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Abstract. We propose a bilevel optimization approach for the estimation of parameters in
nonlocal image denoising models. The parameters we consider are both the space-dependent fidelity
weight and weights within the kernel of the nonlocal operator. In both cases we investigate the differ-
entiability of the solution operator in function spaces and derive a first order optimality system that
characterizes local minima. For the numerical solution of the problems, we propose a second-order
trust-region algorithm in combination with a finite element discretization of the nonlocal denoising
models and we introduce a computational strategy for the solution of the resulting dense linear
systems. Several experiments illustrate the applicability and effectiveness of our approach.

1. Introduction. Nonlocal image denoising has emerged in the last years as
an important alternative in image processing, due to the fact that it enables the
reconstruction of important image features by considering similar intensity patterns
between pixels or patches in a given spatial neighbourhood or all over the whole
image domain. Although, originally, research was focused on the design of direct non-
local noise filters [41, 42, 44], more complex approaches based on energy functionals
were proposed afterwards for the treatment of the denoising task [21, 22, 29]. This
variational framework enabled the employment of additional modeling and analysis
tools that have been used for image reconstruction tasks in a partial differential equa-
tion (PDE) setting. A similar variational framework is also employed in more recent
works (see, e.g., [2]), where the authors use energies induced by (nonlocal) fractional
differential operators.

Nonlocal denoising operators are characterized by kernels; the use of different
kernels leads to different outcomes, and tuning their parameters is a difficult task. In
recent years bilevel optimization has been successfully utilized for the identification of
optimal parameters in image processing [12,13,26]; this attempt includes analytical as
well as numerical studies, using both finite-dimensional [25, 26] and PDE-constrained
optimization approaches [12,13, 24].

In this paper we aim at extending the bilevel optimization methodology to nonlo-
cal operators with integrable kernels. Similar to previous contributions, we consider
a supervised learning framework and assume existence of a training set of clean and
noisy images we can learn from. Using a variational setting similar to the one de-
veloped in [16] and [19], we analyze the differentiability properties of the solution
mapping and derive necessary optimality conditions of Karush-Kuhn-Tucker type.

To our knowledge, this is the first paper on bilevel optimization for nonlocal op-
erators. In particular, the second part of the paper addresses the problem of nonlocal
kernel identification, now subject of great interest in the nonlocal community, and
provides an alternative to neural-networks-based algorithms [33] [?]. As such, the
impact of this work goes beyond image processing, providing a useful tool in the
context of nonlocal optimization and control for a wide range of applications includ-
ing fracture mechanics [23, 27, 40], anomalous subsurface transport [5, 37, 38], phase
transitions [4,14,20], multiscale and multiphysics systems [1,3], magnetohydrodynam-
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ics [36], and stochastic processes [8,15,31, 32].
The paper is organized as follows. In Section 2 we briefly summarize results of

the nonlocal vector calculus that will be useful throughout the paper and introduce
nonlocal operators for image denoising. In Section 3 we consider a bilevel optimization
approach to optimize the spatially dependent fidelity weight for a general denoising
problem. In Section 4, we introduce and analyze the problem of finding optimal
weights of a nonlocal means kernel. Finally, in Section 5, we introduce a second-order
optimization algorithm for the solution of the bilevel problems and give insights of
implementation aspects and numerical performance. Several numerical tests illustrate
our theoretical findings.

2. Preliminaries in nonlocal imaging. Let Q be a bounded domain in Rd.
We use the standard notation (., •)o,c2 and M . IIH HOP for the inner product and the norm
in L2(Q), the space of square integrable functions on Q.

2.1. Nonlocal vector calculus. The nonlocal models considered in this paper
are analyzed using the nonlocal vector calculus [18]. We recall the basic concepts of
such calculus that will be used in this paper. Given the functions u(x) : Rd —>
and v(x, y) : R d x Rd —> Rd we let a(x, y) = —a(y, x) : Rd x Rd —> Rd be an
anti-symmetric vector function and ry(x, y) = ry(y, x) : Rd x Rd —› R be a symmetric
positive kernel, integrable over Q. We define the nonlocal divergence of v as a mapping
Dv : Rd —> R such that

N

Dv(x) := Ld (,,,y) + v(y, x)) • a(x, y) dy, x E Rd, (2.1)

and the nonlocal gradient of u as a mapping gu : N N I.:such that

gu(x, y) := (u(y) — u(x)) a (x, y), V x, y (2.2)

The paper [18, §3.2] shows that the adjoint D* = —g, as in the local case. The
composition of nonlocal divergence and gradient gives

D(gu)(x) = 2 f
Rd 
(u(y) — u(x)) (a(x, y) • a(x, y)) dy.

With the identification -y(x, y) := a(x, y) • a(x, y) we define the nonlocal diffusion of
u as the operator Lu : d —> N such thatN

Gu(x) := D(gu)(x) = 2 f (u(y) — u(x)) -y(x, y) dy, V x e Rd.
Rd

Then, we define the interaction domain Q./ of a bounded region Q as the set of points
outside of the domain that interact with points inside of the domain, i.e.

Qr = fy e Rd\S-2 : -y(x, y) 0, for some x e Ql.

This set is the nonlocal counterpart of the boundary OQ of a domain in a local setting.
In this work we consider localized kernels, i.e. -y is such that for x E St

{-y(x, y) ?-- 0 V y e BE(x),

-y(x, y) = 0 V y e Rd\BE(x),
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where BE (x) = ly e Rd : ylco el, for all x e S2 and E > 0 is referred to as
interaction radiusl. For such kernels, we can rewrite the interaction domain as

s2I = ty c d \11 : I y x1x, s, for some x E fll.

We define the nonlocal energy semi-norm, the nonlocal energy space and the con-
strained nonlocal energy space as follows

Q
 (voo-v(y))27(x, y) dydx, V v e L2(Q),

SZu I 
f

ZUSZI

V (52 u Oi) :={vE .L2 (S2 L.) 21) :11v1117 < cxD}

17,(52 u Q1) := Iv E V(C2 u : v16 = 01, for some S) c RT.

The paper [18, §4.3.2] proves that for integrable localized kernels as in (2.3) the
constrained energy space K(1/ u Ci1) is equivalent to

0S2 u S2i) := {v L2(S2 u S2/) = 0}

and that II II v — II • IlL2(Q,Q1). Unless necessary, we drop the dependence of V and
Vc on 12 u

Nonlocal volume constrained problems We consider the solution of nonlocal
elliptic problems, i.e. the nonlocal counterpart of elliptic PDEs. Due to nonlocality,
when solving a nonlocal problem, boundary conditions (i.e. conditions on the solution
for x e 7C2) do not guarantee the uniqueness of the solution, which can only be achieved
by providing conditions on the interaction domain RE [18]. As an illustrative example,
we consider the following nonlocal diffusion-reaction equation for the scalar function
u:

(2.4)

—Gu + Au = f x e S2, (2.5)

for some f E L2(52) and A E E0° (S-2) such that A : S2 —> R±. Uniqueness of u is
guaranteed provided the following condition is satisfied [18]:

u = g for x e (2.6)

where g is some known function in the trace space

-17.(C11) = {z :RveV s.t. v1n, = z} .

Without loss of generality, in our analysis we consider g = 0 so that u E VG(S2 u

with ft = S-2/. The corresponding weak form is obtained in the same way as in the
local setting by multiplying (2.5) by a test function and integrating over 11, i.e.

(—Gu + Au — f)v dx = fQ,QI cKsil f gu gv dx dy + f (Au — f)v dx = 0, (2.7)

where the equality follows from the nonlocal Green's identity [18]. Note that, by
definition of g, (2.7) is equivalent to

f (u(x) — u(y))(v(x) — v(y))•-y(x, y) dx dy + f (Au — f)v dx = O. (2.8)
Qus-2,

1Note that, in general, nonlocal neighborhoods are Euclidean bal s. However, the nonlocal calcu-
lus still holds for more general balls such as those induced by the e-infinity norm (see an application
in [10]).
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2.2. Nonlocal denoising formulation. In order to use the nonlocal vector
calculus for image denoising models, we consider the variational viewpoint proposed
in [21] and study the following kernels: for 6 > 0,

• Yaroslavsky kernel:

„yi (x, y) = exp { (f (X) 8
-

2 
f(Y))2 } X (y e BE(x)),

• Nonlocal Means kernel:

-Y2(x, 37) = exp { —p fia2 W(t) (f (X + t) — f(3, + t))2 dt} X (3, E BE(30),

• Combination of the previous two kernels:

-rc (x, 37) = exp 1 — 7( (f (x) — f (3))2

—'7 fR2 4V(t)(f (X + t) — f(y + t))2 dt} X (y E BE(x)), (2.9)82 

where f is a given noisy image and X( E B) is the indicator function over the set B.

In [7] it is shown that nonlocal means presents advantages in presence of textures
or periodic structures, whereas neighborhood filters, e.g. the Yaroslavsky filter, may
perform better for the preservation of particular edges. As a consequence, a kernel that
considers a combination of both contributions, as in (2.9), may provide an increased
denoising capability. We refer to [6] for more details on these and other nonlocal
kernels.

For a given kernel function, we formulate the nonlocal denoising problem as the
following energy minimization problem.

1 „it 2min Au, À) = —114/ + — f2 2 E-1t/EV 

A (./ — f)2 dx, (2.10)

where f E Lc° (Q u Qi) stands for the noisy image and A is a weight that balances the
fidelity term against the nonlocal regularizer. The weight A can be either a (positive)
real number or a spatially dependent quantity.

As an example, for a given noisy image, in Figure 2.1 we report for the nonlo-
cal means kernel the contour lines of a loss function associated with a scalar A and
a scalar weight w. This two-dimensional plot shows the difficulties related to the
optimization, in fact, these complex banana-shaped contour lines are a challenge for
several minimization algorithms, especially first-order ones.
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Fig. 2.1: Contour plot of a loss function for different parameters A and w for the
nonlocal means kernel.

3. Optimization with respect to A. We study the problem of identifying the
optimal spatially dependent A in the "lower-lever denoising model (2.10). First, we
analyze the existence of a solution to the lower-level problem with fixed parameters.
Then, we state the bi-level problem for the identification of the optimal A and study
the differentiability of the solution operator and the reduced cost functional. We also
derive a first order optimality system for the estimation of the optimal parameter.
The case A c N+ is studied at the end of the section as a particular instance.

3.1. Lower-level problem. We recall the energy-based formulation of the non-
local denoising problem:

it

2
min J(u, A) = uIlv + —

1 
f A(x)(u — f)2 dx,

uev, 2 Q

(3.1)

where the energy norm M • 11 v is defined as in (2.4) and, in particular, is induced by
the scalar product

(u, v)17 = J J (u(x) — u(y)) (v(x) — v(y))-y(x, y) dydx
s-2u01 -h_A-2.,-

= 2 fst -2u1-21
(u(x) — u(y))v(x)-y(x, y) dydx, V u, v E V,.

(3.2)

In what follows we refer to (3.1) as the lower-level problem and we study its well-
posedness as well as a necessary and sufficient conditions for the characterization of
its minima.

THEOREM 3.1. For every A e Er(Q), such that A(x) ?.-- 0 a.e., there exists a
unique solution u e V, for the lower-level problem (3.1).

Proof. Since the functional J is bounded from below, there exists a minimizing
sequence lunl c V,. Thanks to the coercivity in V, of the energy term, the sequence
is bounded in Ve; thus, there exists a subsequence, still denoted by {un}, that weakly
converges in 17,, i.e. un, — u*. Since J is convex and continuous with respect to the
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energy norm, it is weak lower semi-continuous. Therefore,

J(u*) lim inf J(un).
n—>oo

The uniqueness of the solution follows from the strict convexity of the functional. 0

We now consider the parameter space U := H1(S-1) n L00(S2) and the admissible
set Uad := E : n(x) 0 a.e.}. For E Uad, a necessary and sufficient optimality
condition for the lower-level problem is given by the nonlocal variational equality

I-1(t t, 0)v + (A(u — f ), 0 = 0, e V,. (3.3)

By choosing = u in (3.3) we have

Mug, + f Au2 = f Afu IIAMH1Mf klIuMop.

Using the equivalence of the energy and L2 norms, we then obtain the following
a-priori estimate

11 740,C2 KIIAMH1(o). (3.4)

We will use this estimate in the analysis of the differentiability properties of the
solution operator.

3.2. Bilevel problem. We consider the following bilevel optimization problem

min
AcC

/3 2
j(72, À) = f(u) + 211Allirl(0)

(3.5)

s.t. u = arg min
ve 

J(u, = —
ue 2 

+ f A(u — f)2 dx,

where the feasible set is C = {A E H1 (ft) : b A(x) 01 is a subset of the control
space U.

The loss function i(u) is assumed to be strictly convex and continuous with respect
to u. The simplest case corresponds to the Peak Signal-to-Noise Ratio-related loss
function Au) := -12- II u uT IFJS2 which arises from a supervised learning framework,

where uT corresponds to the ground truth image and f to the corrupted one. In such
framework, the training set is typically large (i.e. we assume several pairs (uT , f) are
available) and the number of lower-level problems increases accordingly, but analytical
difficulties are the same. For this reason we restrict our attention to a single (uT , f)
pair which corresponds to a single lower-level problem. Alternative loss functions
based on the image statistics have also been recently proposed [24] and may also been
considered in our framework.

THEOREM 3.2. The bilevel optimization problem (3.5) admits a solution e C.
Proof. Since the functional J is bounded from below, there exists a minimizing

sequence {An} c C such that J(20,,), Am) —> J(u(A*), A*). Also, the Tikhonov term
guarantees that this sequence is bounded in Hi(S2). Thus, there exists a subsequence,
still denoted by {an}, that converges strongly in L2.

Let un e V, be the unique (see Theorem 3.1) optimal solution to the lower-level
problem (3.1) corresponding to An. From the stability estimate (3.4) we have that

KMAnk1(o) K,
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i.e. {un} is uniformly bounded in K. Thus, there exists a subsequence, that we still
denote by {un}, that weakly converges in V, (and 4 because of the equivalence of
spaces) to u*. Next, we show that u* = u(A*), i.e. the limit of {un} is the optimal
solution of the lower-level problem corresponding to A*. Formally,

3(u*, A*) -._. lim inf ,7(tin,An)• (3.6)
n—>co

We treat the first two terms in J as we did in Theorem 3.1 for the lower-level problem.
For the third term, we have

f.A* (u* — f)2 dx --.c, lim inf f A* (un — f)2 dx,n—>oo o

which, because of the strong convergence of An in L2 (ft), implies

f.
We conclude that

A* (u* — f)2 dx -._, lim inf f An(un — f)2 dx.
n->00 n

,T(u* ,A*) -.._ lim inf j(u„, An)•n—>oo

0 The strict convexity of the denoising functional implies that the constraint (3.1) has
a unique minimizer and it can be replaced by its necessary and sufficient optimal-
ity condition. We obtain the following nonlocal-equation-constrained optimization
problem:

min E(u) + 
/3 
—2 11 A11,02)AEC

s.t. ji(u, '0)v + Nu — f),O)o,o = CI, VO E Vc,

(3.7a)

(3.7b)

for u e V,. Note that (3.7b) is obtained by taking variations of the lower-level problem;
its well-posedness follows from Theorem 3.1 as well as from the coercivity of the
bilinear form (•, •)v .

3.3. Differentiability of the Solution Operator. In this section we analyze
the differentiability properties of the solution mapping. The presence of the weak norm
in the denoising model, does not allow us to obtain Frechet differentiability results.
Fortunately, first-order optimality conditionsonly require Gâteaux differentiability,
which is proved in the following theorem.

THEOREM 3.3. Let V be an c-neighbourhood containing C and SA: V —> Vc be
the solution operator, which assigns to each A the corresponding solution to (3.7b).
Then, the operator SA is Gateaux differentiable.

Proof. Let h E U, and tit and u be the unique solutions to (3.7b) corresponding
to A + th and A, respectively. For € and t small enough, equation (3.7b) is well-posed.
Throughout the proof, we let C > 0 denote a generic positive constant.

By taking the difference of the equations corresponding to A + th and A, we have

kt(ut — u,O)v + ((À + th)(ut — f) - Mu — f), 2P)0, = 0
7



or, equivalently,

f ((tt U)(x) — (Ut u)(37)) (0(x) — 0(3r))1'(x, y) dx dy

+ f A(x)(ut — u)(x)0(x) dx + t f h(x)ut(x)0(x) dx = t f h(x) f (x)1/) (x) dx.

(3.8)

By choosing = ut — u and since A e V , we have

IlUt UM'T7 C t f h(x)(f(x) — Ut(x))(Ut U)(x)dx

Ct hModf - utkoMut UMO,Q,

which implies that

MUt UMO,Q COM00{Mf M0,0 + MutMO,Q}

CtIlh1100{Mno,0 + K(IlA1100 + OhM00)}.

Therefore, the sequence Iztlt,o, with zt := (ut — IL)/t, is bounded and there exists a
subsequence (still denoted by tztl) such that zt z weakly in V. From (3.8) we have

f f iut

t 

, I, (Itt 

t 

zt)
+ f h(ut — u)0 = fh(tt f*,

QuQi Qucti

which implies that

iQuQi 
gzt + f AztO + f h(ut — u)0 = f h(u — PO.

Taking the limit as t —> 0, we obtain

gz + f AZO = —f h(U— f)0,
fQuQi fQuQz

which implies that

it& + Az = h( f — u).

By subtracting the equations for the state and the linearized state we have

(Ut U 
zo  

(ut — u

t 
P) +

v JQ

Finally, by choosing = u— z we obtain

Ut — U

t

Z) = f h(ut

CMhML'MUt UMO,Q•
v

The continuity of the solution operator implies that Mutt' zMv —> 0 as t —> 0, which
concludes the proof. 0
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3.4. Optimality system. Thanks to the Gateaux differentiability of the solu-
tion operator we are able to derive an optimality system for the characterization of
optimal solutions of (3.7).

THEOREM 3.4. Let (u, À) E V, x C be an optimal solution to problem (3.7). There
exists an adjoint state p E (S2 u S2/) and Lagrange multipliers pi-2F, AQ- e L2(Q) and
pp, pf, e H1/2 (r) such that the following optimality system is satisfied.

l-t(t IP)v + (A(u - f), 0 = 0, VIP E

14, 0)v + (AP, 0)o,0 = -(Vt(u), 0)o,o, VO e V,

-0AA + OA = µi -
OA

14 
— = µr - PT

in 11,

on F,

0 iii2E(x) 1 A(x) 0, 0 ▪ I.L72(x) 1 (b - À(x)) 0, Vx e SZ

0 pi,E(x) 1 A(x) 0, 0 • µF(x) 1 (b A(x)) 0, Vx e r.

(3.9a)

(3.9b)

(3.9c)

(3.9d)

Proof. Let us consider the reduced cost functional

.0) := Au(A)) + /22 MA111, (3.10)

where u(A) is the unique solution to the state equation (3.7b) corresponding to A.
Taking the derivative of the reduced cost with respect to A, we have

(A)h = (W(u(A)),W(A)h)0,0 0(A, h) H1 , Vh e U, (3.11)

where u'(A)h is the unique solution of the linearized equation

µ(u (A)h, IP) v + (Au (A)h, 0)0,0 = -(h(u - f), E Vc. (3.12)

Using the adjoint equation

p(13, 0)v + 0)o,0 = -(W(u), 0)0,0, E VG, (3.13)

which is uniquely solvable by the same arguments as in Theorem 3.1, we obtain that

(A)h = - (u/(A)h, v - (AWN h , 0 + O(A,h)H1. (3.14)

By using the linearized equation we then obtain

= f (u - f)ph dx + 00, h) H1 . (3.15)

The box constraints on the parameter A imply that the a first order necessary opti-
mality condition is given by the following variational inequality:

j' (A) (h - A) = f (u - f)p(h - A) dx + 0(A, h - A) H1 „>- 0, Vh E C. (3.16)
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The latter corresponds to an obstacle problem with bilateral bounds. Integration by
parts then yields

(A, v)H1 = (A, v)o,Q + (VA, Vv)o,st

a),
= (A, v)0 + f

r an
v 
 
dF — (AA, v)0,0 V v E H1(Q),

where the extra regularity, i.e. A E H2(52), follows from [43, Thm. 5.2]. Consequently,
the variational inequality (3.16) can be written in strong form as

—)30A + /3A = p,0 in 1-2,

OA
=an. on r,

where the multipliers fin E L2(Q) and µr e H1/2(r) satisfy

v — A) 0, Vv E C and (itr, v — A) 0, Vv E C,

or, equivalently,

(µ0(x), v — A(x)) 0, Vv e [0, b] c R, a.e. in S2

(AL, (x), v — A(x)) 0, Vv e [0, b] c R, a.e. in F.

By decomposing ,u,n and Ar in its positive and negative parts, we have

/42 = —

4 0, A(x) 0, (x)A(x) = 0 ,

0 , A(x) b, (x) (b — A(x)) =

and similarly for tir. 0

3.5. The scalar parameter case. When A E R+, the Tikhonov regularization
is no longer required and the bilevel problem is given by

min (u) (3.17a)

s.t.p(u,IP)v + A(u — f, 00,0 = 0, V E V. (3.17b)

Let the Lagrangian and its derivative with respect to u be defined as

L(u, A, p) := t(u) + it(u, + A(u — f,p)o,E-2

and

Lu(v) = (Ve(u),v)o,c2 + p,(p,v)v + A(p, v)0,0 = O.

It follows that

µ(p,v)v + A(p,v)o,o = —(Ve(u),v)o,c2, V v E

On the other hand, the derivative of L with respect to A is given by

LA (h — À) = (u — f , p)(h — A) = (h À) f (u f )p dx 0, V h [0, 1)] .
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Thus, the optimality system reads as follows.

2P)v A(u — f , 0)0,0 = 0, Vc, (3.18a)

p(p, v)v + A(p, v)0,0 = — (Ve(u), v) 0,0, Yv (3.18b)

P[o,b] (À — c f (u — f)p dx) = À, Yc > 0, (3.18c)

where P[1:01 is the standard projection operator onto the interval [0, M.

4. Optimization with respect to the weights. In this section we introduce
and analyze the bilevel problem for the identification of the optimal weight in the
nonlocal means kernel. We consider a modified nonlocal means kernel where we
restrict the integral to a bounded region, i.e.

-yw (x,y) = exp f w(T)(f(x + T) f (y + 7))2 dr}, (4.1)
/3,03)

where the fa' ball Bp is the patch of the image explored within the integration and
w E Uad := L2(Bp(0)) : 0 „<„ w(t) '91 t e Bp(0)} is the spatial weight (see
equation (2.9)). This type of t' (or square) patches have been also used in [35]. Note
that, to simplify the notation in the analysis, we embedded the parameter S in the
weight w; in Section 5, for each numerical test, we provide more details on the choice
of kernel parameters, including S.

Although our analysis is focused on a specific kernel, it can be extended to any
exponential-type kernel and, more in general, to kernels whose energy space i equiv-
alent to L2.

4.1. Lower-level problem. For a given R+ and w E Uad we consider the
following denoising problem

ueK'
min J(u, À) = —

2
Mu 1?7 u + 

2 n 
f (u f)2 dx, (4.2)

where the weight-depended energy space is defined as Kw = E L2(52uSti) : Mvw <
col with

toil/ fOo12/
11v11V- := (v(x) — v(y))27w(x,y)dydx.

Note that the spaces Ktv are also equivalent to _q for all w. By proceeding in a similar
manner as in Theorem 3.1, it can be readily verified that, for every w E Uad, there
exists a unique solution u E Vw for the lower-level problem (3.1). Moreover, the strict
convexity and differentiability of the fidelity term yields the following necessary and
sufficient optimality conditions

p(u, 0)v. + [A(u — f), = 0, E vcw, (4.3)

where

(u, 0)v. = f f [v(x) — v(y)) &(x) — O(y))-yu,(x, y) dydx, (4.4)
i/00, SZu0/

and the following a-priori bound

MuMv- 5 CAMfMo,o. (4.5)



4.2. Bilevel problem. We consider following bilevel optimization problem for
the estimation of the optimal weight in (4.1).

(w,illinu)eT.,å 'e(u), 
(4.6)

where the feasible set is given by Tad := {(u, w) : w e ?lad and (4.3) holds}.
THEOREM 4.1. The bilevel problem (4.6) admits a solution (u* ,w*) E Tad •
Proof. Since the functional is bounded from below, the box constraints and the

a-priori estimate (4.5) imply that there exists a minimizing sequence {(wn, un)} E Tad
that is uniformly bounded. Moreover, the box constraints and the equivalence of
spaces imply that the sequence {un} is also bounded in L2 (C2 u Cli). Thus, there
exists a weakly convergent subsequence, that we still denote by {(wn, un)}, and a limit
point (w*, u*) E L2(Bp(0)) x L2(S2 u Sti) such that wn — w* weakly in L2(Bp(0))
and un — u* weakly in L2 (Q u 521).

We next show that (u*, w*) G Tad. Since liad is weakly closed, w* satisfies the
box constraints. Moreover, since f e L' (C2 u S2/), it follows that

f — Wn (7)(f (x + 7-) — f (3, + 7-))2 ch- — f —w* (7)(f (x + 7-) — f (3, + .7))2c17-.
Ba(0) Bo())

Hence, -yu,n (x, y) —> -yu,* (x, y), Vx, y. In addition, note that each pa r (un, wn) solves

it f f (un — u'n)(v — v')-y,„„(x, y)dy dx + A f tin v dx =Af fv dx, (4.7)

num- QuQ1 Q Q

where, to simplify the notation, we used v := v(x) and v' := v(y). Thus,

µ f f (un — u* — u'n + u*')(v — vl)-yn,„ (x, y)dy dx + À f un v dx

nun, QuQI Q

—Affvdx + it f f (u* — ue)(v — vi)-ywn (x, y)dy dx = O.

Q Quit/ QuQ1

Note that the first term goes to 0 as n —> co. In fact, the uniform bound 1-yn,(x, y)1 -..,
1, Vw E Uad, and the weak L2 convergence of {un} imply that

f f
QuQi QuQi

f f
QuQ1 QuQi

(an — u* — u'n + lei )(v — 111)11w,(x,y)dy dx

(an — u* — u'n + u*/)(v — v')dy dx

The Lebesgue dominated convergence theorem, yields

lim
co 
i f

n—> 
QuQ1 QuQr

—> 0 as n —> co.

(u* — u*/)(v — e)-y„,,, (x, y)dy dx

= f f (u
QuQ1 QuQi

u*')(v — v')-yw* (x, y)dy dx.

12



Consequently, as n co, (u*,w*) e Tad, i.e.,

f f (u* - u*')(v - v')7„* (x, y)dy dx + f (u* - f )v dx = 0. (4.8)

Ousit Quit/

Finally, since the loss function is convex and continuous, it is weakly lower semi-
continuous, and, thus, (u*, w*) is a solution of (4.6). 0

4.2.1. Differentiability of the solution operator. We first prove a lemma
that will be useful in the proof of differentiability.

LEMMA 4.2. Let w E Uad and h E L2 (Bp(0)) be a feasible direction, i.e., there
exists some t E R+ such that w + th E Uad. Then, the weak solution of problem

Got + A(ut - f) = o (4.9)

with

rtv(x) = 2it f (u/ u)'Yw+th(x, 3r)dy, (4.10)

OuOinBs(x)

satisfies the estimate

tillut11,2vw + Allutg Allf11 L20-2u1-2.011utIlL2(Quni)• (4.11)

Proof. The weak formulation of (4.9) reads

f f
QuOi QuOi

(ut - u't)(v - e)'Yw+th(x, y)dy dx + f (ut - f)v dx = 0, V v E Vt,

where Vt is the energy space induced by using the weight (w + th). For v
result follows from

0

f f (Ut ttit)21(w+th(x,y)dy dx + MutMO,ituoi
Quili Quit/

= liMutMV, + Mut MO,QuQt All,fl1L2(Ouszt)MutMo,Oucti•

REMARK 1. The last result implies that

µllutllvw All f IlL2(QuQi)MUt110,QuOi and

(4.12)

= ut, the

IlutIlL2(QuQ/) 11f111,2(QuOI),

which implies that MutMv- C IlL2(ouni)•
Next, we prove that the sequence {zt} - { ut-u} has a bounded L2 norm and,

thus, contains a weakly convergent subsequence.

LEMMA 4.3. Let w E Uad and h e L2 (B p(0)) be a feasible direction. The sequence
{zt} = {(tit - u)/t}, where u and tit are the solutions of (4.3) and (4.9), is bounded
in L2.

13



Proof. By subtracting the weak forms (4.3) and (4.12), and using the equivalence
of norms, we obtain

ti f f (ut — tilt) (v — 0-yw+th(x, y)dy dx

Ouili S.2uA-2i

Thus,

— 1-t f f (u — u')(u — e)-y„,(x, y)dy dx + A f (tit — u)v dx = 0, V v E V.

Oulti Quit/ O

it f f (ut — u — u't + u')(v — vi)-yu,(x,y)dy dx+

Ousit OuSti

ii f f
OuOi itur21

(ut — ult)(v — vi)[-Y.+th(x,Y) — Y. (x, y)]dy dx

(4.13)

+ A f (at — u)v dx = O. (4.14)

ii

By choosing v = ut — u and dividing all expressions by t, we have

A 2 A 2
— 11Ut — 711117‘. t+ — 11Ut — 11110,OuSti + A f f (Ut — Ult )(Ut — U — Utf + U1)
t 

StuOi OuRt

1
T [-Yw+th(x, y) — ofw (x, y)]dy dx = O.

By using the differentiability of the exponential function as a superposition operator
and the equivalence of norms, we obtain

C A
T Mut — td,O,Oi + —t Ilut — till(1,O,O,

-.--. 0 (1111111.2(3,()))M f 111 ,c2 +
o( tt) ) mudo,o,o, Ph — ullo,c2,12/ ,

which, combined with (4.11), implies that

Ut — U

t OA, NI1f111.
0,c2uOi

0
The lemma above guarantees existence of a weakly convergent subsequence and

of a limit point z* such that zt — z* in L2 (Q u S2i). In the following lemma we derive
the equation for z*.

LEMMA 4.4. Let z* be such that zt — z* in L2(S2 u SM. Then, z* corresponds
to the unique solution of the linearized equation

it(z*, v)V + /1(U, v)ij + A(z*,2))0,E2 = 0,

14

Vy E V, (4.15)



with 17 := {u E L2(C2 u 521) 1117" < (x)}, where 11 • 111-7 is the energy norm induced by
the linearized kernel

y) = -rto (X) Y)f —h(r)(f (x + 7-) — f (y + 7"))2 dr..803) 

Proof. By (4.13) we have

f f (at — u't)(v — v1)-y,„+th(x, y)dy dx

Oucti Ous-2,

— µ f f (u — u') (I) v')-yw (X, 3r)dy dx + f (ut u)v cbc = O.

Ount Ous-4

Adding and subtracting (u, v)v, and dividing both sides by t, we have

1
f f —

t 
((ut — u) — (u't — u')) (v — vi)ryw+th(x, y)dy dx

Quit/ OuOi

1 r
+ f (u — (v — — ryw+th (x, y) — -yw (x, yndy dx

(4.16)

punt s/LA-2i

A ,
+ —

t 
(ut — u, v)o,O = 0,

The weak convergence z* in L2(1-1 u QI), the strong convergence w+th w,
and the continuity and differentiability of the exponential function as superposition
operator, imply that the limit for t —> 0 of the previous equation is given by

,u(z*, v)v + A(z*, v)o,O + µ f f (u — u')(v — vi)=yh(x, y)dy dx = O.
Ouni Ouni

Uniqueness follows as for the state equation. 0
The following theorem finalizes the differentiability result.
THEOREM 4.5. Let Sw: Llad —> V be the solution operator which maps w

into the corresponding solution to equation (4.3). Then the operator Su, is Gateaux
differentiable.

Proof. In addition to Lemmas 4.2-4.4, it only remains to prove that

Ut — U

t
z* —> 0 as t —> O.

L2(OuOt)

From equations (4.14) and (4.15) we obtain that the difference
solution of the equation

( := Ut-U — z* is

1-t((,v)v + —
t
(ut,v)ve — —

t
(ut,v)v —it(ut,01-i• + t-t(ut, 017 —µ(u,v)i-i• Cv = 0,

st

or, equivalently,

1,1((, u)v + J. (ut —u,t)(u—u,) [—t-
Yw+th(3c, 3r) t'11w — 7h (x, 37)] dydx

OuOi Oucti

+ it(ut — u, '017 + f Cv = O.
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By choosing v = we have

MICH/ + A f 2 = —/-t(ut — u, 017

— f (ut —74)(C — C') [ -Yui-kth(x, y) —1t rw (x, y) — yddy dx.

0u1-21 Quit/

The nonlocal Poincaré inequality, the convergence ut —> u in L2(5-2 L.) 52i) and the
differentiability of the exponential function, allow us to take the limit as t —> oo,
which yields the result. 0

4.3. Optimality system. The differentiability of the solution operator allows
us to derive an optimality system that characterizes the optimal solution of (4.6).

THEOREM 4.6. Let (u, w) be an optimal solution to problem (4.6). Then, there
exists a Lagrange multiplier p e (S2 v C2i) such that the following optimality system
is satisfied.

ji(u,Y))v. + (A(u — f),Y))04.2 = 0,

P(p, 0)v- + (AP, 00,0 + (WM, 0)o,0 = 0,

VIP E Vw,

VO E
(4.17)

f f [(u(w) — u(wY) — PirY(h—.)0c, 30] dy dx 0, Vh E Uad.

0u0i Slu0/

Proof. Let the reduced cost functional be defined as

j(w) := t(u(w)), (4.18)

where u(w) is the unique solution to the state equation (4.3) corresponding to w. By
taking the derivative of the reduced cost with respect to w, in direction h, we have

j'(w)h = (Vt(u(w)),u'(w)h)0,0,

where u'(w)h is the unique solution to the linearized equation

/./(ul (w)h, ov, + p(u(w),0, + (7/(w)h, 0) 00 = 0, V/P E Vw.

As in (3.18b), the adjoint equation is given by

it(p,v)v. + A(p,v)0,0 = —(Vt(u),v)0,0, VI/ E Vw, (4.19)

which is uniquely solvable by the same arguments as in Theorem 3.1. Thus we obtain

j'(w)h = — A(ul(w)h,p)0,c2.

Using the linearized equation and considering the box constraints on w, we then get
the first order necessary optimality condition

j'(w)(h — w) = lt f f [(u(w) — u(w)')(p — p') Y(h_w)(x, y)] dy dx 0,

Ouni OuSli
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for all h E Uad.
REMARK 2. When w is a scalar parameter, the last expression in the optimality

system may be replaced with

PR) ,147] (133 — c(u, p) = w , V c > 0 ,

where P[0,w] is the standard projection operator onto the interval [0, W] and

(u,13)1-/

f f (u — u1)(p — 231)-y„,(x, y)[it f — (f (x + T) — f (y + T))2 dT dy dx.

nuSli 0u01 .13 0(0)

This enables the use of projection algorithms for solving the bilevel problem.

5. Numerical tests. In this section we propose a numerical algorithm for the
solution of the bilevel problem and illustrate our theory with several numerical tests.
First, we describe the discretization of the system of optimality conditions and the
technique used to evaluate the kernel. Then, we present the optimization algorithm
which relies on a trust-region scheme with active set prediction and limited mem-
ory BFGS matrices. The section concludes with results of numerical computations
illustrating the main features of the proposed approach.

5.1. Discretization. As we are interested in developing a second-order algo-
rithm to solve the optimality system (3.18), we consider an Hi—Riesz representation
of the derivative, j'(A)h of the reduced cost, where

j'(A)h = f (u — f)ph dx + 0(A,h)H1. (5.1)

Note that the functional above solves the following variational equation

(y, h)0,0 + (Vy, Vh)0,0 = ((u — f)p, h) 0,0 + i3(A, h) H1 , (5.2)

or, equivalently, the following PDE

—Ay + y = —i3AA + ,(3À + (u — f)p in 12,

ey 
= 

OA

ag on

Since we are interested in possibly discontinuous nonlocal solutions we use two finite
element bases to approximate u and p in L2(Q) and y, in Hl(S2). Specifically, we
consider piecewise constant and piecewise linear elements, respectively, defined over
a partition of 52 u (2i, which we denote as Th. Throughout this section we denote
discretized quantities by using the superscript h, and we fix p, = 2.

First, we consider the nonlocal systems involved in the discretization with respect
to À; in this case we let w(t) = 8-2, for all t in (4.1). The discrete analogue of the
nonlocal variational equations in (3.9) is given by

+ 774 — E uh-yh
3 

f1h ,
3 z1 bTZ E Th, (5.4a)

ET
h h T h

Az pi + — E = —p 3 -y,,3  u, u, , VT, E Th; (5.4b)
T7ET

on aa
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where and fih are the values of the approximate nonlocal state, nonlocal
adjoint, fidelity weight, and forcing term at triangle Ti, and -y,13 is the value of the

approximate kernel for x E T„ and y E Tj, and ni := E ltho• The evaluation of fh,, 

XI: and -yh3 depends on the location of the pixels and is described in detail in the next
section.

We rewrite system (5.4) in a more compact form as follows

( diag(A) + diag(n) — F)u = a o f, (5.5a)

( diag(A) + diag(n) — = uT — u, (5.5b)

where, for a vector v, diag(v) is the n x n diagonal matrix whose diagonal entries
are the components of v, and where o is the Hadamard product, i.e., v o w :=

(v1w1, , voun)
T 

for any two vectors v,w E rn. The bold notation refers to the
vectors whose components are the values of the variables at the DOFs. The matrix
F is such that F.,,3 :=

Equation (5.3) for the gradient of the reduced cost functional for problem (3.7)
is discretized as

(A + B)y = F(u, À), where

Ai =f VOiVOjdx, Bi,j =
sz
Oicbjdx, and

F(u, f 

"u
h — 
  

fh)ph 
iDth)oidx

i=1
cbi • VO .dx

being Oi and 03 elements of the finite element basis associated with triangles T, and
, respectively, and the values of the finite element solution Ah at the degrees of

freedom.

Second, we consider the optimization with respect to w; we let e R+ and
w e R+. Thus, (5.5) becomes

(Ain + diag(qw) — Fw)uw = Af (5.6a)

(Ain + diag(ThE) — Fw)pu, = uT — uw, (5.6b)

where we use the sub-index w to indicate the dependency of the kernel on w. The
gradient of the reduced cost functional for problem (4.6) is discretized as

j'(w)h = pw • (diag* — Fw)uw. (5.7)

for which := ET3 and fu,,,,3 = rywh,,,3 is a discretization of 5%(1), defined in

(4.16).

Finally, we mention that in our numerical experiments we precondition the non-
local systems by the following diagonal precondititoner P: let ai j be the entries of
the matrix of the system for Uh, we have:

13,4 := (Ea,
3

Using this preconditioner, we solved the nonlocal systems with the Loose Generalized
Minimal Residual Method (LGMRES).
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5.1.1. Evaluating the modified nonlocal means kernel. For a given image
f : SZ H[0,255], where /2 = [0, N] x [0, M], the evaluation of the modified nonlocal
means kernel requires the identification of several patches within the image. In this
section, we describe how to define those regions and efficiently evaluate the kernel.
Since the kernel decays exponentially away from the origin, we consider a relatively
small radius p. Also, recall that for both the optimization with respect to and w
we only consider constant weights, i.e. w(t) = w e

By definition, Si/ = [—E, N + E] x M \ 12; we extend f to zero outside
St. We assume that the pixels are uniformly distributed and ordered over the domain
and label them by the integer i. As illustrated in Figure 5.1, pixel i is located at the
upper-left corner of the element Ti e Th so that every element is associated with one
pixel.

In this setting, the approximation -A./z1 introduced above consists in the value of Ah
at the pixel corresponding to element T, i.e. pixel i.

= (i,,i2)

3 0)

I

Fig. 5.1: Description of patches and pixel discretization in relation to the finite element
grid.

Let fh be an approximation of f in the computational domain such that p =
f (i), i.e., the value of the approximate image over the element T, corresponds to the
value of the image at pixel i. A patch Pi( f) is a sub-image of fh around pixel i given
by

Pi(f)(t) = fh (i + t), V t c [— p : p]2 ,

where the interval [a : b] denotes the closed interval of integers from a to b.
We refer to the sum of the image values within a patch as the patch measure and

denote it by pi( f). Notice that a patch will have at most (2p + 1)2 =: 1P1 pixels. We
approximate the value of the kernel in (4.1) at points corresponding to pixels (i, j) as
follows:

exp w (rti(f2) pi f2) 2 E Pi( f)(t) oP j(f)(t))}
tE[—p:pp

x(j E BE(i) n 71ilj >

This serves as an approximation of -yPii in (5.4), where elements are associated with
the corresponding pixels.
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As noted in [39], high dissimilarity values between each pair of patches do not
provide meaningful information to the resulting image restoration process, therefore in
(5.8) we introduce the threshold parameter ¿ > 0 that acts as an acceptance tolerance
between patches. Furthermore, we consider large interaction radii, i.e. e >> 1. This
constraint induces a multi-banded matrix approximation of the nonlocal operator with
E — 1 bands yielding at most (2E + 1)2 =: E neighbors per pixel. These two constraints
ensure that only close and similar regions of the image are compared and, at the same
time, it reduces memory allocation and computational cost. As a consequence, the

nonlocal kernel can be evaluated in 0 (IPI [NM(1 + E) — E]) operations.

5.2. Optimization algorithm. The reduced objective functionals (3.10) and
(4.18) are not necessarily convex since equations (5.5) and (5.6) are not linear in terms
of and w, respectively. Thus, we resort to trust-region methods with a quadratic cost
involving limited memory BFGS matrices. First, we summarize the limited memory
approach and then briefly introduce the projected trust-region algorithm developed
in [45] for the solution of general nonlinear box-constrained optimization problems.

5.2.1. Limited memory BFGS. For large-scale optimization problems, lim-
ited memory methods are known to be effective techniques, as they require minimal
storage and provide easy-to-compute second order information, often resulting in a
fast local superlinear convergence rate [28]. The limited memory BFGS method ap-
proximates the inverse of the Hessian of a functional j at iteration k + 1, say Hk+1,
without storing the dense matrices Hk at each iteration. Instead, it stores m correc-
tion pairs { qi, dz}ZE [k-1:k—m] C R72,2, where

qi := xi+1 — xi and di := Vj(xj+i) — Vj(x,),

that contain information related to the curvature of j. Paper [9] introduces a compact
form to define the limited memory matrix Bk = 11;1 in terms of the n x m correction
matrices

Sk := (qk—rn qk-1) and Yk := (dk—m dk-1) •

The main idea of the algorithm is that the matrix SITYk can be written as the sum of
the following three matrices (used within the algorithm)•

SiT Yk = Lk Dk

where Lk is strictly lower triangular, Dk is diagonal, and Rk is strictly upper trian-
gular. For 0 > 0, if the correction pairs satisfy q-ird, > 0, then the matrix obtained
by updating 0In, with the BFGS formula and the correction pairs after k-times can
be written as

Bk := BI,, — WkMkKr (5.9a)

where Wk and Mk are the block matrices given by

Wk := (Yk OSk) (5.9b)

(—Dk 4 \ 1
Mk := (5.9c)

Lk OST Sk)

Note that, as Mk is a 2m x 2m matrix, the cost of computing the inverse in (5.9c)
is negligible. Hence, using the compact representation (5.9a), various computations
involving Bk become inexpensive, as is the case of the product of Bk times a vector.
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One aspect of the BFGS method is that each update is positive definite. As the
limited memory formula (5.9a) can also be stated as

Bk = VkT-Wklik pkqkg1T (5.10)

with pk := (qk ,..k) and Vk := In — pkdkqT, . Thus, we can guarantee positive
definiteness using Powell's method [34] in which dk is redefined as

dk :=
{dk if qiT dk 0.2(1-kr Bkdk,
akdk + (1 — (xk)Bkqk otherwise,

(5.11)

0 qT
qk 
B 

q- 
q

where ak := qk — T R 

.8 
k,k . If the updated qi-,r dk is too close to zero, to maintaink — k[u 

numerical stability, the limited memory matrix is not updated.

5.2.2. Active set estimation and search direction. Because of the box con-
straints, second order information is only relevant far from the bounds. Following [45],
and assuming 0 and b as lower and upper bounds, respectively, we introduce the
quantity 4 := min {/3k, clIV.i(3(k)111, where i(3k and c are positive constants such that
0 < Ok < 2, and define the strongly-active and inactive index sets by

Ak := E {1, n} : Xk,, V Xk,z b — 41, (5.12a)

Ik := {1, • • • In}\Ak = E {1, • • • n} < Xk i < b 41, (5.12b)

respectively, where xk,, is the i-th element of xk. Now, suppose the current trust

region radius is a > 0, with its maximum value Amax > 0, and let n > 0. We can
obtain a search direction at step xk as follows:

• Projected gradient direction: Compute

ca (a) := max 0, min{ b, Xk 
A

A ICkV11(Xk)}} — Xk •
Lamax

(5.13)

• Projected trust-region direction: We look for a direction c4rk(3.) defined
for each index of the sets Ak and /k, respectively. We begin with Ak, for
which we let vkAk be the subvector

vAk 
•= {X"k ' b — Xk,i

Then we define the subvector

cr,, (a) :=

if Xki

if Xki b —

min {1  , 4km} vk
Ak (5.14)

For the inactive set /k we solve a reduced trust-region subproblem. Here,
let Bk be partitioned into two submatrices BkAk and Bkik, obtained by taking

columns of Bk indexed by Ak and /k, respectively. Let d/kk (a) be a solution
of the following TR—subproblem

min dT [(Bick )T (Vj(Xk) B;:k dA,k')]  dr (4c )TBLk d

s.t.
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The projected trust-region direction is then defined as

dAk (a)
drk(0) := max {0, min b, xk + 

d 
Xk •

i,,,kk(a)
(5.16)

Since this direction may not be a descent direction for j for far iterates, we
use a convex combination with the gradient direction as follows.

• Search direction: Let

d*k(a) := t*kd,,k (a) (1 - t*k)drk (a), (5.17)

where t*k is a solution of the following one-dimensional problem

min j (xk + tca(A) + (1 — t)drk(0)). (5.18)
tE[O,1]

5.2.3. Algorithm. We state next the projected trust-region algorithm with L-
BFGS update as described in [45].

5.3. Experimental results. We present the results of the bilevel optimization
with respect to A and w using the modified nonlocal means kernel. The results are
organized as follows: for each test we report a figure and a table. The figure displays
the clean image uT from a database, four noisy images, (a)—(d), and the corresponding
(optimal) denoised images, (e)—(h). Values of the Structural Similarity Index (SSIM),
which measure the similarity of the recovered image against uT, are also included
(rounded up to two digits). In the table we report optimal SSIM values and output
parameters of the optimization.

For our computations, we use images from the USC-SIPI Image Database and
the FVC2000 Database, which are padded with a border of zeroes of width E, in order
to deal with information in fti. For each image, a sample of four noisy images is
obtained by adding different levels of Gaussian noise with standard deviation a; that
is f = uT + n with n — Ar(0, 0-2). The values of a are taken according to Table 5.1.
We use the constant patch radius p = 5, i.e., each patch contains 121 pixels and we
set the interaction radius E so that there are at most 5 min{N, M} neighbors per pixel.
The problem dimension N and M will be specified below for each experiment.

Table 5.1: Parameters associated to noisy data

Sample (a) (b) (c) (d)

u2 101.5 102.0 102.5 103.0

Filtering .5 5 x 102 102 3.16 x 102 5.13 x 102

5.3.1. Optimizing the fidelity parameter A. We consider both the case of
constant A e [0, b] and space-dependent A E C = {A E I/1(Q) : b A(x) 01. The
upper bound b is set to 105 and the acceptance tolerance is set to = 10-9. Recall
that in this case we set w(t) = 6-2; values for each image are reported in Table 5.1.
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Algorithm 1 Projected Trust-Region Algorithm with L-BFGS Update

1: Choose xo and a symmetric positive definite matrix Ho. Let constants satisfy
0 < /30 < /4, c > 0, 0 < vl < 1 < 1/2, 0 < Tl < T2 < 1, v E (0, 1), (.4., E I, Do > 0,

and A—max > Amin > 0. Now set m e N, k = 0, and Bo = Hc71.
2: repeat
3: Let Ak := min {Amax, max{Amin, } and 0= Ak •
4: Determine index sets Ak and /k by (5.12a) and (5.12b).

5: Find d (3) by determining dA*Z (a) and di*kk (a) as in (5.14) and (5.15).
6: Set

Amax   W
:= min {1,  }

IlVi(x011, 11V7(x011

7: Compute d k(a) and t*k as in (5.13) and (5.18), respectively. Let

d*k(-0) := t*kci,?k(a)+ (1 — t*oaft.k(3.)•

8: Compute

r*k :=
V j(xk)T d*k(a)+ 2 d*k(-0-)TBkd*k(0)

j(xk + cl*k) — i(xk)

9: if j(xk) — j (xk + d*k (a)) —vv.i(xk)r cC(a) and r*k hold then

10: Let qk := d*k, Xk+1:= Xk Cl*kl Ok = a, and

{a
Ak+1:—

v2A

if Tl < r*k < T2,

if r*k % 1-2.

11: Let in := min{k + 1, m}.
12: Update Bk with the n x 61, matrices Sk
13: Let k = k + 1 and return to step 1.3.
14: else
15: Let A = 7-1a.
16: Return to step 1.5.
17: end if
18: until xk satisfies a stopping criteria.

and Yk to get Bk+1.

Constant parameter. We initialize the TR algorithm with Ao = 100 and we note
that, for A e [0, b], the gradient of the reduced cost functional (3.10) reduces to
Vj(À) = (u — f) • p.

The results are displayed in Figure 5.2 and Table 5.2. In the latter we report, for
each clean image and its corresponding noisy sample, the optimal A, its SSIM value,
the number of iterations of the TR algorithm, and the dimensions of the image. From
Figure 5.2 we note that, after the optimization, there is a significant increase in the
SSIM values. Moreover, as expected, the nonlocal means kernel allows regularization
of each sample while preserve the textures (see, e.g., [21]). Hence, discontinuities are
preserved and restored without blurring. Furthermore, in Table 5.2 it is noticeable
that the the best solution found for each noisy image is located in the interior of the
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convex set.
We also note that, at each iteration, the objective function decreases monotoni-

cally and the radius of the trust-region decreases around the solution.

Lena (a) SSIM: 0.82

(e) SSIM: 0.91

cameraman (a) SSIM: 0.82

(e) SSIM: 0.92

monarch (a) SSIM: 0.88

(e) SSIM: 0.95

(b) SSIM: 0.67

(f) SSIM: 0.87

(b) SSIM: 0.64

(f) SSIM: 0.88

(b) SSIM: 0.76

(f) SSIM: 0.92

(c) SSIM: 0.50

(g) SSIM: 0.75

(c) SSIM: 0.45

(g) SSIM: 0.78

(c) SSIM: 0.62

(g) SSIM: 0.82

(d) SSIM: 0.34

(h) SSIM: 0.55

(d) SSIM: 0.30

(h) SSIM: 0.65

(d) SSIM: 0.46

(h) SSIM: 0.64

Fig. 5.2: Resulting images of scalar parameter optimization
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Table 5.2: Results of scalar optimization

(6)

Sample Best A SSIM
Iteration
Count

(N, M)

(a)
(b)
(c)
(d)

81.39288608477064
3.711999777944892
199.3507646217158
250.1708380247259

0.9067
0.8731
0.7452
0.5508

6
16
14
18

(256, 256)

(a)
(b)
(c)
(d)

221.1940317431237
21.55437493757969
170.63141217270092
171.0574733520938

0.9246
0.8765
0.7811
0.6469

14
14
13
13

(256, 256)

(a)
(b)

(c)

(d)

81.27508954688543
3.448376834317583
111.9243249470581
165.9950203556561

0.9529
0.9153
0.8194
0.6363

6
21
9
14

(256, 171)

Spatially dependent parameter. The optimization with respect to a space-depend-
ent A is a large scale nonconvex problem; thus, to prevent stagnation in regions far
from local minima, we restart the optimization in the following two cases [11,30];

1. The trust region radius Ak becomes sufficiently small. Whenever Ak < Amin,
we set A—k = Areset with Areset 6 (0, Amax] and continue iterating if there is a
decrease in the objective function. This is done in order to prevent algorithm
to halt at a non-stationary point, whenever the trust region radius decreases
too quickly.

2. The value qiTdk is too close to zero. If qi-,rdk < s« 1, then all the stored
pairs {qi, are removed and both Sk and Yk are rebuilt from scratch. This
prevents the occurrence of ill-conditioned updates.

Moreover, after each successful update of the limited memory pairs, we modify the
L-BFGS initialization parameter B in (5.9), by setting Ok = Ildkl1/4qk II [17]. We set
the maximum number of iterations to 103 initializing with the constant candidate
Ao = 200.

The results are displayed in Figure 5.3 and Table 5.3. In addition to the noisy
sample and its corresponding set of solutions to each image uT of the database, we
also include a third row of images displaying the optimal À(x). In the table we report
the optimal SSIM value, the number of iterations of the TR algorithm, the order of
magnitude of the 2—norm, and the dimensions of the image.

In Figure 5.3, we note that the optimal SSIM is much higher than the one asso-
ciated with the noisy image and that there is a significant improvement compared to
results obtained with a constant A. We also observe that the optimal parameter is
able to catch discontinuities and noise, see in particular (c) and (d).
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Lena

Table 5.3: Results of optimization with respect to A(x).

Sample SSIM
Iteration

Count
(N, M)

(a)

(b)

(c)

(d)

0.9311

0.8922

0.8172

0.6947

1000

2

518

295

(256,256)

ci

c,

(a)

(b)

(c)

(d)

0.9430

0.8690

0.8626

0.8092

626

2

296

679

(256, 256)

,g
0
t8

g

(a)

(b)

(c)

(d)

0.9683

0.9248

0.8854

0.7711

81

13

14

1000

(256,171)

(a) SSIM: 0.82

(a) SSIM: 0.93 (b) SSIM: 0.89 (c) SSIM: 0.82 (d) SSIM: 0.69

Fig. 5.3: Resulting images of spatial parameter optimization
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cameraman (a) SSIM: 0.82

monarch

(a) SSIM: 0.94

(a) SSIM: 0.88

(a) SSIM: 0.97

(b) SSIM: 0.64

(b) SSIM: 0.87

(b) SSIM: 0.76

(b) SSIM: 0.92

(c) SSIM: 0.45 (d) SSIM: 0.30

(c) SSIM: 0.86 (d) SSIM: 0.81

(c) SSIM: 0.62

(c) SSIM: 0.86

(d) SSIM: 0.46

(d) SSIM: 0.77

Fig. 5.3: Resulting images of spatial parameter optimization
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Training set. We consider a batch learning approach: we are interested in learning
the fidelity constant A from several images with the same noise level by solving the
following coupled optimization problem:

min L(U) (5.19a)

s.t. Ovi A(tti fi3O)(:),Q = 0, E vi,i e I, (5.19b)

where U = INLET is a set of reconstructed images from a noisy sample F = ffiliez
and L is a generalization of the loss function f, defined as

L(U) = 
1-1If(ui) 

1 

21/1 E - unO,Q, (5.19c)
ie.!" iEI

being UT = funiEr a set of clean images.Finally, Vi is the function space associated
with the kernel generated by the noisy image L.

Problem (5.19a) has the drawback that for every nonlocal system in (5.19c),
we need to compute and evaluate a different kernel, which results in a costly and
long computation. Therefore, we replaced spaces {Vi LEI from (5.19c) with the single
space Vp, whose associated kernel yF corresponds to the noisy "mean image' F =
1 f

III viEI i •

Following the analysis carried out for problem (3.17), we can further get a system
of adjoint equations and a reduced derivative, resulting in the following optimality
system

1/(tti3O)vp + A(u7; — fi3O)o,o = 0, e VF, i e I, (5.20a)

it(pi 0)Vp Sb)o,0 = I
1 (uT — ui, 00,c2, VO E VF, (5.20b)

P[0,1)] (A — cE(ui fi,Pi)) = vc> O. (5.20c)
iEI

The training set of clean and noisy images is constructed as follows: we select ten
images tuTI,EI from the FVC2000 Database and resize them down to 203 x 190 pixels.
Then, pixelwise, we add Gaussian noise of variance a2 = 103 to obtain the noisy data

We initialize the TR algorithm with Ao = 100, b = 105, and set the weight of the
kernel to w = 0.1. The results are displayed in Figure 5.4 and Table 5.4, respectively.
In the latter, we report the SSIM value of the reconstruction for each image. After
15 iterations of the algorithm, the optimal value of A was 4.44416033704.

In Figure 5.4 we note an increase in the SSIM values of the denoised images, com-
pared to the clean ones. However, it is noticeable that the shape of F is affecting the
denoising process as most results present a noisy boundary around centered portions
of the fingerprint (e.g. items B,F, and G) or higher regularization in non-centered
portions of the fingerprint (e.g. items B, E, and F). This behavior is expected as
intensity values are highest around each fingerprint, yet inside they are lowest. This
propagates for the averaged fingerprint in F, and thus the kernel does not regularize
the overlapping areas of images with non-centered fingerprints.

Finally, in Figure 5.5 we show the outcome of the denoising algorithm (lower-level
problem) for one noisy image that does not belong to the training set. The lower-
level problem is solved in correspondence of the optimal (trained) A. The behaviour
described in the paragraph above replicates for the denoised validation image.
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A SSI NI: 0.6135 SSIM: 0.6914
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SSIM: 0.5635 SSIM: 0.6502
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•
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Fig. 5.4: Resulting images of scalar parameter training

' • 4t---I471 
-,,,,,- -swif--,_,

?.?;,-77-7,,,,,,:,-,,, - -=.----,
v.W1 "i_
4* .s, ofjo:,
f---,,---- 

 ,
_..„....-.:-..,,--_,:„

Test SSIM: 0.6545 SSIM: 0.7406

Fig. 5.5: Validation image with trained parameter
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Table 5.4: Results of batch training

Sample SSIM Sample SSIM
A 0.6914 F 0.6179
B 0.6502 G 0.7052
C 0.6580 H 0.5732
D 0.6680 I 0.7206
E 0.6786 J 0.7597

5.4. Optimizing with respect to the weight w. We solve problem (4.6) with
w E C = [0,14]. Note that every evaluation of the reduced objective functional (4.18)
requires the numerical solution of (4.3), and hence requires updating -yw. However, by

definition, we have that -yw1 = rywo , which provides a fast way to get a new kernel
for any w1, wo E C.

Additionally, the gradient of the reduced objective functional (4.18) requires the
computation of the linearized kernel '1wh , see (5.7). According to (5.8), we have

= 7„h,i,i • (-Pi(f2) - (f2) + 2 E Pi(f)(t) Pi (.f )(t))
te[-p:pp

(5.21)

for all pixels i, j E Th. Letting rylilo = -Pi (f2) (f2) + 2 Etc [-p:P12 Pi (f)(t) o
Pi (f)(t), iv,h can be easily computed by the Hadamard product -ywh oryh . Furthermore,
ryfh depends on the noisy image f only. Thus, it is computed once and for all and we
have 'ywh = exp{ - w • )%h }.

As numerically, the exponential function has a limited exponent range which
prevents the effects of underflowing and overflowing, care has to be taken whenever
choosing W and L. Considering that the entries of -ywh are in [0,1], here we focus on
avoiding underflow. This numerical condition occurs for images with high levels of
noise, i.e., patches are highly dissimilar, resulting in a matrix with entries close to

0. Hence, if W is high, then the formula -y„„. = oft,-„1/" can return a constant matrix
with no further possible updates. In contrast, if we make W small, then optimizing
in images with low levels of noise, i.e., close-to-one patch distance, will result in an
underestimation of the optimal value for w. This comes as W can be taken as low such
that it is accepted as optimal, whereas the best image reconstruction could require
w W. In order to avoid this behavior, we set W = K max{300/max,'y'h,5/K, X 10-5}
with K given as in Table 5.5 and K is a scaling parameter introduced below. This value
is chosen so that whenever the entries of ')'11' are small due to low levels of noise, cases
(a) and (b), then w can be taken as big as some multiple of 300 that avoids underflow;
and if the entries of ')/'11 are big due to high levels of noise, cases (c) and (d), then the
values of w will be again limited to avoid a constant matrix. Now, for the acceptance
tolerance we set t = 10-10 which will be applied once for an initial kernel of parameter
w_1 = 10-6. This allows us to keep entries that could be deleted whenever w > w_i,
yet still remove entries with high dissimilarity values. Additionally, as in practice the
numerical range C is small, we scale the argument of the objective function in order
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to further avoid cancellation errors whenever reaching a local minimum. For this, we
set the scaling parameter = 10-6. Finally, we set = 100.

Table 5.5: Parameters for weight optimization

Sample (a) (b) (c) (d)

K 2 1 1 1

tvo 2 x 10-5 1 x 10-5 5 x 10-6 2 x 10-6

We initialize w with w0 as reported in Table 5.5. The corresponding results are
presented in Figure 5.6 and Table 5.6. For each clean image and its corresponding
noisy sample, we report the optimal w, the corresponding SSIM, the number of it-
erations of the TR algorithm, and the dimensions of the image. We again observe a
significant increase in the SSIM values and that the optimal parameters are within
the interior of the convex set C.

1
(a) SSIM: 0.82

(e) SSIM: 0.90 (f) SSIM: 0.84 (g) SSIM: 0.75

Fig. 5.6: Results for the kernel weight optimization

31

(h) SSIM: 0.60



cameraman (a) SSIM: 0.82

monarch

(e) SSIM: 0.92

(a) SSIM: 0.88

(e) SSIM: 0.95

(b) SSIM: 0.76

(f) SSIM: 0.91

(g) SS1M: 0.78

(c) SSIM: 0.62

(g) SSIM: 0.82

Fig. 5.6: Results for the kernel weight optimization

Table 5.6: Results of weight optimization

(d) SSIM: 0.30

(h) SSIM: 0.66

(d) SSIM: 0.46

(h) SSIM: 0.66

Sample Best w SSIM
Iteration

Count /.1114Y‘f ( 
0.00010058037591041884

3.479 534 200 755 x 10-5

1.365 942 222 785 x 10-5

6.010 164 391 428 x 10-6

0.9039

0.8446

0.7477

0.5978

23

19

13

16

(256, 256)

0.00016391632182323091 0.9249 29

4.748 817 967 295 x 10-5 0.8638 19
(256, 256)

1.039 828 596 144 x 10-5 0.7764 11

4.667 619 915 317 x 10-6 0.6591 11

9.386 449 960 967 x 10-5 0.9519 26

1.062 158 555 166 x 10-5 0.9073 16
(256, 171)

2.500 581 037 726 x 10-5 0.8216 9

4.946 448 008 344 x 10-6 0.6577 13
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5.5. Comparison between methods. Finally, we briefly compare the results
obtained after optimizing problems (3.17), (3.7), and (4.6), and compare them with
total variation denoising. For this purpose, we select a fingerprint image, named
fprint3, and add Gaussian noise with standard deviation a = 103. Each result is
displayed in Figure 5.7, where the SSIM value of the optimal image is also provided.
Moreover, a close-up of each image is plotted, in order to compare the graphical
differences of each method.

Visually, it is clear that total variation denoising does not perform as well as
most of the nonlocal approaches. The well-know staircasing effect of total variation is
present in the fingerprint structure. In (b) and (d) the border of the fingerprint retains
some noise, which comes from underfitting, and the intensity level of the number at
the top is smoothed. In contrast, image (c) recovers the border of the fingerprint and
the number is sharper.

fprint3

. rrylitre

(a) SSIM: 0.76 (b) SSIM: 0.67

(a) TV (b) Scalar

THUMB

(c) SSIM: 0.79

(c) Spatial A

(d) SSIM: 0.72

(d) Weight w

Fig. 5.7: Comparison between local and nonlocal denoising methods

(a) Total Variation denoising, (b) Nonlocal denoising for scalar A, (c) Nonlocal denoising for spatially
dependent A, (c) Nonlocal denoising for kernel scalar w.
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