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Abstract

Historically, neuroscience principles have heavily influenced artificial intelligence (Al), for example
the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial
neural networks. More recently, notable recent Al advances, for example the growing popularity of
reinforcement learning, often appear more aligned with cognitive neuroscience or psychology,
focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to
enter a new era of large-scale high-resolution data and appears more focused on underlying neural
mechanisms or architectures that can, at times, seem rather removed from functional descriptions.
While this might seem to foretell a new generation of Al approaches arising from a deeper
exploration of neuroscience specifically for Al, the most direct path for achieving this is unclear.
Here we discuss cultural differences between the two fields, including divergent priorities that should
be considered when leveraging modern-day neuroscience for Al. For example, the two fields feed
two very different applications that at times require potentially conflicting perspectives. We highlight
small but significant cultural shifts that we feel would greatly facilitate increased synergy between
the two fields.

1 Introduction

Neural-inspired artificial intelligence (Al) is based upon the fundamental assumption that brain
circuits have been optimized by evolution. While biological brains face different evolutionary
constraints compared to modern-day computers, it stands to reason that further exploration of the
brain’s underlying mechanisms and using these mechanisms to inform emerging approaches to Al
will capture aspects of cognition that are currently challenging for Al (see Aimone, 2019 and
Hassabis et al. 2017 for in depth discussions). Correspondingly, notable advances in artificial
intelligence (Al), for example reinforcement learning (e.g. as used by AlphaZero, see Silver et al.,
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Crossing from neuroscience to Al

2018), the Transformer network (Vaswani et al., 2017), and deep convolutional networks
(Krizhevsky et al., 2012), are based upon descriptions or theories of brain function. Currently, the
direct path for incorporating modern-day neuroscience (which is increasingly designed for more
detailed descriptions of brain circuits and mechanisms) into Al approaches is unclear, although the
numbers of efforts focused on this challenge are growing. This article describes differences between
the two fields that, if addressed, could significantly expand the path from neuroscience to Al to
ensure the continued growth of neural-inspired Al.

How AI can best leverage modern-day neuroscience, and correspondingly, how modern-day
neuroscience can best inform the field of Al remain open questions and active areas of discussion.
One confounding factor is that the brain can be understood at multiple levels, all of which have
impacted Al (for recent reviews see Yamins and DiCarlo, 2016; Sinz et al 2019). At the
phenomenological level (also referred to here as function level), efforts to include additional brain-
inspired elements include attention (Mnih et al., 2014), episodic memory (Blundell et al., 2016),
continual learning (Kirkpatrick et al., 2017), imagination (Thomee et al. 2007), and transfer learning
(Pan and Yang 2010). At a more mechanistic level, efforts remain centered on applying relatively
standard training techniques to hand-crafted architectures incorporating novel neural-inspired
elements (for example, see the incorporation of recurrence for visual processing in George et al.,
2017; George et al., 2018; Nayebi et al., 2018; Kar et al., 2019; Kubilius et al. 2019). Examples of
efforts to include biophysical detail at the single-neuron or synapse level include spiking neural
networks (Tavanaei et al., 2019), neurogenesis (Draelos et al., 2017), spine stabilization (Kirkpatrick
et al., 2017), and context-dependent activation or gating of neurons (Masse et al., 2018; Rikhye et al.,
2018). While there is certainly interest in incorporating additional neural-inspiration at multiple
levels, approaches for doing so do not appear to be growing at the same pace as the wealth of
neurobiological data being produced by the broader neuroscience community.

Identifying the appropriate “depth of understanding”, or level of abstraction, for describing how
neural circuits implement cognition (or any other task) in a manner that facilitates incorporation into
an Al model is one of the greatest challenges facing neural-inspired Al. In our opinion, a significant
but subtle challenge arises from differing perspectives between the two fields, largely driven by the
end-goal applications that drive each field. Neuroscience has been pulled by funding priorities
towards a focus on identifying loci of dysfunction (i.e., in disease or disorders) for potential
therapeutic targets. This translates to a culture that emphasizes defining and describing specific
system components. Al applications, on the other hand, require demonstrated improvements on
performance on a specific task. For neural-inspired Al there is often a focus on problems for which
human performance still exceeds that of computers (see “Challenges of bringing neuroscience to
artificial intelligence”). For such problems, Al culture is primarily focused on understanding how a
system produces a solution at an algorithmic-level, rather than understanding the underlying
mechanisms or the biological neural architectures. In contrast to neuroscience, Al research
experiences almost no pull along the form axis.

The view of these cultural differences is further complicated by a seeming abundance of riches — the
fact that there are multiple levels across which the two fields may interact. Using visual processing
as an example to highlight the cultural differences and differing foci between the two fields, we can
describe “levels” of research using three fundamental questions to describe the impact of a particular
research effort: 1) “What is it?”, or form, is defined as understanding the specifics of the components
that comprise the neural circuit or neural network. 2) “How does it work?”, or mechanism, is defined
as understanding how components of a network work together. 3) “What does it do?”, or function, is
developing the “higher-level” description or abstraction of function. These three levels may be
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Crossing from neuroscience to Al

mapped to Marr’s three levels for understanding an information processing system, implementation,
algorithm, and computation, respectively (Marr 1982); however here we have cast the levels as
questions to highlight the viewpoint of a researcher interested in incorporating new information into
models (whether for neuroscience or Al).

We illustrate these differences of our above example in Figure 1. As with Marr’s levels, although the
three axes are drawn orthogonally, we acknowledge that the axes are not completely independent, as
any one experiment can impact multiple axes. For example, a combination of optogenetic labelling
and large-scale calcium imaging can be used to characterize the responses of a specific subtype of
neuron within a brain area. While describing the spatiotemporal features of this type of neuron’s
receptive field is form, inferring the underlying connectivity and interactions between cell types maps
to the mechanism axis, and capturing a more abstract description of the functional role of this
subtype within the larger population of recorded cells is aligned with the function axis.

Figure 1 about here

While mechanism and function are both relevant for neuroscience, the drive for identifying
therapeutic targets arising from a need for biomedical applications results in a strong pull
predominantly along the form axis, as indicated by the red dashed arrow. This is not to say that all
neuroscience work is only aligned along one axis. For example, Hubel and Wiesel’s seminal work
(1962, indicated by the red star) characterizing receptive fields in visual cortex could be described as
impacting two different axes. We would consider the ongoing efforts to further characterize
responses and connectivity of various subtypes of neurons in V1 (for example see Jiang et al 2015) as
oriented along the form axis (what is it?), but the hierarchical model of visual processing (vertical red
arrow) as oriented along the mechanism axis (how does it work?). The hierarchical model was fairly
abstracted; it could be argued that this level of abstraction facilitated development of subsequent
hierarchical models in Al, for example Fukushima’s (1980) neocognitron. Indeed, while many of the
new tools becoming available today are specifically designed to address the form of large-scale
neural circuits (see the next section, “Why neuroscience for artificial intelligence”), they will produce
data that will drive new models at both the mechanism and function levels. Nevertheless, we would
argue that orientation towards the “what is it?”” question will continue to dominate, driven by the
traditional applications of the field.

As with neuroscience, Al encompasses efforts aligned with all the axes described in Figure 1, but the
drive for improving the performance on a specific task results in a significant pull along different
axes than neuroscience. Algorithm development cannot proceed without some attention to
mechanism (as well as implementation, see “Specialized hardware: agonist or antagonist?”’), and
often critical breakthroughs in performance arise from developing architectures. For example, the
neocognitron (based upon Hubel and Wiesel’s hierarchical model and indicated by the blue star),
arguably inspired the architecture of convolutional networks (CNNs, LeCun et al., 1998),
representing advancement along the mechanism axis. Nevertheless, answering the question of “what
does it do?” (or perhaps put more colloquially, “what is it good for?”) is critical for applying a model
to any application space. Training a convolutional network (e.g., for image classification, blue arrow)
is application along the function axis. Similarly, implementing “human-like” computations (dashed
blue arrow), like those thought to underlie cognition, while likely drawing from both mechanism and
form, primarily will be oriented along the function axis.

Our intent is not to suggest that a bias along any one axis is more valuable than along another.
However, the differences in Figure 1 are illustrative of why the two fields can sometimes be
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Crossing from neuroscience to Al

perceived as diverging, even as the fundamental research questions seem well-aligned. It is worth
noting that neuroscience’s general bias towards form and AI’s general bias towards function may
perpetuate a disconnect between the two fields, as each field will be predisposed to build upon
advances framed along dominant biases of the field. For example, identification of a new type of
interneuron (as would arise from further characterization of types of neurons in visual cortex) will not
be readily incorporated into an existing machine learning approach or AI model without an
accompanying functional description of the role of the interneuron within the biological neural
network. Conversely, a generalized functional description of inhibition in an ANN may not be readily
explored in a biological brain without some indication of form, or how that function might be
implemented using known biological components (i.e., different interneuron subtypes).

In spite of cultural differences, there are indications that cross-pollination between the fields is
thriving. Within the field of visual processing, it has been encouraging to see analogies drawn
between the architecture of high-performing neural networks and visual cortex (e.g. George et al.,
2017; George et al., 2018). Moreover, such comparisons have been extended to demonstrate that
task-optimized deep convolutional networks appear to utilize representations similar to the single-
unit responses of neural circuits contained within the ventral visual processing pathway (Khaligh-
Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Giiclii and van Gerven, 2015; Cadena et al.,
2019). Several recent studies have proposed deep networks, trained to predict best stimuli for
individual neurons, as validatable models of V1 (Walker et al., 2019) as well as higher-order areas of
visual processing (Bashivan et al., 2019; Ponce et al., 2019). These works are examples of hybrid
research, a product of both fields, that could facilitate development of a common language.

While a common language that spans both fields may be an ambitious goal, acknowledgement of
differing priorities (or application drivers) may be the first step to subtle shifts in perspective that
could do much to address the cultural differences between fields. For neuroscience, communicating
new neuroscience knowledge on a function level will do much to ensure impact on Al. Similarly, a
slight broadening of receptiveness of Al to differing levels of neuroscience would greatly facilitate
adoption of new neuroscience knowledge. These shifts in focus are small but significant and would
do much to increase the synergy between neuroscience and artificial intelligence.

2 Why neuroscience for artificial intelligence?

Neuroscience is in the midst of a technology development era that is producing new tools for
exploring the brain’s circuits with higher resolution and in greater detail than previously possible.
First, recent advances in both electron microscopy (EM) imaging (e.g. Zheng et al., 2018), combined
with novel reconstruction algorithms (e.g. Januszewski et al., 2018) are already resulting in new
connectomes of unprecedented scale (e.g. Li et al., 2019), with even larger and higher-resolution
volumes on the horizon. Potentially combined with other techniques such as the bar-coding of
individual neuronal connections (Zador et al., 2012), neuroscience is now positioned such that a
whole mammalian brain connectome is within reach. Second, and complementary to the large-scale
connectomic datasets on the horizon, neuroscience also continues to advance large-scale calcium
imaging (see Girven and Sparta, 2017 and Lecoq et al., 2019 for reviews) and multi-unit recording
techniques, increasing the range of physical and temporal scales with which populations of neurons
may be recorded (see Stevenson and Kording, 2011 for a timeline). Third, a broader range of tools
are now available for simultaneously identifying, recording and manipulating multiple populations
from different cell-types (see Huang and Zeng, 2013 and Simpson and Looger, 2018). Detailed
descriptions of interactions between different cell-types, including different temporal scales of
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Crossing from neuroscience to Al

plasticity, are essential for describing neuronal “motifs” that potentially constitute canonical
computations in the brain (Douglas et al., 1989; Harris and Shepherd, 2015).

It would seem natural for the technological advances described above to drive a new and potentially
revolutionary generation of neural-inspired ANNs. As increasingly accurate computational graphs of
neurons become available, the question of how the brain is wired is no longer the limiting factor for
developing novel and potentially revolutionary neural-inspired ANN architectures. Neuroscience
now has the capability to record from the same populations of identifiable neurons for lengths of time
that were previously unfeasible. Combined with advances in data analytics, neuroscience can now
provide access to a range of neural temporal dynamics that were previously inaccessible. For
example, the recent work by Trautmann et al. (2019) suggests that neural population dynamics can be
extracted from silicon probe recordings without pre-requisite spike sorting, thus alleviating the data-
processing bottleneck facing multi-unit recording techniques. These technological advances are
particularly relevant from an algorithmic development point of view because the ability of a static
graph (without corresponding knowledge of the temporal dynamics) to inform or constrain a
computational neural model has historically remained unclear, as it is likely that temporal dynamics
play a central role in biological neural processing. Nevertheless, the path from increased biological
detail associated with large-scale recordings to a reduced form appropriate for incorporation into an
artificial neural network is unclear. A neural model that reduces the temporal dynamics of these
large-scale recordings to a more canonical form, even if at the expense of some biological detail,
would do much to alleviate the disconnect (even if underutilizing the richness of the large-scale
neurobiological data).

It is worth noting that Hubel and Wiesel’s hierarchical model of simple and complex cells in visual
cortex was a significant influence behind the development of the neocognitron, widely regarded as
the predecessor to CNNs, even in the absence of anatomical validation. When considering the
cultural differences raised in the previous section, one might even argue that the impact of Hubel and
Wiesel’s work was facilitated by the lack of anatomical validation as the hierarchical model was
made accessible by its simplicity. Today computational neuroscience, driven by the availability of
new large-scale datasets, is increasingly focused towards high throughput methods for data
(Gouwens et al., 2019) to provide meaningful constraints for primarily mechanistic models. These
efforts are synergistic with experimental neuroscience, as model validation often identifies critical
gaps in knowledge. However, a more functional angle, potentially continued in parallel to the more
detailed neural modeling, would do much to facilitate impact on Al

3 Challenges of bringing neuroscience to artificial intelligence

While Al researchers are highly motivated to explore novel approaches, (e.g. neural-inspired
architectures), that interest can fade without a relatively quick demonstrated impact on accepted
benchmarks. In spite of the foundational work of Fukushima (1980) and LeCun (1998), it was not
until AlexNet won the ImageNet Large-Scale Visual Recognition Challenge (Krizhevsky et al., 2012)
that CNNs rose to the level of popularity that they enjoy today. While it can be argued that the rise
of CNNs was driven as much because availability of GPUs and large-scale data sets made training
them tenable for the first time, their success and continued popularity is a significant example of how
a concept, drawn from neuroscience and framed within the correct context (in this case tractability of
training the network combined with success on a benchmark) can drive significant advances. It was
the clear demonstration of function (successful application of the architecture) that drove the current
and relatively widespread use of convolutional networks today.
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In the case of Al function is often defined by application. Broadly speaking, computer tasks may be
divided into two categories: those for which a computer is currently better suited, and those for which
a human is currently better suited. The latter category of tasks is an obvious desired application
space for neuroscience, and Al has traditionally focused on improving performance in these areas
while continuing to leverage capabilities for which a computer is better suited (e.g. extracting
patterns from large corpuses of data). One example of a such a task is learning from a single or a few
examples (zero-, one-, or few-shot learning). State-of-the-art algorithms currently achieve modest
success at these tasks (Snell et al., 2017), but still remain unable to meet or beat human performance.
A second, potentially related, task is extrapolating information to new examples (semi-supervised
learning). Humans are able to recognize examples of a class of stimuli, even if presented in very
different environments, after exposure to only a few labeled examples of that class with several
unlabeled examples of that class and other classes. Developing algorithms that are capable of self-
labelling new examples of a class remains a challenge for computer science (although see Arjovsky
et al., 2019), presenting a real limitation to data processing algorithms as the process of labelling data
is relatively expensive (and therefore large labeled datasets are not always readily available).
Although these tasks are seemingly trivial for human beings, computer algorithms struggle to match
human performance.

Demonstrating the value of looking to neuroscience for novel solutions to these tasks is particularly
challenging, as neuroscience does not currently understand how the brain performs these tasks on the
levels towards which neuroscience is biased. It is reasonable to assume that AI will be most strongly
impacted by efforts aligned with the function axis (see Figure 1). Models of human behavior and
human memory exist in a functional form, but they are relatively disconnected from studies at the
neural circuit level (Krakauer et al., 2017). On one hand, this application space presents an
opportunity for neural-inspired Al, as neuroscience will likely utilize approaches spanning all of the
previously mentioned levels (form, mechanism, and function) to answer these questions. On the other
hand, opportunities for neuroscience to impact this axis in the near future are constrained by the fact
that most neuroscience tools available today are designed for exploring the form and mechanism of
neural circuits (as previously discussed).

One practice that facilitates re-framing neuroscience form or mechanism data into a functional
description appropriate for impacting Al is considering the functional context of the neural circuit (or
single neuron) within the brain when assessing potential impact on Al. The majority of successful
developments in neural-inspired Al (included those reviewed in this article) follow this practice. At
the same time, we would encourage a broader perspective when considering which areas of
neuroscience to draw from. A continued or increased focus on drawing from human cognition runs
the risk of maintaining the disconnect between Al and neuroscience as the needed conversion from
mechanistic and form descriptions to more functional ones may be slow to mature. In addition, our
observation (discussed more fully in the next section) is that there are many opportunities for
neuroscience to impact Al that will be overlooked without a broadening of the perceived “impact
space” for neuroscience within Al.

4 Crossing the cleft

Currently a theoretical “gap” exists between neuroscience and Al as researchers seek to establish the
“right” level of abstraction for translation between the two fields. While, as previously mentioned,
the incorporation of neuroscience into Al development is often viewed as, at best, a superficial
treatment of the understanding of neural circuits that neuroscience has to offer, neuroscience could do
much to broaden its impact on Al through relatively small efforts to describe new discoveries in a
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function-oriented manner (answering the question of “What does it do?” in Figure 1), in addition to
the form- and mechanism-oriented manners that are more common in the general neuroscience
community. It is also worth noting that in some cases translation to a functional description may
require loss of fidelity to the underlying mechanisms and form. Indications are that a cultural shift
within computational neuroscience to describe brain theory in a more “machine-learning-accessible”
manner has already begun (see recent papers by Marblestone et al., 2016 and Richards et al., 2019).
As already described, neuroscience has also begun to adopt machine learning approaches to further
develop computational models of neural systems, as seen for the visual system (Khaligh-Razavi and
Kriegeskorte, 2014; Yamins et al., 2014; Giiglii and van Gerven, 2015; Bashivan et al., 2019; Cadena
etal., 2019; Ponce et al., 2019; Walker et al., 2019).

In addition to better aligning with the goals of Al, from our viewpoint the impact of neuroscience on
Al can also be extended by taking a broader view when considering what neural systems are relevant
for fostering the development of neural-inspired Al (in particular those with more mature functional
models derived from mechanistic and form data). One example of such an area is the exploration of
visual processing in non-mammalian (but still strongly visual) animals. Recent work has identified
neurons in the dragonfly visual system that exhibit a form of predictive gain modulation, in which
visual responses to predicted prey-position are selectively enhanced (Wiederman et al., 2017), even
in the presence of a second potential target (Wiederman and O’Carroll, 2013). Phenomenologically,
the selective gain modulation of visual responses in the dragonfly system has obvious parallels with
selective visual attention observed in macaque visual cortex (McAdams and Maunsell, 1999; Treue
and Martinez-Trujillo, 1999). While the underlying neural circuitry and specific mechanisms are still
under investigation in both the non-human primate and dragonfly systems, the relative simplicity of
the dragonfly system has facilitated development of function-level models of the dragonfly
mechanism (for example Wiederman et al 2008) and subsequently development of dragonfly-inspired
target tracking algorithms (Bagheri et al., 2015, 2017b) implemented on robotic platforms (Bagheri et
al 2017a).

A second example of the potential continued impact of neuroscience towards Al is the continued
incorporation of elements of spatial coding as observed within the hippocampal formation into
navigation algorithms. When place fields (O’Keefe, 1971) and head-direction cells (Taube et al.,
1990a,b) were first characterized, they were accompanied by hypothetical functional descriptions of
their roles in spatial coding. While abstract, these proposed functions facilitated their incorporation
into robot navigation systems (Arleo and Gerstner, 2000) as well as SLAM (simultaneous
localization and mapping) algorithms (e.g. RatSlam, Milford et al., 2004). More than a decade later,
the field continues to draw from neuroscience discoveries (Zhou et al., 2018, Kresier et al., 2018a,b),
including grid cells (Fyhn et al., 2004; Banino et al., 2018; Cueva and Wei, 2018), and 3-dimensional
representations (Yu et al., 2019). While it remains to be seen whether the hippocampal spatial code
is representative of a more general framework for cognition (Bellmund et al., 2018; Hawkins et al.,
2019), advances in our understanding of the spatial navigation system of animals have clearly had
continued impact on development of artificial brain-inspired navigation algorithms, with longer-term
implications for autonomous or semi-autonomous navigation systems that will rely on some form of
Al

While these neural systems may be viewed as esoteric by some, the successes in these areas suggest
that a common language (or at least a common perspective) is already being developed, even if
restricted to certain applications in which neuroscience has had a demonstrated but limited impact.
While it may be debatable whether modern neuroscience is poised to unravel the neural circuits
underlying cognition, these examples illustrate that there are several avenues by which continued
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application of neuroscience to Al will 1) continue to grow communication between the two fields and
2) foster the development of neural-inspired Al application areas that could eventually form the
foundation for more general neural-inspired Al.

5 Specialized hardware: agonist or antagonist?

One potentially complicating aspect to looking to a broader range of neural systems for impacting Al
is the potential increase in computational cost. As discussed previously, the availability of modern
high-performing computing platforms such as GPUs are a significant factor in the recent success of
deep neural networks. While ideally neural-inspired algorithms should not be biased by the dominant
computer architectures of the time, in practice the cost of applying an algorithm to particular
application domains will be a consideration. For this reason, aspects of neuroscience that can be
incorporated into a deep learning framework have an advantage for impacting Al in that they can be
run on high-performing technology. While using a deep learning framework as a “best-practices”
guideline may be beneficial in the short-term to foster communication between neuroscience and Al,
an unfortunate side effect is that many neural systems with much to offer (for example the
hippocampus) may contain architectures that are rather distinct from the hierarchical processing
models that inspired deep neural networks.

For this reason, when looking more broadly within neuroscience to inspire Al, it will be useful to
also look beyond current computing technologies to what technologies may be on the horizon.
Recent years have seen an increased prioritization of neuromorphic hardware solutions for Al
applications (Blouw et al., 2019, Esser 2015, and Severa et al., 2019) in addition to their long-
proposed use for neuroscience modeling (Furber, 2012 and Indiveri et al., 2011). Programmable
neuromorphic hardware remains a somewhat immature technology compared to GPUs and CPUs,
however there are now a number of technologies such as IBM’s TrueNorth (Merolla et al., 2014) and
Intel’s Loihi chips (Davies et al., 2018) that have sufficient neurons to implement a variety of neural
circuits, especially some of the more succinct circuits (e.g. the dragonfly system discussed above).
The trade-off for this programmability is potential increased difficulty of implementation. Until
these newer neuromorphic hardwares mature, it is likely that GPUs and other accelerators will
continue to prove most effective for simple neural networks.

The effectiveness of GPUs at accelerating deep neural networks in some ways demonstrates that
initial costs (for example increases in required computational power) may be acceptable when
initially exploring new areas of neuroscience for impacting Al. Although neuromorphic technologies
have demonstrated computational advantages, these advantages typically come with restrictions on
the set of neural capabilities (e.g. leaky integrate-and-fire neurons) that may be effectively
implemented. From our perspective, the neuromorphic hardware community is, in many respects,
still searching for clear evidence of what aspects of the brain should be incorporated in hardware.
Should potential computational advantages be demonstrated, there will be considerable interest in
pursuing aspects of neural realism that can fully realize these advantages.

6 Summary

We have discussed certain cultural differences between neuroscience and Al that, from our
viewpoint, hinder cross-pollination between the two fields. While such cross-pollination is, in itself,
a challenging proposition, much of these differences are driven by diverging priorities and
perspectives rather than technical obstacles. Neuroscience is primarily focused towards
understanding form, the components of biological neural circuits, and mechanism, how neural
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circuits work. New neural data, driven by a stream of new tools for dissecting neural circuits, will be
described from this perspective. Al, on the other hand, seeks to increase performance (with respect
to an objective function), especially on tasks where human performance still exceeds that of
computer algorithms. While it is natural to look to neuroscience to inform the next generation of Al
algorithms, Al requires information in a more abstracted language than neuroscience typically
produces. Incorporation of neural elements be biased towards functional descriptions of neural
circuits and the brain.

There are indications that there is already a cultural shift within neuroscience to communicate results
on a more function-oriented level (although the fields have yet to arrive at an agreed-upon “common
language™). Our view is that this slight shift in perspective will do much to facilitate translation of
new neuroscience knowledge to Al algorithms. We also suggest that neuroscience impacts on Al
could be enhanced by broadening the current perspective regarding what areas of neuroscience are
relevant to AI. We have pointed to two example neural systems (spatial navigation in the
hippocampus and visual processing in insects) that have been successful at maintaining an open
pipeline to impacting ANN development and implementation in robotic systems and that, in our
view, demonstrate the potential of “alternative” neural systems to inform Al. History (and hindsight)
will eventually reveal the “right” source of inspiration and the correct language with which to
communicate. Our current view is that there is tremendous potential for the two fields to work
together synergistically, potential that can only be realized through broader exploration of a wide
range of possibilities.
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Figure Legend:

Figure 1: Cultural differences between Al and neuroscience. Example studies from visual processing
in Al (blue) and neuroscience (red) are projected onto three different “axes” of impact: answering the
question of “what is it?” (form or hardware), answering the question of “how does it work?”
(mechanism or representation), and answering the question of “what does it do?” (function or
theory). Neuroscience results tend to be communicated answering the “what is it?” or “how does it
work” questions. As an example, Hubel and Wiesel’s work (red star) characterizing simple and
complex cells feeds continuing efforts along the form/hardware axis (horizontal solid red arrow) to
further classify characterization of cell types in visual cortex. At the same time, Hubel and Wiesel’s
hierarchical model of visual processing has had significant impact along the
mechanism/representation axis (vertical solid red arrow). Neuroscience experiences a strong
application pull along the “what is it” axis, for example to identify therapeutic targets of circuit
dysfunction (dashed red arrow). Al research tends to focus on “what does it do?”” and “how does it
work?” Here, development of Fukushima’s neocognitron (blue star) into convolutional networks is
illustrated as impact along the mechanism/representation axis (vertical solid blue arrow), while their
application to image classification is impact along the function/theory axis (solid blue arrow). The
dominant application pull on Al is to produce “human-cognition-like” computations (dashed blue
arrow).

16

This is a provisional file, not the final typeset article



Crossing from neuroscience to Al

593  *** Figure 1 provided below for reference (actual file will be submitted separately)

594
Visual processing in Al and neuroscience
N “human-like”
computations
. a
convolutional "
T networks // image
% +  classification
.
& L
5 @
23
E o o .
g 2 hierarchical o
o E . o)
32 Fukushima R 0
o5 ; \o® . .
= 2 || hescognitian ™ intervention of
g circuit dysfunction
—— - — )
: classification and
& Wiesel characterization
What - of cell types
? (fOrm h
al’dware)
595

17



