worthy, at the very bottom of
the storage hierarchy. All data transfers between HPSS and
other file systems are recorded by Resource Allocation and
Tracking System (RATS) [22], along with other resource usage
statistics. Table I summarizes notable characteristics of the file
systems in OLCF.

B. HPSS Archival Storage System

The HPSS archival storage system was first deployed at
OLCF in 1997 and currently stores over 80 million files in
its 160 PB available capacity. As depicted in Figure 1, HPSS
internally consists of a disk cache tier and a tape tier. In 2017
(the last year of our sample period), the capacity of disk and
tape tiers were about 20 PB and 160 PB, respectively.

When a file enters into HPSS, HPSS first stores the file in
the disk cache and asynchronously copies down to the tape
tier 2. HPSS also assigns a Class of Service (COS) value to
each file, which it references for differentiating management
policies, such as the number of copies of a file and the victim
selection in the disk cache tier. Currently, HPSS automatically
assigns a COS based on the file size (Table II), but users
can manually specify the COS for limited purposes, e.g.,
providing hints to HPSS. All file system and internal metadata
are kept in a DB2 relational database [23] using dedicated
SSDs. At OLCF, instead of a standard mountpoint, HPSS

2We do not include the internal data migrations inside HPSS in our analysis.



provides users with dedicated command line tools, hsi and
htar [20], for migrating files. htar provides a familiar tar-like
interface, and hsi features more comprehensive functionalities,
e.g., controlling COS, parallel transfer, etc [24]. Most users
prefer to access HPSS via a PUT/GET interface, similar to
using object storage systems [25], although hsi also supports
a POSIX interface. HPSS is accessible only from certain
login nodes and dedicated data transfer nodes (DTN). For
transferring Large and Huge files (Table II), HPSS exploits
dedicated transfer agents (eight physical nodes) in parallel.

In addition to the output files from OLCF computing re-
sources, HPSS also stores data from a number of experimental
and observational facilities, as shown in Figure 1. In particular,
HPSS at OLCF stores the Atmospheric Radiation Measure-
ment (ARM) project [26] data, and continuously stores climate
measurement data from atmospheric measurement observato-
ries. Currently, the ARM data files occupy about 3% of the
total used capacity in HPSS. For periodic migration needs,
scientists often write scripts that automatically move data to
HPSS [27]. However, we could not positively identify such
automated workloads from our log records.

OLCF also allows limited accesses to HPSS from exter-
nal institutions, such as JGI and NERSC [28] as shown in
Figure 1, via Globus [29] and GridFTP [30]. However, such
external data transfers accounted less than 1%, and we do not
include them in this study.

C. Archival Data Transfer Logs

As discussed earlier (§ II-B), the most dominant method for
OLCF users to access the archival storage system is through
hsi and htar command-line utilities. OLCF has been recording
all data transfer operations from those command-line utilities
in a dedicated relational database [22]. From this database,
we have exported all data transfer log records from/to HPSS,
inclusively between 2011 and 2017, into a separate relational
database for our analysis. After discarding irrelevant columns,
each transfer record consists of 11 columns in our database,
as shown in Table III. The final database contains 135 million
records. In addition to the data transfer logs, we have also used
other available system information, e.g., the UNIX user list, as
necessary. For our analysis, we use MariaDB-5.5.56 running
in a single server with eight cores (Intel Xeon E5-2609) and
256 GB RAM. We have created a dedicated XFS volume atop

Column Description Example
DATE Data and time of operation. 2017-05-16 02:24:31
HOST Host where operation is triggered. host.ornl.gov
UID System user id. 8951
ACCNT User account affiliation. NCCS
TYPE Operation type. PUT
SPEED Observed bandwidth in KB/s. 200000
AGENT Access method. HSI
SIZE Data transfer size. 150000
COS Class Of Service, internal policy. 1
SRC External source pathname. /lustre/user/file.dat
DST Internal pathname in HPSS. /home/file.dat

TABLE III: The data transfer record schema and example that we
use for analysis.

File System Characteristics (§ 4.2) Scientific User Behavior (§ 4.3)

Workload Characteristics (§ 4.1)

- Utilization of the archive
- File organization
- Domain-specific archive usage

- Monthly, daily, and hourly access patterns
- Repetition in file access
- Temporal access pattern

- File system scaling patterns
- File size and type trends
- Directory hierarchy

Fig. 2: Overview of analysis dimensions in this paper.

a 240 GB SSD to store the database. The final database size
was 35 GB including all indices.

III. ANALYSIS OVERVIEW

In this section, we present the goals that guide our analysis
of archival data transfer logs. By analyzing the archival data
transfer logs, we specifically aim to gain insights on the
following aspects.

Archival workload characteristics (§ IV-A): Compared to
business and enterprise environments, we notice that relatively
less attention has been given to the archival workload in
scientific computing or HPC environments. Therefore, in this
study, we aim to discover distinctive characteristics in the
scientific archival workload by analyzing the data transfer log
records from one of the world’s largest HPC centers.

File system characteristics (§ IV-B): Archival data trans-
fer logs describe data ingress or egress operations, but do not
directly depict the file system status. However, they capture
more than 99% of the activities within the archival file system,
and therefore, allow us to confidently infer the incremental
evolution of the file system status, e.g., number of files, file
size, directory depth, etc., during our sample period. Such in-
formation, over a period of time, can help file system designers
and developers pay attention to key metadata attributes.

Scientific user behavior (§ IV-C): It has been reported
that the status of the PFS in the scientific computing centers
is heavily influenced by the unique behavior of the scientific
users [10]. We aim to complement such an observation by
analyzing the scientific user behavior on HPSS and how it
shapes the archive.

The storage system architecture in scientific computing
environments is rapidly evolving by layering new storage tiers,
such as burst buffers and object-based storage systems. An
important objective of our analysis is to draw useful insights
for provisioning future archival storage systems. Therefore,
throughout the paper, we provide such insights as observations
from our analysis results.

IV. ANALYSIS RESULTS

We now report our analysis results based on the goals
(§ III), specifically, workload characteristics (§ IV-A), file
system characteristics (§ IV-B), and scientific user behavior
(§ IV-C).

A. Archival Workload Characteristics

1) Trends in Overall Access Patterns: Figure 3(a) and
(b) depict the monthly-aggregated operation count and size,
respectively, based on the operation type, i.e., PUT or GET,
that occurred in OLCF HPSS between 2010 and 2017. In
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(a) The monthly aggregated count of operations.
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(b) The monthly aggregated size of operations.

Fig. 3: The monthly aggregated count and size of data transfer operations (PUT and GET) occurred in the OLCF archival storage system
between 2010 and 2017. We observe a sudden spike in the operation count in 2010 April due to the deployment of the Spider II file system.

contrast to the PFS profiling result [10], where we could
observe the positive increasing trend over time, the increasing
trend in HPSS is relatively steady and less obvious. However,
we notice sporadic spikes in the PUT count (Figure 3(a)) in
2012 and 2017. In particular, the monthly aggregated PUT
counts between April (4.7 million) and May (3.6 million) in
2012 are noticeably higher (×5.5 and ×4.3, respectively) than
the average of the monthly PUT count (826,446). This sudden
increase was triggered by the deployment of a new super-
computer, Titan [15], and a PFS, Spider II [17]. Specifically,
users transferred their files from the old PFS, Spider I [16],
to HPSS for migrating to the new computing environment.
However, we also note that the aggregated size of such files
were not particularly huge enough to mark a similar spike in
the operation size (Figure 3(b)). In contrast, the spikes of
PUT counts in 2017 (Figure 3(a)) are not attributed to system
changes, but triggered solely by users. Interestingly, such
increases in the operation count do not always directly lead to
a corresponding increase in the operation size. For instance,
the maximum aggregate size of PUT is observed in February
2017, but the PUT count of the same month (519,676) is
below the overall average (551,399). Not surprisingly, PUT
operations surpass GET operations both in count and size, i.e.,
PUT exhibits 61% and 68% of overall operation count and
size, respectively. While this PUT (or write)-dominant trend
is similar to the previous observations from enterprise backup
storage systems, we observe a significantly higher GET (or
read) ratio in our system, i.e., 39% of all operations, almost
×4 more than enterprise systems [18]. Moreover, our GET
ratio also far exceeds recent observations from other scientific
institutions, e.g., 12% in National Center for Atmospheric
Research (NCAR) [31].

Observation 1. Besides sporadic workload spikes, the growth
of system resources, i.e., supercomputers and PFSs, directly
lead to an increasing use of the archival file system. Since
archival storage investments are for a much longer duration

than the typical lifecycle of a single supercomputer or a
PFS, the archive needs to be provisioned (or designed to be
easily upgradable) to accommodate such scenarios in order
to guarantee long-term performance.

Observation 2. Despite sharing the same PUT (or write)-
dominant trend, the OLCF HPSS exhibits about 30% higher
GET (or read) requests, i.e., about 40%, compared to enter-
prise backup file systems, i.e., about 10%. This implies that
the archive needs to optimize for both writes as well as reads.

2) Daily Operations: Next, we investigate the daily data
transfer trend. Figure 4 presents the daily aggregated operation
counts ((a) PUT and (b) GET) and sizes ((c) PUT and (d)
GET). Overall statistical summaries of both operations are
also shown in Figure 4(e) and (f). The daily count and size
of both operations remain steady except for sporadic spikes.
The spikes occur more frequently in the last half of the sample
period, i.e., between 2014 and 2017, particularly for PUT oper-
ation. For instance, during our eight-year sample period, there
exist 15 days that have more than 500,000 PUT operations, and
13 of the 15 days occurred between 2014 and 2017. January
27th in 2017 recorded the highest 1.15 million PUT operations.
However, we do not observe any significant increasing trend
during our sample period. For instance, the Pearson correlation
coefficient 3 values of PUT and GET counts are respectively
ρ=0.06 and ρ=0.13, indicating that no consequential trend
exists between the operation count and time. Similarly, PUT
and GET sizes do not exhibit any correlations, i.e., ρ=0.06
and ρ=0.23, respectively. Interestingly, our observation from
the archival file system is different from the PFS, where an
apparent increasing trend was observed over time [10]. Further,
from the summary tables (Figure 4(e) and (f)), we notice that

3The Pearson correlation coefficient, ρ, is defined as covariance of the
variables (e.g., X and Y ) divided by the product of their standard deviations,
i.e., ρ =

cov(X,Y )
σXσY

. A ρ value (ranging between -1 and 1) close to 0 indicates
that no significant linear correlation is found.
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PUT Mean 50th 75th 95th 99th Max.
Count (×1000) 28.4 10.2 23.8 105.1 309.8 1,154.7
Size (TB) 26.4 19.9 33.0 69.5 160.9 301.6

GET Mean 50th 75th 95th 99th Max.
Count (×1000) 18.3 8.0 18.3 67.8 192.4 626.8
Size (TB) 12.6 8.3 15.1 39.0 80.8 251.9

(e) Distribution of daily PUT operations. (f) Distribution of daily GET operations.

Fig. 4: A summary of daily data transfer operations in the OLCF HPSS system. The µ values in (a)-(d) denote the annual average of the
corresponding year. Although we do not observe any significant increasing trend in both operations, spikes in count and size occur more
frequently between 2014 and 2017, i.e., the last half of the eight-year period.

the distributions of daily operations are heavily skewed. For
instance, for eight years, the average count of the daily PUT
operation is about 28,400, but the maximum daily PUT count
was over a million, ×40 higher than the average. Daily GET
operation exhibits a similar trend, i.e., the maximum count is
about ×34 higher than the average.

Observation 3. The daily operations in the OLCF HPSS
exhibits a heavily skewed distribution both in count and size.
The maximum daily requests of PUT and GET are about ×40
and ×34 higher, respectively, than the daily average requests.
This also makes the case for some over-provisioning of the
archive to cater to peaks (e.g., more data movers to satisfy the
requests, more metadata servers, etc.) and not simply catering
to perceived averages.

3) Hourly Operations: Production systems oftentimes re-
quire downtimes for various maintenance purposes, such as
software updates. It is important for system administrators to
choose an appropriate downtime to minimize the impact on
system users. To this end, we report the hourly access pattern
of HPSS, as an operation heat map in Figure 5. As mentioned
earlier (§ IV-A1), the relative higher activity in 2012 was
caused by the system migration. Besides 2012, it is noticeable
that the users have utilized HPSS more in recent years, i.e.,
between 2015 and 2017. Furthermore, between 2015 and 2017,
it is perceptible that access to the HPSS becomes relatively
less frequent in the early morning time, i.e., between 4am
to 10am. This result suggests that the early morning time is
most appropriate for administrators to perform maintenance
tasks on HPSS. We have also performed a similar analysis to
observe the system idleness based on the day of the week.
Not surprisingly, HPSS activities were noticeably diminished
on weekends.

Observation 4. The user access to HPSS is most idle in the
early morning time, which can be an appropriate timeslot to
perform maintenance tasks.
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Fig. 5: Operation heat map with respect to the hours of day. The
brighter cells indicates that relatively more user accesses took place
in the corresponding timeslot.

Access Mean 50th 75th 95th 99th Max.
PUT 0.260 0 0 0 2 34,230
GET 0.775 0 1 4 8 16,057
ALL 0.770 0 1 3 9 34,230

TABLE IV: Per-file access frequency in the OLCF HPSS system
between 2010 and 2017. Less than 1% of the 23.5 million files have
been accessed more than 10 times, after the initial creation.

4) Repetition in File Access: Next, we analyze how re-
peatedly files are accessed in HPSS. We perform the analysis
with the destination pathnames in the transfer log. Specifically,
we have created a separate database and populated it with
transfer records that have a complete destination pathname. In
addition, we exclude transfer records of accessing old files,
i.e., files created before 2010, in this analysis. Consequently,
our new database consists of 23.5 million distinct files and 48
million operations (about 30 million PUT operations) to them.
Table IV summarizes how repeatedly the files are accessed
after their creation. It is clearly noticeable that the access
frequency is extremely skewed regardless of the operation
type. Specifically, 67% of the files (about 16 million files) have
never been accessed again after their initial creation, while less
than 1% of the files (286,635 files) have been accessed more
than ten times during the eight year period. Such a low re-
referencing ratio is not surprising, considering that the primary
role of the archival storage system is to recover data from a
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Fig. 6: The temporal access pattern of the 286,635 frequently
accessed files in the OLCF HPSS storage system. Users tend to access
the frequently accessed files through a single operation type, i.e.,
either PUT or GET, within 100 days of the initial file creation.

disastrous loss. However, around 33% of the files have been
read at least once after creation, which indicates the need
to optimize the read path in addition to the write path as
mentioned earlier.

Observation 5. Files that are repeatedly accessed are ex-
tremely rare, i.e., less than 1% of all files, in the OLCF HPSS.
This provides a reasonable estimation to determine the disk
cache size. It is particularly important to base the disk cache
on such measured metrics instead of ad hoc provisioning,
which is the current state of practice. Overall, the OLCF HPSS
had a 33% recall rate.

5) Operation Type for Frequently Accessed Files: To inves-
tigate the operation type for the 286,645 frequently accessed
files (IV-A4), we now define the operation purity as a ratio
of a dominant operation type, i.e., PUT or GET. We calculate
the operation purity for each of the frequently accessed files,
then negate the purity value if the dominant operation type
is PUT. Figure 6(a) depicts the operation purity values of
the frequently-accessed files, sorted in descending order. We
observe that a single operation type dominates accesses to
these files. For instance, the most frequently accessed file
(34,230 times) has been accessed only through repetitive PUT
operations. We suspect that certain users repeatedly archive
their data files using the same name. From Figure 6(a), we
also notice that the 72% of overall accesses to the frequently
accessed files is through the GET operation, indicating that,
in HPSS, there exist a small number of files that users keep
accessing. Furthermore, this observation also provides a useful
hint to design a file management policy. For instance, if a file
is accessed via an operation type, e.g., GET or PUT, after its
creation, the subsequent accesses to the file are likely to repeat
the original operation type.

Observation 6. When accessing frequently accessed files,
users tend to repeatedly use a single operation type, i.e.,
either PUT or GET, suggesting that the system can predict
the future operation type of a file based on its access history.
This knowledge can help with pre-staging optimizations of
the archive, i.e., the HPSS software can employ sophisticated
prefetching techniques.

6) Temporal Access Patterns of Frequently Accessed Files:
We further explore the temporal access characteristics of the
frequently accessed files (IV-A4). The histogram in Figure 6(b)
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Fig. 7: Increase of the number and size of the files in OLCF HPSS.
The number of files has been increasing consistently, i.e., ×1.36 each
year on average. This result does not include directories.

shows the number of days these files are accessed after initial
creation. The histogram bin size is 100 days, e.g., the right-
most bar demonstrates that there exist 428 files whose last ac-
cess were between 2,700 and 2,800 days, i.e., more than seven
years, after their creation. We observe that the last accesses
to 34% of these files (96,455 files) occurred within 100 days
after creation (the left-most bar in the histogram). Also, 64%
of these files (61,967 files) were only accessed for a month,
i.e., 29 days, after creation. This observation can provide
a credible guideline to design an internal data management
policy in HPSS. For instance, it could be reasonable to keep
newly ingested files in the fast tier, e.g., the disk tier in HPSS
(§ II-B), for a month. However, an increase of the file access
duration does not lead to a corresponding increase of the
access frequency. Even after excluding the outliers, i.e., files
that have been accessed more than a thousand times, we could
not observe a strong correlation between the access duration
and frequency (ρ=-0.01). In addition, we have analyzed
the access interval, i.e., the amount of time between two
consecutive accesses to a file. Specifically, we have calculated
the access interval from each access request to the frequently
accessed files (total 8.2 million access requests). We see that
84% of the file accesses to frequently accessed files occur
within five weeks from the previous access request.

Observation 7. Accesses to 64% of frequently accessed files
occur within a month after the file creation. In addition,
when a file is accessed again after its creation, the following
access is likely to happen within five weeks, with over 80% of
probability. Such temporal access characteristics can help to
improve the internal migration policy in HPSS, e.g., a default
retention period of a file in the disk cache, which can help
right size the cache.

B. File System Characteristics

As previously mentioned (§ II), our transfer log records
capture more than 99% of data admissions to the OLCF HPSS
storage system and also contain the pathnames. In this section,
we analyze and report the file system characteristics based on
the pathnames.

1) Number of Files: Figure 7(a) shows the number of newly
created files, excluding directories, between 2010 and 2017.
It clearly shows the increase of new files in 2012 and 2017,
and this result is consistent with the result from the monthly
aggregated PUT operation trend (§ IV-A1). In particular, the



number of new files in 2017 (12 million) is ×2.6 higher
than the average of prior years (4.5 million). Note that this
increase in 2017 is purely triggered by system users (§ IV-A1).
Considering that users rarely remove files from the archival
storage [12], we can infer that the total number of files has
been steadily increasing over time. This observation is aligned
with our prior observation from the Spider II file system (the
scratch file system in OLCF) [10]. We have also analyzed
the number of parent directories under which new files were
created. The ratio of such directories to files is only about
1% until 2016, and drops down further to 0.5% in 2017.
For instance, over 13 million files were created under 60,386
directories, 222 files per directory on average, in 2017.

Observation 8. The total number of files in HPSS has been
growing consistently, i.e., on average ×1.36 each year. In par-
ticular, the number of new files has sharply increased recently
since 2017. Knowing the growth rate is particularly important
for future projections and provisioning of the storage.

Observation 9. As the number of files grows, users are likely
to create more number of files under a single directory.
Therefore, it is crucial for the HPSS software (metadata layers)
to support huge directories as the file system scale grows.

2) File Size: Next, we analyze the spatial increase of HPSS
utilization. Figure 7(b) shows the storage space occupied by
newly created files between 2010 and 2017, and it is difficult
to find a clear increasing or decreasing trend. On average,
about 8 PB storage space has been incrementally consumed
by new files in each year between 2011 and 2017. However,
we observe that a sudden increase occurs in 2014, when 46%
higher space (11.7 PB) was consumed than the overall average.
In Table V, we further report the size distribution of individual
new files for each year. Notice that the average file size in
2014 is more than double of the overall average. In addition,
we observe that most files are rather small, i.e., more than
75% of the files are smaller than 1 GB, although there exist a
few large files, i.e., 0.02% of files that are larger than 1 TB.
Lastly, we found 320,401 zero-sized files (about 0.7%) that
were created between 2010 and 2017. We infer that most zero
files have been generated by applications and then moved with
other files by users, because we rarely observe descriptive file
names from them.

Mean(G) 50th(GB) 75th(GB) 95th(GB) 99th(GB) Max.(T)
2010 1.46 0.03 0.20 1.83 18.51 11.57
2011 2.09 0.01 0.20 1.85 35.64 10.93
2012 1.18 0.00 0.03 1.13 14.20 15.09
2013 1.63 0.01 0.13 1.90 11.10 94.07
2014 3.77 0.00 0.06 1.63 53.03 60.12
2015 1.30 0.00 0.03 1.24 9.43 26.73
2016 2.51 0.04 0.15 1.97 22.78 44.30
2017 0.83 0.00 0.02 0.24 2.00 102.28
Total 1.57 0.00 0.07 1.17 12.42 102.28

TABLE V: The size distribution of new files in OLCF HPSS. The
distribution is extremely skewed that 75% of the files are less than
1 GB, but there exists a few huge files that are larger than 100 TB.
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Fig. 8: File type popularity in OLCF HPSS. Archival file extensions
(e.g., tar, htar, etc.) and scientific file extensions (e.g., nc, hdf, etc.)
dominate the popularity.

Observation 10. Similar to other file systems, most files in
HPSS are rather small, i.e., 75% of files are smaller than 1 GB.
However, there exists a few huge files, larger than 100 TB.
That is, a small set of large files contribute to the overall
capacity, while a large number of small files contribute to the
total number of files.

3) File Types: Figure 8(a) and (b) shows the top ten popular
file types categorized by the file count and size, respectively.
Not surprisingly, we see many scientific data formats, such
as CDF (cdf ), netCDF (nc), HDF5 (h5 and hdf5), and PyFR
(pyfrs), and archival data formats, such as tar, htar, and gz,
from both results. For the file count (Figure 8(a)), CDF and
netCDF files are dominant, claiming 42.5% of all files (about
19 million files) between 2010 and 2017. Both formats are
widely adopted for storing measurements data in Atmostpheric
and Climate sciences [26], and, particularly, cdf files have
suddenly increased in 2017. Furthermore, compared to the
result from the PFS [10], we observe a higher and steadier
ratio of well-known scientific files throughout our eight-year
period. For instance, around 20% of files have steadily been
nc files without a noticeable fluctuation. We expect that this
is because users tend to migrate only resulting data files from
the PFS to HPSS, and also the measurement data files that are
directly migrated to HPSS, i.e., instead of being moved from
the PFS. For the space consumption (Figure 8(b)), 66% of
the space between 2010 and 2017 was consumed by tar files,
because users oftentimes prefer to combine multiple files into a
single file when moving files to HPSS. We have also analyzed
how many well-known document files reside in HPSS using
the file name extension. In particular, we accounted the number
of files that can be opened by MS office products, i.e., 68 file
extensions that MS office products support, and found that
only 3% of files (1.4 million files) had such extensions.

Observation 11. The OLCF HPSS stores a higher ratio of
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Fig. 9: The directory hierarchy in OLCF HPSS. Both results are
acquired by analyzing the pathnames of newly created files in each
year. Each whisker bar shows the maximum, 75% quantile, median,
25% quantile, and the minimum values, from top to bottom.

well-known scientific files, such as netCDF (.nc) and HDF
(.h5) files, than their ratio that was observed in the PFS.
Since many of these file formats are often self-describing, this
suggests an opportunity to provide advanced services, e.g.,
metadata extraction, for well-known file formats within HPSS.

4) Directory Hierarchy: Now, we analyze the directory
hierarchy from the pathnames of newly created files. First,
Figure 9(a) shows a heavily skewed distribution of the number
of child entries under a single directory, or directory size.
While 75% of directories have less than 35 child entries,
e.g., 35 and 34 entries respectively in 2015 and 2017, we can
also find directories with more than 100,000 child entries. For
instance, we found a directory with 976,726 child entries in
2016, which was populated with output files from a Plasmoid
simulation. In total, we have identified ten directories that
have more than 100,000 child entries, and five such directories
were found in 2017, for storing atmospheric measurement
files. Overall, despite a few huge directories, the directory
size does not exhibit any significant increasing or decreasing
trend during the eight-year period. For the directory depth, we
observe a sudden increase of the maximum directory depth
starting from 2015, as depicted in Figure 9(b). For instance, the
average of maximum directory depth between 2015 and 2017
is more than ×2 larger than the average between 2010 and
2014. However, this skewness of directory depth is relatively
less severe compared to the skewness previously observed in
the PFS [10], i.e., the maximum directory depth in the Spider
II file system was greater than 2000 while more than 95%
directories had a depth smaller than 15.

Observation 12. Although the directory hierarchy has not
significantly changed between 2010 and 2017, extreme cases,
both in the directory size and depth, are frequently observed,
emphasizing the need for efficient metadata management
within HPSS.

5) Top-Level Directories: For OLCF HPSS, users are ad-
vised to organize their files under a few top-level directo-
ries, instead of populating the file system root (‘/ ’). For
instance, /home and /proj are directories, under which users are
supposed to organize user-oriented and project-oriented files,
respectively. In addition, HPSS has dedicated directories for
archiving measurement data files from Atmospheric Radiation
Measurement facilities [26], or ARM hereafter, and a few more
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Fig. 10: The aggregated file count and size of top-level directories
in OLCF HPSS between 2010 and 2017. The files under the /home
directory occupy 62% of the overall capacity utilization.

directories for archiving system log files. Figure 10 shows
the occupancy of each of these top-level directories. /other
occupying less than 1% of overall file count and capacity,
denotes a few special directories for storing system log files,
and ordinary users do not have access to them. Noticeably,
ARM measurement files (/ARM) are dominant in the file count,
populating 70% of all files. The space occupancy of /ARM,
however, is only 3%, while /home (62%) and /proj (35%) files
occupy most of the file system space.

Observation 13. The regular archive of scientific measure-
ment files accounts for 70% of newly created files in HPSS.
However, ordinary system users utilize 97% of the file system
space with their home and project files. While such utiliza-
tion is subjective to different deployments, it does suggest
that differentiated and dedicated management policies can
be associated to each top-level directory for efficient storage
management.

C. Scientific User Behavior

Here, we identify behavioral characteristics of OLCF sci-
entific users in utilizing the archive, focusing on /home and
/proj directories.

1) Utilization of the Archive: We first analyze how actively
scientific users utilize the archival storage system. There
were 1537 system users in OLCF between 2010 and 2017.
Table VI summarizes the number of operations that the users
performed between 2010 and 2017. First, it is noticeable that
the number of active users who accessed HPSS at least once
in the corresponding year has decreased during our sample
period. For instance, only 234 users accessed HPSS in 2017,
only about 35% of the number of active users in 2010. On

Active Per-User Operation Summary Total
Year Users Q1 Q2 Q3 Maximum Operations
2010 651 11 96 2,431 1,744,285 13,742,816
2011 672 8 61 1,125 1,825,637 10,789,079
2012 672 9 63 1,128 3,289,832 20,862,767
2013 640 7 55 1,077 3,053,717 12,033,986
2014 515 9 88 1,733 4,506,538 13,769,468
2015 312 6 53 2,083 4,415,338 18,370,385
2016 298 10 97 2,755 6,838,528 20,341,751
2017 234 7 77 2,289 13,247,520 27,313,737

TABLE VI: Per-user operation counts. Q1, Q2, and Q3 show the
25%, 50%, and 75% quantile values, respectively. Despite of the
decrease in the number of active users, the utilization of individual
active users is becoming higher.
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Fig. 11: The utilization of /home and /proj directories in HPSS. For
each year, (a) depicts the aggregated new file count, and (b) depicts
the aggregated new file size.

the contrary, for eight years, the total operation count has
almost doubled. This suggests that, although the number of
active users is decreasing, the utilization of individual active
users is becoming higher. In fact, the active users in 2017
triggered 116,726 operations on average, ×5.5 higher than the
average operation count in 2010, i.e., 21,111. Next, Table VI
also demonstrates that the distribution of utilization degree is
heavily skewed among the active users. For instance, from
the quantile values (Q1, Q2, and Q3), we observe that 50%
of active users accessed HPSS less than 100 times a year.
However, there also exist users who have accessed HPSS more
than a million times a year. In 2017, for example, a single user
triggered more than 13 million operations, generating almost
half of the total workload in the year. This clearly demonstrates
that the distribution of HPSS utilization among the scientific
users is heavily skewed.

Observation 14. Despite a decrease of active users, the total
workload of HPSS has doubled between 2010 and 2017,
due to a sharp increase in the individual users’ workload.
This implies that more intuitive end-user tools can potentially
improve the utilization of the archive from scientific users.

Observation 15. In OLCF HPSS, while 50% of the users
perform less than 100 operations in a year, a few active
users perform more than a million operations in a year. This
indicates that the current static, per-user quota policy may
deter higher utilization of HPSS. More dynamic and workload-
aware quota management is needed.

2) File Organization: As mentioned above (§ IV-B5),
OLCF users organize files in HPSS under /home and proj
directories. We now analyze how the users populate these top-
level directories. Figure 11 depicts (a) the aggregated file count
and (b) the average file size inside /home and /proj directories
between 2010 and 2017. Note that these results do not include
files that were created before 2010. From Figure 11(a), we
observe that the number of files under /home exhibits a
diminishing trend, i.e., from about 1.8 million in 2010 to
229,461 in 2017. In contrast, for eight years, the number
of /proj files steadily remains under 100,000, indicating that
/home files clearly dominates /proj files in the file count.
However, as shown in Figure 11(b), the average size of /proj
files is noticeably larger than the average file size in /home.
For instance, the overall average of /proj file size is 56 GB,
more than ×10 larger than average size of files under /home

Mean(GB) Min.(GB) Q1(GB) Q2(GB) Q3(GB) Max.(TB)
/home 5.36 0.00 0.01 0.06 0.31 102.28
/proj 56.37 0.00 0.07 0.42 9.80 94.07

TABLE VII: The aggregated summary of file size inside /home and
/proj directories in OLCF HPSS between 2010 and 2017. /proj files
tend to be larger than /home files.

(5 GB), as presented in Table VII. Table VII also suggests that
the ratio of the large files is greater in /proj than the ratio in
/home, i.e., the third quantile value (Q3) of /proj is more than
×30 larger. Specifically, the ratio of large or huge files, i.e.,
files greater than 8 GB (Table II), in /proj is 28%, about ×5
greater than the ratio in /home (5%). This is because most data
products, which can potentially grow large, are produced on
a project basis and thus stored within /proj, while the /home
space is used for storing program code and configuration files,
which are relatively smaller than the data products. In addition,
from Figure 11(b), we observe that average size of /proj files
heavily fluctuates, while it remains rather steady for /home
files.

Observation 16. Overall, /home files surpass /proj files in
count and size. However, on average, the files in /proj are
significantly larger, i.e., more than ×10, than the files in /home.
Therefore, different data management policies can potentially
be implemented and associated to distinct file characteristics
of these directories (similar to the observation in § IV-B5).

3) Domain-Specific Archive Usage: We characterize the
user behavior associated to their science domains. Table VIII
summarizes the major characteristics of files under /proj and
/home, categorized by science domains. The first (/proj files)
and the second (/home files) column groups respectively
present the characteristics of /proj and /home files of the
corresponding science domain. The last column group (Com-
parison) shows dominance ratio, r, which we define as r =
sgn(h− p)max(h,p)

h+p , where sgn is a sign function, and h and
p respectively refers to /home and /proj values. For instance,
rfilecount of Accelerator Physics is 1.00, indicating that almost
100% of Accelerator Physics files have been created in /home
instead of /proj. However, rfilesize (rfilesize=-0.58) shows
that 58% of the space consumption from Accelerator Physics
is accounted from /proj files. Therefore, we can infer that the
Accelerator Physics scientists seldom create files under /proj,
but such /proj files tend to be huge. Overall, rfilecount values
suggest that many science domains, i.e., 14 positive rfilecount
values out of 21, prefer to utilize the /home directory. Further-
more, for 12 science domains, both |rfilecount| and |rfilesize|,
i.e., the absolute dominance ratio values, are greater than
0.9, meaning that either /proj or /home directory has been
almost exclusively utilized. For instance, Aerodynamics and
Atmospheric Science have exclusively utilized /home and /proj,
respectively. Particularly for the file count, except for five
science domains, i.e., Climate Science, Combustion, Fusion
Energy, Materials Science, and Physics, all science domains
exclusively created 90% of their files either in /proj or /home.

For the aggregated file count under /proj, Climate Science
records the highest, i.e., 52% of all /proj files. Interestingly,



/proj files /home files Comparison
Aggregated File Popular Max. Dir. Active Aggregated File Popular Max. Dir. Dominance Ratio (−1 ≤ r ≤ 1)

Science Domain Count Size (TB) File Type Depth Users Count Size (TB) File Type Depth rfilecount rfilesize
Accelerator Physics 1,642 1,763.93 tar, h5 7 26 1,646,896 1,279.86 tar,hdf 15 1.00 -0.58
Aerodynamics 9 0.29 pyfrs, pyfrm 7 64 517,123 1,206.19 nc,f 18 1.00 1.00
Astrophysics 91,302 7,287.53 tar, h5 8 1 45 0.13 h5 3 -1.00 -1.00
Atmospheric Science 1,915 157.33 tar, cpio 8 54 5,260,650 1,832.40 nc,tar 18 1.00 0.92
Bioinformatics 4 0.90 tar 6 10 7336 226.62 bp,tar 13 1.00 1.00
Biology 1,014 5.65 dcd, old 6 4 31,667 171.67 tar,lime 7 0.97 0.97
Biophysics 105 153.23 trr, tar 7 40 190,253 523.04 xyz,out 12 1.00 0.77
Physical Chemistry 82 0.51 gz 5 13 80,113 394.82 tar,lime 7 1.00 1.00
Climate Science 189,952 1,781.07 nc, tar 13 11 156,359 344.54 nc,grb2 8 -0.55 -0.84
Combustion 956 75.97 tar, mpi 16 7 3,016 133.54 tar,trr 8 0.76 0.64
Computer Science 1,155 5,424.09 tar, mpi 8 1 8 46.87 tar,bin 6 -0.99 -0.99
Life Science 301 1.68 tar, dat 4 15 86,609 1,481.35 mpi,tar 10 1.00 1.00
Fusion Energy 39,486 1,212.54 gda, tar 7 9 34,712 1,392.23 png,out 18 -0.53 0.53
Geosciences 9,255 72.41 tar, htar 5 12 305,249 336.67 f,o 10 0.97 0.82
High Energy Physics 86 93.26 tar, hdf5 5 0 0 0.00 N/A 0 -1.00 -1.00
Lattice Gauge Theory 9,219 1,133.09 lime, gz 10 0 0 0.00 N/A 0 -1.00 -1.00
Materials Science 9,709 564.36 tar, dat 8 5 3,021 92.22 gz,trr 8 -0.76 -0.86
Nuclear Physics 6,827 238.01 lime, gz 7 49 232,808 398.17 enc,tgz 13 0.97 0.63
Physics 22 11.14 tar 6 1 67 3.50 tar,gz 5 0.75 -0.76
Staff 199 0.84 tar, mysqldump 5 12 181,692 467.91 tar,lime 12 1.00 1.00
Turbulence 20 0.08 gz, tar 5 8 10,467 650.13 tar,out 10 1.00 1.00

TABLE VIII: The comparison of file characteristics between /proj and /home files, categorized by 21 science domains. The Comparison
column group shows dominance ratio, or r, values of aggregated file count and size. The positive r indicates the dominance of /home files
(blue cells), while negative r indicates dominance of /proj (red cells). The color intensity represents the absolute value of r, i.e., the degree
of dominance.

this result is quite different from our previous profiling result
from the parallel file system [10]. For instance, none of the top
five science domains in the /proj file count, i.e., Astrophysics,
Computer Science, Climate Science, Accelerator Physics, and
Fusion Energy, appeared in the top five list during the PFS
profiling4. Similarly, except for Biophysics, none of top five
science domains in the /home file count, i.e., Atmospheric
Science, Accelerator Physics, Aerodynamics, Geosciences, ap-
peared in the top five list from the PFS profiling5. This
suggests that a heavy PFS utilization does not always lead to
a heavy archival file system utilization. This is because some
science projects, e.g., climate science projects, do not often
require to perform scientific simulations but rely more on the
long-term measurement data archive, resulting in a heavier
utilization of the archival storage system.

The maximum directory depth of a science domain is more
frequently found under /home, but the difference between /proj
and /home is miniscule, i.e., the maximum directory depths in
/proj and /home are 16 (Combustion) and 18 (Aerodynamics,
Atmospheric Science, and Fusion Energy), respectively. In
addition, the maximum directory depths in /proj are rather
moderate, compared to the result from the PFS, i.e., the
median value (Q2) of maximum directory depths of all science
domains is 7 in Table VIII, about one third of the median value
observed in the PFS (Q2=22) [10].

For the file types, archival file extensions, such as tar
and htar, are popular across all science domains both in
/proj and /home. In addition, each science domain utilizes its

4The top five science domains that created the largest number of files in
the PFS was Staff, Biophysics, Computer Science, Physical Chemistry, and
Turbulence [10].

5As shown in § II, the parallel file system only provides /proj areas, while
NFS provides separate user /home areas.

own appropriate file type, e.g., netCDF (nc) files in Climate
Science.

Observation 17. Domain scientists tend to exclusively utilize
one of /proj and /home directories. This usage pattern suggests
that a combined quota policy could be more effective than the
current quota policy, which is applied independently to /proj
and /home.

Observation 18. A higher PFS utilization of a science domain
does not lead to a higher archival file system utilization of
the science domain. This could be because users wish to
retain/curate only the final products of scientific simulations.
Consequently, an HPC center might want to encourage such
behavior by offering users tools to better curate data products
within HPSS instead of indiscriminately moving files to the
archive, e.g., with tools to obtain digital object identifiers
(DOIs) for curated data.

V. DISCUSSION

In this section, we summarize our important findings that
will guide development and operation of the future archival
storage systems in scientific computing environments.

First, observations from our workload analysis (§ IV-A)
indicate that the system provisioning should consider the
maximum workload size instead of relying on the long-term
averages. Specifically, abrupt workload spikes in a day, which
cannot be precisely reflected by monthly aggregated statistics,
have occurred more frequently in recent years. Furthermore,
read requests accounted for 39% of the total requests, sug-
gesting that the archival storage system needs to treat the
read requests equally important to the write requests. In
addition, our analysis on the temporal access patterns provides
a reasonable guideline to establish the adequate size and



eviction policies of the internal disk cache tier. Traditionally,
such design decisions have followed rules of thumb, e.g., a
certain ratio to the overall capacity.

Second, our file system analysis (§ IV-B) reveals the im-
portance of metadata management in the archival storage
system, particularly at large-scale. Not only is the overall
file count continuously increasing but individual directories
are also becoming larger, e.g., million files under a single
directory. Although we cannot precisely quantity the amount of
data from data hoarding, i.e., indiscriminate data migration for
merely avoiding the system-wide purge [32], our observation
of the 33% recall rate (§ IV-A4) suggests that there exist
valuable scientific data in the archive. Therefore, it will be
crucial to provide additional services that can facilitate users
with their data management tasks [33], [34], [35], [36]. Our
file type analysis further suggests that integrating the advanced
data management services within the archival storage system,
e.g., metadata indexing, automatic metadata annotation and
extraction, etc., looks feasible.

Lastly, distinct scientific user behavior (§ IV-C) unveils a
potential limitation of enforcing monolithic storage policies,
e.g., a static quota allowance, to all system users. For instance,
most scientific users exhibit a strong tendency to exclusively
utilize a single storage space, i.e., either /home or /proj.
Likewise, each science domain demonstrates distinct usage
characteristics, suggesting the need for more sophisticated
storage policies, such as dynamic quota implementation and
differentiated storage area management. Particularly, a recently
reported migration of a 2.9 PB dataset from a single science
project [37] in the OLCF HPSS further signifies that traditional
homogeneous storage policies may not be sustainable.

VI. RELATED WORK

Workload characteristics of large-scale networked file sys-
tems have been extensively explored in diverse system envi-
ronments. Earlier studies analyzed the file system traces from
academic file servers [38], [39] and I/O traffic from the CIFS
file system in enterprise environments [40]. In addition, enter-
prise file systems were also explored particularly for studying
the efficacy of deduplication in workstation file systems [41]
and backup file systems [18]. Recent studies also encompass
the workloads from cloud storage environments, e.g., analyz-
ing the similarity in the virtual machine images [42] or usage
patterns in the personal cloud backend [43], [44]. However,
the insights from such studies cannot directly benefit scientific
computing centers due to the fundamental dissimilarities in the
system purpose and architecture.

In HPC environments, the performance of the PFS has been
considered to be lagging the computing performance [45], and
thus I/O traces and snapshots of PFS have been extensively
explored [46], [47], [48], [49], [50], [51]. Recent studies
have also explored the scientific user behavior from PFS
snapshots [10] and the deduplication efficacy in the scientific
data centers [52]. Our analysis of archival file system workload
is complementary to such studies and potentially provides a

deeper insight into understanding the complete storage stack
in large-scale HPC environments.

Compared to the PFS, relatively less attention has been paid
to the archival file systems in scientific computing centers. A
few examples include a study of characterizing various file
systems in different HPC centers [11], which studied archival
file systems from Pacific Northwest National Laboratory and
Arctic Region Supercomputing Center. Another study found
that the access pattern of archival file systems had become
more write-intensive and less frequent, over two decades
between early 1990s and 2010s [53], [13], [54]. However,
the study analyzed the file system snapshot data, which could
not precisely expose the temporal workload characteristics.
In addition, the target file systems in such studies were
substantially smaller, e.g., 1.3 PB at most, than our archival
file system, i.e., 80 PB of used capacity. More importantly, we
have analyzed data transfer logs of eight consecutive years in
one of the world’s largest scientific computing centers.

Lastly, a recent study of the storage system in European
Centre for Medium-Range Weather Forecasts (ECMWF) an-
alyzed the three-year workloads from the 14.8 PB HPSS
file systems [12]. Despite the thorough analysis, the storage
architecture in the study is deeply customized for the spe-
cific purpose of the institution, e.g., object storage database.
Another study of the 30 PB HPSS file system in National
Center for Atmospheric Research (NCAR) revealed distinctive
user behavior, e.g., a substantial ratio of delete operations
(15%) [31], [27]. Similar to ECMWF, NCAR is specialized
to a single science domain, i.e., atmospheric research, and
thus the observations do not comprehensively reflect general
scientific computing centers. In contrast, we analyze the data
transfer activities for a longer period, i.e., eight years, from a
larger archival file system, in a scientific computing center that
facilitates a more diverse range of scientific disciplines [55].

VII. CONCLUSION

In this paper, we have analyzed eight years worth of data
transfer activities in the OLCF HPSS, one of the world’s
largest HPSS deployments. Specifically, we have analyzed
the workload characteristics, file system characteristics, and
scientific user behavior. Our analysis indicates that the archival
storage system in OLCF exhibits unique characteristics in-
cluding the substantial read request ratio and science domain-
specific user access patterns.

We believe our study will offer useful guidelines for op-
erating and designing archival storage systems in large-scale
scientific computing environments.
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