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11 Abstract

12 Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example
13 the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial
14 neural networks. More recently, notable recent AI advances, for example the growing popularity of
15 reinforcement learning, often appear more aligned with cognitive neuroscience or psychology,
16 focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to
17 enter a new era of large-scale high-resolution data and appears more focused on underlying neural
18 mechanisms or architectures that can, at times, seem rather removed from functional descriptions.
19 While this might seem to foretell a new generation of AI approaches arising from a deeper
20 exploration of neuroscience specifically for AI, the most direct path for achieving this is unclear.
21 Here we discuss cultural differences between the two fields, including divergent priorities that should
22 be considered when leveraging modern-day neuroscience for AI. For example, the two fields feed
23 two very different applications that at times require potentially conflicting perspectives. We highlight
24 small but significant cultural shifts that we feel would greatly facilitate increased synergy between
25 the two fields.

26 1 Introduction

27 Neural-inspired artificial intelligence (AI) is based upon the fundamental assumption that brain
28 circuits have been optimized by evolution. While biological brains face different evolutionary
29 constraints compared to modern-day computers, it stands to reason that further exploration of the
30 brain's underlying mechanisms and using these mechanisms to inform emerging approaches to AI
31 will capture aspects of cognition that are currently challenging for AI (see Aimone, 2019 and
32 Hassabis et al. 2017 for in depth discussions). Correspondingly, notable advances in artificial
33 intelligence (AI), for example reinforcement learning (e.g. as used by AlphaZero, see Silver et al.,
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Crossing from neuroscience to AI

34 2018), the Transformer network (Vaswani et al., 2017), and deep convolutional networks
35 (Krizhevsky et al., 2012), are based upon descriptions or theories of brain function. Currently, the
36 direct path for incorporating modern-day neuroscience (which is increasingly designed for more
37 detailed descriptions of brain circuits and mechanisms) into AI approaches is unclear, although the
38 numbers of efforts focused on this challenge are growing. This article describes differences between
39 the two fields that, if addressed, could significantly expand the path from neuroscience to AI to
40 ensure the continued growth of neural-inspired AI.

41 How AI can best leverage modern-day neuroscience, and correspondingly, how modern-day
42 neuroscience can best inform the field of AI remain open questions and active areas of discussion.
43 One confounding factor is that the brain can be understood at multiple levels, all of which have
44 impacted AI (for recent reviews see Yamins and DiCarlo, 2016; Sinz et al 2019). At the
45 phenomenological level (also referred to here as function level), efforts to include additional brain-
46 inspired elements include attention (Mnih et al., 2014), episodic memory (Blundell et al., 2016),
47 continual learning (Kirkpatrick et al., 2017), imagination (Thomee et al. 2007), and transfer learning
48 (Pan and Yang 2010). At a more mechanistic level, efforts remain centered on applying relatively
49 standard training techniques to hand-crafted architectures incorporating novel neural-inspired
50 elements (for example, see the incorporation of recurrence for visual processing in George et al.,
51 2017; George et al., 2018; Nayebi et al., 2018; Kar et al., 2019; Kubilius et al. 2019). Examples of
52 efforts to include biophysical detail at the single-neuron or synapse level include spiking neural
53 networks (Tavanaei et al., 2019), neurogenesis (Draelos et al., 2017), spine stabilization (Kirkpatrick
54 et al., 2017), and context-dependent activation or gating of neurons (Masse et al., 2018; Rikhye et al.,
55 2018). While there is certainly interest in incorporating additional neural-inspiration at multiple
56 levels, approaches for doing so do not appear to be growing at the same pace as the wealth of
57 neurobiological data being produced by the broader neuroscience community.

58 Identifying the appropriate "depth of understanding'', or level of abstraction, for describing how
59 neural circuits implement cognition (or any other task) in a manner that facilitates incorporation into
60 an AI model is one of the greatest challenges facing neural-inspired AI. In our opinion, a significant
61 but subtle challenge arises from differing perspectives between the two fields, largely driven by the
62 end-goal applications that drive each field. Neuroscience has been pulled by funding priorities
63 towards a focus on identifying loci of dysfunction (i.e., in disease or disorders) for potential
64 therapeutic targets. This translates to a culture that emphasizes defining and describing specific
65 system components. AI applications, on the other hand, require demonstrated improvements on
66 performance on a specific task. For neural-inspired AI, there is often a focus on problems for which
67 human performance still exceeds that of computers (see "Challenges of bringing neuroscience to
68 artificial intelligence). For such problems, AI culture is primarily focused on understanding how a
69 system produces a solution at an algorithmic-level, rather than understanding the underlying
70 mechanisms or the biological neural architectures. In contrast to neuroscience, AI research
71 experiences almost no pull along the form axis.

72 The view of these cultural differences is further complicated by a seeming abundance of riches — the
73 fact that there are multiple levels across which the two fields may interact. Using visual processing
74 as an example to highlight the cultural differences and differing foci between the two fields, we can
75 describe "levels" of research using three fundamental questions to describe the impact of a particular
76 research effort: 1) "What is it?", or form, is defined as understanding the specifics of the components
77 that comprise the neural circuit or neural network. 2) "How does it work?", or mechanism, is defined
78 as understanding how components of a network work together. 3) "What does it do?", or function, is
79 developing the "higher-lever description or abstraction of function. These three levels may be
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80 mapped to Marr's three levels for understanding an information processing system, implementation,
81 algorithm, and computation, respectively (Marr 1982); however here we have cast the levels as
82 questions to highlight the viewpoint of a researcher interested in incorporating new information into
83 models (whether for neuroscience or AI).

84 We illustrate these differences of our above example in Figure 1. As with Marr's levels, although the
85 three axes are drawn orthogonally, we acknowledge that the axes are not completely independent, as
86 any one experiment can impact multiple axes. For example, a combination of optogenetic labelling
87 and large-scale calcium imaging can be used to characterize the responses of a specific subtype of
88 neuron within a brain area. While describing the spatiotemporal features of this type of neuron's
89 receptive field is form, inferring the underlying connectivity and interactions between cell types maps
90 to the mechanism axis, and capturing a more abstract description of the functional role of this
91 subtype within the larger population of recorded cells is aligned with the function axis.

92 Figure 1 about here

93 While mechanism and function are both relevant for neuroscience, the drive for identifying
94 therapeutic targets arising from a need for biomedical applications results in a strong pull
95 predominantly along the form axis, as indicated by the red dashed arrow. This is not to say that all
96 neuroscience work is only aligned along one axis. For example, Hubel and Wiesel's seminal work
97 (1962, indicated by the red star) characterizing receptive fields in visual cortex could be described as
98 impacting two different axes. We would consider the ongoing efforts to further characterize
99 responses and connectivity of various subtypes of neurons in V1 (for example see Jiang et al 2015) as
100 oriented along the form axis (what is it?), but the hierarchical model of visual processing (vertical red
101 arrow) as oriented along the mechanism axis (how does it work?). The hierarchical model was fairly
102 abstracted; it could be argued that this level of abstraction facilitated development of subsequent
103 hierarchical models in AI, for example Fukushima's (1980) neocognitron. Indeed, while many of the
104 new tools becoming available today are specifically designed to address the form of large-scale
105 neural circuits (see the next section, "Why neuroscience for artificial intelligence), they will produce
106 data that will drive new models at both the mechanism and function levels. Nevertheless, we would
107 argue that orientation towards the "what is it?" question will continue to dominate, driven by the
108 traditional applications of the field.

109 As with neuroscience, AI encompasses efforts aligned with all the axes described in Figure 1, but the
110 drive for improving the performance on a specific task results in a significant pull along different
111 axes than neuroscience. Algorithm development cannot proceed without some attention to
112 mechanism (as well as implementation, see "Specialized hardware: agonist or antagonist?"), and
113 often critical breakthroughs in performance arise from developing architectures. For example, the
114 neocognitron (based upon Hubel and Wiesel's hierarchical model and indicated by the blue star),
115 arguably inspired the architecture of convolutional networks (CNNs, LeCun et al., 1998),
116 representing advancement along the mechanism axis. Nevertheless, answering the question of "what
117 does it do?" (or perhaps put more colloquially, "what is it good for?") is critical for applying a model
118 to any application space. Training a convolutional network (e.g., for image classification, blue arrow)
119 is application along the function axis. Similarly, implementing "human-like' computations (dashed
120 blue arrow), like those thought to underlie cognition, while likely drawing from both mechanism and
121 form, primarily will be oriented along the function axis.

122 Our intent is not to suggest that a bias along any one axis is more valuable than along another.
123 However, the differences in Figure 1 are illustrative of why the two fields can sometimes be
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124 perceived as diverging, even as the fundamental research questions seem well-aligned. It is worth
125 noting that neuroscience's general bias towards form and AI's general bias towards function may
126 perpetuate a disconnect between the two fields, as each field will be predisposed to build upon
127 advances framed along dominant biases of the field. For example, identification of a new type of
128 interneuron (as would arise from further characterization of types of neurons in visual cortex) will not
129 be readily incorporated into an existing machine learning approach or AI model without an
130 accompanying functional description of the role of the interneuron within the biological neural
131 network. Conversely, a generalized functional description of inhibition in an ANN may not be readily
132 explored in a biological brain without some indication of form, or how that function might be
133 implemented using known biological components (i.e., different interneuron subtypes).

134 In spite of cultural differences, there are indications that cross-pollination between the fields is
135 thriving. Within the field of visual processing, it has been encouraging to see analogies drawn
136 between the architecture of high-performing neural networks and visual cortex (e.g. George et al.,
137 2017; George et al., 2018). Moreover, such comparisons have been extended to demonstrate that
138 task-optimized deep convolutional networks appear to utilize representations similar to the single-
139 unit responses of neural circuits contained within the ventral visual processing pathway (Khaligh-
140 Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Gii9lii and van Gerven, 2015; Cadena et al.,
141 2019). Several recent studies have proposed deep networks, trained to predict best stimuli for
142 individual neurons, as validatable models of V1 (Walker et al., 2019) as well as higher-order areas of
143 visual processing (Bashivan et al., 2019; Ponce et al., 2019). These works are examples of hybrid
144 research, a product of both fields, that could facilitate development of a common language.

145 While a common language that spans both fields may be an ambitious goal, acknowledgement of
146 differing priorities (or application drivers) may be the first step to subtle shifts in perspective that
147 could do much to address the cultural differences between fields. For neuroscience, communicating
148 new neuroscience knowledge on a function level will do much to ensure impact on AI. Similarly, a
149 slight broadening of receptiveness of AI to differing levels of neuroscience would greatly facilitate
150 adoption of new neuroscience knowledge. These shifts in focus are small but significant and would
151 do much to increase the synergy between neuroscience and artificial intelligence.

152 2 Why neuroscience for artificial intelligence?

153 Neuroscience is in the midst of a technology development era that is producing new tools for
154 exploring the brain's circuits with higher resolution and in greater detail than previously possible.
155 First, recent advances in both electron microscopy (EM) imaging (e.g. Zheng et al., 2018), combined
156 with novel reconstruction algorithms (e.g. Januszewski et al., 2018) are already resulting in new
157 connectomes of unprecedented scale (e.g. Li et al., 2019), with even larger and higher-resolution
158 volumes on the horizon. Potentially combined with other techniques such as the bar-coding of
159 individual neuronal connections (Zador et al., 2012), neuroscience is now positioned such that a
160 whole mammalian brain connectome is within reach. Second, and complementary to the large-scale
161 connectomic datasets on the horizon, neuroscience also continues to advance large-scale calcium
162 imaging (see Girven and Sparta, 2017 and Lecoq et al., 2019 for reviews) and multi-unit recording
163 techniques, increasing the range of physical and temporal scales with which populations of neurons
164 may be recorded (see Stevenson and Kording, 2011 for a timeline). Third, a broader range of tools
165 are now available for simultaneously identifying, recording and manipulating multiple populations
166 from different cell-types (see Huang and Zeng, 2013 and Simpson and Looger, 2018). Detailed
167 descriptions of interactions between different cell-types, including different temporal scales of
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168 plasticity, are essential for describing neuronal "motifs" that potentially constitute canonical
169 computations in the brain (Douglas et al., 1989; Harris and Shepherd, 2015).

170 It would seem natural for the technological advances described above to drive a new and potentially
171 revolutionary generation of neural-inspired ANNs. As increasingly accurate computational graphs of
172 neurons become available, the question of how the brain is wired is no longer the limiting factor for
173 developing novel and potentially revolutionary neural-inspired ANN architectures. Neuroscience
174 now has the capability to record from the same populations of identifiable neurons for lengths of time
175 that were previously unfeasible. Combined with advances in data analytics, neuroscience can now
176 provide access to a range of neural temporal dynamics that were previously inaccessible. For
177 example, the recent work by Trautmann et al. (2019) suggests that neural population dynamics can be
178 extracted from silicon probe recordings without pre-requisite spike sorting, thus alleviating the data-
179 processing bottleneck facing multi-unit recording techniques. These technological advances are
180 particularly relevant from an algorithmic development point of view because the ability of a static
181 graph (without corresponding knowledge of the temporal dynamics) to inform or constrain a
182 computational neural model has historically remained unclear, as it is likely that temporal dynamics
183 play a central role in biological neural processing. Nevertheless, the path from increased biological
184 detail associated with large-scale recordings to a reduced form appropriate for incorporation into an
185 artificial neural network is unclear. A neural model that reduces the temporal dynamics of these
186 large-scale recordings to a more canonical form, even if at the expense of some biological detail,
187 would do much to alleviate the disconnect (even if underutilizing the richness of the large-scale
188 neurobiological data).

189 It is worth noting that Hubel and Wiesel's hierarchical model of simple and complex cells in visual
190 cortex was a significant influence behind the development of the neocognitron, widely regarded as
191 the predecessor to CNNs, even in the absence of anatomical validation. When considering the
192 cultural differences raised in the previous section, one might even argue that the impact of Hubel and
193 Wiesel's work was facilitated by the lack of anatomical validation as the hierarchical model was
194 made accessible by its simplicity. Today computational neuroscience, driven by the availability of
195 new large-scale datasets, is increasingly focused towards high throughput methods for data
196 (Gouwens et al., 2019) to provide meaningful constraints for primarily mechanistic models. These
197 efforts are synergistic with experimental neuroscience, as model validation often identifies critical
198 gaps in knowledge. However, a more functional angle, potentially continued in parallel to the more
199 detailed neural modeling, would do much to facilitate impact on AI.

200 3 Challenges of bringing neuroscience to artificial intelligence

201 While AI researchers are highly motivated to explore novel approaches, (e.g. neural-inspired
202 architectures), that interest can fade without a relatively quick demonstrated impact on accepted
203 benchmarks. In spite of the foundational work of Fukushima (1980) and LeCun (1998), it was not
204 until AlexNet won the ImageNet Large-Scale Visual Recognition Challenge (Krizhevsky et al., 2012)
205 that CNNs rose to the level of popularity that they enjoy today. While it can be argued that the rise
206 of CNNs was driven as much because availability of GPUs and large-scale data sets made training
207 them tenable for the first time, their success and continued popularity is a significant example of how
208 a concept, drawn from neuroscience and framed within the correct context (in this case tractability of
209 training the network combined with success on a benchmark) can drive significant advances. It was
210 the clear demonstration of function (successful application of the architecture) that drove the current
211 and relatively widespread use of convolutional networks today.
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212 In the case of AI, function is often defined by application. Broadly speaking, computer tasks may be
213 divided into two categories: those for which a computer is currently better suited, and those for which
214 a human is currently better suited. The latter category of tasks is an obvious desired application
215 space for neuroscience, and AI has traditionally focused on improving performance in these areas
216 while continuing to leverage capabilities for which a computer is better suited (e.g. extracting
217 patterns from large corpuses of data). One example of a such a task is learning from a single or a few
218 examples (zero-, one-, or few-shot learning). State-of-the-art algorithms currently achieve modest
219 success at these tasks (Snell et al., 2017), but still remain unable to meet or beat human performance
220 A second, potentially related, task is extrapolating information to new examples (semi-supervised
221 learning). Humans are able to recognize examples of a class of stimuli, even if presented in very
222 different environments, after exposure to only a few labeled examples of that class with several
223 unlabeled examples of that class and other classes. Developing algorithms that are capable of self-
224 labelling new examples of a class remains a challenge for computer science (although see Arjovsky
225 et al., 2019), presenting a real limitation to data processing algorithms as the process of labelling data
226 is relatively expensive (and therefore large labeled datasets are not always readily available).
227 Although these tasks are seemingly trivial for human beings, computer algorithms struggle to match
228 human performance.

229 Demonstrating the value of looking to neuroscience for novel solutions to these tasks is particularly
230 challenging, as neuroscience does not currently understand how the brain performs these tasks on the
231 levels towards which neuroscience is biased. It is reasonable to assume that AI will be most strongly
232 impacted by efforts aligned with the function axis (see Figure 1). Models of human behavior and
233 human memory exist in a functional form, but they are relatively disconnected from studies at the
234 neural circuit level (Krakauer et al., 2017). On one hand, this application space presents an
235 opportunity for neural-inspired AI, as neuroscience will likely utilize approaches spanning all of the
236 previously mentioned levels (form, mechanism, and function) to answer these questions. On the other
237 hand, opportunities for neuroscience to impact this axis in the near future are constrained by the fact
238 that most neuroscience tools available today are designed for exploring the form and mechanism of
239 neural circuits (as previously discussed).

240 One practice that facilitates re-framing neuroscience form or mechanism data into a functional
241 description appropriate for impacting AI is considering the functional context of the neural circuit (or
242 single neuron) within the brain when assessing potential impact on AI. The majority of successful
243 developments in neural-inspired AI (included those reviewed in this article) follow this practice. At
244 the same time, we would encourage a broader perspective when considering which areas of
245 neuroscience to draw from. A continued or increased focus on drawing from human cognition runs
246 the risk of maintaining the disconnect between AI and neuroscience as the needed conversion from
247 mechanistic and form descriptions to more functional ones may be slow to mature. In addition, our
248 observation (discussed more fully in the next section) is that there are many opportunities for
249 neuroscience to impact AI that will be overlooked without a broadening of the perceived "impact
250 space' for neuroscience within AI.

251 4 Crossing the cleft

252 Currently a theoretical "gap" exists between neuroscience and AI as researchers seek to establish the
253 "righr level of abstraction for translation between the two fields. While, as previously mentioned,
254 the incorporation of neuroscience into AI development is often viewed as, at best, a superficial
255 treatment of the understanding of neural circuits that neuroscience has to offer, neuroscience could do
256 much to broaden its impact on AI through relatively small efforts to describe new discoveries in a
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257 function-oriented manner (answering the question of "What does it do?" in Figure 1), in addition to
258 the form- and mechanism-oriented manners that are more common in the general neuroscience
259 community. It is also worth noting that in some cases translation to a functional description may
260 require loss of fidelity to the underlying mechanisms and form. Indications are that a cultural shift
261 within computational neuroscience to describe brain theory in a more "machine-learning-accessible"
262 manner has already begun (see recent papers by Marblestone et al., 2016 and Richards et al., 2019).
263 As already described, neuroscience has also begun to adopt machine learning approaches to further
264 develop computational models of neural systems, as seen for the visual system (Khaligh-Razavi and
265 Kriegeskorte, 2014; Yamins et al., 2014; Gii9lii and van Gerven, 2015; Bashivan et al., 2019; Cadena
266 et al., 2019; Ponce et al., 2019; Walker et al., 2019).

267 In addition to better aligning with the goals of AI, from our viewpoint the impact of neuroscience on
268 AI can also be extended by taking a broader view when considering what neural systems are relevant
269 for fostering the development of neural-inspired AI (in particular those with more mature functional
270 models derived from mechanistic and form data). One example of such an area is the exploration of
271 visual processing in non-mammalian (but still strongly visual) animals. Recent work has identified
272 neurons in the dragonfly visual system that exhibit a form of predictive gain modulation, in which
273 visual responses to predicted prey-position are selectively enhanced (Wiederman et al., 2017), even
274 in the presence of a second potential target (Wiederman and O'Carroll, 2013). Phenomenologically,
275 the selective gain modulation of visual responses in the dragonfly system has obvious parallels with
276 selective visual attention observed in macaque visual cortex (McAdams and Maunsell, 1999; Treue
277 and Martinez-Trujillo, 1999). While the underlying neural circuitry and specific mechanisms are still
278 under investigation in both the non-human primate and dragonfly systems, the relative simplicity of
279 the dragonfly system has facilitated development of function-level models of the dragonfly
280 mechanism (for example Wiederman et al 2008) and subsequently development of dragonfly-inspired
281 target tracking algorithms (Bagheri et al., 2015, 2017b) implemented on robotic platforms (Bagheri et
282 al 2017a).

283 A second example of the potential continued impact of neuroscience towards AI is the continued
284 incorporation of elements of spatial coding as observed within the hippocampal formation into
285 navigation algorithms When place fields (O'Keefe, 1971) and head-direction cells (Taube et al.,
286 1990a,b) were first characterized, they were accompanied by hypothetical functional descriptions of
287 their roles in spatial coding. While abstract, these proposed functions facilitated their incorporation
288 into robot navigation systems (Arleo and Gerstner, 2000) as well as SLAM (simultaneous
289 localization and mapping) algorithms (e.g. RatSlam, Milford et al., 2004). More than a decade later,
290 the field continues to draw from neuroscience discoveries (Zhou et al., 2018, Kresier et al., 2018a,b),
291 including grid cells (Fyhn et al., 2004; Banino et al., 2018; Cueva and Wei, 2018), and 3-dimensional
292 representations (Yu et al., 2019). While it remains to be seen whether the hippocampal spatial code
293 is representative of a more general framework for cognition (Bellmund et al., 2018; Hawkins et al.,
294 2019), advances in our understanding of the spatial navigation system of animals have clearly had
295 continued impact on development of artificial brain-inspired navigation algorithms, with longer-term
296 implications for autonomous or semi-autonomous navigation systems that will rely on some form of
297 AI.

298 While these neural systems may be viewed as esoteric by some, the successes in these areas suggest
299 that a common language (or at least a common perspective) is already being developed, even if
300 restricted to certain applications in which neuroscience has had a demonstrated but limited impact.
301 While it may be debatable whether modern neuroscience is poised to unravel the neural circuits
302 underlying cognition, these examples illustrate that there are several avenues by which continued
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303 application of neuroscience to AI will 1) continue to grow communication between the two fields and
304 2) foster the development of neural-inspired AI application areas that could eventually form the
305 foundation for more general neural-inspired AI.

306 5 Specialized hardware: agonist or antagonist?

307 One potentially complicating aspect to looking to a broader range of neural systems for impacting AI
308 is the potential increase in computational cost. As discussed previously, the availability of modern
309 high-performing computing platforms such as GPUs are a significant factor in the recent success of
310 deep neural networks. While ideally neural-inspired algorithms should not be biased by the dominant
311 computer architectures of the time, in practice the cost of applying an algorithm to particular
312 application domains will be a consideration. For this reason, aspects of neuroscience that can be
313 incorporated into a deep learning framework have an advantage for impacting AI in that they can be
314 run on high-performing technology. While using a deep learning framework as a "best-practices"
315 guideline may be beneficial in the short-term to foster communication between neuroscience and AI,
316 an unfortunate side effect is that many neural systems with much to offer (for example the
317 hippocampus) may contain architectures that are rather distinct from the hierarchical processing
318 models that inspired deep neural networks.

319 For this reason, when looking more broadly within neuroscience to inspire AI, it will be useful to
320 also look beyond current computing technologies to what technologies may be on the horizon.
321 Recent years have seen an increased prioritization of neuromorphic hardware solutions for AI
322 applications (Blouw et al., 2019, Esser 2015, and Severa et al., 2019) in addition to their long-
323 proposed use for neuroscience modeling (Furber, 2012 and Indiveri et al., 2011). Programmable
324 neuromorphic hardware remains a somewhat immature technology compared to GPUs and CPUs,
325 however there are now a number of technologies such as IBM's TrueNorth (Merolla et al., 2014) and
326 Intel's Loihi chips (Davies et al., 2018) that have sufficient neurons to implement a variety of neural
327 circuits, especially some of the more succinct circuits (e.g. the dragonfly system discussed above).
328 The trade-off for this programmability is potential increased difficulty of implementation. Until
329 these newer neuromorphic hardwares mature, it is likely that GPUs and other accelerators will
330 continue to prove most effective for simple neural networks.

331 The effectiveness of GPUs at accelerating deep neural networks in some ways demonstrates that
332 initial costs (for example increases in required computational power) may be acceptable when
333 initially exploring new areas of neuroscience for impacting AI. Although neuromorphic technologies
334 have demonstrated computational advantages, these advantages typically come with restrictions on
335 the set of neural capabilities (e.g. leaky integrate-and-fire neurons) that may be effectively
336 implemented. From our perspective, the neuromorphic hardware community is, in many respects,
337 still searching for clear evidence of what aspects of the brain should be incorporated in hardware.
338 Should potential computational advantages be demonstrated, there will be considerable interest in
339 pursuing aspects of neural realism that can fully realize these advantages.

340 6 Summary

341 We have discussed certain cultural differences between neuroscience and AI that, from our
342 viewpoint, hinder cross-pollination between the two fields. While such cross-pollination is, in itself,
343 a challenging proposition, much of these differences are driven by diverging priorities and
344 perspectives rather than technical obstacles. Neuroscience is primarily focused towards
345 understanding form, the components of biological neural circuits, and mechanism, how neural
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346 circuits work. New neural data, driven by a stream of new tools for dissecting neural circuits, will be
347 described from this perspective. AI, on the other hand, seeks to increase performance (with respect
348 to an objective function), especially on tasks where human performance still exceeds that of
349 computer algorithms. While it is natural to look to neuroscience to inform the next generation of AI
350 algorithms, AI requires information in a more abstracted language than neuroscience typically
351 produces. Incorporation of neural elements be biased towards functional descriptions of neural
352 circuits and the brain.

353 There are indications that there is already a cultural shift within neuroscience to communicate results
354 on a more function-oriented level (although the fields have yet to arrive at an agreed-upon "common
355 language"). Our view is that this slight shift in perspective will do much to facilitate translation of
356 new neuroscience knowledge to AI algorithms. We also suggest that neuroscience impacts on AI
357 could be enhanced by broadening the current perspective regarding what areas of neuroscience are
358 relevant to AI. We have pointed to two example neural systems (spatial navigation in the
359 hippocampus and visual processing in insects) that have been successful at maintaining an open
360 pipeline to impacting ANN development and implementation in robotic systems and that, in our
361 view, demonstrate the potential of "alternative" neural systems to inform AI. History (and hindsight)
362 will eventually reveal the "right" source of inspiration and the correct language with which to
363 communicate. Our current view is that there is tremendous potential for the two fields to work
364 together synergistically, potential that can only be realized through broader exploration of a wide
365 range of possibilities.
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575 Figure Legend:

576 Figure 1: Cultural differences between AI and neuroscience. Example studies from visual processing
577 in AI (blue) and neuroscience (red) are projected onto three different "axes" of impact: answering the
578 question of "what is it?" (form or hardware), answering the question of "how does it work?"
579 (mechanism or representation), and answering the question of "what does it do?" (function or
580 theory). Neuroscience results tend to be communicated answering the "what is it?" or "how does it
581 worr questions. As an example, Hubel and Wiesel's work (red star) characterizing simple and
582 complex cells feeds continuing efforts along the folio/hardware axis (horizontal solid red arrow) to
583 further classify characterization of cell types in visual cortex. At the same time, Hubel and Wiesel's
584 hierarchical model of visual processing has had significant impact along the
585 mechanism/representation axis (vertical solid red arrow). Neuroscience experiences a strong
586 application pull along the "what is it" axis, for example to identify therapeutic targets of circuit
587 dysfunction (dashed red arrow). AI research tends to focus on "what does it do?" and "how does it
588 work?" Here, development of Fukushima's neocognitron (blue star) into convolutional networks is
589 illustrated as impact along the mechanism/representation axis (vertical solid blue arrow), while their
590 application to image classification is impact along the function/theory axis (solid blue arrow). The
591 dominant application pull on AI is to produce "human-cognition-like" computations (dashed blue
592 arrow).

This is a provisional file, not the final typeset article
16



Crossing from neuroscience to AI

593 *** Figure 1 provided below for reference (actual file will be submitted separately)
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