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Abstract
The inverse problem of constructing 3D microstructures from 2D data is an area of active re-

search within the materials science community. This paper presents the implementation of a robust,
computationally efficient algorithm, Hierarchical Algorithm for the Reconstruction of Exemplars
(HARE), written in Python to reconstruct 3D features in a given microstructure from up to three
orthogonal 2D exemplars using nearest neighbor matching to reproduce feature qualities, such as
shape, size, and distribution. HARE’s feature sampling implements histogram reweighting to avoid
both over- and undersampling. A neighborhood voting scheme allows each pixel to provisionally
affect its neighbors according to its weight. The algorithm is presently configured for two-phase
materials and is being extended to accommodate multiple phases. HARE is a convenient and robust
base from which to generate statistically representative synthetic microstructures for use in multi-
scale modeling or machine learning applications to support advanced manufacturing and materials
discovery.

1 Introduction
Recent years have seen an accelerating expansion of computational resources available to the materials science

research community, due in large part to advances in parallel computing architectures and the resulting increases
in processing speeds. These advances have prompted renewed focus in the area of predictive computational
modeling of materials, in which novel materials are designed digitally to produce a prescribed functionality and
performance. This approach reduces both the time and resources necessary for material design, and opens the
frontier for multiscale modeling to connect emergent properties with nano-, micro-, and macroscale features. Key
materials processes occur at microstructural scales and are inherently three-dimensional in nature1. Richard
Feynman in his celebrated 1959 lecture, “There’s Plenty of Room at the Bottom,” imagined the possibilities that
could be achieved by manipulating and controlling matter at such small scales2. However, the development of
such predictive frameworks is challenging for at least two reasons. First, as a classic inverse problem, the space
of possible material microstructures to explore to achieve the desired properties is extremely large, which makes
the location of a global optimum difficult without specialized searching algorithms. Secondly, predictive models
must be verified through comparison to experimental measurements of fabricated materials. This requires
that as-fabricated materials be digitally reconstructed in some manner so that the candidate predictive model
can be performed on them. The method described herein is much less resource intensive than obtaining 3D
material microstructures by means of electron backscatter diffraction with successive serial sectioning3. The
first challenge has been addressed with a wide variety of techniques4, such as modified Markov Chain Monte
Carlo sampling and similar Monte Carlo methods5–7, and statistical correlation functions6,8–11, largely in the
context of molecular modeling and computational chemistry, and is not explored here. This paper focuses on
solutions to the second challenge, namely, digital reconstruction of three-dimensional microstructures.

As described by Turner et al.12, the primary aim of predictive materials modeling is the development of
processing-microstructure-property-performance relationships to address the inverse problem. For example,
consider a binary composite in which a matrix phase contains spherical inclusions of a precipitate phase B of
varying diameter. One could completely specify this microstructure with two ordered configuration-space vectors
of the form ~Ri where i = 1,2,3,. . . ,n specifying the location of the nth inclusion particle, and the vector ~Di stores
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Figure 1: (a) HARE generates 3D microstructures from segmented 2D exemplars while preserving important
characteristics, such as volume fraction of a given phase. An optical microscopy image of a metal matrix com-
posite material was successfully reconstructed into 3D. (b) A proof-of-concept two-dimensional reconstruction
of an exemplar, showing the algorithm’s progress across 100 iterations.

their diameters. Finally, boundary conditions (i.e., periodic in all directions) must be specified, assuming that
the configuration-space vectors above are meant to constitute a representative sample of the material. Note that
this information could equivalently, though more compactly, be stored within a single higher-dimensional vector
for actual computational applications, but that might obscure the present discussion. With this information,
the microstructure is known deterministically.

Such an exact specification of a microstructure is of limited utility in achieving microstructure-property
relationships because such results are not generalizable. Suppose the aforementioned composite is measured to
have an unexpectedly high electrical conductivity. Is that due to the absolute positions of the inclusions or their
relative spacing? The distribution of diameters? The length of the longest continuous path through the matrix?
These questions cannot be answered readily by studying a single microstructure. Turner et al.12 and others have
instead supported the probabilistic or statistical approach to microstructure characterization, in which the bulk
properties of a material are assumed to be uniquely and completely specified by the configurational statistics
of the microstructure12,13. This has led to numerous efforts to build both 2D and 3D solid textures from 2D
inputs14–17, some of which have emerged as leaders in the rapidly-growing materials development field15,16.

This statistical approach is preferable for a number of reasons. First, if two materials are known to be
statistically equivalent relative to one descriptor (inclusion radius distribution, for example), yet are still mea-
sured to have different properties, one can readily hypothesize alternative statistical descriptors that may give
rise to the discrepancy (interparticle spacing distribution, for example). Moreover, one would not be burdened
with keeping track of the absolute position of every inclusion particle during this comparison, as required in a
deterministic approach, and statistical descriptions are readily amenable to sampling of smaller subsets while
simultaneously keeping track of the uncertainties that might arise from such sampling.

The development of a robust reconstruction algorithm that can use three or less 2D inputs to rigorously
produce a fully quantifiable microstructure is desirable, but faces two issues common to inverse problems - that
exact analytical solutions either may not exist or may exist in local optima that fail to match the desired criteria,
or that multiple solutions are possible without indication as to the superiority of one solution over the others.
Although general circumventions of these issues often do not exist, it is possible to mitigate them in varying
degrees by a selection of dynamic, ideally self-correcting, adjustments to the solution space. Such adjustments
can include n-point spatial correlations18, which are useful in determining the importance of specific spatial
structures to the effective microstructure properties; minimization of objective error functions, often employed
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Figure 2: The neighborhood vectors Ñ~r for each point in exemplar space g(~r) are matched with their nearest
neighbor N~s in the reconstruction m(~s). Although each neighborhood pair is unlikely to perfectly match, as
shown here with an error of 1, FLANN is able to quickly find the best pairs that minimize the local error, and
thus, by extension the global error.

in Monte-Carlo methods5; reweighting schemes that uniformly sample features within the reconstruction to
fairly represent all points within the microstructure15; and randomization conditions within the algorithm to
nudge the convergence out of a potential local minimum19.

2 Methods
A robust, computationally efficient algorithm written in Python, the Hierarchical Algorithm for the Re-

construction of Exemplars (HARE), was created to reconstruct volumetric microstructures using a single 2D
exemplar for isotropic materials or two to three orthogonal 2D exemplars for isotropic or anisotropic materials.
This work builds upon the hybrid MATLAB/C++-based algorithm of Turner and Kalidindi12 with a code written
entirely in Python to provide extensibility and harness the power of modern open-source scientific computing
libraries, toolkits and machine learning algorithms, as well as automated DREAM.3D pipelines.

The study of the mathematical and computational principles necessary for synthetic microstructure gen-
eration is an active area of research20. A number of approaches have been developed, largely in the context
of research focusing on graphics and image processing algorithms. In particular, Kopf et al.15 developed an
algorithm for three-dimensional texture synthesis based on the input of exemplars. Although this method was
developed primarily for applications in computer graphics, it has been readily assimilated into the materials
research community to address the longstanding issue of synthetic microstructure generation, to which it is
particularly well suited; when a material is characterized, this is often done via optical or scanning electron
microscopy of a polished flat surface of the material. The resulting dataset is a 2D matrix of color values, to
which the method of Kopf et al.15 is applicable. The method becomes simpler if a threshold is performed on
the initial color value input dataset, so that the exemplars are segmented into two phases such that each pixel
of the 2D cross-section can take only one of two discrete values (0 or 1). In the discussion that follows, it will
be assumed that this has already been done.

The generation of a statistically-equivalent 2D slice from an input exemplar is described first, after which
the method will be extended to three dimensions. Consider the K ×K exemplar shown in Figure 2, where K
is the side-length in units of pixels. As described above, each pixel is associated with a phase ID, which in the
case of this binary composite is either 0 (white) or 1 (black). Let the vector ~r = (r1, r2) denote the position of
each pixel and let the scalar-valued function g(~r) denote the phase ID of the pixel located at position ~r; thus,
g(~r) is a full description of the exemplar.

We wish to produce an L×L-pixel microstructure that is statistically equivalent to the exemplar described
by g(~r). Analogously to g(~r) and in keeping with standard notation in the literature, let m(~s) describe the
phase ID values over all pixels in the reconstruction. To generate this statistically-equivalent reconstruction,
Kopf et al.15 introduced the concept of local-neighborhood similarity. Each pixel in m(~s) is centered on an
n× n-pixel neighborhood N~s, as shown in Figure 2 with n=5. Starting with a randomized m(~s), we would like
to iteratively make all neighborhoods N~s resemble the neighborhoods of g(~r).

To achieve this convergence between the reconstruction and the exemplar, each pixel of m(~s) must find the
neighborhood Ñ~r of g(~r) that best matches its own local neighborhood N~s . In Figure 2, notice that Ñ~r differs
from N~s only at the bottom right pixel. This confirms that, as required, Ñ~r is the closest-matching neighborhood
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Figure 3: The reconstruction is driven by the nearest neighbor search, matching neighborhoods in the exemplar
to those in the reconstruction. The red and green stars and associated boxes indicate sample neighborhoods and
their closest match in the reconstruction; the yellow star describes the subsequent voting process. The red and
green stars both vote for the yellow star to turn white, and only pixels in the yellow box in the reconstruction
(which are chosen by the nearest neighbor matching) can cast votes for the yellow star.

of N~s in the exemplar. If all of the phase ID values of the pixels in the neighborhood Ñ~r equal those in N~s,
the reconstruction is in agreement with the exemplar. Otherwise, the two models are in disagreement. This
discrepancy is characterized by the error function E(~s) and is defined for each pixel in the reconstruction m(~s).

E(~s) =

√∑
~u

(N~s(~u)− Ñ~r(~u))2 (1)

A new vector ~u is introduced here, ranging from (1,1) to (n,n), that denotes the position of pixels within
each neighborhood. For example, in Figure 2, N~s(~u = (5, 5)) = 0 and Ñ~r(~u = (5, 5)) = 1, where the origin
of ~u is chosen as the top left corner of each neighborhood; this is the only discrepancy between the two
neighborhoods, as mentioned previously. The sum over ~u allows Eq. 1 to capture the total discrepancy between
the neighborhoods. E(~s) is minimized when N~s = Ñ~r, or when the n×n neighborhood N~s of the pixel at position
~s in the reconstruction is identical, in terms of phase ID values, to the best-matching n×n neighborhood Ñ~r in the
exemplar. E(~s) is maximized when the neighborhoods are opposites, i.e., the black and white representation
of the neighborhoods are inverted. The global error functional is shown in Eq. 2, and captures the total
discrepancy between m(~s) and g(~r) by summing over all local neighborhood discrepancies.

Eglobal =
∑
~s

E(~s) =
∑
~s

√∑
~u

(N~s(~u)− Ñ~r(~u))2 (2)

Equation 2 is described as a functional, rather than a function, because it is a function of m(~s), which is itself
a function describing the microstructure. The target reconstruction seeks to minimize this global error. This
is done in an iterative fashion, alternating between a search phase and an optimization phase15. In the search
phase, the closest matching neighborhoods Ñ~r are found for all ~s. This is a nearest neighbors search, and
previous researchers in solid texture synthesis have generally found the approximate nearest neighbor (ANN)
algorithms implemented with the Fast Library for Approximate Nearest Neighbors (FLANN C++ library) to
provide an acceptable compromise between speed and accuracy21,22. The details of the internal working of the
ANN algorithms are not described here, but their purpose is to organize the total set of possible neighborhoods
Ñ~r of the exemplar into a k-dimensional (or k-d) tree in such a way that the approximate nearest neighborhood
of any N~s can be found with significantly less computational expenditure than if the exact nearest neighborhood
had been sought21.

The 3D microstructure is generated by stochastically minimizing a reconstruction loss defined as the sum of
element-wise differences between each pixel’s local neighborhood and its corresponding nearest-neighbor patch
in the parallel exemplar, summed over the three orthogonal exemplars. Thus, in a given plane, each stochastic
update searches through the fixed space of all size N2 patches in the corresponding exemplar. For a fixed
neighborhood size, this search space increases quadratically with the exemplar size, while for a fixed exemplar
size, the search space decreases quadratically with neighborhood size. However, this benefit comes at the expense
of accuracy in the reconstructed microstructure over length scales larger than the neighborhood size.
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Figure 4: The multithreading within the reconstruction must be accompanied by a patching scheme to properly
coordinate the actions of each section with its neighbor(s) to produce microstructures that contain physically
relevant data. However, the patching can be circumvented to produce non-cubic volumes such as plates that
also carry statistical similarities to the exemplar, in effect producing a range of reconstructions at once (only
two such plates are shown here, but many horizontal section boundaries can be seen on the bottom-left cube).

In their review of the methods described above, Turner et al.12 clarified the following point: each time the
solid texture synthesis algorithm goes through an iteration, the values of each pixel in the reconstruction are
updated in order to decrease the global error determined from Eq. 2. This update can be described as a weighted
average of the “votes” each pixel receives from all neighborhoods to which it belongs20. Consider pixel A and
three of its neighbors B, C, and D in the reconstruction m(~s), and focus on the update to the phase ID value
of pixel A. Say that from the perspective of pixel B, its local error would decrease if pixel A were switched to
the other phase, but from the perspectives of pixel C and pixel D, pixel A should remain the same to minimize
their local errors. If the weights of the “votes” of B, C, and D are equal, pixel A will remain unchanged in the
next iteration of the reconstruction in pursuit of the minimization of global error, as calculated from Eq. 2.
This mechanism is expressed as15.

m(~s) =

n2∑
j=1

ω~s,~sj Ñ~sj (~s)

n2∑
j=1

ω~s,~sj

(3)

Note that the notation in Eq. 3 has been modified slightly to accommodate the relatively large amount of
information referenced without using too many subscripts. Consider the pixel at ~s in the reconstruction. It
participates in n2 neighborhoods, because it is within the neighborhood of each of the n2−1 pixels that surround
it in addition to its own. The index j = 1, 2, . . . n2 is the counter over those pixels, ~sj , each of which “votes”,
with the weight ω~s,~sj , as to what the phase ID m(~s) should be set to (either 0 or 1) during the next iteration
such that its own local error is decreased. These votes are equal to Ñ~sj (~s), which denotes the phase ID of the
pixel within Ñ~sj that corresponds to the location of ~s. This is best understood through an example.

Suppose that m(~s), as illustrated in Figure 3, is the initial randomized “guess” for the reconstruction of the
exemplar. Let ~sy, ~sr, and ~sg denote the pixels marked by the yellow, red, and greens stars in m(~s). We would
like to know what the phase ID value of ~sy (i.e., m(~sy)) should be updated to in the next iteration in order
to decrease the global error functional E(m(~s)). To do this, we will consider the individual votes of ~sr and ~sg,
although in reality all pixels in the yellow neighborhood will contribute if the neighborhood size is chosen to be
3×3. The best-matching neighborhood of ~sr is outlined with red in the exemplar g(~r) and is denoted by Ñ~sr , and
similarly for the green star with ~sg and Ñ~sg . As mentioned previously, these best-matching neighborhoods were
determined via the ANN search algorithm using the FLANN library22. Notice that the local error of ~sr would
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be zero if the yellow star-marked pixel were white, or m(~sy) = 0. Similarly, the pixel at ~sg votes for m(~sy) to be
0. The weighted average of such votes is calculated over all pixels in the yellow-outlined neighborhood, and the
final result is rounded to 0 or 1. The result will be the value of m(~sy) in the next update of the reconstruction.
Note that this rounding operation is not always performed in solid texture synthesis algorithms, but doing so
mitigates the possibility of obtaining a blurry reconstruction16. The reweighting prescription given in Eq. 4 is
implemented after each iteration of the reconstruction

ω′~s,~sj =
ω~s,~sj

1 +max[0, H(Ñ~sj (~s))− θ]
(4)

where H denotes the position histogram and θ = 1
K2 , which represents the (normalized) probability of each pixel

of the exemplar being sampled in the reconstruction if all such pixels are sampled uniformly16. This reweighting
permits a dynamic adjustment of the relative importance of each pixel to the reconstruction between each
iteration, selectively choosing undersampled pixels wherever possible.

Histogram reweighting provides a mathematical bridge between microstructure reconstruction and statistical
mechanics by unbiasing a statistical distribution away from its initial state. Consider a Monte Carlo simulation
that, through random initialization, begins near a mestastable state that is not representative of the equilibrium
properties of the system. Depending on the height of nearby energy barriers, the simulation may never escape
its local minimum. To avoid this situation, one can artificially increase the energy of a particular configuration
based on the number of times that configuration has been visited along the simulation’s trajectory, thus biasing
the trajectory away from them. Similarly, over-sampled patches in the exemplar can be down-weighted based
on how frequently they are used in the reconstruction, thus ensuring representative sampling of all of the input
data. This technique is commonly used when training neural networks as well, particularly in the reverse phase
of training restricted Boltzmann machines.

The convergence is further accelerated by a hierarchical upsampling across several resolution levels, im-
plemented after a set number of iterations. Exemplars can be successively downsampled to half the previous
resolution to produce a coarse structure, and the lowest resolution is used as the first input exemplar. Initial
use of this coarsest exemplar allows the reconstruction to capture large-scale features that might otherwise be
missed with only one level of resolution, and circumvents the initial guess issue in inverse problems. Although it
is always better to start with an input as close to the desired solution as possible, this can be a difficult require-
ment to fulfill due to the vast solution space available to a 2D-to-3D generalization; a randomized structure as
an initial guess is sufficient for most purposes, and is where the reconstruction begins. The use of multiple levels
then permits the initial guess of subsequent levels to use the output from the previous level, allowing the new
guess to more closely match the input exemplars while simultaneously increasing the resolution between each
level to capture more and more features. When downsampling the exemplars, every set of four pixels becomes
a single pixel. The downsampled phase ID value (0 = black and 1 = white) is determined using a rounded
average. When the average is calculated to be 0.5, the downsampled pixel is chosen randomly.

To allow for inevitable increases in reconstruction size, the algorithm was wrapped in an asynchronous
multiprocessing scheme which divides the reconstruction into multiple sections, enabling a concurrent evaluation
of all sections in each iteration while piping the result outside the reconstruction to be plotted on screen. This
implementation dramatically sped up the reconstruction: in a reconstruction containing three levels of 40
iterations each, neighborhood sizes in each level of 5, 11, and 19, respectively, and a full reconstruction size of
2563, the parallelization scheme reduced the runtime from about 37 hours to just 8.5 hours when each level is
divided into six sections, a reduction of almost 80%.

The multiprocessing scheme is accompanied by a compensatory patching tool, serving as a communicator
between separate processors to coordinate the actions of each section. A padded buffer at the edges of each
section is matched with a similar buffer at the edge of the adjacent section(s) to coordinate the weighted phase
ID votes and subsequent updated phase values. Without this patching, distinct divisions between sections are
readily visible, rendering the reconstruction unusable for any physical application. However, this nominal defect
was adapted to extend the algorithm into non-cubic volumes, namely the reconstruction of plate-like structures.
Without the patching tool, the reconstruction can be considered as independently executing as many times
as the number of sections determined by the user, with the caveat of stacking each section with the others to
produce a cubic volume. The patching scheme is illustrated in Figure 4. A plate reconstruction, then, can be
extracted by cropping and tiling the two thin plate exemplars with themselves to match the dimensions of the
largest exemplar and then running the algorithm as normal. In this case, however, we exploit the segregation
that occurs without the patching by setting the number of sections equal to the number of tiles of the thin
exemplars needed to match the large exemplar’s dimensions, rounded up to the nearest integer. Each section
is then sequestered from the others and saved to its own automatically generated directory; in this manner, we
actually achieve multiple reconstructions of the plate for the same computational cost as one.
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Figure 5: Multiphase materials can be reconstructed by isolating non-ordered pairs of values in a grayscale
image and reconstructing each phase pair separately. Each reconstruction is inserted into a master array, where
each "pixel" contains the value from each reconstruction at that same point. This can be extended to arbitrary
numbers of phases, although many phases in one image raises the difficulties of characterizing very low volume
fraction materials. Here, we combine two RGB images obtained by EDS (a)23 into a single image (b), then
convert to grayscale and segment (c). The segmented image is then split according to each combination of

(
p
2

)
,

where p is the number of phases, from which a binary reconstruction can proceed as normal (d). Here, three
binary phase reconstructions are illustrated.

The generalization to multiphase materials would provide a useful avenue for the exploration of microstruc-
tures with known chemical or phase data. We have developed a prototype methodology that characterizes
spatial correlations between phase pairs within a multiphase material by reconstructing each pair individu-
ally. To effect maximum information preservation, the final reconstruction for each pair is superimposed into
a four-dimensional master array, from which a number of three-dimensional nano- or microstructures can be
extracted. Results from energy-dispersive X-ray spectroscopy (EDS) images of Si and Al in a simulated nuclear
waste feed24 are shown in Figure 5. Although superimposed phase-pair reconstructions are only a rudimentary
attempt to generate multiphasic microstructures, this implementation reduced the complexities of trinary (and
greater) reconstructions despite increasing computational time. In its current implementation, the runtime t
increases as

t = 0.5p2 − 0.5p (5)

where p is the number of phases, reflecting the significant increase in combinatorial pairs as the number of
phases increases; however, we believe the trade-off between the greatly expanded informational scope versus
the time investment to be worthwhile. When multiprocessing across multiple nodes is fully enabled (rather
than partitioning a single node), the nodal count will likely negatively offset the p2 term in Eq. 5. The
reconstructions were executed on a 192-core Dell PowerEdge distributed large-memory system with 32 cores per
node and 2.25 TB total memory and a LINPACK rating of 3.78 TFlops.In future versions of HARE, adapting
this combinatorial approach to the exemplars would permit the reconstruction of RGB images as opposed to
grayscale, significantly expanding the capabilities of the algorithm.

3 Results and Discussion
Figure 1a illustrates the process of reconstructing a synthetic 3D microstructure of a HfAl3–Al metal matrix

composite from a segmented 2D optical microsocopy image3. The reconstruction algorithm is performed for
100 iterations to generate a reconstructed “microstructure” of size 50×50. The progression from the initial
randomized reconstruction at the first and one hundredth iterations of the algorithm is shown in Figure 1b. It
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Figure 6: HARE reproduces isotropic and anisotropic materials from computer-generated images as well as
digital scans of real materials. Three-dimensional microstructures generated from (a) a single exemplar of a
material with spherical inclusions, (b) a single exemplar of a two-phase material, (c) two orthogonal exemplars
of a fibrous material, and (d) three orthogonal exemplars of a foam.

can be seen that the general form of the exemplar is visible by the first iteration, suggesting that the rather small
size of the exemplar allowed for rapid convergence of the microstructure. The following 99 iterations cleaned
up the reconstruction further to produce a somewhat imperfect tiled pattern of the exemplar that nonetheless
captures the overall shape of the exemplar.

The impetus for this algorithm centers on the motivation to produce a statistically similar reconstruction of
the exemplars. To verify that the reconstructed volumes are indeed representative of the exemplars, we surveyed
and analyzed a range of morphological statistics across several exemplar-reconstruction pairs. DREAM.3D
software25–27, a tool that is well-suited for analysis of volumetric microstructures, can be used to tally features
of the reconstructed microstructure for comparison to the exemplar. For a given reconstruction, DREAM.3D can
be used to quantify characteristics, such as the volume fraction of phases, equivalent sphere diameter, distance
between features, radius of neighboring features, neighboring features in contact or other parameters of interest.
The mathematics of DREAM.3D’s workings are available in a series of papers establishing the framework for
the recognition and analysis of n-dimensional solids and their associated moment invariants28–32. It should be
noted that while DREAM.3D is also adept at microstructure synthesis according to morphological statistics,
it currently only generates semi-regular polygonal and ellipsoidal features, which are not space-filling and thus
can miss smaller irregular features. HARE is able to construct fully irregular features and performs quite well
in tandem with DREAM.3D. DREAM.3D can provide both the two- and three-dimensional statistics of the
exemplars and the microstructure, respectively, while a tool such as MATLAB can be subsequently employed
to compare the statistical distributions.

The reconstruction of materials with different textures is illustrated in Figure 6. The nature of these textures
ranges from ideal and isotropic (Figure 6a and b) to the reconstruction of a real anisotropic material from three
orthogonal images (such as the SiC foam shown in Figure 6d). The reconstruction of the fibrous material from
two orthogonal exemplars shown in Figure 6c results in a 45◦ arrangement of fibers. For a texture such as this,
including a third exemplar would provide the additional information necessary to ensure that the reconstructed
microstructure is uniquely defined. The reconstruction of the SiC foam shown in Figure 6d was based upon
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three orthogonal slices obtained by X-ray computed tomography. HARE reconstructs a synthetic structure that
closely resembles the morphology of the original microstructure.

Repeated tests have demonstrated that use of the histogram reweighting scheme given by Eq. 4 is necessary
to generate microstructures that resemble their exemplars; without it, the voting scheme is unable to distinguish
between over- and undersampled pixels and adjust the phase ID updates accordingly, the reconstruction over-
whelmingly mis-samples exemplar neighborhoods and produces highly unrepresentative structures. We affirm
the similar conclusions reached by both Kopf et al.15 and Turner et al.12 regarding the necessity of histogram
reweighting to correctly match global statistics in conjunction with neighborhood matching to reproduce local
statistics. Similarly, the multithreading must be accompanied by a patching scheme to accurately orchestrate the
reconstruction at the boundaries between sections; neglecting it renders cubic reconstructions unusable for any
material or physical application. However, plate structures can be extracted from a non-patched reconstruction
if necessary while retaining the desired statistical equivalence.

The reconstruction of multiphasic materials has been developed into a simple, yet prototypic, approach. By
isolating pairs of phases, we can avoid a complete overhaul of the voting scheme while preserving the exemplars’
structures; an earlier attempt at reconstructing all phases at once showed that the solution quickly converged
to either a single phase or eliminated the middle phases after only a few iterations. An added benefit of the
new prototype sidesteps the inherently biphasic nature of HARE- instead of the all-or-nothing choice of phases
in the cubic and plate reconstructions, wherein the reconstructions for each phase pair are allowed to coexist
via superposition. This prototype may be expanded by incorporating more sophisticated methods to preserve
low volume fraction phases.

4 Summary and Future Work
The HARE algorithm is a solid foundation for future efforts in multi-scale modeling to support advanced

manufacturing and materials discovery. A large part of materials science lies within the development of new
materials for specific purposes, and our algorithm provides a convenient and robust base from which to generate
statistically representative synthetic microstructures. This work builds upon the hybrid MATLAB/C++-based
algorithm of Turner and Kalidindi12 and offers additional features, such as histogram reweighting, multithread-
ing, and an option for generating plate microstructures. The code was written entirely in Python to provide
extensibility and harness the power of open-source scientific computing libraries, toolkits and machine learning
algorithms. Python can easily interface with DREAM.3D workflows and run automated pipelines. As men-
tioned earlier, the "defects" in the reconstruction produced by the algorithm cannot be ignored when analyzing
the material across various scales, since the roles of semi-random defects and small-scale heterogeneity have yet
to be fully defined in regards to their effect on bulk material properties and consequent performance. These
defects are often precisely the features we wish to capture. This algorithm, when coupled with machine learning
techniques, can be a powerful tool for materials design33. For example, synthetically-generated microstructures
exhibiting defects could be used to train machine-learning algorithms, such as convolutional neural networks34.
Additionally, this algorithm could be incorporated into advanced finite element modeling tools35. With this
approach, the incorporation of embedded sensors into additively manufactured parts can be evaluated.

By constructing microstructures of specific texture, the fabrication of materials with chosen macroscale
properties emergent from microscale features with performance tailored for a given application can be facilitated.
We believe this will be a powerful tool when combined with future multiphase reconstruction capabilities.
Currently, the algorithm can only reconstruct two-phase materials. By expanding the multi-phase capabilities
the algorithm will become exponentially more useful to researchers who possess chemical and phase data.
Further refinements can be incorporated through the inclusion of additional convergence heuristics to narrow
the solution space. Two-point spatial correlations would allow FLANN to preferentially select nearest neighbors
in the reconstruction that are spatially closest to the associated exemplar neighborhood, the mathematics of
which are well understood18. Similarly, incorporating a simulated annealing sub-algorithm would push solutions
out of local minimums toward the global optimum, a technique often used in combinatorial optimizations36.
Implementation of these additional heuristics would accommodate low volume percent materials, which currently
tend to converge to single-phase reconstructions and are not representative of the materials from which they
were taken. As mentioned earlier, the adaptation to accept multivalued exemplars such as those generated
by X-Ray Fluorescence Mapping or EDS would greatly expand HARE’s ability to reconstruct the chemical or
phase composition of a material.
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Nomenclature
~Di Diameter of ith particle in microstructure

~r Vector denoting the position of each pixel

~Ri Spatial position of ith particle in microstructure

~u Neighborhood vector denoting pixel positions

Ñ~r nxn pixel neighborhood in the exemplar(s)

Ñ~r Neighborhood of the pixel at u in exemplar

E(~s) Error function

g(~r) Phase ID value of the pixel at ~r in the exemplar

H(Ñ~sj (~s)) Position histogram of phase ID values in neighborhoods in the exemplar

K Exemplar side dimension (number of pixels)

L Reconstruction side dimension (number of pixels)

m(~s) Phase ID value of the pixel at ~s in the reconstruction

N~r uxn pixel neighborhood in the reconstruction

N~r Neighborhood of the pixel at u in the reconstruction

t Computational time

ω′~s,~sj Weight of a pixel’s vote when updating phase ID values

p Number of phases

θ Probability each pixel of the exemplar is sampled in the reconstruction
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