
Markovnikov Selective Hydroboration of Olefins Catalyzed by a Copper N-Heterocyclic Carbene Complex

Tarah A. DiBenedetto, Astrid M. Parsons, William D. Jones*

Department of Chemistry, University of Rochester, Rochester, NY 14627

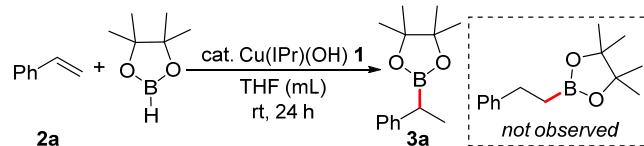
Supporting Information Placeholder

ABSTRACT: The efficient and atom economical hydroboration of alkenes and alkynes using an *N*-heterocyclic carbene (NHC) copper hydroxide catalyst has been developed. An equimolar combination of substrate and HBpin allows for the selective Markovnikov hydroboration of alkenes and alkynes. A variety of functional groups were tolerated in good to excellent yields. This system features a facile reaction set-up, atom economy, high selectivity, and an easily synthesized copper-NHC catalyst.

INTRODUCTION

Organoboron compounds are highly valuable synthetic intermediates used in a variety of organic transformations.¹ Mainly, the synthetic utility of the boronate group has been illustrated in many Suzuki-Miyaura coupling reactions to form C-C bonds.² Classically, organoboron compounds are synthesized via Grignard or organolithium reagents.³ Alternatively, the use of a transition-metal catalyst is an attractive strategy to access the organoboron motif.⁴ While many catalytic advances have been made towards the synthesis of organoboron compounds, selectivity and atom economy still remain a challenge.

Over the years, many examples of first-row metal-containing catalysts in conjunction with supporting ligands have been reported for hydroboration reactions.⁵⁻¹² Notably, *N*-heterocyclic carbenes (NHC) have attracted attention as tunable ligands for catalysis.¹³ Recently, copper-NHC complexes have been prevalent in the literature for transforming alkenes and alkynes to their borylated counterparts. Using a combination of a simple copper salt, NHC, and base, Hoveyda reported the hydroboration of aryl substituted alkenes¹⁴ and acyclic and exocyclic 1,1-disubstituted aryl alkenes.¹⁵ More recently, Whittlesey reported the use of (NHC)Cu(O'Bu) complexes for the hydroboration of alkynes, however, the scope was limited to internal alkynes.¹⁶ Nickel and iron NHC complexes have also been developed for the hydroboration of styrene and vinyl arenes. In 2016, Schomaker developed a heteroleptic nickel NHC complex for the Markovnikov selective hydroboration of styrenes.¹⁷ That same year, Thomas developed a switchable Markovnikov/anti-Markovnikov system catalyzed by an alkoxy-tethered NHC iron complex.¹⁸ Despite the many catalytic strategies that have been developed for selective Markovnikov or anti-Markovnikov products, most systems still form some amount of the undesired product.


Herein, we report a Markovnikov selective hydroboration of alkenes and alkynes catalyzed by a transition metal base Cu(IPr)(OH) 1 (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene). A variety of functional groups are tolerated giving products in good to excellent yields. Use of equimolar amounts

of borylating agent and substrate allow for the facile transformation to the organoborane at room temperature. Furthermore, low catalyst loading, neat conditions, and atom economy provide for an efficient and low-cost method for obtaining valuable organoboranes.

RESULTS AND DISCUSSION

We began our study by investigating the hydroboration of styrene **2a** catalyzed by copper hydroxide Cu(IPr)(OH) **1**. Initial screens yielded exclusively the Markovnikov product, albeit in low yield. A drastic increase in the yield of **3a** was observed

Table 1. Optimization of standard reaction conditions^a

entry	cat. loading	THF (mL)	yield 3a (%) ^b
1	1.0 mol%	1.0	18
2	1.0 mol%	0.5	39
3	1.0 mol%	-	96
4	0.50 mol%	-	98
5	0.25 mol%	-	80
6	-	-	0
7	-	0.5	0

^aReaction conditions: alkene (0.5 mmol), HBpin (0.5 mmol), catalyst, THF (mL), rt, 24 h. (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene). ^bYield determined via ¹H NMR spectroscopy vs 2,4,6-trimethylbenzaldehyde as an internal standard.

when the reaction was carried out under more concentrated conditions (Table 1, entries 1-2). Running the reaction neat allowed for the efficient conversion of **2a** to **3a** in high yield while conserving Markovnikov selectivity (entry 3). In an effort to de-

velop an efficient, atom economical, and cost-effective transformation, lower catalyst loadings were explored. Lower catalyst loadings were tolerated (entry 4-5), but upon decreasing the loading to 0.25 mol%, the reaction did not go to completion after 24 h. Control reactions showed that catalyst is necessary for this transformation, while the addition of solvent is not (entry 6-7). For this system, 0.5 mol% catalyst loading and neat conditions proved to be optimal for the hydroboration of **2a** to **3a** (entry 4).

Table 2. Hydroboration substrate scope^a

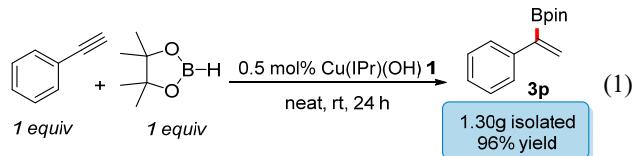
$\text{R} \text{---} \text{C}\equiv\text{C} \text{---} \text{R}' + \text{Bpin} \xrightarrow[1 \text{ equiv}]{0.5 \text{ mol\% Cu(IPr)(OH) 1, neat, rt, 24 h}} \text{R} \text{---} \text{C}(\text{Bpin}) \text{---} \text{R}'$	
2, 1 equiv	1 equiv
3a: 98%	3b: 73%, 87%^b
3c: 92%	
3d: 65%, 79%^b	3e: 57%^c
3g: 34%^{b,d}	3h: 95%
3j: 59%, 77%^b	3k: 13%^e
3m: 55%	3n: 38%^{d,f}
3p: R = H, quant.^d	
3q: R = Me, 50%^h	
3u: 93%^d	3v: 87%^j
3w: 80%^d	

^aYield determined via ¹H NMR spectroscopy vs 2,4,6-trimethylbenzaldehyde as an internal standard. (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene).

^b1.0 mol% catalyst loading.

^cYield determined via ¹⁹F NMR spectroscopy vs. 4-fluorobenzoic acid as an internal standard.

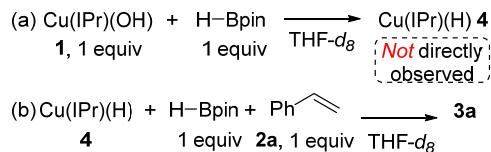
^dTrace amount of linear product observed by GC-MS (<1%); not observed by ¹H NMR spectroscopy.


^eIsolated yield. ^f α,α,α -trifluorotoluene used as the internal standard.

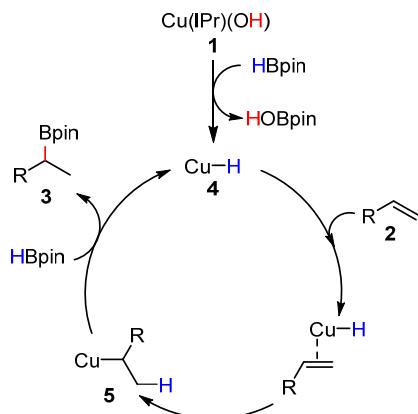
^gBranched product observed by GC-MS (<5%). ^h43% of the

linear product observed by ¹H NMR spectroscopy. ⁱ4% of linear product observed by ¹H NMR spectroscopy. ^j8% of linear product observed by ¹H NMR spectroscopy.

With the optimized reaction conditions in hand, various alkenes and alkynes were tested (Table 2). In general, substrates bearing *para*-electron withdrawing groups are well tolerated (Table 2, **3b**-**3e**). In the case of **3b** and **3d**, increasing the catalyst loading to 1.0 mol % allowed for higher conversion to the borylated product. For substrates with electron-donating substituents, borylation proved to be more challenging. Compared to a substrate with a mild electron donating group (**3f**), a substrate with a strong electron-donating group in the *para* position (**3g**) decreased the yield significantly even at higher catalyst loading. Attempts to further optimize the reaction conditions for **3g** did not drastically improve conversion, indicating that substrates with strong electron-donating groups are not well-tolerated with this system.¹⁹ Next, substrates featuring *ortho*- and *meta*-functionality were examined. *Meta*-methyl substitution (**3i**) results in a slight decrease in yield (compared to **3f**) while *ortho*-substitution (**3k**) gave poor conversion and poor yield, attributable to steric hindrance. Increasing the catalyst loading to 1.0 mol % did result in an increase in yield for the *meta*-substituted derivative **3j**, however, this was not the case for *ortho*-substituted derivative **3l**. Furthermore, the scope of the reaction was extended to internal alkene **3m** and acrylate substrate **3n**. Strikingly, no linear borylation product of α -methylstyrene (**3o**) was observed highlighting the selectivity of this system for Markovnikov product.


Borylation of alkynes proceeded in modest to high yields, 46-99% yield (Table 2, **3p**-**3w**). Unlike **3k**, borylation of *ortho*-methyl substituted alkyne **3q** proceeded in high conversion (93%), suggesting that steric hindrance is not detrimental for the borylation of alkynes. However, *ortho*-methyl substitution results in loss of Markovnikov selectivity yielding a ~1:1 ratio of the branched and linear products. Unlike **3j**, borylation of *meta*-chloro substituted alkyne **3w** proceeded in high conversion (80%) under standard conditions. Methyl 4-vinylbenzoate was also tested, and the corresponding borylated product **3t** was obtained in high yield, 89%. Strongly donating *para*-methoxy substituted alkyne **3s** was tolerated in modest yield. This was not the case for *para*-methoxy substituted alkene, **3g**. Mildly donating *para*-methyl substituted alkyne converted to product **3v** in high yield (87%) mirroring the reactivity of alkene **3f** (91%). Strongly withdrawing trifluoromethyl substituted alkyne **3u** proceeded in high yield (93%). The scope of the reaction was extended to 3-ethynylpyridine and the corresponding product **3r** was obtained in high yield. Lastly, the practicality of this transformation was illustrated by accessing **3p** on a gram scale (eq 1).

Moving forward we sought to explore the mechanism of the reaction. *N*-heterocyclic carbene ligands have been reported to stabilize low coordinate, reactive copper(I) complexes.^{20,21} In 2004, Sadighi reported that reaction of Cu(IPr)(O'Bu) with triethoxysilane in C₆D₆ generates a dimeric copper(I) hydride complex.²⁰ This complex is unstable at room temperature and will start to decompose within 1 hour to give Cu⁰ precipitate. Given these results, we sought to examine the *in situ* stoichiometric formation of Cu(IPr)(H) **4** in benzene-d₆ (Scheme 1a). Indeed, reaction of **1** with HBpin results in a rapid reaction with

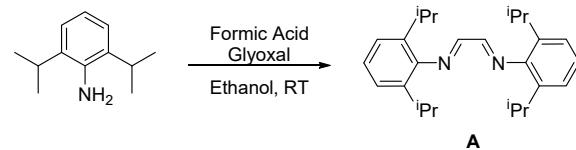

the immediate appearance of an intense yellow color.²² This observation is consistent with the color change observed in the above mentioned formation of a copper(I) hydride complex in C₆D₆.²⁰ Furthermore, in tetrahydrofuran-*d*₈ the ¹H NMR spectrum of **1** shows the characteristic broad singlet of the OH group at δ -1.91. Upon addition of HBpin, the resonance at δ -1.91 disappears, likely due to the formation of a copper hydride, which is well preceded in the literature.^{23,24} Addition of **2a** and HBpin to a solution containing the proposed intermediate (Scheme 1b) indeed yields borylated product **3a** suggesting that the copper species formed is an on-cycle active catalytic intermediate. (see Supporting Information for more details)

Scheme 1. Stoichiometric experiments

With the insight gained from these mechanistic experiments along with literature precedent,^{20,23,24} a plausible mechanism is proposed (Scheme 2). Reaction of complex **1** with HBpin generates the active catalyst **4**, a Cu(I)-hydride complex. Coordination of the alkene, followed by migratory insertion gives species **5**. Reaction of **5** with HBpin affords borylated product **3**, regenerating the active catalyst **4**. The high regiochemistry obtained can be attributed to the strong preference for the branched isomer **5**. This preference can be attributed to the formation of the strong methyl β -C-H bond in **5**, as the metal-benzylic carbon bond is expected to be weak.²⁵

Scheme 2. Proposed catalytic cycle.

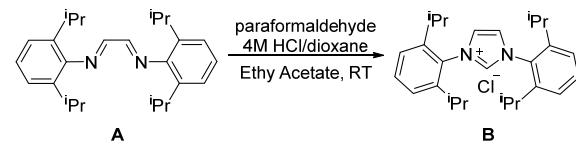
CONCLUSIONS


In conclusion, we have successfully developed the highly Markovnikov selective copper(I)-catalyzed hydroboration of alkenes and alkynes. It was found that substrates with electron-withdrawing groups are well tolerated while substrates with strong electron-donating groups hinder reactivity. Furthermore, steric hindrance plays an important role with *ortho*-substitution of the styrene being detrimental for catalysis. The electronic and steric affects are less important for the hydroboration of alkynes. The current strategy features high selectivity for the Markovnikov product, excellent atom economy, low catalyst loading, and neat reaction conditions making this an attractive strategy for the hydroboration of alkenes and alkynes.

EXPERIMENTAL SECTION

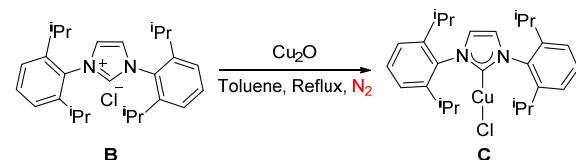
General. Unless otherwise noted, all organometallic compounds were prepared and handled under a nitrogen atmosphere using standard

Schlenk and glovebox techniques. (*IE,2E*)-*N*¹,*N*²-bis(2,6-diisopropylphenyl)-ethane-1,2-diiimine **A** was synthesized according to the literature procedure.²⁶ 1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2*H*-imidazol-2-ylidene **B** was synthesized according to the literature procedure.²⁷ Compound **C** (Cu(IPr)Cl) was synthesized according to the literature procedure²⁸ and purified according to the literature procedure.²⁹ Compound **1** (Cu(IPr)(OH)) was synthesized according to the literature procedure.³⁰


Synthesis of (*IE,2E*)-*N*¹,*N*²-bis(2,6-diisopropylphenyl)-ethane-1,2-diiimine (**A**).

A 500mL round bottom flask containing a stir bar was charged with 2,6-diisopropylaniline (280 mmol, 1.00 equiv), glyoxal (140 mmol, 0.500 equiv), 100% anhydrous ethanol (250mL) and 2 drops of formic acid. The reaction was stirred at room temperature for 48 h. A yellow precipitate started to form after 4 h. After 48 h the reaction was gravity filtered. The yellow precipitate was washed with cold methanol and dried on a vacuum line to afford **A** (33.8g, 64% yield). Compound **A** was used in the next step without further purification. Spectroscopic data matches the reported data.²⁶

¹H NMR (400 MHz, CDCl₃): δ 8.10 (s, 2 H), 7.22 – 7.14 (m, 6 H), 3.00 – 2.88 (m, 4 H), 1.21 (d, *J* = 6.8 Hz, 24 H).

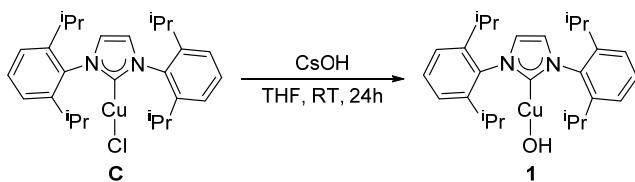

Synthesis of 1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2*H*-imidazol-2-ylidene (**B**).

A 50 mL round bottom flask containing a stir bar was charged with paraformaldehyde (46.0 mmol, 1.10 equiv) and 4M HCl/dioxane solution (63.0 mmol, 1.50 equiv). The reaction was stirred until most of the paraformaldehyde dissolved. A 250 mL 3 neck round bottom flask equipped with an addition funnel and stir bar was charged with **A** (42.0 mmol, 1.00 equiv) and ethyl acetate (85.0 mL). The paraformaldehyde solution was then added to the addition funnel and added dropwise over the course of 1 h. The addition of the paraformaldehyde solution caused the yellow solution containing **A** to turn orange. A white precipitate formed after 5 min. After the slow addition was complete, the solution was orange/brown with additional white precipitate. The reaction was stirred at room temperature for 16 h at which point the precipitate was brown/orange. The brown/orange solid was gravity filtered and washed with ethyl acetate affording a light pink solid. The light pink solid was dissolved in chloroform and then concentrated *in vacuo* and dried on a vacuum line to afford **B** (21.4 g, 86% yield). Spectroscopic data matches the reported data.³¹

¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1 H), 8.15 (s, 2 H), 7.58 (t, *J* = 7.8 Hz, 2 H), 7.35 (d, *J* = 7.8 Hz, 4 H), 2.51 – 2.40 (sept, *J* = 6.8, 4 H), 1.29 (d, *J* = 6.8 Hz, 12 H), 1.25 (d, *J* = 6.9 Hz, 12 H).

Synthesis of Cu(IPr)Cl (**C**).

An oven-dried 250 mL round bottom flask equipped with a stir bar was charged with **B** (9.36 mmol, 1.54 equiv) and Cu₂O (6.08 mmol, 1 equiv). The flask was then fitted with a reflux condenser capped with a septum and the system was put under a nitrogen atmosphere. The system was then charged with toluene (40 mL) and refluxed for 4 d. The reaction was then cooled and CH₂Cl₂ was added to dissolve any solid that had formed. The reaction was transferred to a separatory funnel


and washed with water ($2 \times 100\text{mL}$) to remove any unreacted imidazolium salt. The organic layer was dried over sodium sulfate and concentrated *in vacuo*. The resulting dark brown solid was transferred to a frit and washed with pentane. The solid turned from dark brown to light purple. The light purple solid was recrystallized by dissolving the product in CH_2Cl_2 , stirring over K_2CO_3 , and gravity filtering to remove the K_2CO_3 . The product was then precipitated by the slow addition of pentane through an addition funnel. The solid was gravity filtered and dried on a vacuum line to afford **C** (1.4 g, 31% yield). Spectroscopic data matches the reported data.³²

^1H NMR (400 MHz, CDCl_3): δ 7.49 (t, $J = 7.8$ Hz, 2 H), 7.30 (d, $J = 7.8$ Hz, 4 H), 7.13 (s, 2 H), 2.63 – 2.50 (sept, $J = 6.8$ Hz, 4 H), 1.30 (d, $J = 6.9$ Hz, 12 H), 1.23 (d, $J = 6.9$ Hz, 12 H).

Elemental analysis calculated for $\text{C}_{27}\text{H}_{36}\text{N}_2\text{CuCl}$ (MW 487.59 g/mol): C, 66.51; H, 7.44; N, 5.75. Found: C, 66.59; H, 7.49; N, 5.53.

Note: The final product varies in color from pale purple to off white. Sometimes multiple recrystallizations are required to get pure product. The purity of **C** greatly affects the yield of **1**.

Synthesis of $\text{Cu}(\text{IPr})(\text{OH})$ (**1**).

An oven-dried 150 mL round bottom flask was charged with **C** (2.50 mmol, 1.00 equiv), CsOH (5.00 mmol, 2.00 equiv), and THF (48.0 mL). The reaction solution, pale orange in color, was allowed to stir at room temperature for 24 h. The reaction was then filtered through a celite plug into a Schlenk flask and concentrated *in vacuo* until three-fourths of the solvent was removed. Pentane was then added to precipitate the product. The product was then isolated by filtration onto a glass frit and washed with pentane. The resulting white solid was dried on a vacuum line to afford **1** (0.985 g, 84%). Spectroscopic data matches the reported data,³³ note we do not see resolution between the literature reported triplet at δ 7.46 and the singlet at δ 7.43. We observe a multiplet that integrates to 4 H. The literature does not report the OH shift in the NMR spectrum but we are able to observe a broad singlet OH shift at δ -1.91.

^1H NMR (500 MHz, THF): δ 7.45 (m, 4 H), 7.32 (d, $J = 7.6$ Hz, 4 H), 2.65 (m, 4 H), 1.31 (d, $J = 6.6$ Hz, 12 H), 1.21 (d, $J = 6.7$ Hz, 12 H), -1.91 (s, 1 H).

Elemental analysis calculated for $\text{C}_{27}\text{H}_{37}\text{CuN}_2\text{O}$ (MW 469.14): C, 69.12; H, 7.95; N, 5.97. Found: C, 68.98; H, 7.74; N, 5.78.

General procedure for hydroboration. In a glovebox, an oven-dried 1-dram vial containing a stir bar was charged with $\text{Cu}(\text{IPr})(\text{OH})$ (0.50 mol%, 0.05 equiv), styrene **2** (0.50 mmol, 1.0 equiv), and HBpin (0.50 mmol, 1.0 equiv). The reaction was capped and removed from the glovebox and stirred at room temperature for 24h. The reaction was then filtered through a celite plug. The 1-dram vial was washed with CH_2Cl_2 (5×0.5 mL) and the washings were filtered through the plug. The combined washings were concentrated *in vacuo* and analyzed by ^1H NMR spectroscopy utilizing 1,4,6-trimethylbenzaldehyde as the internal standard.

Note: In conjunction with NMR analysis the reaction was also analyzed using GCMS. The GCMS trace showed no formation of the linear product, which comes at a distinctly different retention time than the branched product. See Supporting Information.

Note: Although reaction conditions are neat, substrates that are solids are still able to be borylated (**2h**, **2r**, **2t**).

Note: The neat large scale reaction is extremely exothermic. Slow addition of HBpin is recommended.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.XXXXXX.

Details of the optimization of the borylation reaction, NMR spectra of stoichiometric reactions, and product characterization data (pdf).

AUTHOR INFORMATION

Corresponding Author

*E-mail: jones@chem.rochester.edu

ORCID

William D. Jones: 0000-0003-1932-0963

Tarah A. DiBenedetto: 0000-0001-8861-0740

Astrid M. Parsons: 0000-0002-3835-9110

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding from the U.S. Department of Energy (Grant No. FG02-86ER-13569) for instrument usage and chemicals. A.M.P. acknowledges funding from an NSF GRFP award (DGE-1419118).

REFERENCES

- Suzuki, A. Organoboranes in Organic Syntheses Including Suzuki Coupling Reaction. *Heterocycles* **2010**, *80*, 15.
- Taheri Kal Koshvandi, A.; Heravi, M. M.; Momeni, T. Current Applications of Suzuki-Miyaura Coupling Reaction in The Total Synthesis of Natural Products: An Update. *Appl. Organomet. Chem.* **2018**, *32*, e4210.
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. *Chem. Rev.* **1995**, *95*, 2457–2483.
- Kallepalli, V. A.; Gore, K. A.; Shi, F.; Sanchez, L.; Chotana, G. A.; Miller, S. L.; Maleczka, R. E.; Smith, M. R. Harnessing C–H Borylation/Deborylation for Selective Deuteration, Synthesis of Boronate Esters, and Late Stage Functionalization. *J. Org. Chem.* **2015**, *80*, 8341–8353.
- Wen, Y.; Xie, J.; Deng, C.; Li, C. Selective Synthesis of Alkylboronates by Copper(I)-Catalyzed Borylation of Allyl or Vinyl Arenes. *J. Org. Chem.* **2015**, *80*, 4142–4147.
- Won, J.; Noh, D.; Yun, J.; Lee, J. Y. Catalytic Activity of Phosphine–Copper Complexes for Hydroboration of Styrene with Pinacolborane: Experiment and Theory. *J. Phys. Chem. A* **2010**, *114*, 12112–12115.
- Lee, H.; Lee, B. Y.; Yun, J. Copper(I)–Taniaphos Catalyzed Enantiodivergent Hydroboration of Bicyclic Alkenes. *Org. Lett.* **2015**, *17*, 764–766.
- Wang, Z.; He, X.; Zhang, R.; Zhang, G.; Xu, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Copper-Catalyzed Asymmetric Hydroboration of 1,1-Disubstituted Alkenes. *Org. Lett.* **2017**, *19*, 3067–3070.
- Jang, W. J.; Song, S. M.; Moon, J. H.; Lee, J. Y.; Yun, J. Copper-Catalyzed Enantioselective Hydroboration of Unactivated 1,1-Disubstituted Alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 13660–13663.
- Xi, Y.; Hartwig, J. F. Mechanistic Studies of Copper-Catalyzed Asymmetric Hydroboration of Alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 12758–12772.
- Obligacion, J. V.; Chirik, P. J. Earth-Abundant Transition Metal Catalysts for Alkene Hydrosilylation and Hydroboration. *Nat. Rev. Chem.* **2018**, *2*, 15–34.
- Fan, W.; Li, L.; Zhang, G. Branched-Selective Alkene Hydroboration Catalyzed by Earth-Abundant Metals. *J. Org. Chem.* **2019**, *84*, 5987–5996.
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. *Chem. Rev.* **2018**, *118*, 9988–10031.
- Lee, Y.; Hoveyda, A. H. Efficient Boron–Copper Additions to Aryl-Substituted Alkenes Promoted by NHC-Based Catalysts. Enantioselective Cu-Catalyzed Hydroboration Reactions. *J. Am. Chem. Soc.* **2009**, *131*, 3160–3161.
- Corberán, R.; Mszar, N. W.; Hoveyda, A. H. NHC-Cu-Catalyzed Enantioselective Hydroboration of Acyclic and Exocyclic 1,1-Disubstituted Aryl Alkenes. *Angew. Chemie Int. Ed.* **2011**, *50*, 7079–7082.

- (16) Hall, J. W.; Unson, D. M. L.; Brunel, P.; Collins, L. R.; Cybulski, M. K.; Mahon, M. F.; Whittlesey, M. K. Copper-NHC-Mediated Semihydrogenation and Hydroboration of Alkynes: Enhanced Catalytic Activity Using Ring-Expanded Carbenes. *Organometallics* **2018**, *37*, 3102–3110.
- (17) Touney, E. E.; Van Hoveln, R.; Buttke, C. T.; Freidberg, M. D.; Guzei, I. A.; Schomaker, J. M. Heteroleptic Nickel Complexes for the Markovnikov-Selective Hydroboration of Styrenes. *Organometallics* **2016**, *35*, 3436–3439.
- (18) MacNair, A. J.; Millet, C. R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. Markovnikov-Selective, Activator-Free Iron-Catalyzed Vinylarene Hydroboration. *ACS Catal.* **2016**, *6*, 7217–7221.
- (19) See Supporting Information for details on the optimization of electron donating substrates.
- (20) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Synthesis, Structure, and Alkyne Reactivity of a Dimeric (Carbene)Copper(I) Hydride. *Organometallics* **2004**, *23*, 3369–3371.
- (21) Mankad, N. P.; Gray, T. G.; Laitar, D. S.; Sadighi, J. P. Synthesis, Structure, and CO₂ Reactivity of a Two-Coordinate (Carbene)Copper(I) Methyl Complex. *Organometallics* **2004**, *23*, 1191–1193.
- (22) The resonance attributed to the hydride was not directly observed due to the overlap with the isopropyl resonances from the ligand.
- (23) Bagherzadeh, S.; Mankad, N. P. Extremely Efficient Hydroboration of Ketones and Aldehydes by Copper Carbene Catalysis. *Chem. Commun.* **2016**, *52*, 3844–3846.
- (24) Jordan, A. J.; Wyss, C. M.; Bacsá, J.; Sadighi, J. P. Synthesis and Reactivity of New Copper(I) Hydride Dimers. *Organometallics* **2016**, *35*, 613–616.
- (25) Jiao, Y.; Evans, M. E.; Morris, J.; Brennessel, W. W.; Jones, W. D. Rhodium–Carbon Bond Energies in Tp'Rh(CNneopentyl)(CH₂X)H: Quantifying Stabilization Effects in M–C Bonds. *J. Am. Chem. Soc.* **2013**, *135*, 6994–7004.
- (26) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. A Sterically Demanding Nucleophilic Carbene: 1,3-Bis(2,6-Diisopropylphenyl)Imidazol-2-Ylidene). Thermochemistry and Catalytic Application in Olefin Metathesis. *J. Organomet. Chem.* **2000**, *606*, 49–54.
- (27) Bantrell, X.; Nolan, S. P. Synthesis of N-Heterocyclic Carbene Ligands and Derived Ruthenium Olefin Metathesis Catalysts. *Nat. Protoc.* **2011**, *6*, 69–77.
- (28) Citadelle, C. A.; Nouy, E. Le; Bisaro, F.; Slawin, A. M. Z.; Cazin, C. S. J. Simple and Versatile Synthesis of Copper and Silver N-Heterocyclic Carbene Complexes in Water or Organic Solvents. *Dalton Trans.* **2010**, *39*, 4489.
- (29) Gibard, C.; Ibrahim, H.; Gautier, A.; Cisnetti, F. Simplified Preparation of Copper(I) NHCs Using Aqueous Ammonia. *Organometallics* **2013**, *32*, 4279–4283.
- (30) Fortman, G. C.; Slawin, A. M. Z.; Nolan, S. P. A Versatile Cuprous Synthon: [Cu(IPr)(OH)] (IPr = 1,3 Bis(diisopropylphenyl)imidazol-2-ylidene). *Organometallics* **2010**, *29*, 3966–3972.
- (31) Arduengo, A. J.; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. Imidazolinylidenes, Imidazolinylidenes and Imidazolidines. *Tetrahedron* **1999**, *55*, 14523–14534.
- (32) Liu, J.; Zhang, R.; Wang, S.; Sun, W.; Xia, C. A General and Efficient Copper Catalyst for the Double Carbonylation Reaction. *Org. Lett.* **2009**, *11*, 1321–1324.
- (33) Richers, C. P.; Bertke, J. A.; Rauchfuss, T. B. Syntheses of Transition Metal Methoxysiloxides. *Dalton Trans.* **2017**, *46*, 8756–8762.