

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

1 **Frances S. Chance^{1*}, James B. Aimone¹, Srideep S. Musuvathy¹, Michael R. Smith², Craig M.
2 Vineyard¹, Felix Wang¹**

3 ¹Department of Cognitive and Emerging Computing, Sandia National Laboratories, Albuquerque,
4 NM, USA

5 ²All-Source Analytics Department, Sandia National Laboratories, Albuquerque, NM, USA

6 *** Correspondence:**

7 Frances S. Chance
8 fschanc@sandia.gov

9 **Keywords: artificial intelligence, neural-inspired algorithms, neuromorphic, deep learning,
10 artificial neural network.**

11 **Abstract**

12 Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example
13 the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial
14 neural networks. More recently, notable recent AI advances, for example the growing popularity of
15 reinforcement learning, often appear more aligned with cognitive neuroscience or psychology,
16 focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to
17 enter a new era of large-scale high-resolution data and appears more focused on underlying neural
18 mechanisms or architectures that can, at times, seem rather removed from functional descriptions.
19 While this might seem to foretell a new generation of AI approaches arising from a deeper
20 exploration of neuroscience specifically for AI, the most direct path for achieving this is unclear.
21 Here we discuss cultural differences between the two fields, including divergent priorities that should
22 be considered when leveraging modern-day neuroscience for AI. For example, the two fields feed
23 two very different applications that at times require potentially conflicting perspectives. We highlight
24 small but significant cultural shifts that we feel would greatly facilitate increased synergy between
25 the two fields.

26 **1 Introduction**

27 Neural-inspired artificial intelligence (AI) is based upon the fundamental assumption that brain
28 circuits have been optimized by evolution. While biological brains face different evolutionary
29 constraints compared to modern-day computers, it stands to reason that further exploration of the
30 brain's underlying mechanisms and using these mechanisms to inform emerging approaches to AI
31 will capture aspects of cognition that are currently challenging for AI (see Aimone, 2019 and
32 Hassabis et al. 2017 for in depth discussions). Correspondingly, notable advances in artificial
33 intelligence (AI), for example reinforcement learning (e.g. as used by AlphaZero, see Silver et al.,

34 2018), the Transformer network (Vaswani et al., 2017), and deep convolutional networks
35 (Krizhevsky et al., 2012), are based upon descriptions or theories of brain function. Currently, the
36 direct path for incorporating modern-day neuroscience (which is increasingly designed for more
37 detailed descriptions of brain circuits and mechanisms) into AI approaches is unclear, although the
38 numbers of efforts focused on this challenge are growing. This article describes differences between
39 the two fields that, if addressed, could significantly expand the path from neuroscience to AI to
40 ensure the continued growth of neural-inspired AI.

41 How AI can best leverage modern-day neuroscience, and correspondingly, how modern-day
42 neuroscience can best inform the field of AI remain open questions and active areas of discussion.
43 One confounding factor is that the brain can be understood at multiple levels, all of which have
44 impacted AI (for recent reviews see Yamins and DiCarlo, 2016; Sinz et al 2019). At the
45 phenomenological level (also referred to here as function level), efforts to include additional brain-
46 inspired elements include attention (Mnih et al., 2014), episodic memory (Blundell et al., 2016),
47 continual learning (Kirkpatrick et al., 2017), imagination (Thomee et al. 2007), and transfer learning
48 (Pan and Yang 2010). At a more mechanistic level, efforts remain centered on applying relatively
49 standard training techniques to hand-crafted architectures incorporating novel neural-inspired
50 elements (for example, see the incorporation of recurrence for visual processing in George et al.,
51 2017; George et al., 2018; Nayebi et al., 2018; Kar et al., 2019; Kubilius et al. 2019). Examples of
52 efforts to include biophysical detail at the single-neuron or synapse level include spiking neural
53 networks (Tavanaei et al., 2019), neurogenesis (Draelos et al., 2017), spine stabilization (Kirkpatrick
54 et al., 2017), and context-dependent activation or gating of neurons (Masse et al., 2018; Rikhye et al.,
55 2018). While there is certainly interest in incorporating additional neural-inspiration at multiple
56 levels, approaches for doing so do not appear to be growing at the same pace as the wealth of
57 neurobiological data being produced by the broader neuroscience community.

58 Identifying the appropriate “depth of understanding”, or level of abstraction, for describing how
59 neural circuits implement cognition (or any other task) in a manner that facilitates incorporation into
60 an AI model is one of the greatest challenges facing neural-inspired AI. In our opinion, a significant
61 but subtle challenge arises from differing perspectives between the two fields, largely driven by the
62 end-goal applications that drive each field. Neuroscience has been pulled by funding priorities
63 towards a focus on identifying loci of dysfunction (i.e., in disease or disorders) for potential
64 therapeutic targets. This translates to a culture that emphasizes defining and describing specific
65 system components. AI applications, on the other hand, require demonstrated improvements on
66 performance on a specific task. For neural-inspired AI, there is often a focus on problems for which
67 human performance still exceeds that of computers (see “Challenges of bringing neuroscience to
68 artificial intelligence”). For such problems, AI culture is primarily focused on understanding how a
69 system produces a solution at an algorithmic-level, rather than understanding the underlying
70 mechanisms or the biological neural architectures. In contrast to neuroscience, AI research
71 experiences almost no pull along the form axis.

72 The view of these cultural differences is further complicated by a seeming abundance of riches – the
73 fact that there are multiple levels across which the two fields may interact. Using visual processing
74 as an example to highlight the cultural differences and differing foci between the two fields, we can
75 describe “levels” of research using three fundamental questions to describe the impact of a particular
76 research effort: 1) “What is it?”, or form, is defined as understanding the specifics of the components
77 that comprise the neural circuit or neural network. 2) “How does it work?”, or mechanism, is defined
78 as understanding how components of a network work together. 3) “What does it do?”, or function, is
79 developing the “higher-level” description or abstraction of function. These three levels may be

80 mapped to Marr's three levels for understanding an information processing system, implementation,
 81 algorithm, and computation, respectively (Marr 1982); however here we have cast the levels as
 82 questions to highlight the viewpoint of a researcher interested in incorporating new information into
 83 models (whether for neuroscience or AI).

84 We illustrate these differences of our above example in Figure 1. As with Marr's levels, although the
 85 three axes are drawn orthogonally, we acknowledge that the axes are not completely independent, as
 86 any one experiment can impact multiple axes. For example, a combination of optogenetic labelling
 87 and large-scale calcium imaging can be used to characterize the responses of a specific subtype of
 88 neuron within a brain area. While describing the spatiotemporal features of this type of neuron's
 89 receptive field is form, inferring the underlying connectivity and interactions between cell types maps
 90 to the mechanism axis, and capturing a more abstract description of the functional role of this
 91 subtype within the larger population of recorded cells is aligned with the function axis.

92 **Figure 1 about here**

93 While mechanism and function are both relevant for neuroscience, the drive for identifying
 94 therapeutic targets arising from a need for biomedical applications results in a strong pull
 95 predominantly along the form axis, as indicated by the red dashed arrow. This is not to say that all
 96 neuroscience work is only aligned along one axis. For example, Hubel and Wiesel's seminal work
 97 (1962, indicated by the red star) characterizing receptive fields in visual cortex could be described as
 98 impacting two different axes. We would consider the ongoing efforts to further characterize
 99 responses and connectivity of various subtypes of neurons in V1 (for example see Jiang et al 2015) as
 100 oriented along the form axis (what is it?), but the hierarchical model of visual processing (vertical red
 101 arrow) as oriented along the mechanism axis (how does it work?). The hierarchical model was fairly
 102 abstracted; it could be argued that this level of abstraction facilitated development of subsequent
 103 hierarchical models in AI, for example Fukushima's (1980) neocognitron. Indeed, while many of the
 104 new tools becoming available today are specifically designed to address the form of large-scale
 105 neural circuits (see the next section, "Why neuroscience for artificial intelligence"), they will produce
 106 data that will drive new models at both the mechanism and function levels. Nevertheless, we would
 107 argue that orientation towards the "what is it?" question will continue to dominate, driven by the
 108 traditional applications of the field.

109 As with neuroscience, AI encompasses efforts aligned with all the axes described in Figure 1, but the
 110 drive for improving the performance on a specific task results in a significant pull along different
 111 axes than neuroscience. Algorithm development cannot proceed without some attention to
 112 mechanism (as well as implementation, see "Specialized hardware: agonist or antagonist?"), and
 113 often critical breakthroughs in performance arise from developing architectures. For example, the
 114 neocognitron (based upon Hubel and Wiesel's hierarchical model and indicated by the blue star),
 115 arguably inspired the architecture of convolutional networks (CNNs, LeCun et al., 1998),
 116 representing advancement along the mechanism axis. Nevertheless, answering the question of "what
 117 does it do?" (or perhaps put more colloquially, "what is it good for?") is critical for applying a model
 118 to any application space. Training a convolutional network (e.g., for image classification, blue arrow)
 119 is application along the function axis. Similarly, implementing "human-like" computations (dashed
 120 blue arrow), like those thought to underlie cognition, while likely drawing from both mechanism and
 121 form, primarily will be oriented along the function axis.

122 Our intent is not to suggest that a bias along any one axis is more valuable than along another.
 123 However, the differences in Figure 1 are illustrative of why the two fields can sometimes be

124 perceived as diverging, even as the fundamental research questions seem well-aligned. It is worth
 125 noting that neuroscience's general bias towards form and AI's general bias towards function may
 126 perpetuate a disconnect between the two fields, as each field will be predisposed to build upon
 127 advances framed along dominant biases of the field. For example, identification of a new type of
 128 interneuron (as would arise from further characterization of types of neurons in visual cortex) will not
 129 be readily incorporated into an existing machine learning approach or AI model without an
 130 accompanying *functional* description of the role of the interneuron within the biological neural
 131 network. Conversely, a generalized functional description of inhibition in an ANN may not be readily
 132 explored in a biological brain without some indication of form, or how that function might be
 133 implemented using known biological components (i.e., different interneuron subtypes).

134 In spite of cultural differences, there are indications that cross-pollination between the fields is
 135 thriving. Within the field of visual processing, it has been encouraging to see analogies drawn
 136 between the architecture of high-performing neural networks and visual cortex (e.g. George et al.,
 137 2017; George et al., 2018). Moreover, such comparisons have been extended to demonstrate that
 138 task-optimized deep convolutional networks appear to utilize representations similar to the single-
 139 unit responses of neural circuits contained within the ventral visual processing pathway (Khaligh-
 140 Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Cadena et al.,
 141 2019). Several recent studies have proposed deep networks, trained to predict best stimuli for
 142 individual neurons, as validatable models of V1 (Walker et al., 2019) as well as higher-order areas of
 143 visual processing (Bashivan et al., 2019; Ponce et al., 2019). These works are examples of hybrid
 144 research, a product of both fields, that could facilitate development of a common language.

145 While a common language that spans both fields may be an ambitious goal, acknowledgement of
 146 differing priorities (or application drivers) may be the first step to subtle shifts in perspective that
 147 could do much to address the cultural differences between fields. For neuroscience, communicating
 148 new neuroscience knowledge on a function level will do much to ensure impact on AI. Similarly, a
 149 slight broadening of receptiveness of AI to differing levels of neuroscience would greatly facilitate
 150 adoption of new neuroscience knowledge. These shifts in focus are small but significant and would
 151 do much to increase the synergy between neuroscience and artificial intelligence.

152 2 Why neuroscience for artificial intelligence?

153 Neuroscience is in the midst of a technology development era that is producing new tools for
 154 exploring the brain's circuits with higher resolution and in greater detail than previously possible.
 155 First, recent advances in both electron microscopy (EM) imaging (e.g. Zheng et al., 2018), combined
 156 with novel reconstruction algorithms (e.g. Januszewski et al., 2018) are already resulting in new
 157 connectomes of unprecedented scale (e.g. Li et al., 2019), with even larger and higher-resolution
 158 volumes on the horizon. Potentially combined with other techniques such as the bar-coding of
 159 individual neuronal connections (Zador et al., 2012), neuroscience is now positioned such that a
 160 whole mammalian brain connectome is within reach. Second, and complementary to the large-scale
 161 connectomic datasets on the horizon, neuroscience also continues to advance large-scale calcium
 162 imaging (see Girven and Sparta, 2017 and Lecoq et al., 2019 for reviews) and multi-unit recording
 163 techniques, increasing the range of physical and temporal scales with which populations of neurons
 164 may be recorded (see Stevenson and Kording, 2011 for a timeline). Third, a broader range of tools
 165 are now available for simultaneously identifying, recording and manipulating multiple populations
 166 from different cell-types (see Huang and Zeng, 2013 and Simpson and Looger, 2018). Detailed
 167 descriptions of interactions between different cell-types, including different temporal scales of

168 plasticity, are essential for describing neuronal “motifs” that potentially constitute canonical
 169 computations in the brain (Douglas et al., 1989; Harris and Shepherd, 2015).

170 It would seem natural for the technological advances described above to drive a new and potentially
 171 revolutionary generation of neural-inspired ANNs. As increasingly accurate computational graphs of
 172 neurons become available, the question of how the brain is wired is no longer the limiting factor for
 173 developing novel and potentially revolutionary neural-inspired ANN architectures. Neuroscience
 174 now has the capability to record from the same populations of identifiable neurons for lengths of time
 175 that were previously unfeasible. Combined with advances in data analytics, neuroscience can now
 176 provide access to a range of neural temporal dynamics that were previously inaccessible. For
 177 example, the recent work by Trautmann et al. (2019) suggests that neural population dynamics can be
 178 extracted from silicon probe recordings without pre-requisite spike sorting, thus alleviating the data-
 179 processing bottleneck facing multi-unit recording techniques. These technological advances are
 180 particularly relevant from an algorithmic development point of view because the ability of a static
 181 graph (without corresponding knowledge of the temporal dynamics) to inform or constrain a
 182 computational neural model has historically remained unclear, as it is likely that temporal dynamics
 183 play a central role in biological neural processing. Nevertheless, the path from increased biological
 184 detail associated with large-scale recordings to a reduced form appropriate for incorporation into an
 185 artificial neural network is unclear. A neural model that reduces the temporal dynamics of these
 186 large-scale recordings to a more canonical form, even if at the expense of some biological detail,
 187 would do much to alleviate the disconnect (even if underutilizing the richness of the large-scale
 188 neurobiological data).

189 It is worth noting that Hubel and Wiesel’s hierarchical model of simple and complex cells in visual
 190 cortex was a significant influence behind the development of the neocognitron, widely regarded as
 191 the predecessor to CNNs, even in the absence of anatomical validation. When considering the
 192 cultural differences raised in the previous section, one might even argue that the impact of Hubel and
 193 Wiesel’s work was facilitated by the lack of anatomical validation as the hierarchical model was
 194 made accessible by its simplicity. Today computational neuroscience, driven by the availability of
 195 new large-scale datasets, is increasingly focused towards high throughput methods for data
 196 (Gouwens et al., 2019) to provide meaningful constraints for primarily mechanistic models. These
 197 efforts are synergistic with experimental neuroscience, as model validation often identifies critical
 198 gaps in knowledge. However, a more functional angle, potentially continued in parallel to the more
 199 detailed neural modeling, would do much to facilitate impact on AI.

200 3 Challenges of bringing neuroscience to artificial intelligence

201 While AI researchers are highly motivated to explore novel approaches, (e.g. neural-inspired
 202 architectures), that interest can fade without a relatively quick demonstrated impact on accepted
 203 benchmarks. In spite of the foundational work of Fukushima (1980) and LeCun (1998), it was not
 204 until AlexNet won the ImageNet Large-Scale Visual Recognition Challenge (Krizhevsky et al., 2012)
 205 that CNNs rose to the level of popularity that they enjoy today. While it can be argued that the rise
 206 of CNNs was driven as much because availability of GPUs and large-scale data sets made training
 207 them tenable for the first time, their success and continued popularity is a significant example of how
 208 a concept, drawn from neuroscience and framed within the correct context (in this case tractability of
 209 training the network combined with success on a benchmark) can drive significant advances. It was
 210 the clear demonstration of function (successful application of the architecture) that drove the current
 211 and relatively widespread use of convolutional networks today.

212 In the case of AI, function is often defined by application. Broadly speaking, computer tasks may be
 213 divided into two categories: those for which a computer is currently better suited, and those for which
 214 a human is currently better suited. The latter category of tasks is an obvious desired application
 215 space for neuroscience, and AI has traditionally focused on improving performance in these areas
 216 while continuing to leverage capabilities for which a computer is better suited (e.g. extracting
 217 patterns from large corpuses of data). One example of a such a task is learning from a single or a few
 218 examples (zero-, one-, or few-shot learning). State-of-the-art algorithms currently achieve modest
 219 success at these tasks (Snell et al., 2017), but still remain unable to meet or beat human performance.
 220 A second, potentially related, task is extrapolating information to new examples (semi-supervised
 221 learning). Humans are able to recognize examples of a class of stimuli, even if presented in very
 222 different environments, after exposure to only a few labeled examples of that class with several
 223 unlabeled examples of that class and other classes. Developing algorithms that are capable of self-
 224 labelling new examples of a class remains a challenge for computer science (although see Arjovsky
 225 et al., 2019), presenting a real limitation to data processing algorithms as the process of labelling data
 226 is relatively expensive (and therefore large labeled datasets are not always readily available).
 227 Although these tasks are seemingly trivial for human beings, computer algorithms struggle to match
 228 human performance.

229 Demonstrating the value of looking to neuroscience for novel solutions to these tasks is particularly
 230 challenging, as neuroscience does not currently understand how the brain performs these tasks on the
 231 levels towards which neuroscience is biased. It is reasonable to assume that AI will be most strongly
 232 impacted by efforts aligned with the function axis (see Figure 1). Models of human behavior and
 233 human memory exist in a functional form, but they are relatively disconnected from studies at the
 234 neural circuit level (Krakauer et al., 2017). On one hand, this application space presents an
 235 opportunity for neural-inspired AI, as neuroscience will likely utilize approaches spanning all of the
 236 previously mentioned levels (form, mechanism, and function) to answer these questions. On the other
 237 hand, opportunities for neuroscience to impact this axis in the near future are constrained by the fact
 238 that most neuroscience tools available today are designed for exploring the form and mechanism of
 239 neural circuits (as previously discussed).

240 One practice that facilitates re-framing neuroscience form or mechanism data into a functional
 241 description appropriate for impacting AI is considering the functional context of the neural circuit (or
 242 single neuron) within the brain when assessing potential impact on AI. The majority of successful
 243 developments in neural-inspired AI (included those reviewed in this article) follow this practice. At
 244 the same time, we would encourage a broader perspective when considering which areas of
 245 neuroscience to draw from. A continued or increased focus on drawing from human cognition runs
 246 the risk of maintaining the disconnect between AI and neuroscience as the needed conversion from
 247 mechanistic and form descriptions to more functional ones may be slow to mature. In addition, our
 248 observation (discussed more fully in the next section) is that there are many opportunities for
 249 neuroscience to impact AI that will be overlooked without a broadening of the perceived “impact
 250 space” for neuroscience within AI.

251 4 Crossing the cleft

252 Currently a theoretical “gap” exists between neuroscience and AI as researchers seek to establish the
 253 “right” level of abstraction for translation between the two fields. While, as previously mentioned,
 254 the incorporation of neuroscience into AI development is often viewed as, at best, a superficial
 255 treatment of the understanding of neural circuits that neuroscience has to offer, neuroscience could do
 256 much to broaden its impact on AI through relatively small efforts to describe new discoveries in a

257 function-oriented manner (answering the question of “What does it do?” in Figure 1), in addition to
 258 the form- and mechanism-oriented manners that are more common in the general neuroscience
 259 community. It is also worth noting that in some cases translation to a functional description may
 260 require loss of fidelity to the underlying mechanisms and form. Indications are that a cultural shift
 261 within computational neuroscience to describe brain theory in a more “machine-learning-accessible”
 262 manner has already begun (see recent papers by Marblestone et al., 2016 and Richards et al., 2019).
 263 As already described, neuroscience has also begun to adopt machine learning approaches to further
 264 develop computational models of neural systems, as seen for the visual system (Khaligh-Razavi and
 265 Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Bashivan et al., 2019; Cadena
 266 et al., 2019; Ponce et al., 2019; Walker et al., 2019).

267 In addition to better aligning with the goals of AI, from our viewpoint the impact of neuroscience on
 268 AI can also be extended by taking a broader view when considering what neural systems are relevant
 269 for fostering the development of neural-inspired AI (in particular those with more mature functional
 270 models derived from mechanistic and form data). One example of such an area is the exploration of
 271 visual processing in non-mammalian (but still strongly visual) animals. Recent work has identified
 272 neurons in the dragonfly visual system that exhibit a form of predictive gain modulation, in which
 273 visual responses to predicted prey-position are selectively enhanced (Wiederman et al., 2017), even
 274 in the presence of a second potential target (Wiederman and O’Carroll, 2013). Phenomenologically,
 275 the selective gain modulation of visual responses in the dragonfly system has obvious parallels with
 276 selective visual attention observed in macaque visual cortex (McAdams and Maunsell, 1999; Treue
 277 and Martinez-Trujillo, 1999). While the underlying neural circuitry and specific mechanisms are still
 278 under investigation in both the non-human primate and dragonfly systems, the relative simplicity of
 279 the dragonfly system has facilitated development of function-level models of the dragonfly
 280 mechanism (for example Wiederman et al 2008) and subsequently development of dragonfly-inspired
 281 target tracking algorithms (Bagheri et al., 2015, 2017b) implemented on robotic platforms (Bagheri et
 282 al 2017a).

283 A second example of the potential continued impact of neuroscience towards AI is the continued
 284 incorporation of elements of spatial coding as observed within the hippocampal formation into
 285 navigation algorithms. When place fields (O’Keefe, 1971) and head-direction cells (Taube et al.,
 286 1990a,b) were first characterized, they were accompanied by hypothetical functional descriptions of
 287 their roles in spatial coding. While abstract, these proposed functions facilitated their incorporation
 288 into robot navigation systems (Arleo and Gerstner, 2000) as well as SLAM (simultaneous
 289 localization and mapping) algorithms (e.g. RatSlam, Milford et al., 2004). More than a decade later,
 290 the field continues to draw from neuroscience discoveries (Zhou et al., 2018, Kresier et al., 2018a,b),
 291 including grid cells (Fyhn et al., 2004; Banino et al., 2018; Cueva and Wei, 2018), and 3-dimensional
 292 representations (Yu et al., 2019). While it remains to be seen whether the hippocampal spatial code
 293 is representative of a more general framework for cognition (Bellmund et al., 2018; Hawkins et al.,
 294 2019), advances in our understanding of the spatial navigation system of animals have clearly had
 295 continued impact on development of artificial brain-inspired navigation algorithms, with longer-term
 296 implications for autonomous or semi-autonomous navigation systems that will rely on some form of
 297 AI.

298 While these neural systems may be viewed as esoteric by some, the successes in these areas suggest
 299 that a common language (or at least a common perspective) is already being developed, even if
 300 restricted to certain applications in which neuroscience has had a demonstrated but limited impact.
 301 While it may be debatable whether modern neuroscience is poised to unravel the neural circuits
 302 underlying cognition, these examples illustrate that there are several avenues by which continued

303 application of neuroscience to AI will 1) continue to grow communication between the two fields and
 304 2) foster the development of neural-inspired AI application areas that could eventually form the
 305 foundation for more general neural-inspired AI.

306 **5 Specialized hardware: agonist or antagonist?**

307 One potentially complicating aspect to looking to a broader range of neural systems for impacting AI
 308 is the potential increase in computational cost. As discussed previously, the availability of modern
 309 high-performing computing platforms such as GPUs are a significant factor in the recent success of
 310 deep neural networks. While ideally neural-inspired algorithms should not be biased by the dominant
 311 computer architectures of the time, in practice the cost of applying an algorithm to particular
 312 application domains will be a consideration. For this reason, aspects of neuroscience that can be
 313 incorporated into a deep learning framework have an advantage for impacting AI in that they can be
 314 run on high-performing technology. While using a deep learning framework as a “best-practices”
 315 guideline may be beneficial in the short-term to foster communication between neuroscience and AI,
 316 an unfortunate side effect is that many neural systems with much to offer (for example the
 317 hippocampus) may contain architectures that are rather distinct from the hierarchical processing
 318 models that inspired deep neural networks.

319 For this reason, when looking more broadly within neuroscience to inspire AI, it will be useful to
 320 also look beyond current computing technologies to what technologies may be on the horizon.
 321 Recent years have seen an increased prioritization of neuromorphic hardware solutions for AI
 322 applications (Blouw et al., 2019, Esser 2015, and Severa et al., 2019) in addition to their long-
 323 proposed use for neuroscience modeling (Furber, 2012 and Indiveri et al., 2011). Programmable
 324 neuromorphic hardware remains a somewhat immature technology compared to GPUs and CPUs,
 325 however there are now a number of technologies such as IBM’s TrueNorth (Merolla et al., 2014) and
 326 Intel’s Loihi chips (Davies et al., 2018) that have sufficient neurons to implement a variety of neural
 327 circuits, especially some of the more succinct circuits (e.g. the dragonfly system discussed above).
 328 The trade-off for this programmability is potential increased difficulty of implementation. Until
 329 these newer neuromorphic hardware mature, it is likely that GPUs and other accelerators will
 330 continue to prove most effective for simple neural networks.

331 The effectiveness of GPUs at accelerating deep neural networks in some ways demonstrates that
 332 initial costs (for example increases in required computational power) may be acceptable when
 333 initially exploring new areas of neuroscience for impacting AI. Although neuromorphic technologies
 334 have demonstrated computational advantages, these advantages typically come with restrictions on
 335 the set of neural capabilities (e.g. leaky integrate-and-fire neurons) that may be effectively
 336 implemented. From our perspective, the neuromorphic hardware community is, in many respects,
 337 still searching for clear evidence of what aspects of the brain should be incorporated in hardware.
 338 Should potential computational advantages be demonstrated, there will be considerable interest in
 339 pursuing aspects of neural realism that can fully realize these advantages.

340 **6 Summary**

341 We have discussed certain cultural differences between neuroscience and AI that, from our
 342 viewpoint, hinder cross-pollination between the two fields. While such cross-pollination is, in itself,
 343 a challenging proposition, much of these differences are driven by diverging priorities and
 344 perspectives rather than technical obstacles. Neuroscience is primarily focused towards
 345 understanding form, the components of biological neural circuits, and mechanism, how neural

346 circuits work. New neural data, driven by a stream of new tools for dissecting neural circuits, will be
347 described from this perspective. AI, on the other hand, seeks to increase performance (with respect
348 to an objective function), especially on tasks where human performance still exceeds that of
349 computer algorithms. While it is natural to look to neuroscience to inform the next generation of AI
350 algorithms, AI requires information in a more abstracted language than neuroscience typically
351 produces. Incorporation of neural elements be biased towards functional descriptions of neural
352 circuits and the brain.

353 There are indications that there is already a cultural shift within neuroscience to communicate results
354 on a more function-oriented level (although the fields have yet to arrive at an agreed-upon “common
355 language”). Our view is that this slight shift in perspective will do much to facilitate translation of
356 new neuroscience knowledge to AI algorithms. We also suggest that neuroscience impacts on AI
357 could be enhanced by broadening the current perspective regarding what areas of neuroscience are
358 relevant to AI. We have pointed to two example neural systems (spatial navigation in the
359 hippocampus and visual processing in insects) that have been successful at maintaining an open
360 pipeline to impacting ANN development and implementation in robotic systems and that, in our
361 view, demonstrate the potential of “alternative” neural systems to inform AI. History (and hindsight)
362 will eventually reveal the “right” source of inspiration and the correct language with which to
363 communicate. Our current view is that there is tremendous potential for the two fields to work
364 together synergistically, potential that can only be realized through broader exploration of a wide
365 range of possibilities.

366 7 Conflict of Interest

367 The authors declare that the research was conducted in the absence of any commercial or financial
368 relationships that could be construed as a potential conflict of interest.

369 8 Author Contributions

370 FC wrote the first draft of the manuscript. JA, MS and FC wrote sections of the manuscript. All
371 authors participated in discussions regarding the content of the manuscript, manuscript revision, and
372 read and approved the submitted version.

373 9 Funding

374 This work was supported by the Intelligence Advanced Research Projects Activity (IARPA), the
375 DOE Advanced Simulation and Computing program, the Defense Advanced Research Projects
376 Agency (DARPA), and the Laboratory Directed Research and Development program at Sandia
377 National Laboratories. Sandia National Laboratories, a multimission laboratory managed and
378 operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned
379 subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear
380 Security Administration under contract DE-NA0003525.

381 10 Acknowledgments

382 This Article describes objective technical results and analysis. Any subjective views or opinions that
383 might be expressed in the paper do not necessarily represent the views of the US Department of
384 Energy or the US Government.

385 11 References

386 Aimone, J. Neural algorithms and computing beyond Moore's law. (2019). Communications of the
387 ACM 62, 110.

388 Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2019). Invariant risk minimization.
389 arXiv:1907.02893.

390 Arleo A., and Gerstner W. (2000). Spatial cognition and neuro-mimetic navigation: a model of
391 hippocampal place cell activity. Biol. Cybern. 83, 287-299.

392 Bagheri, Z.M., Wiederman, S.D., Cazzolato B.S., Grainger S., and O'Carroll D.C. (2015). Properties
393 of neuronal facilitation that improve target tracking in natural pursuit simulations. Journal of the
394 Royal Society Interface 12, 20150083. doi: 10.1098/rsif.2015.0083.

395 Bagheri, Z.M., Cazzolato B.S., Grainger S., O'Carroll, D.C., and Wiederman, S.D. (2017a). An
396 autonomous robot inspired by insect neurophysiology pursues moving features in natural
397 environments. J. Neural Engineering 14, 046030. doi: 10.1088/1741-2552/aa776c.

398 Bagheri, Z.M., Wiederman, S. D., Cazzolato, B.S., Grainger S., and O'Carroll, D.C. (2017b).
399 Performance of an insect-inspired target tracker in natural conditions. Bioinspiration & Biomimetics
400 12, 025006. doi: 10.1088/1748-3190/aa5b48.

401 Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T. Mirowski, P., et al. (2018). Vector-based
402 navigation using grid-like representations in artificial agents. Nature 557: 429-433.

403 Bashivan, P., Kar, K., and DiCarlo, J.J. (2019). Neural population control via deep image synthesis.
404 Science 364: eaav9436. doi: 10.1126/science.aav9436.

405 Bellmund, J.L.S., Gärdebfors, P., Moser, E.I., Doeller, C.F. (2018). Navigating cognition: Spatial
406 codes for human thinking. Science 362: pii: eaat6766. doi: 10.1126/science.aat6766.

407 Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). "Benchmarking keyword spotting
408 efficiency on neuromorphic hardware", in Proceedings of the 7th Annual Neuro-inspired
409 Computational Elements Workshop (ACM).

410 Blundell, C., Uria, B., Pritzel, A., Yazhe, L., Ruderman, A., Leibo, J.Z., et al. (2016). Model-free
411 episodic control. arXiv, arXiv:160604460.

412 Cadena, S.A., Denfield, G.H., Walker, E.Y., Gatys, L.A., Tolias, A.S., Bethge, M., et al. (2019).
413 Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS
414 Comput. Biol. 15: e1006897. doi: 10.1371/journal.pcbi.1006897 .

415 Cueva C.J., and Wei, X.-X. (2018) Emergence of grid-like representations by training recurrent
416 neural networks to perform spatial localization. arXiv: 1803.07770 [q-bio.NC].

417 Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y. Choday, S.H., et al. (2018). Loihi: A
418 neuromorphic manycore processor with on-chip learning. IEEE Micro 38: 82-99.

419 Douglas R.J., Martin, K.A.C., Whitteridge D. (1989). A canonical microcircuit for neocortex. Neural
420 Computation 1: 480-488.

421 Draelos T.J., Miner, N.E., Lamb, C.C., Cox, J.A., Vineyard, C.M., Carlson, K.D., et al. (2017).
422 "Neurogenesis deep learning: extending deep networks to accommodate new classes", in
423 International Joint Conference on Neural Networks (IJCNN) (IEEE), 526-533.

424 Esser, S.K., Appuswamy, R., Merolla, P.A., Arthur, J.V., and Modha, D.S. (2015). "Backpropagation
425 for energy-efficient neuromorphic computing", in Advances in Neural Information Processing
426 Systems 28: 1117-1125.

427 Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of
428 pattern recognition unaffected by shift in position. Biol. Cybernetics 36: 193-202.

429 Furber, S. (2012). To build a brain. IEEE Spectrum 49: 44-49.

430 Fyhn, M., Molden, S., Wittler, M.P., Moser, E.I., and Moser, M.-B. (2004). Spatial representation in
431 the entorhinal cortex. Science 27: 1258-1264.

432 George, D., Lavin, A., Guntupalli, J.S., Mely, D., Hay, N., and Lázaro-Gredilla, M. (2018).
433 Canonical microcircuits from a generative vision model. arXiv:1808.01058.

434 George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M., Laan, C., Marthi B., et al. (2017) A
435 generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs.
436 Science 358: eaag2612.

437 Girven, K.S. and Sparta, D.R. (2017). Probing deep brain circuitry: new advances in *in vivo* calcium
438 measurement strategies. ACS Chem. Neurosci. 8: 243-251.

439 Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T. Ting, J., et al. (2019). Classification of
440 electrophysiological and morphological neuron types in mouse visual cortex. Nature Neuroscience
441 22: 1182-1195.

442 Güçlü, Y., and van Gerven, M.A.J. (2015). Deep neural networks reveal a gradient in the complexity
443 of neural representations across the ventral stream. J. Neurosci. 35: 10005-10014.

444 Harris K.D. and Shepherd G.M. (2015). The neocortical circuit: themes and variations. Nature
445 Neuroscience 18: 170-181.

446 Hassabis D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017). Neuroscience-inspired
447 artificial intelligence. Neuron 95: 245-258.

448 Hawkins, J., Lewis, M., Klukas, M., Purdy, S., and Ahmed, S. (2019). A framework for intelligence
449 and cortical function based on grid cells in the neocortex. Front. Neural Circuits 12: 121.
450 doi: 10.3389/fncir.2018.00121.

451 Huang Z.J. and Zeng H. (2013). Genetic approaches to neural circuits in the mouse. Annual Rev.
452 Neurosci. 36: 183-215.

453 Hubel D.H. and Wiesel T.N. (1962). Receptive fields, binocular interaction and functional
454 architecture in the cat's visual cortex. J. Physiol. 160: 106–154

455 Indiveri, G., Linares-Barranco, B., Hamilton, T.J., Van Schaik, A., Etienne-Cummings, R., Delbrück, T., et al. (2011). Neuromorphic silicon neuron circuits. *Frontiers in neuroscience* 5: 73. doi: 10.3389/fnins.2011.00073.

458 Januszewski, M., Kornfeld, J., Li, P.H., Pope, A., Blakely T., Lindsey L., et al. (2018). High-
459 precision automated reconstruction of neurons with flood-filling networks. *Nature Methods* 15: 605-
460 610.

461 Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A.S., et al. (2015) Principles of
462 connectivity among morphologically defined cell types in adult neocortex. *Science* 350: aac9462.

463 Kar. K., Kubilius, J., Schmidt, K., Issa, E.B., and DiCarlo, J.J. (2019) Evidence that recurrent circuits
464 are critical to the ventral stream's execution of core object recognition behavior. *Nature
465 Neuroscience* 22: 974-983.

466 Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models
467 may explain IT cortical representation. *PLOS Computational Biology* 10: e1003915.

468 Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., et al. (2017).
469 Overcoming catastrophic forgetting in neural networks. *arXiv:1612.00796v2 [cs.LG]*.

470 Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., and Poeppel, D. (2017).
471 Neuroscience needs behavior: correcting a reductionist bias. *Neuron* 73: 480-490.

472 Kresier R. Cartiglia, M., Martel, J.N.P., and Conradt, J. (2018). “A neuromorphic approach to path
473 integration: a head-direction spiking neural networks with vision-driven reset”, in 2018 IEEE
474 International Symposium on Circuits and Systems (ISCAS), doi: 10.1109/ISCAS.2018.8351509.

475 Kresier, R., Pienroj, P., Renner, A., and Sandamirskaya, Y. (2018). “Pose Estimation and Map
476 Formation with Spiking Neural Networks: towards Neuromorphic SLAM”, in 2018 IEEE/RSJ
477 International Conference on Intelligent Robots and Systems (IROS) (IEEE), 2159-2166.

478 Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). “ImageNet classification with deep
479 convolutional neural networks”, in *Advances in Neural Information Processing Systems* 25: 1097-
480 1105.

481 Kubilius, J., Schrimpf, M., Kar, K., Hong, H., Majaj, N.J., Rajalingham, R., et al. (2019) Brain-like
482 object recognition with high-performing shallow recurrent ANNs. *arXiv:1909.06161 [cs.CV]*

483 Lecoq, J., Orlova, N., and Grawe, B.F. (2019). Wide. Fast. Deep: Recent Advances in Multiphoton
484 Microscopy of In Vivo Neuronal Activity. *Journal of Neuroscience* 39: 9042-9052.

485 LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
486 document recognition. *Proceedings of the IEEE* 86: 2278-2324.

487 Li, P.H., Lindsey, L.F., Januszewski, M., Zheng, Z., Bates, A.S. Taisz, I. (2019). Automated
488 reconstruction of a serial-section EM *Drosophila* brain with flood-filling networks and local
489 realignment. *bioRxiv* 605634; doi: <https://doi.org/10.1101/605634>

490 Marblestone, A.H., Wayne, G., and Kording, K.P. (2016). Towards an integration of deep learning
 491 and neuroscience. *Frontiers in Computational Neuroscience* 10: 00094. doi:
 492 10.3389/fncom.2016.00094.

493 Marr, D. (1982). *Vision*. San Francisco: W.H. Freeman.

494 Masse, N.Y., Grant, G.D., Freedman, D.J. (2018) Alleviating catastrophic forgetting using context-
 495 dependent gating and synaptic stabilization. *Proc. Natl. Acad. Sci.* 115: e10467-E10475.

496 McAdams, C.J., and Maunsell, J.H. (1999). Effects of attention on orientation-tuning functions of
 497 single neurons in macaque cortical area V4. *Journal of Neuroscience* 19: 431-441.

498 Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., et al. (2014).
 499 A million spiking-neuron integrated circuit with a scalable communication network and interface.
 500 *Science* 345: 668-673.

501 Milford M., Wyeth, G., and Prasser, D.P. (2004). "Simultaneous localization and mapping from
 502 natural landmarks using RatSLAM", in 2004 Australasian Conference on Robotics and Automation
 503 (Canberra).

504 Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. (2014). Recurrent models of visual attention.
 505 arXiv:14066247.

506 Nayebi, A., Bear, D., Kubilius, J., Kar, K., Ganguli, S., Sussillo, D., et al. (2018) Task-driven
 507 convolutional recurrent models of the visual system. *Advances in Neural Information Processing*
 508 Systems 32: 5290-5301.

509 O'Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from
 510 unit activity in the freely-moving rat. *Brain Research* 34: 171-175.

511 Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. *IEEE Transactions on Knowledge and*
 512 *Data Engineering*, 22: 1345–1359.

513 Ponce, C.R., Xiao, W., Schade, P.F., Hartmann, T.S., Kreiman, G., and Livingstone, M.S. (2019).
 514 Evolving images for visual neurons using a deep generative network reveals coding principles and
 515 neuronal preferences. *Cell* 177: 999-1009.

516 Richards, B.A., Lillicrap, T.P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., et al. (2019).
 517 A deep learning framework for neuroscience. *Nature Neuroscience* 22: 1761-1770.

518 Rikhye, R.V., Gilra, A., Halassa, M.M. (2018) Thalamic regulation of switching between cortical
 519 representations enables cognitive flexibility. *Nature Neuroscience* 21: 1753-1763.

520 Severa, W., Vineyard, C.M., Dellana, R., Verz, S.J., and Aimone, J.B. (2019). Training deep neural
 521 networks for binary communication with the Whetstone method. *Nature Machine Intelligence* 1: 86-
 522 94.

523 Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. (2018). A general
 524 reinforcement learning algorithm that masters chess, shogi, and Go through self-play. *Science* 362:
 525 1140-1144.

526 Simpson, J.H. and Looger, L.L. (2018). Functional imaging and optogenetics in drosophila. *Genetics*
 527 208:1291-1309.

528 Sinz F.H., Pitkow, X., Reimer, J., Bethge, M., and Tolias, A.S. (2019) Engineering a less artificial
 529 intelligence. *Neuron* 103: 967-979.

530 Snell J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learning. In
 531 Advances in Neural Information Processing Systems 30: 4077-4087.

532 Stevenson, I.H. and Kording K.P. (2011). How advances in neural recording affect data analysis.
 533 *Nature Neuroscience* 14: 139-142.

534 Taube, J.S., Muller, R.U., and Ranck J.B. Jr. (1990a). Head-direction cells recorded from the
 535 postsubiculum in freely moving rats. I. Description and quantitative analysis. *Journal of*
 536 *Neuroscience* 10: 420-435.

537 Taube, J.S., Muller, R.U., and Ranck J.B. Jr. (1990b). Head-direction cells recorded from the
 538 postsubiculum in freely moving rats. II. Effects of environmental manipulations. *Journal of*
 539 *Neuroscience* 10: 436-447.

540 Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., and Maida, A. (2019). Deep
 541 learning in spiking neural networks. *Neural Networks* 111:47-63.

542 Thomee, B., Huiskes, M., Bakker, E., Lew, M. (2007). Visual information retrieval using synthesized
 543 imagery. *Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR*
 544 127-130.

545 Trautmann, E.M., Stavisky, S.D., Lahiri, S., Ames, K.C., Kaufman, M.T., O'Shea, D.J., et al. (2019).
 546 Accurate estimation of neural population dynamics without spike sorting. *Neuron* 103: 1-17.

547 Treue, S. and Martinez-Trujillo, J.C. (1999). Feature-based attention influences motion processing
 548 gain in macaque visual cortex. *Nature* 399: 575-579.

549 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al. (2017). Attention
 550 is all you need. *arXiv:1706.03762 [cs.CL]*.

551 Walker, E.Y., Sinz, F.H., Cobos, E., Muhammad, T., Froudarakis, E., Fahey, P.G., et al. (2019).
 552 Inception loops discover what excites neurons most using deep predictive models. *Nature*
 553 *Neuroscience* 22: 2060-2065.

554 Wiederman, S.D., Shoemaker, P.A., and O'Carroll, D.C. (2008). A model for the detection of
 555 moving targets in visual clutter inspired by insect physiology. *PLoS One* 3:e2784. doi:
 556 10.1371/journal.pone.0002784.

557 Wiederman, S.D. and O'Carroll, D.C. (2013). Selective attention in an insect visual neuron. *Current*
 558 *Biology* 23: 156-161.

559 Wiederman, S.D., Fabian, J.M. Dunbier J.R., and O'Carroll, D.C. (2017). A predictive focus of gain
 560 modulation encodes target trajectories in insect vision. *eLife* 6: e26478. doi: 10.7554/eLife.26478.

561 Yamins, D.L.K., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., and DiCarlo, J.J. (2014).
562 Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc.
563 Natl. Acad. Sci. 111: 8619-8624.

564 Yu, F., Shang, J., Hu, Y. Milford, M. (2019). NeuroSLAM: a brain-inspired SLAM system for 3D
565 environments. Biological Cybernetics 113:515–545.

566 Zador, A.M., Dubnau, J., Oyibo, H.K., Zhan, H., Cao, G., and Peikon, I.D. (2012). Sequencing the
567 connectome. PLoS Biology 10: e1001411. doi: 10.1371/journal.pbio.1001411.

568 Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., et al. (2018). A
569 complete electron microscopy volume of the brain of adult *Drosophila melanogaster*. Cell 174: 730-
570 742.

571 Zhou, X., Weber, C., Wermter, S. (2018). “A self-organizing method for robot navigation based on
572 learned place and head-direction cells”, in 2018 International Joint Conference on Neural Networks
573 (IJCNN) (IEEE). doi: 10.1109/IJCNN.2018.8489348.

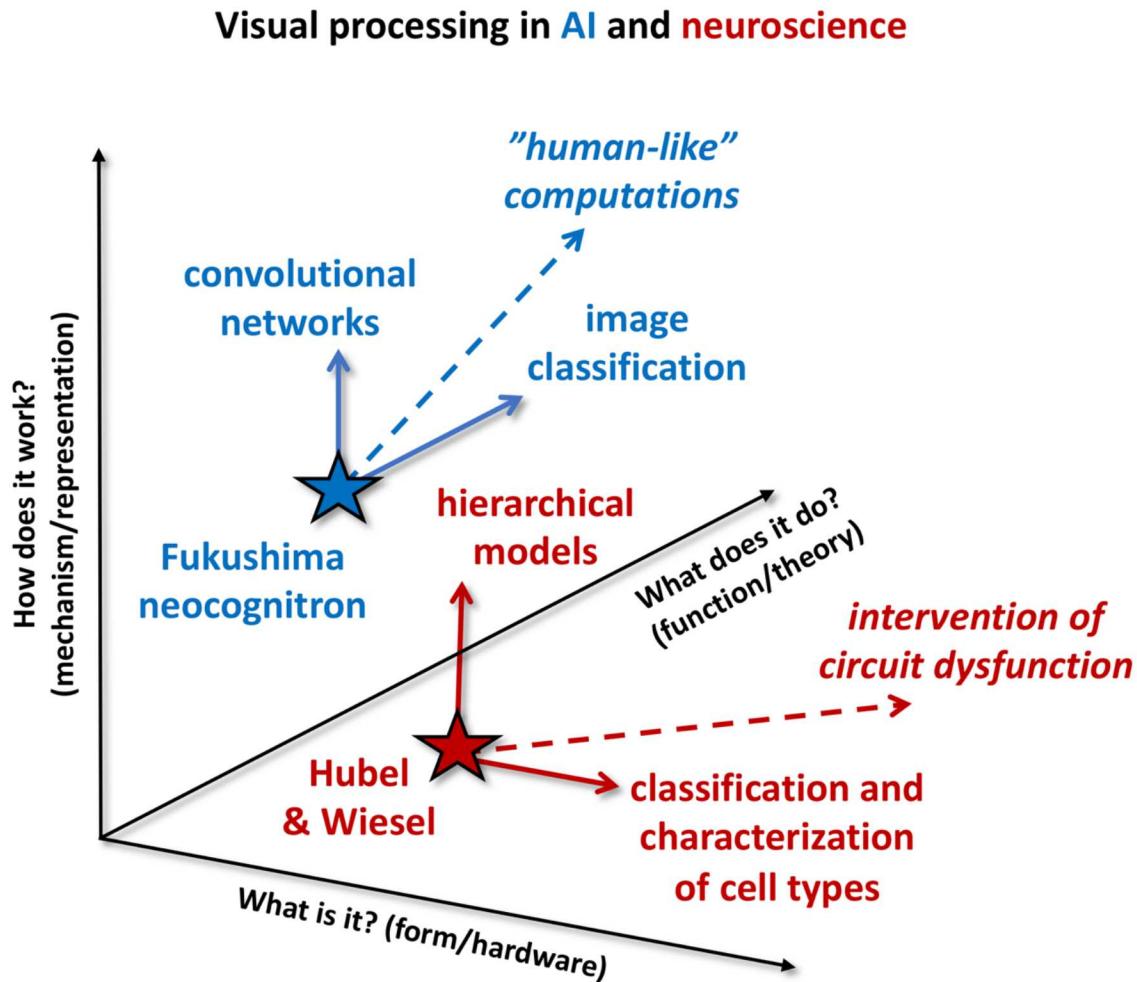
574

575 Figure Legend:

576 Figure 1: Cultural differences between AI and neuroscience. Example studies from visual processing
577 in AI (blue) and neuroscience (red) are projected onto three different “axes” of impact: answering the
578 question of “what is it?” (form or hardware), answering the question of “how does it work?”
579 (mechanism or representation), and answering the question of “what does it do?” (function or
580 theory). Neuroscience results tend to be communicated answering the “what is it?” or “how does it
581 work” questions. As an example, Hubel and Wiesel’s work (red star) characterizing simple and
582 complex cells feeds continuing efforts along the form/hardware axis (horizontal solid red arrow) to
583 further classify characterization of cell types in visual cortex. At the same time, Hubel and Wiesel’s
584 hierarchical model of visual processing has had significant impact along the
585 mechanism/representation axis (vertical solid red arrow). Neuroscience experiences a strong
586 application pull along the “what is it” axis, for example to identify therapeutic targets of circuit
587 dysfunction (dashed red arrow). AI research tends to focus on “what does it do?” and “how does it
588 work?” Here, development of Fukushima’s neocognitron (blue star) into convolutional networks is
589 illustrated as impact along the mechanism/representation axis (vertical solid blue arrow), while their
590 application to image classification is impact along the function/theory axis (solid blue arrow). The
591 dominant application pull on AI is to produce “human-cognition-like” computations (dashed blue
592 arrow).

593 *** Figure 1 provided below for reference (actual file will be submitted separately)

594



595