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SUMMARY 

Developing cost-effective and less energy-intensive carbon capture processes for 

dilute CO2 sources is of high interest. Adsorption-based CO2 capture such as pressure 

swing adsorption (PSA) is one promising approach to this challenge. PSA and other cyclic 

adsorption processes are materials-enabled separations that use porous adsorbents, 

including metal-organic frameworks (MOFs). This thesis examines post-combustion 

carbon capture in sub-ambient PSA, a potential route to an effective adsorption process, 

using MOF materials via molecular modeling. 

We first estimated the reproducibility of CO2 adsorption isotherm measurements in 

MOFs via literature meta-analysis. This chapter provides a comprehensive summary of the 

state of knowledge regarding CO2 adsorption in MOFs and its implications for molecular 

modeling of adsorption in MOFs. We then examined the upper bounds on CO2 swing 

capacity in sub-ambient PSA by Grand Canonical Monte Carlo (GCMC) simulation of an 

extensive collection of MOFs. A wide variety of MOFs was found to have swing capacity 

exceeding 10 mol/kg at sub-ambient temperatures provided that MOFs are appropriately 

selected based on their physical properties. We also assessed the capability of simple 

proxies for adsorbent performance and approximate models of cyclic adsorption to predict 

the outcomes of detailed process models of adsorption-based CO2 capture processes. To 

this end, we discuss the correlations between predictions from the simpler models and 

detailed process models. 

As a separate contribution, molecular modeling of chemical warfare agents 

(CWAs) adsorption in MOFs was analyzed. Molecular models of adsorption of CO2, 

CWAs or other molecules typically employ a rigid framework approximation for 

computational convenience. All real frameworks including MOFs, however, have intrinsic 

flexibility due to thermal vibrations. We examine the implications of this simple 

observation for quantitative predictions of the properties of adsorbed CWAs. 
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CHAPTER 1. INTRODUCTION 

1.1 POST-COMBUSTION CO2 CAPTURE AND SEPARATION 

Developing efficient methods to separate chemical mixtures into pure or purer 

forms are of interest for many engineers both in academia and industry.1 Physical and 

chemical separation processes currently account for 10–15% of the world-wide energy 

consumption.1-3 In this context, the improvement of the separation process of greenhouse 

gases such as CO2 from dilute emissions would gain significant global benefits. 

Anthropogenic CO2 emissions are one of the main drivers of global climate change. 

It is, however, challenging and expensive to capture CO2 from dilute sources such as power 

plants, refinery exhausts, and air.1,4 Stationary point sources, like power plants, are 

practical locations to implement CO2 capture technology.5 There are three scenarios where 

CO2 can be captured and separated in power plants: pre-combustion, oxy-fuel combustion, 

and post-combustion. Figure 1.1 lays out these general options of CO2 capture methods 

and frequently used materials for each option.6 The selection of CO2 capture technology is 

based on the fuel composition, the heat, the influence of water, the resulting partial pressure 

of the gas mixture, and the configuration of the power plant.7 Post-combustion CO2 capture 

and separation is the main scenario where substantial efforts have been undertaken to 

develop more cost-effective and less energy-intensive processes. The major challenge in 

the post-combustion process is in separating the low concentration of CO2 out of the high 

concentration of N2. The processes of absorption, adsorption, cryogenic distillation, 

membranes, and gas hydrates have been found to be potential candidates for post-

combustion CO2 capture.8 
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Figure 1.1. Methods and materials for CO2 capture and separation possible for each 
combustion process. Post-combustion CO2 capture can play a key role in addressing CO2 
emission concerns. Figure adapted from D'Alessandro et al.6 

One promising separations process is via adsorption of desired gas molecules using 

solid physical adsorbents in packed or fluidized adsorbent beds.9 CO2 adsorption involves 

either physisorption derived by van der Waals interaction or chemisorption derived by 

covalent bonding between the CO2 molecules and the surface of a material. Cyclic 

adsorption processes include the processes in which desorption is induced by pressure 

swing (pressure swing adsorption, PSA), temperature swing (temperature swing 

adsorption, TSA), or vacuum swing (vacuum swing adsorption, VSA).4,9-12 Because of its 

low energy requirement and fast regeneration, PSA is used as a commercial technology for 

a number of applications.11 In a PSA process, the feed gas flows through a packed bed of 

adsorbent at elevated pressure until the concentration of the desired gas approaches 

equilibrium, which is then regenerated by reducing the pressure. VSA has a similar 
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operating principle with PSA, but regeneration is accomplished using pressures below 1.0 

bar.11,12 

1.1.1 Metal-Organic Frameworks 

Cyclic adsorption processes are materials-enabled separations that use porous 

adsorbents. Porous solid adsorbents such as activated carbon, zeolites, and metal-organic 

frameworks (MOFs) have been considered as efficient materials for adsorptive CO2 capture 

and separation.4,13-15 MOFs, also known as porous coordination polymers, are an emerging 

class of crystalline porous materials that consist of metal or metal-oxide corners connected 

by organic linkers. They have attracted considerable attention due to their structural 

properties including high surface area, high porosity and low crystal density.4-6,14-20 The 

major advantages of MOFs over traditional porous materials are the greater scope for 

tailoring these materials for specific applications because of their modular synthesis.16,17 

Investigation of these materials for CO2 capture and separation has become very active in 

the past years4-6,15 both experimentally and computationally.21-26 

For the purpose of computational examination of MOF materials, Chung et al. 

developed a computation-ready, experimental (CoRE) MOF database.27 The CoRE MOF 

database (Figure 1.2) contains over 5,000 crystal structures that are made up of 

experimentally reported existing structures. This database allows high-throughput 

computational screening of MOFs for adsorption and/or diffusion modeling in these 

materials. The frameworks are optimized via density functional theory (DFT) calculation 

with the PBE functional28,29 that allows reliable adsorption modeling of CO2 and other gas 

species. 
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Figure 1.2. Schematic illustration for construction of CoRE MOF database as adapted from 
Chung et al.27 All structures in the CoRE MOF database have pore limiting diameters larger 
than 2.4 Å. 

1.2 SUB-AMBIENT GAS PROCESSING FOR CO2 CAPTURE 

Besides the development of porous adsorbent materials, designing a proper process 

strategy is another key in an attempt to create a productive CO2 capture route. To evaluate 

the feasibility of processes and adsorbent materials, adsorbent evaluation criteria have been 

proposed.21-26 The criteria that are typically used to assess a large number of adsorbent 

candidates for capturing gas species of interest (i) include swing capacity (ΔNi), adsorption 

selectivity (Sads,i/j), and the regenerability of adsorbent.11,21 

The concept of sub-ambient operation has been widely discussed as a route to 

improve H2 capacity in applications of porous materials for H2 storage.30 A general strategy 

for increasing PSA swing capacity for weakly adsorbing species like H2 and CO2 is to 

lower the operation temperature. It is widely assumed, however, that the cooling cost 

associated with sub-ambient processes make these conditions impractical for large-scale 
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CO2 capture from flue gases. Recently, however, Air Liquide had developed a prospective 

technology for cost and energy effective post-combustion CO2 capture from power plant 

flue gas via an energy integrated cold membrane process.31-34 They designed a hybrid CO2 

capture process based on sub-ambient temperature operation of a hollow fiber membrane 

in combination with cryogenic distillation. The pre-treated flue gas is compressed and dried 

before being fed into the low-temperature membrane system. A highly selective cold 

membrane provides pre-concentration of CO2 prior to partial condensation in the CO2 

liquefier. Liquid CO2 is pumped from the phase separator to provide a sequestration-ready 

product, and vent from the CO2 liquefier is recycled to the low-temperature membrane 

system. The cryogenic heat exchanger provides energy integration between the low 

temperature membrane and CO2 liquefier. These developments suggest that large-scale 

selective adsorption of CO2 with sub-ambient operation may be viable when coupled with 

heat integration and power recovery.12,31-34 A schematic diagram of this sub-ambient 

membrane process is shown in Figure 1.3. 

Air Liquide had also performed an extensive techno-economic analysis of a process 

for compressing and cooling flue gas to conditions giving 14 bar in total pressure, i.e. 

partial pressure of around 2.0 bar of CO2, at 240 K.31-33 It suggests that the pressure swing 

range within moderate CO2 partial pressures up to 2.0 bar is feasible to deliver cold, 

compressed flue gas to a sub-ambient gas processing system. In this thesis, a PSA process 

which combines sub-ambient gas processing and adopting low regeneration pressure to 

avoid a cost-prohibitive pressurization step35 is the target system for adsorptive CO2 

capture from post-combustion flue gas. 
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Figure 1.3. Schematic diagram of sub-ambient membrane-based CO2 cryogenic 
purification unit process as adapted from Hasse et al.33 Sub-ambient gas processing can be 
adopted in energy-intensive rapidly cycled PSA process for adsorptive CO2 capture and 
separation applications by utilizing MOFs. 

1.3 MOLECULAR SIMULATION FOR ADSORPTION MODELING 

Computational chemistry methods can provide a detailed picture on the molecular 

scale that is not easily accessible from experimental methods for a variety of 

applications.36-38 They offer an additional dimension to the characterization and 

understanding of systems in the fields of physical, chemical, and materials sciences. The 

computational approaches that are commonly used to investigate systems at atomistic level 

are quantum mechanical calculations and force field-based simulations.39,40 The former 

category is required when examining the electronic nature of material properties such as 

bond breakage and formation. The latter method is applicable when studying larger systems 

and when investigating a wide variety of thermodynamic and dynamic properties. Force 
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field-based classical simulations typically include energy minimization of structures, 

molecular dynamics simulations, and Monte Carlo simulations. 

 
Figure 1.4. Schematic diagram of the Monte Carlo simulation of adsorption in a porous 
material in the Grand Canonical thermodynamic ensemble, Ξ (µ, V, T), as adapted from 
Coudert et al.37 

Force field-based classical molecular simulations are a useful tool to quantitatively 

predict adsorption behavior and to gain insight into the corresponding molecular level 

phenomena.36 They also provide an efficient method that can be used to screen existing 

and/or hypothetical crystal structures for specific applications which allow narrowing 

down the search to a subset of promising structures.25,36,39 Furthermore, the molecular level 

insights can be combined to develop design principles for specific applications.25,36 The 

standard force field-based molecular simulation to predict adsorption equilibrium is Grand 

Canonical Monte Carlo (GCMC) simulation (illustrated in Figure 1.4). GCMC holds the 

chemical potential (µ), volume (V), and temperature (T) constant while allowing the 

number of adsorbate molecules (N) to fluctuate. Fugacity needs to be imposed, which 

determines the chemical potential; fugacity can be converted from pressure using the Peng-
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Robinson equation of state (or another appropriate equation of state).39,40 GCMC mimics 

the experimental equilibrium conditions where the chemical potential and the temperature 

between solid reservoir and external gas fluid must be equal. 

 To model adsorption equilibrium by such a systematic computational approach, van 

der Waals interactions and electrostatic interactions are taken into account.41 Appropriate 

force fields are required to describe van der Waals interactions for adsorbate-adsorbent 

interactions and adsorbate-adsorbate interactions.42 The van der Waals interactions are 

modeled by the conventional Lennard-Jones potential: 

𝑉𝑉𝑖𝑖𝑖𝑖(𝑟𝑟𝑖𝑖𝑖𝑖) = 4𝜀𝜀𝑖𝑖𝑖𝑖 ��
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

− �
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
6
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where i and j stand for interacting atoms, and rij is the distance between interacting atoms. 

εij and σij refer to Lennard-Jones energy and length parameter, respectively. The use of 

generic force fields such as the universal force field (UFF)43 and the transferable potentials 

for phase equilibria (TraPPE) force field44 for material screening purpose is reasonably 

well justified.42 Therefore, Lennard-Jones parameters for framework atoms and adsorbate 

molecules can be taken from UFF and TraPPE force field, respectively, in general. The van 

der Waals interactions between adsorbate-adsorbent are typically defined with the Lorentz-

Berthelot mixing rules45: 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖+𝜎𝜎𝑗𝑗
2

     𝜀𝜀𝑖𝑖𝑖𝑖 = �𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗 

Electrostatic interactions are typically modeled pairwise with a long-range Ewald 

summation scheme46 by employing charges for framework atoms and adsorbate molecules. 

One of multiple methods to assign electrostatic charges to framework atoms is the density 
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derived electrostatic and chemical (DDEC) method.47-49 It is based on the electron density 

partitioning in periodic structures. The point charges are found by minimizing an 

optimization functional to reproduce both the charge distribution and local electrostatic 

potential.47-49 

  Isosteric heats of adsorption (Qads) are another thermodynamic quantity that can be 

computed during GCMC simulations based on the fluctuation method.39,40 These 

calculations use the expression 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅 −
< 𝑁𝑁𝑁𝑁 > −< 𝑁𝑁 >< 𝑉𝑉 >

< 𝑁𝑁2 > −< 𝑁𝑁 >2  

where R, T, and N refers to the ideal gas constant, temperature, and the number of adsorbed 

molecules, respectively. V means the sum of the interactions of all adsorbed molecules 

among themselves and with adsorbent. < > is an ensemble average over the Monte Carlo 

steps. 

Typically, GCMC simulations assume that the adsorbents are rigid, that is, relaxation 

of the framework atoms due to the presence of adsorbed molecules is neglected. Chapter 5 

of this thesis examines some implications of this common assumption. Periodic boundary 

conditions are defined in all dimensions allowing simulations to occur in an infinite, perfect 

crystal structure.41 In general, GCMC simulation procedure includes initialization cycles 

followed by production cycles, where each cycle consists of N steps.41 This is to ensure 

well converged results for adsorption amount of gas molecules at desired pressure points. 

Random Monte Carlo moves, either accepted or rejected according to Boltzmann-type 

weighting criteria, allow translation, rotation, regrowth, reinsertion, deletion and insertion 

moves of gas molecules at certain probabilities.41 
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CHAPTER 2. HOW REPRODUCIBLE ARE ISOTHERM 

MEASUREMENTS IN METAL-ORGANIC FRAMEWORKS? 

 Scientific progress is severely impeded if experimental measurements are not 

reproducible. Materials chemistry and related fields commonly report new materials with 

limited attention paid to reproducibility. In this chapter, we describe methods that are well 

suited for assessing reproducibility in these fields via retrospective analysis of reported 

data. This concept is illustrated by an exhaustive analysis of a topic that has been the focus 

of thousands of published studies, gas adsorption in metal-organic framework (MOF) 

materials. We show that for the well-studied case of CO2 adsorption there are only 15 of 

the thousands of known MOFs for which enough experiments have been reported to allow 

strong conclusions to be drawn about the reproducibility of these measurements. Our 

results have immediate implications for the characterization of gas adsorption in porous 

materials, but more importantly, demonstrate an approach to assessing reproducibility that 

will be widely applicable in materials chemistry. 

 

 

 

* Contents of this chapter have been reproduced from the previously published article 

Jongwoo Park, Joshua D. Howe, David S. Sholl, ″How Reproducible Are Isotherm 
Measurements in Metal-Organic Frameworks?″, Chemistry of Materials, 29 (2017) 
10487-10495. 
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2.1 INTRODUCTION 

 Substantial efforts have been undertaken recently to examine reproducibility in 

fields including psychology1,2 and biomedical science3,4. In this chapter, we examine the 

reproducibility of experimental measurements in a subfield of materials chemistry that has 

generated tens of thousands of publications, namely the properties of metal-organic 

frameworks (MOFs).5,6 Specifically, we consider the measurement of equilibrium single-

component adsorption isotherms in these materials. Adsorption isotherms are a 

fundamental property for considering MOFs and similar materials in applications involving 

chemical separations,7 and thousands of papers have been published related to these 

applications.8,9 We examine the issue of reproducibility by a meta-analysis of an exhaustive 

compilation of adsorption isotherms in MOFs. 

Single-component adsorption isotherms quantify the amount of an adsorbing 

species (the sorbate) on the internal and external surfaces of a material (the sorbent) in 

equilibrium with a bulk phase of the species at a well-defined pressure. These isotherms 

can be routinely measured using widely available commercial instruments, provided 

hundreds of milligrams of the sorbent of interest are available. Assuming proper 

equilibration and preparation of the system, this implies that differences, if they exist, 

between measured isotherms for the same material will typically be related to variations in 

the underlying material’s properties. Thousands of distinct MOFs have been synthesized 

and characterized,10 and adsorption isotherms have been reported for many of these 

materials. Recently, NIST has developed a publicly available database that systematically 

collects single-component adsorption data reported for MOFs (and other sorbents) from 

the peer-reviewed literature.11 Although no data set of this type can be truly complete, this 
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database captures the vast majority of extant experimental adsorption data for MOFs. In 

this chapter, we analyze this data set to examine what can be concluded about the 

reproducibility of CO2 adsorption isotherms in MOFs. 

Reproducibility in adsorption and materials chemistry has previously drawn 

interest and been discussed with regards to H2 storage.12,13 These works have discussed 

sources of irreproducibility, highlighting concerns such as methodological errors, sample 

contamination, and even the “publish or perish” academic culture.12,13 H2 adsorption is a 

particularly challenging case because the adsorbed amounts are typically low. For more 

strongly adsorbing molecules, however, measurements of adsorption isotherms are 

typically regarded as “routine” experiments that can be performed with widely available 

commercial instruments. Researchers must evaluate reports of material properties and 

consider them with respect to one another, so it is important to have a sense of what bounds 

may exist on uncertainty in material property measurements. To this end, we aim to 

establish uncertainty bounds across reports of adsorption isotherms when those reports 

purport to have measured the same material properties under comparable conditions. It is 

important to note that this approach does not seek to assign causes to underlying variations 

between experimental measurements. 

 We have established simple statistical metrics for and provided a comprehensive 

analysis of what is known about the reproducibility of adsorption isotherms in MOF 

materials. As examples, we have cataloged all materials for which repeat measurements of 

CO2 adsorption have been reported. We also report a long list of molecules for which no 

repeat measurements have been reported in any MOFs. In addition to the immediate 

relevance to measurements of this large class of materials, the methods we have used here 
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could be applied with only minor modifications to a very wide class of materials chemistry 

problems. Widespread adoption of this kind of analysis could aid the reproducibility and, 

ultimately, the assessment of utility of new materials in many applications. 

2.2 METHODS 

2.2.1 A Taxonomy for Describing Reproducibility of Adsorption Isotherms 

 All adsorption data were obtained from the NIST/ARPA-E Adsorption Database11 

cataloged as NIST Standard Reference Database (SRD) 205, which reproduces data from 

peer-reviewed literature reports. This source includes experimental and modeling results, 

but only experimental data were used in our analysis. Many published reports do not 

distinguish between absolute and excess adsorbed amounts. The differences between these 

two quantities are small at all conditions we considered. In addition, the hysteresis between 

adsorption and desorption branches was negligible in all cases we considered, if any 

desorption branches were reported. 

We consider a situation where the adsorbed amount of a specific molecule in a 

given sorbent is available over a range of pressures, P, from N independently measured 

isotherms measured at a temperature T ± 5 K. Using this range of temperatures increases 

the number of replicate experiments than can be identified by grouping experiments that 

most practitioners would consider to have “similar” temperatures into a single class. 

Examples for adsorption of CO2 at 298 ± 5 K in HKUST-1 (a material first reported by 

Chui et al.14 and also frequently known as Cu-BTC) with N = 18 and UiO-66 (a material 

first reported by Cavka et al.15) with N = 9 are shown in Figures 2.1a and 2.2a. Visual 

inspection of these figures indicates that both sets of data include isotherms that are likely 
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to be outliers and the variation between measurements is much smaller for UiO-66 than for 

HKUST-1. It is important, however, to use well-defined metrics that do not rely on 

qualitative judgments about the underlying data to assess these features. We define metrics 

for this purpose below. 

 
Figure 2.1. (a) Experimental data from 18 independent measurements of CO2 adsorption 
in HKUST-1 at 298 ± 5 K listed in the NIST/ARPA-E Adsorption Database, with 
temperatures indicated by color and symbol type. Outliers identified by the methods 
defined in the text are indicated. Solid curves show the fitted functions used in analysis of 
the data. (b) Box and whisker plot for 13 independent measurements of CO2 adsorption in 
HKUST-1 at 298 ± 5 K obtained after rejecting outliers. In each box and whisker plot the 
top and bottom of the box indicate the upper quartile (QU) and lower quartile (QL), 
respectively, the center line denotes the median, the square corresponding to the mean, and 
the whiskers indicate QL – 1.5IQR and QU + 1.5IQR, where the interquartile range IQR = 
QU – QL. 

To allow direct comparison among all N measurements at the same values of P, 

continuous adsorption isotherms were fitted to each experiment, choosing functional forms 

that give fits with a high value of R2 without accounting for the small variations in the 

number of fitting parameters between functional forms. The functional forms adopted here 

include Langmuir, Freundlich, and Langmuir-Freundlich isotherm models. The solid 

curves in Figures 2.1a and 2.2a show examples of this procedure. All further analysis is 

performed using adsorbed amounts defined by these fitted isotherms. When N > 4, outliers 
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are identified by Tukey’s method16 as values lying outside the range of a standard box and 

whisker plot. This approach designates 5 isotherms for HKUST-1 (Figure 2.1a) and 1 

isotherm for UiO-66 (Figure 2.2a) as outliers (data shown without fitted curves). We denote 

the number of independent experiments in a given pressure range after removing outliers 

as N'. We designate sets of data for which outliers have been removed in this way as having 

outlier level O1. 

 
Figure 2.2. Experimental data from (a) 9 independent measurements of CO2 adsorption in 
UiO-66 at 298 ± 5 K and (b) 4 independent measurements of CO2 adsorption in UiO-66 at 
273 ± 5 K listed in the NIST/ARPA-E Adsorption Database, with temperatures indicated 
by color and symbol type. Outliers identified by the methods defined in the text are 
indicated. Solid curves show the fitted functions used in analysis of the data. (c) Summary 
of adsorption data for CO2 in UiO-66 at 298 ± 5 K and 273 ± 5 K showing preferred 
representations of data with N' > 4, N' = 3 or 4, and N' = 2. 
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When N = 3 or 4, a box and whisker plot is not appropriate. In this case, outliers 

are defined as measurements where the root mean square error (RMSE) relative to the set 

of N measurements is larger than σ/2, where σ is the standard deviation of a comparison 

measurement.17 Although it is commonly accepted that a lower RMSE indicates better 

agreement between two measurements, this criterion was suggested as a guideline to 

qualify what is considered as a low RMSE.17 We describe this procedure in more detail in 

Appendix 2.A. Figure 2.2b shows an example for CO2 adsorption in UiO-66 at 273 ± 5 K, 

where N = 4 and N' = 3 after identifying 1 isotherm as an outlier. Data sets with outliers 

removed in this way are designated as having outlier level O2. A final case that is relatively 

common with experimental data is when N = 2. In this case it is not possible to identify 

outliers in a reliable manner, so N' = 2. We designate this situation was having outlier level 

O3. 

In addition to designating how outliers were determined, it is useful to succinctly 

describe how many outliers were found, a factor we will refer to as consistency. We denote 

the consistency rating as either high, moderate, or low (see Table 2.1 for definitions). 

Isotherms are said to have high consistency when N > 2 and the fraction of measurements 

labeled as outliers (f) is ≤ 0.25. Isotherms are said to have moderate consistency when 0.25 

< f ≤ 0.4 and low consistency when f > 0.4. When N = 2, isotherms can have at most 

moderate consistency (when RMSE < σ/2) and otherwise have low consistency. 
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Table 2.1. Outlier isotherm detection and consistency rating for adsorption isotherms in 
MOFs. 
Outlier 
Level 

Outlier Detection 
Criteria and Methods 

Consistency 
Rating 

Consistency Rating 
Criteria and Methods 

O1 

Tukey’s method: N > 4 
 Label outlier for adsorption amount 
outside the bounds defined by box 
and whisker plot 

High Fraction of outliers, f 
f ≤ 0.25 

Moderate Fraction of outliers, f 
0.25 < f ≤ 0.4 

Low Fraction of outliers, f 
f > 0.4 

O2 

Error index statistics: N = 3 or 4 
 Label outlier for isotherm curves 
with RMSE larger than σ/2 relative 
to a comparison measurement 

High Fraction of outliers, f 
f ≤ 0.25 

Moderate Fraction of outliers, f 
0.25 < f ≤ 0.4 

Low Fraction of outliers, f 
f > 0.4 

O3 N = 2 
 Inadequate N to label outlier Moderate RMSE < σ/2 

It is useful to plot the conclusions from the analysis above in a way that represents 

the different levels of information available depending on the value of N'. Our suggested 

approach to this issue is illustrated in Figures 2.1b and 2.2c. When N' > 4, a box and whisker 

plot is appropriate. We refer to examples of this kind as having a reproducibility level of 

R1. In these cases the solid curves in Figures 2.1b and 2.2c show the interquartile range, 

which can be thought of as the “consensus” bounds to the measurement of the adsorbed 

amount as a function of P. It is important to note, however, that reported measurements 

can in some cases lie well outside this range, as shown for HKUST-1 in Figure 2.1b. When 

N' = 3 or 4, isotherms are plotted using a shaded region that encompasses all of the 

measured data, outliers excluded. Examples are shown in Figure 2.2c for CO2 in UiO-66 

at P > 15 bar at T = 298 ± 5 K and P < 10 bar at T = 273 ± 5 K. We refer to the 

reproducibility level of data of this kind as R2. Finally, when N' = 2, the pair of fitted 

isotherms is plotted, as for P > 10 bar at 273 ± 5 K in Figure 2.2c. We denote the 
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reproducibility level of examples of this kind as R3 or R4, depending on the variation 

between the two isotherms (see Table 2.2 for definitions). In addition to encapsulating the 

state of experimental knowledge in a convenient way, the information in these kinds of 

figures will be useful for process models that explicitly seek to incorporate parametric 

uncertainty.18 

Table 2.2. Isotherm reproducibility assessment for adsorption isotherms in MOFs. 
Reproducibility 

Level Criteria and Methods 

R1 
Box isotherm: N' > 4 
  Isotherm bounds assigned by interquartile range of adsorbed 
amount as a function of pressure 

R2 
Region isotherm: N' = 3 or 4 
  Isotherm bounds assigned by the upper and lower measurement 
over a common pressure range 

R3 N' = 2: Pair of fitted isotherms with RMSE < σ/2 

R4 N' = 2: Pair of fitted isotherms with RMSE > σ/2 

The discussion above has introduced three complementary characteristics of a 

collection of experimental isotherms, namely the outlier level (O1-O3), the consistency 

rating (high, moderate, low), and the reproducibility level (R1-R4). We illustrate this 

analysis in Appendix 2.A (Figure 2.A.1). We feel that each of these characteristics 

represents a different and useful facet of the overall reliability of a set of experimental 

measurements and considering them together provides a more nuanced view than 

attempting to give a simplistic binary answer to the question of whether a particular 

experiment is reproducible. All of the definitions above have been given in terms of data 

for adsorption isotherms, but they could readily be adapted to describe repeated 

measurements of any well-defined property of a material or chemical. 
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2.2.2 Molecular Simulations 

 Molecular simulations of CO2 adsorption were performed in the materials for which 

there exist enough data in the literature to yield firm conclusions about the reproducibility 

of measured isotherms. Grand Canonical Monte Carlo (GCMC) simulations were 

conducted to study adsorption properties using RASPA.19-21 “Standard” force fields were 

used to describe van der Waals interactions between sorbate/sorbent and sorbate/sorbate.22 

Lennard-Jones parameters for MOF atoms and quadrupolar CO2 molecules were taken 

from the universal force field (UFF)23 and TraPPE24 force field, respectively. Interactions 

between CO2 molecules and MOFs were defined with Lorentz-Berthelot mixing rules.25 

Electrostatic interactions were modeled by employing point charges for MOF atoms and 

CO2 molecules. Point charges were assigned to MOF atoms using an extended charge 

equilibration method for EQeq charges26 and TraPPE charges24 were used for CO2 

molecules. The extended charge equilibration method for EQeq charges is a semiempirical 

method that is much less computationally expensive than charge assignments on the basis 

of electronic structure calculations.26 Random Monte Carlo moves, either accepted or 

rejected according to Boltzmann-type weighting criteria, allowed translation, rotation, 

regrowth, reinsertion, and deletion and insertion moves at identical probabilities. All MOF 

structures were assumed to be rigid in their experimentally reported crystal structures. For 

breathing MOFs, the narrow pore or large pore rigid structure was used depending on their 

observed structural transition pressure and the pressure being simulated. The simulated 

surface area was calculated by using N2 as a probe molecule with overlap distance criteria 

set to a size parameter σ of 3.31 Å. Further details are given in Appendix 2.A. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Surface Area Analysis Affecting Gas Adsorption in MOFs 

 When modeling adsorption in MOFs using atomistic methods, the predicted BET 

surface area of the ideal crystal structure is frequently noted to differ from the measured 

BET surface area of synthesized materials.27-31 These differences are often ascribed to 

defects in the real material, although the identity and characteristics of these defects are 

rarely quantified.32 An approach that is widely used when comparing simulated and 

experimental data in this situation is to scale the experimental data by the ratio of the 

simulated and experimental surface area.29-31 The assumption underlying this scaling is that 

the “non-crystalline” portions of the real material are nonporous (or, more precisely, non-

adsorbing). If this assumption was correct, using scaled experimental data could give 

information about the “intrinsic” adsorption properties of the defect-free material. The data 

in Figures 2.1 and 2.2 (Section 2.2.1) create an opportunity to examine whether this 

approach makes the underlying experimental data more consistent. Figures 2.A.2 and 2.A.4 

show the adsorption isotherms for CO2 in HKUST-1 and UiO-66 with and without surface 

area scaling. For HKUST-1, scaling increases the adsorbed amount because the measured 

surface areas are often substantially less than the simulated surface area. This situation is 

not surprising given the sensitivity of HKUST-1 to exposure to even small amounts of 

moisture.33 In both cases, however, surface area scaling does not significantly reduce the 

consensus range of adsorbed amounts. That is, the observed variations in the adsorbed 

amount of CO2 in these materials cannot be ascribed simply to variations in the surface 

areas of the reported materials. 
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Nonetheless, the surface area of porous materials is an important characteristic that 

affects the adsorption properties of gas molecules. The reproducibility analysis metrics 

described in Section 2.2.1 were applied to measured N2 adsorption isotherms at 77 K in 

HKUST-1 and UiO-66 to gain an understanding of the reproducibility of the surface areas 

of these materials. Figures 2.3a and 2.4a show histograms of the adsorbed amount of N2 at 

intermediate and low P/Po that are taken from compiling N2 adsorption isotherms in 

HKUST-1 (N = 90, N' = 86) and UiO-66 (N = 18, N' = 15), respectively. Both histograms 

indicate considerable variation in the reported uptake of N2. The methods described above 

were applied to give bounds on the consensus N2 isotherms by connecting the upper and 

lower quartiles as a function of P/Po. These isotherms were then used for surface area 

analysis using BET theory. Figures 2.3b and 2.4b show the BET plots for HKUST-1 and 

UiO-66, respectively, which were fit over 0.05 < P/Po < 0.15 to calculate BET surface 

areas. The consensus isotherms for HKUST-1 vary between 933 and 1486 m2/g, whereas 

UiO-66 varied from 845 to 1170 m2/g. More information about this analysis is given in 

Appendix 2.A (Figures 2.A.3, 2.A.5 and Table 2.A.1). 

As an aside, we note that analysis of adsorption isotherms from the NIST/ARPA-E 

Adsorption Database reveals a large number of literature reports for materials with no 

reported BET surface area. The value of reported isotherms to the research community 

would be improved if experimenters (and journal reviewers) insisted upon reporting BET 

surface areas for any materials in which adsorption was measured. 
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Figure 2.3. (a) Histogram of adsorption amount at intermediate P/Po and low P/Po (inset) 
taken from experimental data of 90 independent measurements for N2 adsorption in 
HKUST-1 at 77 K listed in the NIST/ARPA-E Adsorption Database. (b) BET plots of the 
upper and lower bounds on the consensus isotherms obtained with solid curves connecting 
IQRs as a function of P/Po over the linear region of P/Po range. The lines are fit over 0.05 
< P/Po < 0.15 to calculate BET surface areas. 

 

 
Figure 2.4. (a) Histogram of adsorption amount at intermediate P/Po and low P/Po (inset) 
taken from experimental data of 18 independent measurements for N2 adsorption in UiO-
66 at 77 K listed in the NIST/ARPA-E Adsorption Database. (b) BET plots of the upper 
and lower bounds on the consensus isotherms obtained with solid curves connecting IQRs 
as a function of P/Po over the linear region of P/Po range. The lines are fit over 0.05 < P/Po 
< 0.15 to calculate BET surface areas.  
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2.3.2 Reproducibility of CO2 Adsorption Isotherms in MOFs 

 Potential applications of porous adsorbents in capturing CO2 have led to an 

enormous number of experiments being performed measuring adsorption of CO2 in MOFs 

and other materials.34,35 The NIST/ARPA-E Adsorption Database lists 211 measured CO2 

isotherms in 27 different MOFs with N > 1. We applied the analysis described in Section 

2.2.1 to all of these isotherms. Despite the large number of isotherms that have been 

reported, there are only 9 materials for which N' > 4 at any temperature T ± 5 K. The results 

for each of these materials are shown in Figure 2.A.6 and summarized at specific pressures 

in Figure 2.5a. 

There are an additional 8 examples for which N' = 3 or 4 at some temperature T ± 

5 K (shown in Figure 2.A.7). The range of adsorbed amounts of CO2 at 1 bar for each of 

these examples is shown in Figure 2.5b. The uptake of CO2 in MOF-74(Mg) is higher than 

the other 7 materials because of the strong interactions that exist between CO2 and the large 

number of undercoordinated metal sites in this material.36 The large CO2 adsorption 

capacity in bio-MOF-11 has been attributed to the presence of multiple Lewis basic sites 

and nano-sized channels.37 The remaining materials show a weak correlation between 

increasing surface area and CO2 uptake, but it is clear that this factor alone cannot describe 

the results. 

The results in Figures 2.5a and 2.5b show that, despite the large number of studies 

of CO2 adsorption in MOFs, firm conclusions about the reproducibility of CO2 isotherms 

can only be drawn for a small set of materials. In this set of MOFs, our analysis indicates 

that the overall fraction of CO2 adsorption isotherms identified as outliers is 0.21 (0.22 for 



 28 

MOFs with outlier level O1 where N > 4 and 0.19 for MOFs with outlier level O2 where 

N = 3 or 4, respectively). A more provocative way to state this observation is that around 

1 in 5 of all CO2 isotherms in this analysis cannot be used to give information that is even 

qualitatively reliable about the properties of the material that was putatively being 

characterized. 

Our analysis found 10 materials for which two independent CO2 isotherm 

measurements exist at some temperature T ± 5 K (i.e. N = N' = 2, listed in Table 2.A.2). It 

is also noteworthy that even though temperature variation is a primary means of cycling 

materials in adsorption cycles38 and is unavoidable in operation of realistic separation 

processes,39,40 essentially nothing is currently known about the reproducibility of CO2 

adsorption isotherms at temperatures other than room temperature. 

Our results have important implications for modeling of adsorption in MOFs. 

Simulation of adsorption isotherms requires defining force fields for sorbate/sorbent 

interactions, and a significant body of work exists developing these force fields.41-45 

Collections of data such as those in Figures 2.5a and 2.5b give the most reliable path 

forward for comparing simulation results to experiments with the purpose of testing the 

validity of broadly applicable force fields. Figure 2.5c compares experimental results with 

simulations using “standard” force fields for all of the materials with N' ≥ 3 for CO2 

adsorption. It would be surprising if these simulations were in good agreement with 

experiments for materials with high densities of open metal sites (OMS) such as the MOF-

74 series46,47 or for materials that have marginal stability33 (e.g. HKUST-1), and the results 

in Figure 2.5c bear out this general expectation. Nevertheless, the simulation results for 

almost all of the materials overlap with the experimental data when a 15% relative error 
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between simulation and experiment is allowed. Understanding the details of the differences 

between experiment and simulation for materials without OMS when these differences are 

appreciable (particularly for PCN-200 and MOF-177) is likely to spur advances in these 

kinds of simulations. Among other choices that must be made in molecular models, the 

choice of point charges on framework atoms can influence the molecular modeling for 

adsorption. To illustrate this effect, we compared calculations using DDEC charges19 in 

addition to calculations using EQeq charges. Figure 2.A.8 in Appendix 2.A shows the 

sensitivity to the choice of charges in the predicted adsorption properties for the materials 

shown in Figure 2.5c. 

A comprehensive summary of the current state of knowledge regarding CO2 

adsorption in MOFs is shown in Figure 2.6. This reproducibility map shows all known 

MOFs for which any conclusions can be drawn about the reproducibility of CO2 adsorption 

at any temperature T ± 5 K. In this map, materials where the strongest conclusions about 

reproducibility can be drawn lie further to the right, materials with the smallest fraction of 

outliers lie towards the top, and the font size of the label indicates the number of 

independent measurements that exist after discarding outliers (N'). A material can appear 

in multiple places on the map for data at different temperature ranges, as is the case for 

HKUST-1. It is of course possible, and indeed desirable, that the materials of significant 

practical interest will move towards the upper right corner of the reproducibility map in the 

future as additional independent measurements are made. 
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Figure 2.5. (a) Summary of interquartile range for CO2 adsorption at 10 bar (1 bar for 
MOF-74) for all known MOFs with N' > 4. Box and whisker plots for each material as a 
function of pressure are shown in Figure 2.A.6. Numbers of independent measurements 
that exist after discarding outliers (N') were used for each material on the horizontal axis. 
(b) Summary of range for CO2 adsorption at 1 bar for all known MOFs with N' = 3 or 4. 
Further detail for each material as a function of pressure is shown in Figure 2.A.7. 
Simulated surface areas were used for each material on the horizontal axis. (c) Comparison 
of CO2 adsorbed amounts from experiments in materials with N' ≥ 3 (horizontal axis) and 
predictions from molecular simulations using “standard” force fields (vertical axis) using 
the same color scheme and labels as in (a) and (b). Molecular simulations were conducted 
at the median temperature, T K, within the temperature range T ± 5 K that was applied for 
analysis of experiments. The diagonal lines have slopes of 1.15, 1, and 0.85 from top to 
bottom to illustrate the variation from parity between the simulated and experimental 
results. 
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Figure 2.6. Reproducibility map for a comprehensive summary of reproducibility, 
consistency, and outlier levels for CO2 isotherms in MOFs that were analyzed using our 
metrics in this chapter. The definitions of reproducibility level (horizontal axis) and 
consistency rating (vertical axis and colored regions) are given in Table 2.2 and Table 2.1, 
respectively. Outlier levels are indicated by font in the form O3, O2, and O1. Font sizes 
are scaled to N'. The majority of data are for isotherms at 298 ± 5 K except for data at 313 
± 5 K (a) and at 273 ± 5 K (b). Further details for other temperatures are given in Table 
2.A.3. 

2.3.3 Molecules for Which No Conclusions Can Be Drawn About Reproducibility of 

Adsorption in MOFs 

 The analysis above focused on CO2 adsorption in MOFs, a situation that has been 

measured in many materials. We now turn to what might be considered the other end of 

the reproducibility spectrum by asking whether there are adsorbing molecules for which 

no conclusions can currently be drawn about the reproducibility of experimental data. To 

this end, we analyzed all of the data listed in the NIST/ARPA-E Adsorption Database. The 

database includes information on adsorption of 295 distinct sorbates. For 223 (76%) of 
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these species, no experimentally measured adsorption isotherms for MOF materials have 

been reported, although there may be adsorption data for other porous materials, such as 

zeolites. There are 72 sorbates for which at least one adsorption isotherm in one or more 

MOFs has been reported. In order to find cases where N > 1 where the reproducibility of 

adsorption data could be analyzed, we required that there be experimentally measured 

adsorption isotherms for a specific sorbate/sorbent pair from independent research groups 

at temperatures within T ± 5 K. For 47 of these 72 species, there is no MOF for which N > 

1 with this approach. This means that there are only 25 molecules (8% of the sorbates listed 

in the NIST/ARPA-E Adsorption Database) for which any information about 

reproducibility is currently available for adsorption in MOFs. For most of these molecules 

this information is only available in one or two materials and at the lowest level of 

confidence (i.e. N = N' = 2). In fact, only 12 of the sorbates have a material and temperature 

range (T ± 5 K) pair for which there are three or more independent measurements (N > 2). 

The methods applied above for CO2 could also be applied to these sorbates, although doing 

so is beyond the scope of this chapter. The three groups of sorbates that have just been 

described are listed in Tables 2.A.4-2.A.6. Given the huge number of distinct molecules 

that exist and the thousands of MOFs that have been synthesized, the number of 

molecule/MOF pairs for which any information about reproducibility is available is sparse 

in the extreme. 

2.4 CONCLUSIONS 

 In this chapter we have established metrics for assessing the reproducibility of 

adsorption isotherms in MOFs. These metrics rely on comparing independent 

measurements of the adsorption isotherm from the open literature and make no pre-
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judgments about which experiments are “better” or “correct”. We applied these methods 

to a comprehensive set of CO2 isotherm measurements in MOFs. Despite the widespread 

interest in CO2 adsorption in these materials, there are only a small number of MOFs for 

which firm conclusions can be drawn about the reproducibility of these measurements. In 

the examples where enough data exists to assess the existence of outliers, approximately 

20% of isotherms in the literature were classified as outliers. This value should cause 

anyone who makes use of single isotherms from the literature for any purpose (validating 

a force field for molecular simulations, commenting on whether a material “improves” on 

previous properties etc.) to pause. In the absence of direct evidence, we feel that it would 

be unwise to assume that the occurrence of outliers is lower than 20% for adsorption of 

other gases in MOFs. We want to emphasize that the meta-analysis we have described does 

not provide direct physical insight into why a particular measurement is an outlier or why 

a material may have a smaller or larger fraction of outliers. Since the actual measurement 

of adsorption for gases such as CO2 is relatively routine, it is reasonable to assume that 

most outliers occur because of variations in the properties of the materials used in 

experiments stemming from materials synthesis, post-synthesis steps such as activation, or 

degradation of materials during storage and/or measurement. 

The results in this chapter have several implications for experimenters developing 

MOFs or related materials for chemical separations applications. First, the amount of effort 

needed to move a molecule/material pair into the group with what we have classed as the 

highest level of reproducibility is not large. A concerted effort by a small number of 

experimental groups could quickly improve the current paucity of examples in this class. 

In this context, we note that simply measuring multiple samples from a single synthesized 
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batch of a material in multiple locations has less value than having multiple groups 

independently synthesize the material of interest, although both approaches are better than 

not assessing reproducibility at all. Second, any report that a new material is “interesting” 

or “promising” because its adsorption properties differ from existing materials by, say, 15-

20% should be treated with skepticism. There are many examples in the literature where 

several functionalized versions of a material are measured and one material is declared the 

“best” by some metric. Unless the differences between the materials are large compared to 

the typical ranges seen for reliably reproducible examples at similar conditions, there are 

limited grounds to conclude that the observed differences are real. Third, we have 

deliberately focused on a physical property, single-component adsorption, that has been 

very widely measured. Single-component adsorption is far from the only property that 

matters in developing sorbents for real applications,40,48 and our results point to challenges 

that should be considered associated with establishing the reproducibility of other physical 

properties that are relevant in this context. 

The analysis in this chapter relied on the availability of a comprehensive database 

of adsorption isotherms from the open literature. Our methods could be adapted with 

minimal changes to many areas of materials chemistry provided that similar collections of 

experimental data are available. It is quite likely that the isotherms available in the literature 

represent only a fraction, perhaps only a small fraction, of the isotherms that have actually 

been measured by investigators around the world. Finding avenues to encourage sharing 

of previously unreported data, particularly for materials where the result has been 

previously published and is therefore regarded for purposes of publication as “already 

known”, would have long-lasting value to the community. Our results suggest one path 



 35 

towards this goal, namely identifying materials that can be moved to a firmer set of 

conclusions about reproducibility by reporting and analyzing additional measurements, 

thus justifying publication of these measurements. 
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APPENDIX 2.A. SUPPORTING INFORMATION – CHAPTER 2 

2.A.1  Taxonomy for Outlier Level, Consistency Rating, and Reproducibility Level 

 We have introduced three complementary characteristics of a collection of 

experimental adsorption isotherms. The definitions for these characteristics are 

summarized in Section 2.A.1. 

The detection of outliers in data sets is an essential part of data analysis. We use 

several different outlier labeling methods to narrow down our attention to a normal range 

of data for meaningful statistical comparison. Outlier level O1 (employing Tukey’s 

method1) is used when N > 4 to label outliers. Tukey’s method, constructing a box and 

whisker plot, is a well-known graphical tool to display statistical information about data 

set (i.e. the median, lower quartile, upper quartile, lower extreme, upper extreme, and the 

mean). An outlier is defined as a value more than 1.5IQR (IQR = interquartile range) from 

either end of the box. Hence, any isotherms having adsorption amount lying outside the 

range of a standard box and whisker plot at any pressure point are designated as outliers. 

Once outliers are identified, they are excluded from further analysis. 

Outlier level O2 uses the root mean square error (RMSE) when N = 3 or 4 to label 

outliers. RMSE is commonly used in model evaluation.2,3 In this case, we calculate RMSE 

between two existing measurements to determine the agreement between the 

measurements. For a set of 3 or 4 isotherms, we analyze these data in terms of the 

standardized RMSE, which allows a comparison between two sets of data. Singh et al.4 

recommended a guideline to qualify what is considered a low RMSE based on the standard 
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deviation (σ) of observations. According to the recommendation, an RMSE smaller than 

σ/2 is accepted as a low RMSE. Therefore, the O2 level labels and rejects outliers when 

RMSE is larger than σ/2 of a comparison isotherm. When N = 3, we designate as the 

comparison isotherm the isotherm with the second-largest uptake of adsorbate at the 

greatest pressure common to all three isotherms, essentially comparing against the 

“middle” isotherm. When N = 4, we repeat this procedure, assigning the second-largest 

uptake at the highest common pressure to be the comparison isotherm for the two isotherms 

with the largest and third-largest uptakes, not considering initially the isotherm with the 

smallest uptake. If the isotherm with the third-largest uptake is identified as an outlier, the 

isotherm with the smallest uptake will also automatically be identified as an outlier. 

Otherwise, this procedure will be repeated, designating the isotherm with the third-largest 

uptake as the comparison isotherm and comparing the isotherm with the smallest uptake 

against it. We note that this analysis procedure biases toward keeping greater uptakes in 

the case that N = 4 has highly disparate data. 

Lastly, outlier level O3 describes the situation when N = 2. In this case it is not 

possible to label outliers in a reliable manner, so we do not label outliers and do not reject 

any measurements. 

Consistency refers to how many outliers were found among a set of isotherms. The 

consistency rating is labeled as high, moderate, or low when N > 2 and as moderate or low 

when N = 2, since we do not think it is appropriate to label a set of two isotherms as having 

“high” consistency. When N > 2, the rating is defined by the fraction of measurements 

labeled as outliers (f). When N = 2, the consistency rating is determined by RMSE criteria 

that was used for outlier level O2; two isotherms are defined as having moderate 



 41 

consistency when they have RMSE < σ/2. The criteria and methods to detect outlier 

isotherms and to rate consistency are summarized in Table 2.1. 

Once outliers have been rejected, we denote the number of independent 

experiments in a given pressure range as N'. We represent the remaining isotherms 

graphically using different methods depending on the value of N'. A key aspect of this 

approach is to assign consensus bounds to the isotherm quantities that are consistent with 

the underlying experimental data. Reproducibility level R1 applies box and whisker plots 

as a function of pressure when N' > 4. For R1 level materials, the isotherm bounds are 

assigned for interquartile range (IQR) of adsorption amount at each pressure point. 

Reproducibility level R2 uses a shaded region that encompasses all of the measured data 

after rejecting outlier(s) when N' = 3 or 4. In this case, the region or isotherm bounds are 

given by the upper measurement (the isotherm with the largest uptakes) and lower 

measurement (the isotherm with the smallest uptakes) over a common pressure range. With 

reproducibility level R3 and R4 when N' = 2, the isotherm bounds cannot be made due to 

lack of information about the isotherm reproducibility. Only the pair of fitted isotherms 

can be plotted, if desired, and the different levels depend on the variation between the two 

isotherms. 

Isotherm models used to fit experimental measurements include the Langmuir, 

Freundlich, and Langmuir-Freundlich models that are available in the NIST/ARPA-E 

Adsorption Database: 

Γ(𝑃𝑃) = Γ∞
𝐾𝐾𝐾𝐾

1+𝐾𝐾𝐾𝐾
    … Langmuir model 

Γ(𝑃𝑃) = 𝑘𝑘𝑃𝑃1/𝑛𝑛      … Freundlich model 
Γ(𝑃𝑃) = Γ∞

(𝐾𝐾𝐾𝐾)𝑛𝑛

1+(𝐾𝐾𝐾𝐾)𝑛𝑛
  … Langmuir-Freundlich model 
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where Γ(P) is the adsorbed amount as a function of pressure (P). We chose a functional 

form that give fits with a high value of R2 (i.e. R2 ≥ 0.99) without accounting the variations 

in the number of fitting parameters between forms. A simpler isotherm model of fewer 

parameters was chosen if multiple models had similar levels of R2. 

The criteria and methods to assess isotherm reproducibility and graphical 

representations are described in Table 2.2. Figure 2.A.1 illustrates the overall analysis 

platform performed for a set of isotherms to develop of the complementary characteristics 

discussed above. 

 
Figure 2.A.1. Reproducibility analysis flow used in this chapter. The scheme illustrates 
that materials with sufficient measurements starting from outlier level O1 can be 
characterized with any reproducibility level from R1 to R4, depending on how many 
outliers exist. Similarly, materials starting from outlier level O2 can be characterized with 
reproducibility level from R2 to R4, but not with R1. The materials with few measurements 
starting from outlier level O3 can only be characterized with reproducibility level R3 and 
R4, which are the lowest levels of confidence. 
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2.A.2  Reproducibility Analysis of CO2 Adsorption Isotherms in MOFs 

2.A.2.1 Surface Area Scaling and Analysis of N2 Adsorption Isotherms 

 The quality of MOFs can vary depending on details of their synthesis, activation, 

and stability.5 These variations affect the measured BET surface areas of MOFs. An 

approach that has been widely used when comparing isotherm data with different surface 

areas is to scale the experimental isotherms by the ratio of the simulated and experimental 

surface area.6-8 We applied this method to examine whether it makes the underlying 

experimental data more consistent for HKUST-1 and UiO-66. For the surface area scaling 

in this chapter, the ratio of simulated to experimental surface area was used as follows: 

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒 ∙
𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

In addition, the reproducibility analysis metrics were applied for N2 adsorption 

isotherms at 77 K that were complied from the NIST/ARPA-E Adsorption Database for 

HKUST-1 and UiO-66. This procedure reveals the utility of our established metrics to 

assess the reproducibility of gas adsorption isotherms, and hence results in the consensus 

bounds to N2 adsorption amount measurements as for the case of CO2 analysis. In general, 

N2 adsorption isotherms measured at 77 K are used to yield porous materials’ surface area 

by applying the Brunauer, Emmett, and Teller (BET) theory.9-11 Therefore analysis of N2 

adsorption range, more importantly, creates a chance to identify the statistically quantified 

consensus bounds in BET surface area. The BET analysis is conducted by using BET plot, 

P/v(Po - P) as a function of P/Po, as follows: 

𝑃𝑃
𝑣𝑣(𝑃𝑃0 − 𝑃𝑃)

=
𝑐𝑐 − 1
𝑣𝑣𝑚𝑚𝑐𝑐

𝑃𝑃
𝑃𝑃𝑜𝑜

+
1
𝑣𝑣𝑚𝑚𝑐𝑐
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In the BET equation, Po is the pressure of the vapor in equilibrium with its non-vapor phase 

(Po = 0.971 bar for N2 at 77 K) and v is the volume of N2 adsorbed per gram of MOF at 

STP (cm3(STP)/g). The BET theory to calculate surface area is valid over the pressure 

range where the BET plot is linear with the assumption that monolayer formation occurs 

within this region.9-11 The slope ([c-1]/vmc) and intercept (1/vmc) of from the linear region 

give the c value that is related to the heat of adsorption and vm which is referred to the 

monolayer capacity. The BET surface area, SABET, is then calculated by SABET = vmσoNAV, 

where σo is the cross-sectional area of the adsorbate at liquid density (σo = 16.2 Å2 for N2) 

and NAV is the Avogadro’s number. 

For HKUST-1, the simulated surface area is 2340.7 m2/g (see Section 2.A.4 for 

details of simulation) and reported experimental surface areas range from as small as 921 

m2/g to as large as 2211 m2/g for the isotherms that are included in box and whisker plot. 

The substantial difference in simulated and experimental surface areas is typically ascribed 

to intrinsic instability of HKUST-1.12 Figure 2.A.2a is a box isotherm (reproduced from 

Figure 2.1b) at 298 ± 5 K with N' = 13 that does not take account of surface area scaling. 

Among these 13 measurements, 11 measurements had reported BET surface area (denoted 

as N'') whereas 2 had not. Figure 2.A.2b is a box isotherm constructed with 13 

measurements using 11 scaled isotherms along with 2 non-scaled isotherms. Figure 2.A.2c 

is a box isotherm made from 11 scaled isotherms (i.e. eliminating the data for which no 

surface area was available). With both treatments of the data, surface area scaling leads to 

an increase in the apparent adsorbed amount but, critically, to a larger IQR. At least in this 

case, therefore, applying surface area scaling does not make the underlying data more self-

consistent. 
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Figure 2.A.3 shows that our analysis metrics enable the assessment to BET surface 

area range of HKUST-1. Figure 2.A.3a exhibits compiled experimental data of N2 

adsorption isotherms in HKUST-1 at 77 K with N = 90. For this specific purpose, BET 

adsorption isotherm model was used in fitting and analysis of the data that allow direct 

comparison among all N measurements at the same values of P/Po. Outliers are detected 

and removed by outlier level O1. Box isotherm by applying the reproducibility level R1 is 

shown in Figure 2.A.3b. The solid curves connecting IQRs were defined as the consensus 

bounds to the measurements of the adsorbed amount as a function of P/Po. These are now 

used as pseudo-experimental isotherms to give upper and lower limits to N2 isotherms with 

N' = 86. Note that the solid curves are drawn by conneting QU and QL labels at higher P/Po 

resolution where boxes at low P/Po are not shown. Ultimately, Figure 2.A.3c (reproduced 

from Figure 2.3b) shows the BET plots to determine the upper and lower bounds of BET 

surface areas using the pseudo-experimental isotherms. Each BET surface area was 

calculated with the fits given in the figure and the methods described above, i.e. SABET = 

vmσoNAV. 
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Figure 2.A.2. (a) Box isotherm for CO2 adsorption in HKUST-1 at 298 ± 5 K without 
surface area scaling. (b) Box isotherm for CO2 adsorption in HKUST-1 at 298 ± 5 K with 
surface area scaling which includes non-scaled measurements. (c) Box isotherm for CO2 
adsorption in HKUST-1 at 298 ± 5 K with surface area scaling which excludes non-scaled 
measurements with no reported BET surface area. The solid curves connecting IQRs are 
omitted. 
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Figure 2.A.3. (a) Experimental data from 90 independent measurements of N2 adsorption 
in HKUST-1 at 77 K listed in the NIST/ARPA-E Adsorption Database. Outliers identified 
by the methods defined in the text are indicated. BET adsorption isotherm model was used 
in fitting and analysis of the data (solid curves being omitted). (b) Box isotherm for N2 
adsorption in HKUST-1 at 77 K with the solid curves connecting IQRs which can be 
thought of as the consensus bounds to the measurements of the adsorbed amount as a 
function of P/Po. These curves connecting QL’s and QU’s are used as pseudo-experimental 
isotherms for surface area analysis using BET theory. (c) BET plots over the standard BET 
pressure range using pseudo-experimental isotherms with the same color index as in (b). 
Notice that the lines are fit over 0.05 < P/Po < 0.15 which is the most commonly used BET 
pressure range for porous materials. 
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UiO-66 has widely been investigated as a CO2 adsorbent, in part due to its water 

stability.13,14 The simulated surface area is 1165.0 m2/g and experimental surface area 

ranges from 998 m2/g to 1160 m2/g for the isotherms that are involved in box and whisker 

plot, so unlike the situation for HKUST-1, the simulated and experimental surface areas 

are in fair agreement. Figure 2.A.4a is a box isotherm (reproduced from Figure 2.2c) at 298 

± 5 K below 15 bar for UiO-66 with N' = 8 that does not take account of surface area 

scaling. Among these 8 measurements, 7 measurements had reported BET surface area 

(denoted as N'') whereas 1 had not. Figure 2.A.4b is a box isotherm constructed with 8 

measurements using 7 scaled isotherms along with 1 non-scaled isotherm. Figure 2.A.4c is 

a box isotherm made from 7 scaled isotherms (i.e. eliminating the data for which no surface 

area is available). Because of the small discrepancies between the simulated and reported 

experimental surface areas, only marginal changes in IQRs are observed with surface area 

scaling, so surface area scaling does not tighten the consensus range of adsorbed CO2 

amounts. 

Figure 2.A.5 demonstrates the procedure of assessing BET surface area range of 

UiO-66. Figure 2.A.5a shows compiled experimental data of N2 adsorption isotherms in 

UiO-66 at 77 K with N = 18. Outliers are detected and removed by outlier level O1. Figure 

2.A.5b shows a box isotherm by applying the reproducibility level R1. The pseudo-

experimental isotherms, as defined for HKUST-1 example, can be obtained to give upper 

and lower limits to N2 isotherms with N' = 15. Finally, Figure 2.A.5c (reproduced from 

Figure 2.4b) shows the BET plots to determine the upper and lower bounds of BET surface 

areas using the pseudo-experimental isotherms. 
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Table 2.A.1 summarizes the results of surface area analysis using simulated and 

statistically quantified experimental N2 adsorption isotherms at 77 K in HKUST-1 and 

UiO-66. Simulated N2 adsorption isotherms at 77 K in both materials were obtained by 

Grand Canonical Monte Carlo simulation (data not shown), and the simulation details can 

be found in Section 2.A.4. Choosing an appropriate linear P/Po region in a BET plot is 

generally known to be somewhat subjective since often several regions give a roughly 

linear BET plot.9,10 BET surface areas of each material were calculated over different P/Po 

ranges, where their BET plots showed linearity within both P/Po ranges, using the 

simulated N2 adsorption isotherms. Note that the variation between BET surface areas 

calculated over different P/Po ranges are about 10% for both materials indicating only a 

minor effect in the selection of P/Po range for these materials. It grants our choice of BET 

analysis over 0.05 < P/Po < 0.15 that enabled the statistical quantification of BET surface 

area ranges for HKUST-1 and UiO-66 that have been built up from our reproducibility 

analysis metrics (curated in the last column of the table). A take-home message at the end 

of this analysis is that larger discrepancy in surface area range would result in larger 

deviation in CO2 adsorption range (HKUST-1) and smaller difference in surface area 

would lead to smaller variation in CO2 adsorption range (UiO-66). 
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Figure 2.A.4. (a) Box isotherm for CO2 adsorption in UiO-66 at 298 ± 5 K without surface 

area scaling. (b) Box isotherm for CO2 adsorption in UiO-66 at 298 ± 5 K with surface area 

scaling which includes non-scaled measurements. (c) Box isotherm for CO2 adsorption in 

UiO-66 at 298 ± 5 K with surface area scaling which excludes non-scaled measurements 

with no reported BET surface area. The solid curves connecting IQRs are omitted. 
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Figure 2.A.5. (a) Experimental data from 18 independent measurements of N2 adsorption 
in UiO-66 at 77 K listed in the NIST/ARPA-E Adsorption Database. Outliers identified by 
the methods defined in the text are indicated. BET adsorption isotherm model was used in 
fitting and analysis of the data (solid curves being omitted). (b) Box isotherm for N2 
adsorption in UiO-66 at 77 K with the solid curves connecting IQRs which can be thought 
of as the consensus bounds to the measurements of the adsorbed amount as a function of 
P/Po. These curves connecting QL’s and QU’s are used as pseudo-experimental isotherms 
for surface area analysis using BET theory. (c) BET plots over the standard BET pressure 
range using pseudo-experimental isotherms with the same color index as in (b). Notice that 
the lines are fit over 0.05 < P/Po < 0.15 which is the most commonly used BET pressure 
range for porous materials. 
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Table 2.A.1. Surface area analysis using reproducibility analysis metrics for N2 adsorption 

isotherms at 77 K enabling statistical quantification of consensus bounds in BET surface 

area (SABET). 

MOFs 
SABET a [m2/g] SABET range b [m2/g] 

P/Po ≤ 0.01 0.05 < P/Po < 0.15 0.05 < P/Po < 0.15 

HKUST-1 1909.5 1667.1 [932.6, 1486.0] 

UiO-66 1180.4 1041.7 [844.6, 1169.7] 

a SABET calculated by using simulated N2 adsorption isotherms at 77 K over linear region 

of BET plot, P/v(Po-P) vs. P/Po. BET analysis were conducted over consistency criteria 

pressure range P/Po ≤ 0.01 (proposed by Rouquerol et al.9 and shown for IRMOF series by 

Walton et al.10) and over standard pressure range 0.05 < P/Po < 0.3 (proposed by 

Brunauer11 and 0.05 < P/Po < 0.15 being the most commonly used). 
b SABET range quantified from an exhaustive compilation of experimental N2 adsorption 

isotherms at 77 K from the NIST/ARPA-E Adsorption Database. SABET range results from 

SABET’s calculated with pseudo-experimental N2 adsorption isotherms that are thought of 

as the consensus bounds to the N2 measurements by connecting the IQRs (Figure 2.A.3b 

and Figure 2.A.5b for HKUST-1 and UiO-66, respectively). BET theory was applied in a 

same manner for treating experimental data (Figure 2.A.3c and Figure 2.A.5c for HKUST-

1 and UiO-66, respectively).  
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2.A.2.2 Box Isotherms for R1 Reproducibility Level MOFs 

 
Figure 2.A.6. Box isotherms for 9 MOFs at temperatures T ± 5 K ordered from the highest 
to lowest N'. The solid curves are omitted. (a) HKUST-1, (b) MOF-74(Mg), and (c) UiO-
66. 
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Figure 2.A.6. Continued. (d) ZIF-8, (e) IRMOF-1, and (f) MOF-74(Ni). 
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Figure 2.A.6. Continued. (g) MOF-177, (h) MIL-101(Cr), and (i) MIL-53(Al). 
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2.A.2.3 Region Isotherms for R2 Reproducibility Level MOFs 

 
Figure 2.A.7. Region isotherms for 8 MOFs at temperatures T ± 5 K ordered from the 
highest to lowest simulated surface area. (a) HKUST-1, (b) MIL-100(Cr), and (c) MOF-
74(Mg). 
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Figure 2.A.7. Continued. (d) MIL-53(Cr), (e) ZIF-69, and (f) Bio-MOF-11. 
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Figure 2.A.7. Continued. (g) ZIF-7 and (h) PCN-200. 
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2.A.2.4 List of MOFs with N = N' = 2 CO2 Isotherms 

 By analyzing the NIST/ARPA-E Adsorption Database, we identified 15 MOFs 

which allow strong conclusions to be drawn about the reproducibility of single-component 

adsorption isotherms. Additionally, our reproducibility analysis identified 10 materials for 

which two independent CO2 isotherm measurements exist at some temperature T ± 5 K. 

Table 2.A.2 lists these MOFs having CO2 isotherms with N = N' = 2 at given temperature 

and pressure ranges. They refer to the materials categorized from combination of outlier 

level O3 and reproducibility level R3 or R4 (refer to yellow arrows in Figure 2.A.1). 

Table 2.A.2. List of MOFs for N = N' = 2 CO2 isotherms at given temperature and pressure 

ranges identified from the NIST/ARPA-E Adsorption Database. MOFs are ordered 

alphabetically. 

MOFs T range P range MOFs T range P range 

CAU-1 
273 ± 5 K 

[0, 1] bar 
NU-100 298 ± 5 K [0, 1] bar 

298 ± 5 K 
NU-1000 

273 ± 5 K 
[0, 1] bar 

CPM-5 
273 ± 5 K 

[0, 1] bar 
293 ± 5 K 

298 ± 5 K SDU-1 273 ± 5 K [0, 1] bar 

IRMOF-3 298 ± 5 K [0, 30] bar UMCM-1 298 ± 5 K [0, 15] bar 

MOF-508 

303 ± 5 K 

[0, 5] bar 

ZIF-11 273 ± 5 K [0, 1] bar 

323 ± 5 K ZIF-71 298 ± 5 K [0, 1] bar 

343 ± 5 K    
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2.A.2.5 Summary of CO2 Adsorption in MOFs 

 Table 2.A.3 lists a comprehensive summary of the reproducibility analysis 

regarding CO2 adsorption in 27 MOFs. This table curates all known MOFs for which any 

conclusions can be drawn about the reproducibility of CO2 adsorption at different 

adsorption conditions. In this table, the isotherm models to fit the experimental 

measurements, consistency rating defined in Section 2.A.1, different adsorption conditions 

including temperature ranges and pressures, evaluation metric as a combination of outlier 

level and reproducibility level defined in Section 2.A.1, and quantified CO2 adsorption 

range at corresponding conditions are given. A material can appear multiple times for data 

with different N and N' depending at different adsorption conditions. 

Table 2.A.3. A comprehensive summary of the reproducibility analysis regarding CO2 
adsorption in 27 MOFs from NIST/ARPA-E Adsorption Database. Isotherm model, 
consistency rating, adsorption conditions, evaluation metric, and quantified CO2 adsorption 
range at corresponding conditions are given. All definitions for complementary 
characteristics used in this table are as defined in Tables 2.1 and 2.2. List of MOFs is 
ordered from Section 2.A.2.2 to Section 2.A.2.4. 

MOFs Isotherm 
Model 

Consistency 
Rating 

Adsorption 
Conditions 

Evaluation 
Metric 

Adsorption 
Range a 

HKUST-1 Langmuir 

Low 278 ± 5 K, 1 bar O2/R4 [7.0, 9.3] 
Moderate 298 ± 5 K, 10 bar O1/R1 [9.8, 12.5] 
Moderate 313 ± 5 K, 10 bar O1/R2 [10.0, 12.9] 
High 328 ± 5 K, 7.5 bar O2/R2 [8.6, 9.6] 
High 343 ± 5 K, 10 bar O1/R1 [7.6, 9.6] 
High 375 ± 5 K, 10 bar O2/R2 [5.1, 5.4] 

MOF-74(Mg) Langmuir-
Freundlich 

High 298 ± 5 K, 1 bar O1/R1 [7.6, 8.4] 
High 298 ± 5 K, 20 bar O1/R2 [11.3, 12.6] 
High 318 ± 5 K, 1 bar O1/R2 [7.1, 7.7] 

UiO-66 Langmuir 

High 273 ± 5 K, 1 bar O1/R1 [2.4, 3.3] 
High 273 ± 5 K, 10 bar O2/R2 [7.9, 9.3] 
High 298 ± 5 K, 1 bar O1/R1 [1.4, 2.0] 
High 298 ± 5 K, 15 bar O1/R1 [6.4, 7.4] 
Moderate 310 ± 5 K, 1 bar O2/R3 [1.3, 1.6] 

a Adsorption amount in mmol CO2/g MOF as recommended in IUPAC manual on 
Reporting Physisorption Data for Gas/Solid Systems.15 
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Table 2.A.3. Continued. 

MOFs Isotherm 
Model 

Consistency 
Rating 

Adsorption 
Conditions 

Evaluation 
Metric 

Adsorption 
Range a 

ZIF-8 Langmuir-
Freundlich 

Moderate 273 ± 5 K, 1 bar O1/R1 [1.5, 1.6] 
High 303 ± 5 K, 15 bar O1/R1 [4.5, 6.9] 
Moderate 323 ± 5 K, 25 bar O3/R3 [3.9, 4.1] 

IRMOF-1 Langmuir-
Freundlich 

Moderate 298 ± 5 K, 30 bar O1/R1 [18.7, 21.8] 

MOF-74(Ni) Langmuir-
Freundlich 

High 298 ± 5 K, 1 bar O1/R1 [4.3, 5.4] 
Low 318 ± 5 K, 1 bar O3/R4 [3.4, 3.9] 
Moderate 348 ± 5 K, 1 bar O2/R3 [2.2, 2.6] 

MOF-177 Langmuir-
Freundlich Moderate 298 ± 5 K, 30 bar O1/R1 [29.7, 32.6] 

MIL-101(Cr) Freundlich 
Moderate 273 ± 5 K, 1 bar O3/R3 [3.2, 3.3] 
High 313 ± 5 K, 30 bar O1/R1 [20.0, 21.2] 
Moderate 328 ± 5 K, 30 bar O2/R3 [20.1, 20.3] 

MIL-53(Al) b Langmuir 
High 298 ± 5 K, 5 bar O1/R1 [2.9, 3.5]* 
High 298 ± 5 K, 20 bar O1/R1 [8.4, 9.9] 

MIL-100(Cr) Freundlich High 303 ± 5 K, 20 bar O2/R2 [12.6, 14.8] 

MIL-53(Cr) b Langmuir 
High 300 ± 5 K, 5 bar O2/R2 [2.8, 3.1]* 
High 300 ± 5 K, 15 bar O2/R2 [8.2, 8.4] 

ZIF-69 Freundlich High 298 ± 5 K, 1 bar O2/R2 [1.6, 1.7] 

Bio-MOF-11 Langmuir 
Moderate 273 ± 5 K, 1 bar O3/R3 [5.8, 6.4] 
High 298 ± 5 K, 1 bar O2/R2 [4.1, 5.0] 

ZIF-7 c Langmuir 

Moderate 273 ± 5 K, 0.2 bar O3/R3 [0.6, 0.8]* 
Moderate 273 ± 5 K, 1 bar O3/R3 [2.3, 2.7] 
High 303 ± 5 K, 0.5 bar O2/R2 [0.3, 0.5]* 
High 303 ± 5 K, 1 bar O2/R2 [2.1, 2.3] 

a Adsorption amount in mmol CO2/g MOF as recommended in IUPAC manual on 
Reporting Physisorption Data for Gas/Solid Systems.15 
b Breathing MOFs with asterisks (*) dictating Ptrans for a structural transition effect. 
Langmuir models are used to fit measurements of both narrow and large pore structures, 
and connected. 
c Gate-opening MOF with asterisk (*) dictating threshold pressure for a gate-opening 
effect. Langmuir models are used for measurements before and after a gate-opening, and 
connected. 
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Table 2.A.3. Continued. 

MOFs 
Isotherm 

Model 

Consistency 

Rating 

Adsorption 

Conditions 

Evaluation 

Metric 

Adsorption 

Range a 

PCN-200 Langmuir 
High 278 ± 5 K, 1 bar O2/R2 [1.4, 1.7] 

Moderate 296 ± 5 K, 1 bar O3/R3 [1.3, 1.5] 

CAU-1 Freundlich 
Moderate 273 ± 5 K, 1 bar O3/R3 [3.3, 3.7] 

Moderate 298 ± 5 K, 1 bar O3/R3 [1.7, 2.0] 

CPM-5 Freundlich 
Low 273 ± 5 K, 1 bar O3/R4 [2.8, 3.7] 

Moderate 298 ± 5 K, 1 bar O3/R3 [2.2, 2.5] 

IRMOF-3 
Langmuir-

Freundlich 
Moderate 298 ± 5 K, 30 bar O3/R3 [18.3, 18.6] 

MOF-508 Langmuir 

Moderate 303 ± 5 K, 5 bar O3/R3 [6.2, 6.3] 

Moderate 323 ± 5 K, 5 bar O3/R3 [4.2, 4.3] 

Moderate 343 ± 5 K, 5 bar O3/R3 [3.1, 3.2] 

NU-100 Langmuir Moderate 298 ± 5 K, 1 bar O3/R3 [2.6, 2.7] 

NU-1000 Langmuir 
Moderate 273 ± 5 K, 1 bar O3/R3 [2.9, 3.0] 

Moderate 293 ± 5 K, 1 bar O3/R3 [1.6, 1.7] 

SDU-1 Langmuir Moderate 273 ± 5 K, 1 bar O3/R3 [1.5, 1.6] 

UMCM-1 Freundlich Moderate 298 ± 5 K, 15 bar O3/R3 [13.1, 14.4] 

ZIF-11 Langmuir Moderate 273 ± 5 K, 1 bar O3/R3 [1.6, 1.8] 

ZIF-71 Freundlich Moderate 298 ± 5 K, 1 bar O3/R3 [0.6, 0.7] 

MIL-47(V) d 
Langmuir-

Freundlich 
Moderate 303 ± 5 K, 20 bar O2/R3 [6.9, 7.4] 

ZIF-78 d Langmuir Moderate 298 ± 5 K, 1 bar O2/R3 [2.1, 2.2] 
a Adsorption amount in mmol CO2/g MOF as recommended in IUPAC manual on 
Reporting Physisorption Data for Gas/Solid Systems.15 
d MOFs not listed from Section 2.A.2.2 to Section 2.A.2.4 with outlier level O2 and 
reproducibility level R3. 
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2.A.3  List of Molecules with Unknown Reproducibility of Adsorption in MOFs 

 In Section 2.A.3, we summarize the adsorbates in the NIST/ARPA-E Adsorption 

Database in Tables 2.A.4-2.A.6. The adsorbates are grouped based on whether conclusions 

can be drawn about reproducibility (Table 2.A.4), adsorption has been measured in a MOF 

but no conclusions can be drawn (Table 2.A.5), or if no experimental adsorption isotherms 

are reported (Table 2.A.6). 

Table 2.A.4. Adsorbates in the NIST/ARPA-E Adsorption Database for which a 

reproducibility assessment can be performed for at least one MOF material (i.e. N > 1 for 

at least one MOF). For adsorbates marked with an asterisk (*), the largest number of 

independent measurements in any MOF is two (i.e. N ≤ 2 in all MOFs). Adsorbates are 

ordered alphabetically and are listed as reported in the NIST/ARPA-E Adsorption 

Database. 

1-butene* Methane 

Acetone* Methanol* 

Acetylene* n-Butane* 

Ammonia* n-Hexane* 

Argon Nitric oxide* 

Benzene Nitrogen 

Carbon dioxide n-propane 

Carbon monoxide* Oxygen 

Ethane o-Xylene* 

Ethanol* Propene 

Ethene* p-Xylene 

Hydrogen Water 

Isobutane*  
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Table 2.A.5. Adsorbates in the NIST/ARPA-E Adsorption Database for which an 

adsorption isotherm in at least one MOF has been reported, but for which no reproducibility 

assessment can be performed (i.e. N ≤ 1 for all MOFs). Adsorbates are ordered 

alphabetically and are listed as reported in the NIST/ARPA-E Adsorption Database. 

1,2-Dichloroethane Dimethyl ether Nitrous oxides (NOX) 

1-Butanol Dimethylformamide n-Nonane 

1-hexanol Ethenylbenzene n-Octane 

1-Octanol Ethyl acetate n-Pentane 

1-Pentanol Helium Pyridine 

1-Propanol Hydrogen chloride Sevoflurane 

1-propyne Hydrogen sulfide Styrene 

2,2-Dimethyl-Butane Hydrogen/Deuterium mixture Sulfur dioxide 

2-Propanol Isobutanol Sulfur hexafluoride 

Acetaldehyde Isobutene Tert-Butanol 

Acetonitrile Krypton Tetrahydrofuran 

Carbon tetrafluoride Methyl ethyl ketone Toluene 

Cis-2-Butene m-Xylene Trans-2-Butene 

Cyclohexane Neopentane Trichloromethane 

Deuterium m-Heptane Xenon 

Diethyl ether Nitrous oxide (N2O)  
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Table 2.A.6. Adsorbates in the NIST/ARPA-E Adsorption Database for which no 

experimentally measured isotherms are reported for any MOF materials (i.e. N = 0 in all 

MOFs). Adsorbates are ordered alphabetically and are listed as reported in the 

NIST/ARPA-E Adsorption Database. 
[Bu4N]4HPW11CoO39 Acenaphthene Chlorobenzene 

[CpPd(eta3-C3H5)] Acenaphthylene Chromate 

[CpPtMe3] Acetonitrile-D3 Chromium 

[Pt(cod)Me2] Alizarin red S Chromium hexacarbonyl 

[Ru(cod)(cot)] Ametryn Cis-piperylene 

1,1,2-Trichloroethene Aniline Clofibric acid 

1,1-dichloroethylene Anthracene Congo red 

1,3-benzothiazole Benz[a]anthracene Copper 

1-benzothiophene Benzo[A]Pyrene Copper cluster 

1-Naphthol Bisphenol A Copper(II) ion 

2-ethylhexyl oleate Bromine Cumene 

2-ethylhexyl oleic estolide ester Bromobenzene Cyanobenzene 

2-Methoxytoluene Bromo-chloro-fluoromethane Cyclohexene 

2-Methylbutane Buckminsterfullerene C60 Cyclopentane 

2-Methylisoborneol Buckminsterfullerene C70 D131 dye 

2-Methylpyridine Butan-1-amine Dibenzothiophene 

2-Pentanone C2H10Zn Dichlofluanid 

3-Hexanol Cadmium Dichloromethane 

3-Methoxytoluene Cadmium(II) ion Dichromate 

4-atom palladium-4-atom gold cluster Caffeine Diethyl sulfide 

4-Chlorophenol Calcium Difluorocarbene 

4-ethyl-4-methyloctane Carbon disulfide Diisopropyl fluorophosphate 

4-Methoxytoluene Carbon tetrachloride Dimethyl methylphosphonate 

8-Atom gold cluster Cesium Dimethylamine 

8-Atom palladium cluster Chlorine Dimethylcyclopentanomethylcyclohexane 
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Table 2.A.6. Continued. 
Ethylene glycol Lead Molybdenum hexacarbonyl 

Ethylene oxide Lead(II) Iion n,n-diethylformamide 

Flumetralin Lithium N719 dye 

Fluoranthene Malachite green NaH4PW11TiO40 

Fluorescein m-Chlorotoluene Naphthalen-1-amine 

Fluracil m-cymene Naphthalene 

Formaldehyde m-dichlorobenzene Naproxen 

Furfural m-Dinitrobenzene n-decane 

Glycerin Mercury n-Docosane 

Glycidol Mercury dichloride n-Dodecane 

Gold Methyl isobutyl ketone Neon 

Hex-1-ene Methyl laurate n-heneicosane 

Hydrogen cyanide Methyl oleate n-Heptadecane 

Hydrogen deuteride Methyl oleic estolide ester n-hexadecane 

Ibuprofen Methyl orange Nickel 

Indole Methyl palmitate n-Icosane 

Iodine Methyl stearate Nitric acid 

Iodo-Benzene Methyl tertiary-butyl ether Nitrobenzene 

Iron Methyl viologen Nitrogen dioxide 

Isoamyl alcohol Methylcyclohexane Nitromethane 

Isocetane Methylcyclopentanodecalin n-nonadecane 

Isoheptane Methylene blue n-octadecane 

Isooctane Methylene green n-Pentadecane 

Isoprene m-Ethyltoluene n-Perfluoroethane 

Kresoxim-methyl m-nitrophenol  
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Table 2.A.6. Continued. 
n-Perfluorohexane Phenol Sulfur 

n-Propanal Phenylalanine Sulfur trifluoride 

n-Propylbenzene p-Nitrophenol Sulfur trioxide 

n-Tetracosane p-Nitrotoluene Sulfuric acid 

n-Tetradecane Polycyclic aromatic hydrocarbons Sulfurous acid 

n-Tricosane Pyrazine Tebuconazole 

n-tridecane Pyrene Terephthalic acid 

n-undecane Pyrimethanil Tert-Pentanol 

o-Chlorotoluene Quinoline Tetrachloroethene 

o-Cymene R-115 Tetrachlorogold(1-) 

o-Dichlorobenzene R-124 Tetraconazole 

o-Ethyltoluene R-125 Tetrahydrophenanthrene 

Oil red O R-134A Tetrahydrothiophene 

o-Nitrophenol R-21 Thiophene 

Palladium(II) ion R-22 Titanium 

p-Chlorotoluene R-23 Trans-piperylene 

p-Cymene R-410A Tribromomethane 

p-Dichlorobenzene R-507A Trifluoroethanol 

Pentafluorophenol Radon Triiodide 

Perhydrophenanthrene Scandium Tris(8-hydroxyquinoline)aluminum 

Permanganate Selenium Tritium 

Perrhenate Silver Uranium dioxide 

p-Ethyltoluene Sodium hydroxide Xylene (mixture of isomers) 

p-Fluorotoluene Strontium Zinc 

Phenanthrene Sudan black B  
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2.A.4  Molecular Simulation Details 

 Molecular simulations of CO2 and N2 adsorption were conducted by standard Grand 

Canonical Monte Carlo (GCMC) simulations5,16-19 using RASPA18,19. This atomistic 

classical simulation for adsorption isotherms requires force fields to describe van der Waals 

interactions for sorbate/sorbent interactions and sorbate/sorbate interactions.20 “Standard” 

force fields, namely the universal force field (UFF)21 and the TraPPE22 force field, were 

used. Lennard-Jones parameters for MOF atoms and quadrupolar CO2, N2 molecules were, 

therefore, taken from UFF and TraPPE force field, respectively, and molecule/MOF 

interactions were defined with standard mixing rules. In GCMC simulations associated 

with these force fields, truncated potentials with tail corrections are applied. Lennard-Jones 

interactions are truncated at 12 Å. Simulation boxes are expanded to at least 26 Å along 

each dimension and triclinic periodic boundary conditions were defined in all dimensions. 

Electrostatic interactions were modeled by employing EQeq point charges for MOF 

atoms23,24 and TraPPE charges for CO2, N2 molecules18,19. The extended charge 

equilibration method for EQeq charges is a semiempirical method which is much less 

computationally expensive than charge assignments on the basis of electronic structure 

calculations.23-25 All GCMC calculations included 5,000 initialization cycles followed by 

50,000 production cycles, which were found in initial tests to be sufficient to achieve well 

converged results. Random Monte Carlo moves, either accepted or rejected according to 

Boltzmann-type weighting criteria, allowed translation, rotation, regrowth, reinsertion, 

deletion and insertion moves at identical probabilities. 

The materials investigated in this chapter for computational simulations are 15 of 

the known MOFs where firm conclusions could be drawn about the measurement 
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reproducibility. The structures simulated are HKUST-1, MOF-74(Mg), UiO-66, ZIF-8, 

IRMOF-1, MOF-74(Ni), MOF-177, MIL-101(Cr), MIL-53(Al), MIL-100(Cr), MIL-

53(Cr), ZIF-69, Bio-MOF-11, ZIF-7, and PCN-200. The MOF .cif files distributed from 

the RASPA molecular simulation code18,19 were used for the crystal structures. All 

calculations assumed that the MOFs were rigid, that is, relaxation of the MOF atoms due 

to the presence of adsorbed molecules was neglected. For the breathing MOFs, the narrow 

pore or large pore structure was used depending on their observed structural transition 

pressure and the pressure being simulated. This means that the large pore structure for 

MIL-53(Al) and the narrow pore structure for MIL-53(Cr) were used, respectively. For 

ZIF-7, the open-framework structure was used. 

The choice of charges on framework atoms in molecular models of MOFs can 

influence the predictions of these models. In addition to the EQeq charges used for the 

calculations in Figure 2.5, the density derived electrostatic and chemical (DDEC) method26-

28 is another method to assign high quality point charges for framework atoms. It has been 

observed by Nazarian et al.24 and Haldoupis et al.29 that on average EQeq predicts charges 

for metals higher than those predicted by DDEC. Watanabe et al.28 pointed out the 

assignment of framework charges always introduces ambiguity even when the true electron 

density of a material is known. Figure 2.A.8 shows a comparison between simulated 

adsorption of CO2 by employing EQeq and DDEC charges, with other details of the 

simulations held fixed. Figure 2.A.8a compares the box isotherm (reproduced from Figure 

2.1b) and simulated adsorption isotherm by employing EQeq and DDEC charges in 

HKUST-1. Figure 2.A.8b is a parity plot for simulated adsorbed CO2 using either EQeq 

and DDEC charges for the 15 MOFs where firm conclusions could be drawn about the 
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measurement reproducibility at the conditions shown in Figure 2.5. This information 

provides a useful baseline for future comparison and potential refinement of molecular 

models using the reproducible adsorption information from Figure 2.5. 

 
Figure 2.A.8. (a) Comparison between experimental box isotherm for CO2 adsorption in 
HKUST-1 at 298 ± 5 K and simulated isotherms for CO2 adsorption in HKUST-1 at 298 
K with EQeq (filled circles) and DDEC (open circles) charges on framework atoms. (b) 
Comparison of simulated CO2 adsorbed amounts using EQeq and DDEC charges for the 
15 materials that were classified for reproducibility level R1 or R2. The adsorption 
conditions for molecular simulations are as stated in Figures 2.5a and 2.5b using the same 
color labels. Data is not reported for HKUST-1 at 313 K and MOF-74(Mg) at 318 K. 

The simulated surface area calculated in this chapter is so-called “accessible” 

surface area. It corresponds to the area traced out by the center of a probe molecule as the 

probe is rolled across the surface of the framework atoms.5 The probe should be chosen to 

correspond to the size of the adsorbate of interest5 – CO2 in this chapter. N2 has similar 

molecular diameter compared to CO2. Therefore, the simulated surface area was calculated 

by using N2 as probe molecule with overlap distance criteria set to a size parameter σ of 

3.31 Å.18,19 
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CHAPTER 3. ESTABLISHING UPPER BOUNDS ON CO2  

SWING CAPACITY IN SUB-AMBIENT PRESSURE SWING 

ADSORPTION VIA MOLECULAR SIMULATION OF       

METAL-ORGANIC FRAMEWORKS 

 Swing capacity is a key performance metric for processes designed to capture CO2 

by pressure swing adsorption (PSA). Sub-ambient operation of PSA units enables large 

changes in CO2 swing capacity, and can be economically viable when coupled with heat 

integration and power recovery. In this chapter, we examine what upper bounds on CO2 

swing capacity exist via molecular simulation of a large collection of metal-organic 

frameworks (MOFs). As has been observed previously for zeolites, the materials with the 

largest swing capacity at a given temperature have large pore volumes and heats of 

adsorption within a narrow range of optimal values. A number of materials are identified 

with swing capacities up to 40 mol/kg using a pressure swing from 0.1 bar to 2.0 bar. 

 

 

 

* Contents of this chapter have been reproduced from the previously published article 

Jongwoo Park, Ryan P. Lively, David S. Sholl, ″Establishing upper bounds on CO2 
swing capacity in sub-ambient pressure swing adsorption via molecular simulation of 
metal-organic frameworks″, Journal of Materials Chemistry A, 5 (2017) 12258-12265. 

  



 75 

3.1 INTRODUCTION 

Anthropogenic CO2 emissions are one of the main drivers of global climate change. 

Unfortunately, it is difficult and expensive to capture CO2 from dilute sources such as 

power plants, refinery exhausts, and air.1,2 As a result there is considerable interest in 

developing more cost effective and less energy intensive CO2 capture technology. Porous 

solid adsorbents such as activated carbon, zeolites, and metal-organic frameworks (MOFs) 

have been considered as efficient materials for adsorptive CO2 capture and separation.2-5 

Typically, solid adsorbents are used in cyclic adsorption processes in which desorption is 

induced by pressure swing (pressure swing adsorption, PSA), temperature swing 

(temperature swing adsorption, TSA), or vacuum swing (vacuum swing adsorption, 

VSA).2,6-8 A critical performance metric that dictates the economic viability of a PSA 

process is the swing capacity, that is, the difference between the amount of adsorbed gas 

in the adsorbent at the adsorption condition and the residual adsorbed gas at the desorption 

condition.6-8 

A question of broad fundamental interest is how large the CO2 swing capacity for 

realistic porous adsorbents can be under practical process conditions. Fang et al. recently 

addressed this question via molecular simulations of a large set of cationic zeolites for 

several prototypical processes chosen for industrial relevance. By considering PSA cycles 

between 1 bar and 5 bar at 300 K, they showed that materials exist with PSA swing capacity 

for CO2 as large as 7.5 mol/kg.9 

A general strategy for increasing PSA swing capacity, particularly for weakly 

adsorbing species, is to lower the temperature. The concept of sub-ambient operation has 
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been widely discussed as a route to improve H2 capacity in applications of porous materials 

for H2 storage.10 Sub-ambient operations are able to increase deliverable capacity and 

adsorption selectivity for H2.10 It is widely assumed, however, that the cooling cost 

associated with sub-ambient processes make sub-ambient temperatures impractical for 

large-scale CO2 capture from flue gases. Recently, however, Air Liquide had developed a 

prospective technology for cost- and energy- efficient post-combustion CO2 capture from 

power plant flue gas via an energy integrated cold membrane process.11-13 Their 

developments suggest that large-scale selective adsorption of CO2 with sub-ambient 

operation may be viable when coupled with heat integration and power recovery.8,11-14 

These observations make it interesting to examine what upper bounds exist on CO2 swing 

capacity in sub-ambient PSA using porous adsorbents. 

To search for materials that may define the upper limits for sub-ambient PSA CO2 

swing capacity, we used molecular simulations of CO2 adsorption on the materials 

contained in the computation-ready, experimental (CoRE) MOF database.15 This library of 

materials is made up of experimentally reported MOF crystal structures that have been 

prepared for computational simulations. The set of materials we screened was the 

frameworks optimized via density functional theory (DFT) calculation reported recently 

by Nazarian et al.16,17 for which atomic point charges assigned by the density derived 

electrostatic and chemical (DDEC) method18-20 are available. Our calculation strategy was 

driven by the observations of Fang et al. for CO2 adsorption in zeolites.9 Their calculations 

showed that materials with large pore volume and a CO2 heat of adsorption in a narrow 

optimal range were required to achieve a large CO2 swing capacity in typical process 

conditions. We adapted these criteria to efficiently screen the CoRE MOF database for CO2 
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adsorption at sub-ambient conditions. Our calculations show that single component CO2 

swing capacities as high as 40 mol/kg at 213 K and 18 mol/kg at 258 K were possible over 

a pressure range from 0.1 to 2.0 bar. 

Swing capacity is clearly not the only metric that affects the economic viability of 

PSA and related cyclic processes for gas capture, especially when these capacities are 

based on single component data. Competitive adsorption during treatment of 

multicomponent gas mixtures will almost always reduce swing capacities relative to single 

component adsorption.6,21,22 The adsorption selectivity of the component of interest in 

mixture adsorption is also critical to the product purity that can be achieved.6,21,22 

Additionally, the stability of adsorbents with respect to impurities and degradation, the 

lifetime and cost of the adsorbents, and similar factors also influence the viability of any 

adsorption process.1,6 Nevertheless, the maximum achievable swing capacity places 

bounds on the throughput of PSA and similar cyclic processes. It is therefore useful to 

consider the single component CO2 swing capacity before any of the other performance 

metrics just listed are examined. 

3.2 COMPUTATIONAL METHODS 

3.2.1 Energy Optimized CoRE MOF DDEC Charge Database 

 Material selection of MOFs for prediction of gas adsorption and separation is a 

challenge due to large and diverse set of MOF materials that are known.23-25 Computational 

analysis of molecular adsorption and diffusion in MOFs can provide atomic-level insight 

that is often difficult to obtain experimentally.26-29 To enable high-throughput 

computational screening of MOFs, Chung et al. developed the CoRE MOF database.15 The 
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CoRE MOF database contains over 5,000 MOF structures that are derived from 

experimental data but are immediately applicable for classical molecular simulations.15,28 

Nazarian et al. have recently shown that the DFT optimization of these structures, 

particularly those for which solvent was removed from the original experimental data, has 

a considerable impact on the prediction of gas adsorption.16,30 Thus, we restricted our 

attention to structures from the CoRE MOF database that have been optimized via periodic 

DFT with the PBE functional. Modeling CO2 adsorption requires a description of 

electrostatic interactions between quadrupolar CO2 and framework atoms. We therefore 

only considered materials for which the atomic point charges of the framework atoms have 

been assigned by the DDEC method.18-20 This approach accurately represents the 

electrostatic potential of the DFT-derived electron distribution inside the open pores of 

MOFs. The set of energy optimized CoRE MOFs with DDEC charges reported by Nazarian 

et al.16,17 contains 477 structures. 

3.2.2 Framework Characterization and Monte Carlo Simulation 

 Each MOF was first examined for its geometric properties.31 Pore volume was 

calculated from the helium void fraction by Widom particle insertion.26-29,32 The accessible 

surface area was computed using a sphere representing a nitrogen probe molecule.26-29,32 

The largest cavity diameter (LCD) and pore limiting diameter (PLD) were calculated by 

Zeo++ applying the high-accuracy setting with probe radius corresponding to nitrogen.33-

35 All structures described below have a PLD greater than 2.4 Å, indicating a sufficient 

window size to admit CO2.8 
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Atomistic classical simulations were conducted using RASPA.32 Adsorption 

isotherms and isosteric heats of adsorption were calculated by standard Grand Canonical 

Monte Carlo (GCMC) simulations.28-32 All frameworks were approximated as rigid 

structures.26-29,32 The use of generic force fields such as the universal force field (UFF)36 

or DREIDING37 for material screening purposes appears to be reasonably well justified.25-

29,38 Hence, van der Waals interaction between hosts and adsorbates was described by 

combining Lennard-Jones parameters from the UFF for MOF atoms and from the TraPPE39 

force field for quadrupolar CO2 molecules using the Lorentz-Berthelot mixing rule40. 

Electrostatic interactions were modeled by employing DDEC point charges for MOF 

atoms18-20 and TraPPE charges for CO2 molecules32. Simulation volumes were expanded 

to at least 26 Å along each dimension and periodic boundary conditions were defined in all 

dimensions. The isosteric heats of adsorption at zero loading was computed in the 

canonical ensemble with one gas molecule added into a simulation box.41,42 Further details 

of the simulation methods can be found in Appendix 3.A. 

3.2.3 Sub-Ambient PSA Process Details 

 We focused on single component CO2 adsorption to estimate the viability of sub-

ambient gas processing in porous materials. The pressure swing range was set between 0.1 

bar and 2.0 bar for desorption (Pdes) and adsorption (Pads), respectively. Air Liquide has 

performed an extensive technoeconomic analysis of a process for compressing and cooling 

flue gas to conditions giving a partial pressure of approximately 2.0 bar of CO2 at 240 

K.11,12 This analysis suggests that our choice of the pressure swing range is feasible to 

deliver cold, compressed flue gas to a sub-ambient gas processing system. The PSA swing 

capacity was defined as the difference between gas storage capacity at the adsorption and 
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desorption pressures9,42, ΔNCO2 = NCO2ads – NCO2des. We considered sub-ambient 

temperatures of 213, 228, 243, and 258 K. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Sub-Ambient CO2 Adsorption in UiO-66 

 UiO-66 and its derivatives have been widely explored as adsorbents due to their 

water stability.43-49 We therefore use UiO-66 to illustrate our calculations. The molecular 

modeling methods used in our calculations are compared to experimental CO2 isotherms 

in Figure 3.1a. Good agreement can be seen between the experimental data and model 

predictions. The predicted sub-ambient PSA swing capacity for CO2 in UiO-66 is shown 

in Figure 3.1b. The swing capacity increases from about 3 mol/kg at 273 K to around 5.3 

mol/kg at 213 K. The heat of adsorption in Figure 3.1c is weakly loading dependent, but is 

almost independent of temperature.50,51 The trends in Figure 3.1 are straightforward to 

understand. As the temperature is reduced from 273 to 228 K, the amount of CO2 in the 

MOF at the adsorption pressure (2.0 bar) increases substantially. The residual CO2 in the 

MOF at the desorption pressure (0.1 bar) also increases with decreasing temperature, but 

not as markedly as at the adsorption pressure. As a result, the swing capacity increases 

significantly with decreasing temperature. This trend cannot, however, continue 

indefinitely. As the adsorbed amount of the adsorption pressure approaches the material’s 

saturation loading, no further gains in swing capacity can be achieved by further lowering 

the temperature. This effect can be seen in the relatively modest increase in swing capacity 

in changing from 228 to 213 K. At temperatures lower than 200 K, the swing capacity in 

this material is reduced by lowering the temperature. 
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Figure 3.1. (a) Comparison between experimental and simulated adsorption isotherms for 
CO2 in UiO-66 at ambient temperatures. The experimental data are from Abid et al.,43 
Cmarik et al.,45 and Wiersum et al.49 for 273, 298, and 303 K, respectively. (b) Sub-ambient 
PSA CO2 swing capacity in UiO-66 with corresponding adsorption isotherms predicted by 
GCMC simulations (inset). (c) Heat of adsorption of CO2 in UiO-66 as a function of CO2 
uptake, obtained from GCMC simulations. 

3.3.2 Sub-Ambient PSA CO2 Swing Capacity in MOFs 

 Computational screening has been conducted on various libraries of porous 

materials for adsorption applications including efforts to find optimal CO2 adsorbents.7-9,15-

17,21,52-61 We calculated the CO2 swing capacity as discussed in Section 3.3.1 for the 477 

MOFs described in Section 3.2.1. The resulting swing capacities are shown in terms of 

each material’s pore volume in Figure 3.2. A striking feature of these results is the existence 



 82 

of materials with very high swing capacities, including capacities of 30 – 40 mol/kg at 213 

K and 15 – 18 mol/kg at 258 K. At the lowest temperature we examined, increasing pore 

volume is correlated with larger swing capacity. At 258 K, however, the materials with the 

highest pore volume do not show the highest swing capacity. This phenomenon has been 

observed before and its physical origins have been explained by Fang et al.9 and others53,56, 

who noted that materials with extremely large pores also often have relatively low heats of 

adsorption. Fang et al. examined correlations between process dependent swing capacities 

and pore volumes of zeolites.9 It is very likely that a decrease in swing capacity also occurs 

at 213 K for materials with sufficiently large pore volumes, but none of the materials we 

examined in Figure 3.2 approach that regime. 

 
Figure 3.2. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477 MOFs at 
(a) 213 K and (b) 258 K. 

The computed swing capacities for the 477 MOFs are plotted with respect to each 

material’s heat of adsorption at zero loading (Qads0) in Figure 3.3a and the average heat of 

adsorption (Qadsavg) between the pressure swing conditions in Figure 3.3b. Both energetic 

quantities demonstrate the presence of the range of optimal values for the heat of 

adsorption. The existence of an optimal heat of adsorption for adsorptive storage of gases 
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has been investigated before elsewhere.9,50,52-56 For instance, Fang et al. found that the 

optimal average heat of adsorption range for CO2 capture in zeolites was 28 ± 3 kJ/mol in 

a PSA process that swings between 1 bar and 5 bar at 300 K.9 Simmons et al. estimated the 

optimal average heat of adsorption range for CO2 based on the thermodynamic 

methodology developed by Bhatia and Myers, which assumes Langmuir adsorption 

isotherms in a homogeneous adsorbent50 to be 22 – 26 kJ/mol in PSA between 1 bar and 6 

bar at room temperature.62 The optimal average heat of adsorption for CO2 in MOFs at sub-

ambient temperatures observed in our calculations are similar to these observations. 

 
Figure 3.3. (a) Heat of adsorption at zero loading and (b) average heat of adsorption 
between adsorption and desorption conditions at 213 K in 477 MOFs. Arrows indicate the 
optimal range for the heat of adsorption. 

The optimal heat range for Qads0 and Qadsavg as a function of temperature are shown 

in Figure 3.4. The optimal values for both Qads0 and Qadsavg are approximately independent 

of temperature within the scatter of our data. We note that the analysis of Bhatia and 

Myers50 predicts that the optimal heat of adsorption is temperature dependent. Extending 

the calculations of Simmons et al.62 with this approach, however, indicates that this 

variation is around 4 kJ/mol over the temperature range in Figure 3.4 for a simple model 
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of CO2 adsorption based on Langmuir isotherms. The qualitative trend in our results is 

therefore consistent with the expectations from the Langmuir-based model of Bhatia and 

Myers. The optimal Qadsavg is about 5 kJ/mol larger than the optimal Qads0. This indicates 

that materials in which the heat of adsorption increases with loading have favorable 

properties for achieving large swing capacities. The loading dependent heat of adsorption 

in UiO-66 shown in Figure 3.1 is one example of this behavior, albeit with only a moderate 

pore volume. The general connection between this trend in the heat of adsorption and the 

desirable features of a S-shaped isotherm that is not associated with a structural change in 

the adsorbent have been pointed out in several previous studies.10-14,26,62-65 The overall 

correlation between Qads0 and Qadsavg at 213 K in 477 MOFs is shown in Appendix 3.A 

(Figure 3.A.3). This data shows that the heat of adsorption for CO2 increases as a loading 

increases in the majority of the materials we examined. 

 
Figure 3.4. Optimal heat range for heat of adsorption at zero loading (Qads0, black) and 

average heat of adsorption (Qadsavg, red) as a function of temperature. 
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3.3.3 Upper Bounds on Sub-Ambient PSA CO2 Swing Capacity in MOFs 

 Our results above imply the adsorbent evaluation criteria reported by Fang et al.9 

are applicable to a large variety of porous materials. Figure 3.5 illustrates a screening 

process to identify MOF candidates that have a CO2 swing capacity exceeding 10 mol/kg 

in sub-ambient PSA. Of the 477 structures we studied, 63 structures satisfy the geometric 

criteria of having pore volume above 0.75 cm3/g. 37 structures remain after applying the 

energetic criteria we defined for the optimal average heat of adsorption. From this group, 

we identified materials that give a CO2 swing capacity larger than 10 mol/kg at all 

temperatures from 213 to 258 K. We found 20 structures that satisfy this requirement. It is 

useful to note that the geometric and energetic criteria defined in Figure 3.5 could allow 

efficient analysis of larger material libraries in the future. 

 
Figure 3.5. Schematic illustration of the material selection criteria to accomplish large sub-
ambient PSA CO2 swing capacities. 

The MOF candidates and their predicted swing capacities that emerged from the 

procedure described above are listed in Table 3.1. This list contains 20 structures satisfying 
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the criteria defined above and one additional structure (XAWVUN) that shows the largest 

swing capacity of any material (40.4 mol/kg at 213 K) but does not have a swing capacity 

exceeding 10 mol/kg at every temperature. The material properties for each candidate are 

provided in Appendix 3.A (Table 3.A.1). It is highly likely that not all the materials listed 

in Table 3.1 are viable for practical use in sub-ambient gas processing due to the stability 

and lifetime concerns, the cost and ease of material synthesis, and related challenges that 

cannot be directly quantified in our calculations. Nevertheless, our computations reveal 

that a large number of real materials exist with swing capacities for CO2 at sub-ambient 

temperatures that greatly exceed 10 mol/kg. In Section 3.A.3 of Appendix 3.A, several 

materials that reach 10 mol/kg swing capacities even at narrower pressure swing conditions 

are identified. 

In our simulations, XAWVUN, a porous Cu-based coordination network that was 

reported for H2 sorption behavior by Sun et al.66, exhibits the highest overall swing capacity 

of 40.4 mol/kg at 213 K. The temperature dependent CO2 adsorption and desorption 

isotherms for XAWVUN are shown in Figure 3.6a. The simulated isotherms show no 

effects of hysteresis. The material does not satisfy our overall material selection criteria 

because the swing capacity drops to 5.8 mol/kg at 258 K. The loading dependent heat of 

adsorption is shown in Figure 3.6b. Similar to the results for UiO-66 shown in Figure 3.1, 

the heat of adsorption increases as a function of loading. This results in the desirable S-

shaped isotherms14,62 at 213 and 228 K. In Figure 3.6c, the mixture adsorption selectivity 

for CO2 associated with a bulk binary CO2/N2 mixture with molar composition 0.14/0.86 

calculated by binary GCMC simulations is shown. The adsorption selectivity increases 

from around 5.5 at 273 K to about 15.5 at 213 K with only a marginal change as a function 
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of the total pressure. At the latter temperature, this adsorption selectivity corresponds to an 

adsorbed mixture with CO2/N2 composition of 0.73/0.27. In Section 3.A.3 of Appendix 

3.A, the mixture adsorption selectivity of CO2 in three other large capacity MOF candidates 

is identified. Two of these materials, WONZOP and SENWAL, have selectivities of around 

40 at 213 K, corresponding to an adsorbed mixture with CO2/N2 composition 0.875/0.125. 

A potential trade-off between swing capacity and selectivity has been discussed 

elsewhere.67-69 Understanding the generality of this trade-off and assessing its implications 

for practical implementation of sub-ambient CO2 capture will be important future steps. 

Table 3.1. MOF candidates from energy optimized CoRE MOF DDEC charge database 
with large sub-ambient PSA ΔNCO2. 

Metal-Organic Frameworks a ΔNCO2 (mol/kg) 
213 K 228 K 243 K 258 K 273 K c 

XAWVUN (Cu2(TCPPDA)) b 40.4 35.2 13.1 5.8 3.5 
ANUGIA (UMCM-152) 31.0 28.6 22.4 10.8 5.8 
WONZOP 23.7 22.9 19.2 10.0 5.3 
SENWAL 23.6 23.9 21.7 17.3 9.1 
YUGLES 22.1 21.4 19.0 13.5 6.5 
NUTQAV (PCN-16) 22.0 21.3 19.0 13.5 6.6 
WONZUV 21.5 21.7 17.6 10.6 7.3 
OJICUG 20.8 22.1 19.0 14.3 10.3 
NUTQEZ (PCN-16') 19.8 19.8 17.6 12.6 7.0 
SENWOZ 19.2 22.7 21.2 17.7 11.0 
MATVEJ 17.2 19.1 17.5 13.6 8.4 
UTEWUM (Cu3(BTP)2) 15.8 16.9 15.9 13.2 8.7 
XAMDUM07 15.8 15.7 13.9 10.0 5.6 
FIQCEN (HKUST-1) 15.6 15.7 14.1 10.5 5.9 
UTEWOG (Ni3(BTP)2) 14.3 15.3 14.6 12.4 8.5 
BIBXUH 13.9 17.0 15.9 13.0 8.7 
XUGSEY 12.6 16.0 15.3 12.8 9.4 
KEFBEE (IZE-1) 12.1 21.1 20.3 17.4 12.1 
FEFCUQ 11.1 13.2 12.7 10.4 7.1 
QUQFIS 10.2 15.7 15.2 13.1 9.8 
SENWIT 10.2 20.6 20.0 17.2 11.9 
a CSD reference codes reported in the CoRE MOF database with common names in 
brackets (if available). b Material that exhibited the maximum sub-ambient PSA ΔNCO2 
upper bound predicted by GCMC molecular simulation beside the material selection 
criteria. c Swing capacities at 273 K are computed to observe the effectiveness of sub-
ambient operation. 
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Figures 3.A.4 – 3.A.6 (see Appendix 3.A) illustrate the variation in swing capacity 

for several high capacity MOFs as a function of desorption pressure. Increasing the 

pressure used for desorption reduces the CO2 swing capacity and also increases the 

temperature at which the maximum in this swing capacity occurs. These observations, 

coupled with the significant temperature dependence of adsorption selectivity in these and 

similar materials highlight that careful process models will be required to closely examine 

the trade-offs between process performance and cost associated with varying the desorption 

pressure and operating temperature. 

 
Figure 3.6. (a) Sub-ambient CO2 adsorption (filled symbols with solid lines) and 
desorption (open symbols with dashed lines) in XAWVUN predicted by GCMC molecular 
simulations. (b) Heat of adsorption of CO2 in XAWVUN as a function of CO2 uptake, 
obtained from GCMC simulations. (c) Adsorption selectivity of CO2 from bulk CO2/N2 
0.14/0.86 mixture calculated by binary GCMC simulations. 
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3.4 CONCLUSIONS 

In this chapter, we have sought upper bounds on CO2 swing capacity in a sub-ambient 

PSA process, which may be viable when coupled with heat integration and power recovery, 

via molecular simulation of 477 MOF structures. Swing capacities as high as 30 – 40 

mol/kg at 213 K and 15 – 18 mol/kg at 258 K are predicted for the MOFs that have large 

pore volume and fall into a narrow range of optimal average heats of adsorption. Our results 

enabled formulation of material selection criteria that allow efficient identification of 

materials with high CO2 swing capacity. Ultimately, 20 MOF candidates were identified 

that show a swing capacity over 10 mol/kg at all the sub-ambient temperatures we 

considered. 

Our assessment of porous materials for CO2 capture has focused solely on single 

component CO2 adsorption. The viability of a practical process clearly also relies on a host 

of other factors, including adsorption selectivity, material stability and cost among others. 

Nevertheless, establishing upper bounds on swing capacity is critical to understanding the 

limits on performance that are physically achievable with PSA and related cyclic 

adsorption processes. Our results indicate that use of high capacity MOFs and other porous 

materials in sub-ambient CO2 capture processes merits more detailed examination, and this 

chapter point to specific materials and more general material characteristics that should be 

the focus of future work of this kind. 
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APPENDIX 3.A. SUPPORTING INFORMATION – CHAPTER 3 

3.A.1  Molecular Simulation Details 

 Atomistic classical GCMC simulations of single component CO2 adsorption and 

desorption, and adsorption of a binary CO2/N2 0.14/0.86 mixture were conducted on the 

energy optimized CoRE MOF DDEC charge database using RASPA1. Fugacity was 

converted from pressure using the Peng-Robinson equation of state.1 All the MOF 

structures investigated are approximated by rigid model with triclinic boundary conditions 

applied in all dimensions. A rigid and linear model was used for both CO2 and N2 

molecules. Lennard-Jones (LJ) parameters for framework atoms are obtained from the 

UFF2 which is widely used force field for MOFs, and the parameters for CO2 and N2 are 

obtained from the TraPPE3 force field. In Monte Carlo simulation associated with these 

force fields, the truncated potentials with tail corrections are applied. Simulation volumes 

are expanded to at least 26 Å along each dimension and LJ interactions are truncated at 12 

Å. Electrostatic interactions were computed pairwise with a long range Ewald summation 

scheme4 based on atomic point charges assigned via DDEC method. DDEC is one of 

multiple methods to assign electrostatic charges to framework atoms, and it is based on the 

electron density partitioning in periodic structures.5 The point charges are found by 

minimizing an optimization functional to reproduce both the charge distribution and local 

electrostatic potential.5 

All GCMC calculations included 5,000 initialization cycles to equilibrate the 

positions of the atoms in the system followed by 50,000 production cycles. A Monte Carlo 

cycle consists of N steps where N is the number of molecules in the system. Random Monte 
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Carlo moves, either accepted or rejected according to Boltzmann-type weighting criteria, 

allowed translation, rotation, regrowth, reinsertion, deletion and insertion moves at the 

identical probabilities. For a mixture gas adsorption simulation, a Monte Carlo move that 

swapped the identity of existing molecules associated with the competitive adsorption of 

each component was imposed in addition to above random Monte Carlo moves. 

Isosteric heats of adsorption (Qads) was computed during GCMC simulations based 

on the fluctuation method.1 The heat of adsorption at zero loading (Qads0) was also 

computed in the canonical ensemble.6,7 Qads0 is an indicator for the host-adsorbate affinity 

under infinite dilute conditions.6 Random Monte Carlo moves in this simulation allowed 

translation, rotation, regrowth, and reinsertion moves at the identical probabilities. 

The void fraction of each computation-ready structure was calculated from a 

Widom particle insertion method using a He probe molecule (ε/kB = 10.9 K, σ = 2.64 Å) at 

298 K.1 The pore volume was calculated by multiplying the void fraction with the unit cell 

volume. The accessible surface area was calculated by using N2 as probe molecule with 

overlap distance criteria set to a size parameter σ of 3.31 Å.1 The largest cavity diameter 

and the pore limiting diameter were calculated by Zeo++ applying the high-accuracy 

setting with a probe of radius 1.86 Å, corresponding to N2.8 

3.A.2  Sub-Ambient PSA CO2 Swing Capacity in MOFs 

3.A.2.1 Geometric Properties of MOFs for Swing Capacity 

 The pore volume (VP) is one of the most critical geometric properties that governs 

physisorption of adsorbate molecules. There are also other geometric indicators that could 
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potentially be used to estimate CO2 capture performance using porous materials. They 

include the accessible surface area (SAacc), largest cavity diameter (LCD), and the pore 

limiting diameter (PLD). In this Appendix, we examine correlations between each property 

and sub-ambient PSA CO2 swing capacity. 

Figure 3.A.1 shows the correlation between VP and swing capacity at 228 K and 

243 K. The existence of materials with large swing capacities of 25 – 35 mol/kg at 228 K 

and 18 – 23 mol/kg at 243 K are observed. As discussed, the correlation between VP and 

swing capacity becomes more pronounced at lower temperature. 

 
Figure 3.A.1. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477 MOFs at 
(a) 228 K and (b) 243 K. 

Figure 3.A.2 shows the computed PSA swing capacity as a function of four 

representative geometric MOF properties at 243 K. Large VP and SAacc show clear 

correlations to accomplish high swing capacities. We note that VP and SAacc are stronlgy 

correlated to one another. LCD and PLD exhibit poor correlation to achieve large swing 

capacities. Similar results were seen at other temperatures (data not shown). 
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Figure 3.A.2. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477 MOFs at 
243 K as a function of (a) pore volume, (b) accessible surface area, (c) largest cavity 
diameter, and (d) pore limiting diameter. 

3.A.2.2 Energetic Properties of MOFs for Swing Capacity 

 Once geometric criteria are satisfied, it is useful to observe how energetic properties 

of MOFs enable large swing capacity as discussed in Chapter 3. The predicted sub-ambient 

PSA CO2 swing capacity as a function of Qads0 and Qadsavg is investigated in Figure 3.A.3a 

and Figure 3.A.3b, respectively. The presence of the optimal heat range at different 

temperatures are observed for both quantities. The optimum for both thermodynamic 

quantities to achieve a breakthrough improvement in a PSA process is weakly temperature 
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dependent. The correlation between Qads0 and Qadsavg in Figure 3.A.3c shows that the 

majority of the materials show the increase in Qads as loading increases with optimal Qads0 

and Qadsavg for large swing capacity. 

 
Figure 3.A.3. (a) Qads0 and (b) Qadsavg at 228 K, 243 K, and 258 K in 477 MOFs. Arrows 

indicate the optimal range for the heat of adsorption. (c) Correlation between Qads0 and 

Qadsavg at 213 K in 477 MOFs with entries of high swing capacity 21 MOF candidates 

noted. 
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3.A.2.3 MOF Candidates for Large Sub-Ambient PSA CO2 Swing Capacity 

Table 3.A.1. MOF candidates for large sub-ambient PSA ΔNCO2 with geometric a and energetic properties. 
Metal-Organic 
Frameworks 

VP 

(cm3/g) 
SAacc 

(m2/g) 
LCD 
(Å) 

PLD 
(Å) 

Qads0 (kJ/mol) Qadsavg (kJ/mol) 
213 K 228 K 243 K 258 K 273 K 213 K 228 K 243 K 258 K 273 K 

XAWVUN 1.8 5077 10.8 9.2 15.1 14.5 13.9 13.4 12.9 24.7 22.5 17.5 16.2 15.7 
ANUGIA 1.4 3820 13.9 6.8 15.6 15.1 14.6 14.2 13.7 26.0 24.7 21.1 18.5 17.7 
WONZOP 1.1 2796 11.0 10.3 20.7 19.8 19.0 18.1 17.3 28.3 26.9 24.5 20.9 19.9 
SENWAL 1.2 3171 8.7 7.4 17.5 16.9 16.3 15.8 15.3 28.2 26.7 24.8 22.3 19.7 
YUGLES 1.1 3231 10.9 6.8 18.4 17.8 17.1 16.5 15.9 25.5 26.1 24.2 21.5 19.2 
NUTQAV 1.1 3229 10.9 6.9 18.4 17.8 17.2 16.6 16.1 28.1 26.0 24.3 21.6 19.4 
WONZUV 1.2 3187 11.5 9.8 21.7 21.0 20.3 19.6 19.0 28.5 26.7 23.4 21.8 21.6 
OJICUG 1.3 4001 8.6 7.9 25.9 25.0 24.4 23.3 22.6 26.4 26.1 24.1 23.6 23.4 
NUTQEZ 1.1 3105 11.7 8.3 16.8 16.5 16.2 15.9 15.5 26.9 26.2 24.1 21.3 19.6 
SENWOZ 1.1 3189 8.9 7.1 18.6 18.1 17.5 16.9 16.3 29.3 27.5 26.1 23.8 21.2 
MATVEJ 1.0 2938 8.5 6.7 19.9 19.2 18.6 17.9 17.4 28.7 26.8 24.9 22.8 21.1 
UTEWUM 1.0 2342 15.0 9.9 21.8 21.4 21.0 20.6 20.2 29.1 29.7 29.7 26.4 23.7 
XAMDUM07 0.9 2338 13.2 6.7 24.4 24.1 23.8 23.4 22.9 26.2 26.8 25.8 23.8 22.4 
FIQCEN 0.9 2333 13.2 6.7 24.6 24.3 23.9 23.5 23.0 27.6 27.6 26.0 24.2 22.5 
UTEWOG 1.0 2251 14.6 9.6 22.2 21.8 21.4 21.0 20.6 27.3 29.3 29.5 26.7 24.1 
BIBXUH 1.0 2458 14.7 5.1 18.8 18.1 17.6 17.1 16.6 28.0 26.9 24.8 22.8 21.2 
XUGSEY 1.0 3342 7.5 5.8 26.7 26.1 25.2 24.6 23.8 28.4 28.0 27.1 25.2 23.9 
KEFBEE 1.1 3088 11.1 7.0 19.0 18.5 17.9 17.4 16.9 30.0 28.2 26.1 24.2 22.1 
FEFCUQ 0.8 2413 8.9 6.4 20.5 20.0 19.5 19.0 18.5 29.7 27.9 26.1 23.9 22.3 
QUQFIS 1.0 2646 8.0 5.4 22.7 21.9 21.3 20.5 19.8 29.4 27.1 26.1 24.6 22.7 
SENWIT 1.0 3098 8.5 6.5 19.6 19.0 18.5 17.8 17.3 31.2 28.1 26.8 24.7 22.5 

a Geometric properties were adapted from CoRE MOF database developed by Chung et al.9 with some properties recomputed in this 
chapter if needed. 
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3.A.3  Desorption Condition in Sub-Ambient PSA CO2 Swing Capacity 

 The choice of desorption pressure in a PSA process strongly affects the energy and 

cost efficiency of the overall process.10 The analysis in Chapter 3 used a desorption 

pressure of 0.1 bar, which may be considerably lower than is desirable in practice. Here, 

we examine the influence of the desorption pressure on the CO2 swing capacities in a 

number of large capacity MOFs. 

Figures 3.A.4 – 3.A.6 show the computed CO2 adsorption isotherms, heat of 

adsorption, predicted swing capacities by varying desorption pressures from 0.1 to 1.0 bar 

in ANUGIA (Figure 3.A.4), WONZOP (Figure 3.A.5), and SENWAL (Figure 3.A.6). Two 

observations can be made from these results. First, all three materials achieve 10 mol/kg 

swing capacities at 243 and/or 258 K using a pressure swing between 2.0 bar for adsorption 

and 1.0 bar for desorption. Second, the temperature at which the maximum swing capacity 

is observed increases as the desorption pressure is increased. This observation, coupled 

with the reduced swing capacity as the desorption pressure is increased, indicate that a set 

of trade-offs will dictate the optimal desorption pressure and operating temperature in 

designing an optimal PSA process. 

Figures 3.A.4 – 3.A.6 also show the mixture adsorption selectivity for CO2 relative 

to a bulk binary CO2/N2 0.14/0.86 mixture in ANUGIA (Figure 3.A.4), WONZOP (Figure 

3.A.5), and SENWAL (Figure 3.A.6). As expected, lowering the temperature increases the 

adsorption selectivity in every example. These materials have higher selectivities than the 

high capacity material shown in Figure 3.6. WONZOP (Figure 3.A.5) and SENWAL 
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(Figure 3.A.6) both show selectivities exceeding 40 at 213 K. All of the materials in Figures 

3.A.4 – 3.A.6 and Figure 3.6 show only moderate selectivity at 258 K and 273 K. 

 
Figure 3.A.4. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC simulations, 

(b) heat of adsorption as a function of CO2 uptake obtained from GCMC simulation, (c) 

predicted sub-ambient PSA CO2 swing capacity as a function of desorption pressure, and 

(d) CO2 adsorption selectivity from bulk CO2/N2 0.14/0.86 mixture calculated by binary 

GCMC simulations in ANUGIA. 
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Figure 3.A.5. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC simulations, 

(b) heat of adsorption as a function of CO2 uptake obtained from GCMC simulation, (c) 

predicted sub-ambient PSA CO2 swing capacity as a function of desorption pressure, and 

(d) CO2 adsorption selectivity from bulk CO2/N2 0.14/0.86 mixture calculated by binary 

GCMC simulations in WONZOP. 
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Figure 3.A.6. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC simulations, 

(b) heat of adsorption as a function of CO2 uptake obtained from GCMC simulation, (c) 

predicted sub-ambient PSA CO2 swing capacity as a function of desorption pressure, and 

(d) CO2 adsorption selectivity from bulk CO2/N2 0.14/0.86 mixture calculated by binary 

GCMC simulations in SENWAL. 
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CHAPTER 4. HOW WELL DO APPROXIMATE MODELS OF 

ADSORPTION-BASED CO2 CAPTURE PROCESSES PREDICT 

RESULTS OF DETAILED PROCESS MODELS? 

 Appropriate selection of adsorbent materials is essential in developing adsorption-

based processes such as CO2 capture. Approximate methods to evaluate material 

candidates exist using adsorbent evaluation metrics or simplified process models. These 

approximate methods do not, of course, completely describe the performance of adsorbents 

in real separation processes. In this chapter, we assess the correlations between 

approximate predictions and detailed process models of pressure swing adsorption (PSA) 

at sub-ambient temperatures for post-combustion CO2 capture using metal-organic 

frameworks (MOFs). Our results indicate that CO2 swing capacity and adsorbent 

regenerability are useful in predicting the ranking of materials for this process. These 

results illustrate the opportunities and challenges in bridging approximate and detailed 

methods for evaluating adsorbents for cyclic separations processes. 

 

 

* Contents of this chapter have been submitted for publication in a peer-reviewed journal 

Jongwoo Park, Héctor Octavio Rubiera Landa, Yoshiaki Kawajiri, Matthew J. Realff, 
Ryan P. Lively, David S. Sholl, ″How Well Do Approximate Models of Adsorption-
based CO2 Capture Processes Predict Results of Detailed Process Models?″, submitted 
to and under review at Industrial & Engineering Chemistry Research. 
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4.1 INTRODUCTION 

Atmospheric CO2 concentrations are rising due to anthropogenic emissions.1,2 This 

has motivated efforts to develop cost-effective and energy-efficient carbon capture 

processes.3 Cyclic adsorption-based CO2 capture has emerged as a promising approach. 

Typical examples of these processes include pressure swing adsorption (PSA), vacuum 

swing adsorption (VSA), and temperature swing adsorption (TSA).4-7 Adsorption-based 

carbon capture is a materials-enabled technology. Porous materials including activated 

carbon, zeolites, and metal-organic frameworks (MOFs) have been actively examined for 

use in CO2 capture processes.2,8-11 Although effective cycle configurations are important, 

the performance of cyclic adsorption processes depends heavily on the selection of 

adsorbent materials.12 Given the large numbers of potential adsorbents that exist, finding 

effective means to evaluate adsorbents is a key challenge in developing cyclic adsorption-

based CO2 capture processes. 

A major hurdle in adsorbent evaluation is the choice of performance descriptors. 

When screening a large spectrum of adsorbent materials, single component adsorption 

isotherms for gas species of interest are typically the only information that can be 

reasonably obtained.7,11 Multiple approximate performance metrics that can readily be 

calculated from these isotherms have been proposed.7,12-18 These metrics are typically 

based on physical intuition.7,12 They have served as proxies to evaluate a wide spectrum of 

materials, especially when combined with high-throughput molecular modeling of 

adsorption isotherms.17-23 
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Another way to predict the performance of an adsorbent for CO2 capture is to use 

simplified process models describing fully detailed PSA and/or VSA processes.24-27 These 

models are designed to provide industry-relevant performance descriptors such as product 

purity and energy consumption without the complexity of detailed process modeling. The 

models avoid the complexity associated with detailed process optimization24,25 and can be 

used with limited information beyond single component adsorption isotherms.26,27 These 

models do not, however, include detailed cycle configurations, so there is a gap between 

what they can predict and the performance of real processes. 

Several studies have used detailed process optimization in combination with 

approximate metrics to better understand the suitability of materials for adsorption-based 

separations.12,28-34 These studies have primarily focused on a restricted spectrum of 

materials that satisfy targeted constraints of product purity and recovery. Motivated by 

these previous contributions, the objective of this chapter is to directly assess the capability 

of simple proxies for adsorbent performance and approximate models of cyclic adsorption 

to predict the outcomes of detailed process models of adsorption-based CO2 capture 

processes. We consider the situation where a range of adsorbent materials is available and 

each level of modeling is used to rank the materials in terms of performance. After 

producing these rankings with models of multiple levels of complexity and fidelity it is 

possible to discuss the correlations between predictions from the simpler models and 

detailed process models. 

We focus below on the use of MOFs as adsorbents for sub-ambient PSA for post-

combustion CO2 capture. Sub-ambient separations have been recently reported by Air 

Liquide for large-scale CO2 separation from power plant flue gas via a membrane system, 
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which appeared feasible when implemented with appropriate heat integration and power 

recovery.35-37 A potential advantage of operating a PSA process at sub-ambient 

temperatures is the ability to achieve large swing capacities for adsorption. We previously 

examined a large number of MOFs with respect to this metric and showed that many 

materials exist with a CO2 swing capacity larger than 10 mol/kg.38 Below, we use the task 

of ranking materials of this type for use in sub-ambient temperature CO2 capture as an 

example to explore the correlation (or lack of correlation) between predictions based on 

simplified models and detailed process optimization. 

4.2 METHODS 

4.2.1 Sub-Ambient PSA Process 

 We focus on an adsorption-based PSA CO2 capture process at sub-ambient 

temperatures using MOF materials. In Chapter 338, the viability of the sub-ambient PSA 

process using MOFs was estimated using single component CO2 adsorption isotherms 

obtained from molecular modeling. Compelling evidence exists that molecular modeling 

can accurately predict the adsorption isotherms of CO2 and similar species in a wide range 

of MOFs.11,38,39 The large pore volumes and surface areas of MOFs, coupled with a 

suggested process design made them appealing materials as adsorbents.6-11,38 In this chapter 

we extend our focus to a bulk mixture of CO2/N2 at compositions relevant to post-

combustion flue gas. Real flue gas contains other contaminants including H2O, O2, CO, 

SOx, NOx, and Hg species.40-43 The presence of these contaminants could impact adsorption 

properties of primary components and the stability of adsorbents.44-46 Air Liquide has 

demonstrated that dry and clean flue gas feeds can be achieved by appropriate system 
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design combined with a sub-ambient heat exchanger.47 Hence we focus on adsorptive 

separation of CO2 from a dry bulk binary mixture of CO2/N2 with molar composition 

0.14/0.86 with no other components. Typical pressures for PSA desorption and adsorption 

are 0.7 bar (PCO2,des = 0.1 bar) and 14.3 bar (PCO2,ads = 2.0 bar), respectively, at T = 243 K. 

The choice of the pressure swing range and temperature are adapted from earlier 

findings.35,36,38 The adsorption and desorption pressures are treated as decision variables in 

our detailed process models. 

4.2.2 Adsorbent Evaluation Metrics 

 To evaluate materials as adsorbents for gas capture, a general starting point is to 

obtain adsorption isotherms for the gases of interest. Multiple efforts have focused on 

proposing performance metrics that can be derived from adsorption isotherms to forecast 

their capabilities in end-use applications.7,13-18 Table 4.1 summarizes the metrics used 

below to make predictions about PSA processes.7,13,16 

The first two metrics are the swing capacity and adsorption selectivity.7,27 Swing 

capacity is defined as the difference between gas storage capacities of the species targeted 

for capture at the adsorption (NCO2ads) and desorption (NCO2des) pressures chosen as bounds 

on the process. We used PCO2,ads = 2.0 bar and PCO2,des = 0.1 bar. The mixture adsorption 

selectivity is defined as the ratio of adsorption capacity of each component and mole 

fraction of each component in bulk phase (yi) at the adsorption conditions, Ptotal = 14.3 bar 

(Sads,CO2/N2ads) and/or Ptotal = 0.7 bar (Sads,CO2/N2des). The other two metrics, the sorbent 

selection parameter and the adsorbent performance score, combine information from the 

swing capacity of the component of interest and of the competing species, and the 
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adsorption selectivity at adsorption and desorption pressures under adsorption conditions 

in different ways.7,12,16 Such metrics aim to reflect the trade-off relationships that generally 

exist between swing capacity and adsorption selectivity.48,49 A remaining metric, the 

regenerability, is the ratio of the swing capacity and the adsorbed amount of strongly 

adsorbed species at the adsorption pressure. This parameter estimates the fraction of the 

adsorption sites that are regenerated during the desorption step.18,19 All adsorbent 

evaluation metrics above are calculated from mixture adsorption data (Ni).7,13,17-19 In 

principle, molar composition of the bulk phase at the desorption condition completely 

describes the amount of adsorbing molecules at the desorption pressure (Nides). Estimating 

information regarding the desorption condition is, however, complicated because defining 

the composition of the bulk phase is not trivial.12,50 Hence relying on adsorption conditions 

as described above has been a common practice.7,13,17-21 

We obtained mixture adsorption data using molecular modeling via Grand 

Canonical Monte Carlo (GCMC) simulations. The MOFs of interest were taken from a 

subset of the CoRE MOF database51, namely the energy optimized CoRE MOF DDEC 

charge database52,53, which includes 477 DFT optimized structures to which high quality 

atomic point charges have been assigned. 143 MOFs were selected from this collection that 

showed PSA CO2 swing capacity exceeding 4 mol/kg at 243 K between 0.1 bar and 2.0 

bar.38 Binary mixture GCMC simulations were conducted in these 143 materials to 

calculate adsorption properties of a CO2/N2 mixture at bulk pressures of 0.7 bar and 14.3 

bar. The resulting mixture adsorption properties were then used to calculate the adsorbent 

evaluation metrics in Table 4.1 for each material. Detailed descriptions of the molecular 

modeling and the materials we used are given in Appendix 4.A (Sections 4.A.1 and 4.A.2). 
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Table 4.1. Definitions of adsorbent evaluation metrics7,13,16 used to assess adsorbent 
materials52,53 for post-combustion CO2 separation with a sub-ambient PSA process. 

Adsorbent Evaluation Metric Metric Formula 
ΔNCO2 (mol/kg) Swing capacity ∆𝑁𝑁𝐶𝐶𝐶𝐶2 = 𝑁𝑁𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑁𝑁𝐶𝐶𝐶𝐶2𝑑𝑑𝑑𝑑𝑑𝑑 

Sads,CO2/N2ads Adsorption selectivity 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶2/𝑁𝑁2
𝑎𝑎𝑎𝑎𝑎𝑎 =

𝑁𝑁𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎𝑎𝑎/𝑁𝑁𝑁𝑁2𝑎𝑎𝑎𝑎𝑎𝑎

𝑦𝑦𝐶𝐶𝐶𝐶2/𝑦𝑦𝑁𝑁2
 

SSP,CO2/N2 Sorbent selection parameter 𝑆𝑆𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶2/𝑁𝑁2 =
(𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶2/𝑁𝑁2

𝑎𝑎𝑎𝑎𝑎𝑎)2

(𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶2/𝑁𝑁2
𝑑𝑑𝑑𝑑𝑑𝑑)

∆𝑁𝑁𝐶𝐶𝐶𝐶2
∆𝑁𝑁𝑁𝑁2

 

APSCO2/N2 (mol/kg) Adsorbent performance score 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶2/𝑁𝑁2 = 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶2/𝑁𝑁2
𝑎𝑎𝑎𝑎𝑎𝑎∆𝑁𝑁𝐶𝐶𝐶𝐶2 

R (%) Regenerability 𝑅𝑅 =
∆𝑁𝑁𝐶𝐶𝐶𝐶2
𝑁𝑁𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎𝑎𝑎

× 100 

4.2.3 Idealized PSA Process Model 

 Adsorbent evaluation metrics do not necessarily translate into process-level 

insights. Several simplified adsorption process models have been proposed to overcome 

this limitation.24-27 Such models impose multiple assumptions on adsorbents and cycle 

configurations but are analogous to cyclic adsorption processes. We adapted an idealized 

PSA process model proposed by Ga et al.27 This model provides two process performance 

indicators for an idealized ad-/desorption cycles, namely product purity (PuCO2) and 

specific energy consumption (EnCO2). The latter quantity provides insight in the separation 

cost. In addition, swing capacity (ΔNCO2 and/or ΔNN2) can be obtained separately. In this 

idealized model the composition of the gas products is found by numerically solving a 

series of non-linear equations of mixture adsorption capacities. The major assumptions 

underlying this idealized description of PSA are that the process operates isothermally 

without dispersion or kinetic effects with a two-step cycle configurations for ad-

/desorption, and that adsorption is described as a binary mixture of a strongly and a weakly 

adsorbing species. The model assumes the use of a compressor and vacuum, and also 
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assumes 100% product recovery is achieved. The idealized PSA process is illustrated in 

Figure 4.1. 

 
Figure 4.1. Schematic illustration of the idealized PSA process model. The model imposes 
idealized cycle of adsorption (ADS) and desorption (DES) with feed binary mixture of 
CO2/N2 in molar fraction of 0.14/0.86 (yi). Components A and B refer to strongly and 
weakly adsorbing species, respectively. The model numerically solves for the composition 
of the produced gas or molar composition of gas components in the desorption step (yi*). 
Adsorption amounts at given desorption conditions can be obtained (Nides*). Isothermal 
operation is assumed at T = 243 K. 

A fundamental piece of information to perform process modeling is the mixture 

adsorption equilibrium. The model outlined above requires an analytical expression or 

other methods to estimate the mixture adsorption equilibrium at different pressures, 

temperatures, and mole fractions in gas phase.12,54 We employed ideal adsorbed solution 

theory (IAST)54-56 to predict mixture adsorption. IAST estimates the mixture equilibrium 

from single component adsorption isotherms by assuming an ideal solution is formed by 

the adsorbed phase.55 We simulated single component adsorption isotherms for CO2 and 

N2 at temperatures of 213, 228, 243, 258, and 273 K via GCMC. More details of the 

idealized PSA process model and IAST are given in Appendix 4.A (Section 4.A.4). 
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4.2.4 Rigorous Process Model 

 Due to the inherent complexity of cyclic adsorption processes, detailed process 

optimization modeling is needed to achieve the highest fidelity regarding the evaluation of 

adsorbent materials. We used a rigorous process model with multi-objective 

optimization57,58 to assess the cyclic performance of each MOF considered. Table 4.2 

summarizes the definitions used for our process-level objectives. 

Table 4.2. Definitions of process-level objectives from multi-objective optimization used 
to assess adsorbent materials for post-combustion CO2 separation with a sub-ambient PSA 
process. 
Objectives Objective Formula 

Purity, PuCO2 (%) 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

× 100 

Recovery, ReCO2 (%) 𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶2 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 100 

Productivity, PrCO2 (mol/kg·s) 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

Energy, EnCO2 (kWh/t) 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶2 =
∑ 𝐸𝐸𝑖𝑖𝑖𝑖=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝐶𝐶2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

We considered a PSA process model based on a four-step Skarstrom cycle.5,59-61 

Figure 4.2a illustrates this cycle, which includes light product pressurization4,58 with N2, 

adsorption of CO2 and production of N2, co-current blowdown, and counter-current 

evacuation with production of CO2. Our model implemented mathematical expressions to 

describe packed-bed operation of a PSA under non-isobaric conditions. This includes 

transient balance equations which are a set of non-linear partial differential equations 

(PDEs) coupled with molecular diffusion and adsorption properties. The linear driving 

force model4,62 and the mixture adsorption isotherms predicted by IAST are used for 

molecular diffusion and adsorption properties, respectively. A finite volume method was 

applied to discretize the PDE system in space by taking account flux function 
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approximations.63,64 This results in a set of ordinary differential equations (ODEs) that were 

solved using MATLAB with the ode15s function at default tolerances until the system 

reaches the cyclic steady state. Details of PSA modeling are provided in the Section 4.A.5 

of Appendix 4.A. 

 
Figure 4.2. (a) Schematic illustration of the four-step PSA cycle for the rigorous process 
modeling of a hollow fiber bed contactor. The cycle includes counter-current light product 
pressurization (PR), adsorption (ADS), co-current blowdown (coBD), and counter-current 
evacuation (ccEV). (b) Schematic illustration of the PCM-based thermally modulated fiber 
adsorbent and flow of bulk CO2/N2 mixture in the bed column. 

Our rigorous process model focused on thermally modulated hollow fiber 

adsorbents as illustrated in Figure 4.2b.65-70 Incorporation of fiber adsorbents as structured 

contactors in cyclic adsorption processes allows for efficient mass and heat transfer, and 

reduced pressure drop relative to packed beds.71-74 We modeled a fiber adsorbent contactor 

comprised of a non-adsorbing polymeric matrix, MOF particles, and microencapsulated 

phase change materials (PCM).65-67 Judicious use of PCM can enable near-isothermal 

operation of a PSA by its melting and freezing upon CO2 adsorption (exothermic reaction) 

and desorption (endothermic reaction).74 By assuming this approach for heat management, 

we modeled the process as allowing temperature variation modulated with PCM. Details 

of the modeling of fiber adsorbent are available in Appendix 4.A (Section 4.A.5). Only the 
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PSA unit is considered in this chapter without assessing other details of the flowsheet that 

would be required to completely describe an integration of this unit with a power plant. 

Sub-ambient PSA process modeling above was coupled with multi-objective 

optimization. Optimization was carried out in MATLAB using the gamultiobj function for 

which a variant of the NSGA-II genetic algorithm58,75 was applied. We consider the 

rigorous process modeling as a black-box function with a set of available decision variables 

as inputs and process-level objectives at cyclic steady state as outputs. Further details of 

the optimization procedures are provided in Appendix 4.A (Section 4.A.5). This 

optimization leads to maximizing purity, recovery, and productivity while minimizing 

energy consumption under each process condition that is determined by decision variables. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Adsorbent Evaluation by Approximate Models 

 It is typically impractical to conduct rigorous process modeling or to perform 

detailed experimental testing for hundreds of potential adsorbent materials. We therefore 

used approximate models to reduce the number of MOFs to examine with our detailed 

process model. We began by examining 143 MOFs using the adsorbent evaluation metrics 

in Table 4.1 and then studied 30 of these adsorbents using the idealized PSA process model 

described in Section 4.2.3. The goal of this work was not to identify individual “winning” 

materials but to reveal a spectrum of materials performance that could then be compared 

for selected materials to our more rigorous process model. 
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4.3.1.1 Material Selection by Adsorbent Evaluation Metrics 

143 MOFs were characterized with the adsorbent evaluation metrics in Table 4.1. 

In order to discover high performing materials, previous studies commonly used one or 

two of the metrics in Table 4.1.7,13-21,38 Top-ranked materials for a single metric7,13,21,38 or 

those judged to have a good combination of each metric17-19 were then labeled as potential 

adsorbents. We employ the latter screening strategy for the filtering of MOF candidates. 

Our strategy is illustrated in Figure 4.3a. 

We first set constraints for each metric. A key advantage of sub-ambient gas 

processing is that the swing capacity for small molecules can be large.38 On this basis the 

lower bound for swing capacity was set to 10 mol/kg. Adsorption selectivity has long been 

viewed as controlling the achievable product purity.4,20 We set a lower bound on the mole 

fraction of CO2 in adsorbed phase (xCO2) of 0.9 when considering selectivity. The sorbent 

selection parameter includes information from the swing capacities for both CO2 and N2. 

Increasing or suppressing the adsorption of strongly or weakly adsorbing molecules, 

respectively, is a route for efficient separation of gas mixtures.13,20,24,33 We therefore set a 

constraint to have CO2 swing capacity more than ten times the N2 swing capacity. The 

adsorbent performance score is calculated by the product of swing capacity and adsorption 

selectivity. We use same constraints of swing capacity and adsorption selectivity when 

setting the constraint for this quantity. Having a highly selective adsorbent does not 

guarantee high regenerability. We adopted a target regenerability of 75% from previous 

work.18 The “best” adsorbents at this stage would be candidates that meet all of these 

constraints (cluster I in Figure 4.3a). To ensure we are considering a spectrum of materials, 

we also considered materials that satisfy some, but not all, of these constraints. Figure 4.3a 
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indicates clusters of materials that have extremely high selectivity but relatively low swing 

capacity (cluster II) or vice versa (cluster III in Figure 4.3a). 

 
Figure 4.3. (a) Material selection strategy employed in this chapter to filter 143 MOFs by 
forming clusters. The constraints on each metrics and definitions of each cluster are 
described in the text. (b) Adsorbent evaluation metrics calculated for a CO2/N2 0.14/0.86 
mixture at bulk pressures of 0.7 bar and 14.3 bar at 243 K. The horizontal and vertical axes 
are the swing capacity and the sorbent selection parameter, respectively. Data in black 
squares correspond to MOFs that do not belong to any of the clusters we defined. 

Figure 4.3b shows the adsorbent evaluation metric data for 143 MOFs and 

clustering of this information as defined in Figure 4.3a. 28 MOFs were found from cluster 

I. We then selected additional MOFs from clusters II and III. The swing capacity for CO2 

in MOFs from cluster II ranges between 6-9 mol/kg, values considerably higher than 

typical materials for CO2 capture via PSA at ambient temperatures.76,77 The MOF from 

cluster II (CSD reference code SERKEG) with the highest sorbent selection parameter was 

chosen for further consideration. Similarly, the MOF from cluster III (OJICUG) with the 

largest swing capacity was chosen. This defined a set of 30 MOFs that were used in our 

more detailed models. These materials are indicated with highlighted borders in Figure 
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4.3b. Information about selected physical properties of 28 MOFs from cluster I is given in 

Figure 4.A.2 (Section 4.A.3 of Appendix 4.A). 

4.3.1.2 Material Selection by an Idealized PSA Process Model 

We next used the idealized PSA process model defined above27 to obtain process-

level performance descriptors of 30 MOFs. This approach allows us to incorporate a range 

of adsorption and desorption conditions.24,27 The results obtained from this model were 

used to further reduce the number of MOFs to which we applied a rigorous process model. 

Our process modeling uses IAST to predict mixture adsorption.54 Although there 

are indications that applying IAST in MOFs may be viable7,55,56, IAST may be inaccurate 

at high pressure and for weakly adsorbing molecules20,56. We therefore directly tested IAST 

in the 30 MOFs we considered by comparison with mixture GCMC calculations as shown 

in Figure 4.4. Both CO2 (Figure 4.4a) and N2 (Figure 4.4b) show good agreement between 

direct simulation of mixture adsorption with GCMC and simulation using IAST within the 

pressure range of our process. We calculated the fractional IAST error, defined as the ratio 

of the difference between IAST and GCMC results to the GCMC result.20 For all 30 

materials the fractional error in the CO2 and N2 uptakes were less than 10% and 15%, 

respectively. The fractional error for selectivity was also smaller than 15% for every 

material (Figure 4.4c). We took this as an indication that using IAST within our process 

models was an acceptable approximation.20,56 
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Figure 4.4. Comparison between mixture adsorption amounts in 30 MOFs computed from 
GCMC (horizontal axes) and IAST (vertical axes) for (a) CO2 and (b) N2 at low, 
intermediate, and high total pressures at 243 K and (c) adsorption selectivities in 30 MOFs 
computed from GCMC (horizontal axis) and IAST (vertical axis). In all cases the gas phase 
CO2/N2 composition is 0.14/0.86. The diagonal lines have slopes of 1.1, 1, and 0.9 from 
top to bottom, respectively, in (a). Similar lines are drawn for slopes of 1.15, 1, and 0.85 
from top to bottom, respectively, in (b) and (c). 

We used the idealized PSA model to select materials for use in our detailed process 

model as indicated in Table 4.A.1. We first chose MOFs that do not have open-metal sites 

(OMS) based on previous reports that examined the crystal structures via connectivity 

analysis for each metal center.78,79 This choice avoids complications associated with the 

limited accuracy of generic force fields for molecular simulations of MOFs with OMS.11,78-

81 Among the 20 non-OMS MOFs, we sampled MOFs based on the CO2 purity predicted 
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by the idealized model, PuCO2. We set 90% purity as the benchmark for this quantity.82 All 

MOFs that exceed this benchmark for some combination of process conditions, i.e. 

adsorption and desorption pressures, were selected. In addition, four MOFs that did not 

exceed this standard were randomly chosen to ensure our final selection included a 

spectrum of materials performance. This gave the list of 15 MOFs shown in Figure 4.5. 

The process performance indicators for all 30 MOFs are shown in Figure 4.A.3. 

 
Figure 4.5. Performance indicators derived from the idealized PSA process model for 15 
MOFs. The indicators were calculated for a CO2/N2 0.14/0.86 mixture at 243 K for 400 
combinations of ad-/desorption pressures. Squares, triangles, and downward-pointing 
triangles indicate MOFs collected from cluster I, cluster II, and cluster III, respectively, 
from the pre-selection stage. (a) EnCO2-PuCO2 shown by Pareto fronts across operating 
pressures in each material. MOFs in group I are the ones that meet the PuCO2 benchmark 
while those in group II do not. (b) ΔNCO2-PuCO2 shown with each data points calculated 
from all combinations of ad-/desorption pressures. 

Figure 4.5 shows ΔNCO2, PuCO2, and EnCO2 for each of the 15 MOFs we considered 

further. It is important to note that the metrics from Table 4.1 cannot provide any 

information about the two latter quantities. These indicators were calculated with the 

idealized process model at 20 adsorption pressures equally spaced from 5.0 to 15.0 bar and 

20 desorption pressures equally spaced from 0.15 to 0.35 bar. Figure 4.5a shows Pareto 

fronts of EnCO2-PuCO2 across this range of operating conditions. As might be expected, 
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there is a trade-off between PuCO2 and EnCO2. Figure 4.5b shows ΔNCO2 and PuCO2 at each 

of the 400 process conditions we considered. The sensitivity of ΔNCO2-PuCO2 as a function 

of process pressures is heavily material dependent. 

4.3.2 Adsorbent Evaluation by a Detailed Process Model 

 The steps above defined a shortlist of 15 MOFs with a spectrum of performance for 

sub-ambient CO2 capture as predicted from a series of approximate models. We used 

rigorous multi-objective process optimization to develop processes based on each of these 

MOFs. This optimization allows each adsorbent to be coupled with process conditions that 

maximize their potential.83 

Figure 4.6 shows the Pareto fronts for pairs of process-level objectives. Figure 4.6a 

shows minimization of EnCO2 and maximization of PuCO2. EnCO2 is a useful proxy for 

operating process cost.84 This pair of objectives enables a direct comparison of the 

similarity of material evaluation made between the rigorous and idealized process model 

described in Section 4.3.1.2. Figures 4.6b and 4.6c show other common approaches to 

evaluating the capability of adsorbents and the viability of chosen adsorption system. 

Figure 4.6b assesses maximization of PuCO2 and ReCO2. We find the presence of MOFs in 

this sub-ambient system approaching 90% and 95% for both PuCO2 and ReCO2, respectively, 

a suggested target82 for these objectives. Figure 4.6c assesses maximization of PrCO2 and 

minimization of EnCO2. This is useful because it identifies process in which energy 

consumption is low while the maximum productivity for a given mass (or volume) of 

adsorbent can be reached. We find MOF candidates capable with PrCO2 up to ~ 0.1 mol/kg·s 

with ~ 250 kWh/t of EnCO2. 
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Figure 4.6. Multi-objective optimization for 15 MOFs in a sub-ambient PSA using a 
hollow fiber adsorbent module at 243 K. Pareto fronts are shown for optimized objectives 
of (a) EnCO2 and PuCO2, (b) PuCO2 and ReCO2, and (c) PrCO2 and EnCO2. 

The results from Figure 4.6 allow us to revisit the evaluation of each MOF. When 

considering EnCO2-PuCO2, we ranked MOFs using PuCO2 at a fixed EnCO2 of 400 kWh/t. For 

PuCO2-ReCO2, a ranking was made by the product of PuCO2 and ReCO2. For PrCO2-EnCO2, we 

ranked MOFs using PrCO2 at a fixed EnCO2 of 400 kWh/t. These three rankings are 

summarized in Table 4.3. We give three separate rankings to emphasize that focusing on 

different aspects of process performance favors different materials. For instance, a material 

that is a good candidate when the focus is on product purity may be less attractive when 

process economics are the dominant concern, and vice versa. The MOF with structure code 

SERKEG is an example; it is ranked in the top 5 materials when considering EnCO2-PuCO2, 
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11 of 15 with respect to PuCO2-ReCO2, and the last among the 15 materials with respect to 

PrCO2-EnCO2. Some materials, however, are ranked quite consistently in each list. The 

MOFs with structure codes SENWOZ and SENWIT, for example, are ranked 1 and 2 in 

every list, and SENWAL is ranked either third or fourth in each list. 

Table 4.3. Three rankings of MOFs based on multi-objective process optimization. 
Definitions of each ranking are given in the text. MOFs whose ranking varies by five or 
more places among two rankings are shown in italic. 

Ranking MOFs Ranked by 
(a) EnCO2-PuCO2 (b) PuCO2-ReCO2 (c) PrCO2-EnCO2 

1 SENWOZ SENWOZ SENWOZ 
2 SENWIT SENWIT SENWIT 
3 OJICUG SENWAL SENWAL 
4 SENWAL OJICUG BIBXUH 
5 SERKEG BIBXUH TERFUT 
6 FAKLOU TERFUT FEFDAX 
7 FEFDAX FEFDAX RAXCOK 
8 RAXCOK CUHPUR OJICUG 
9 CUHPUR RAXCOK CUHPUR 
10 UTEWUM ZESFUY UTEWOG 
11 UTEWOG SERKEG FAKLOU 
12 BIBXUH FAKLOU MATVEJ 
13 MATVEJ MATVEJ ZESFUY 
14 TERFUT UTEWOG UTEWUM 
15 ZESFUY UTEWUM SERKEG 

4.3.3 Comparing Approximate and Detailed Models of Adsorption-based Carbon 

Capture Process 

 Having introduced the results from each level of modeling, we now turn to 

comparing results among these models. We first quantify the similarity of results between 

our rigorous process model and adsorbent evaluation metrics. We then conduct the same 

analysis comparing from rigorous and simplified process models. 
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4.3.3.1 Rigorous Process Model and Adsorbent Evaluation Metrics 

For the group of 15 MOFs ranked by our rigorous process model (Table 4.3) we 

also developed rankings based on each simplified adsorbent ranking listed in Table 4.1. 

The latter rankings are listed in Table 4.A.4. Spearman’s rank-order correlation was used 

to compare the results from these two very different levels of modeling. Spearman’s rank-

order correlation is a non-parametric measure of statistical dependence between the 

rankings of two variables that assesses how well the relationship between two variables 

can be described.85,86 A rank order correlation of 1 indicates perfect correlation between 

two rankings, a value of 0 indicates no correlation between the two rankings, and a value 

of -1 occurs if two rankings are perfectly anti-correlated. Spearman’s rank-order 

correlations between each process-level ranking and adsorbent evaluation metrics are 

shown in Figure 4.7. There is considerable variation between the various ranking methods. 

This is consistent with previous findings30-33 that suggested caution must be used in using 

adsorbent evaluation metrics. 

 
Figure 4.7. Spearman’s rank-order correlation (ρ) between rankings of 15 MOFs from 
rigorous process modeling (vertical axis) and adsorbent evaluation metrics (horizontal 
axis). A general guideline for correlation strength and data interpretation associated with 
the color coding is provided in detail in Table 4.A.3 in Appendix 4.A. 

Among the five adsorbent evaluation metrics, ΔNCO2 and R appear to be the most 

useful proxies for process scale performance in our particular process. ΔNCO2 showed a 
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comparable moderately similar rank correlation for each of the three process-level 

rankings. Regenerability, R, was the most successful adsorbent evaluation metric when 

process performance was characterized using purity and recovery or productivity and 

energy. R was only moderately successful, however, if the process-level ranking was made 

based on energy and purity. Other separation processes that are highly driven by product 

purity (e.g. direct air capture of CO2) might results in different correlations. The other three 

adsorbent evaluation metrics performed quite poorly. It might be expected that SSP,CO2/N2 

and APSCO2/N2 would be useful because they use a combination of inputs. We found, 

however, that these metrics were dominated by Sads,CO2/N2ads for the CO2 capture process 

we considered. As a result, the rank correlations of SSP,CO2/N2, APSCO2/N2 and Sads,CO2/N2ads 

were quite similar. 

As an aside, a possible reason that some metrics make poor predictions in terms of 

process-level ranking is that individual metrics only reflect specific features of the cyclic 

process.15 To this end, we formulated a combined adsorbent evaluation metric (CAEM) 

that incorporates linear combinations of the adsorbent evaluation metrics to balance the 

contribution of each metric. We analyzed the rank correlations between each process-level 

ranking and the CAEM ranking. We found that the rank correlation can be improved by 

using CAEM in the absence of a winning single metric as for the case of EnCO2-PuCO2. On 

the other hand, the effect of CAEM on rank correlation was negligible when a single metric 

was already successful, as for the cases of PuCO2-ReCO2 and PrCO2-EnCO2. Details of this 

approach are provided in Section 4.A.6. 
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4.3.3.2 Rigorous and Idealized PSA Process Models 

Following the above analysis, we also quantified the similarity in rankings of 

materials provided from the rigorous and idealized PSA process models. The rankings 

derived from the idealized PSA model are listed in Table 4.A.7. Unlike the situation for 

adsorbent evaluation metrics, the predicted process performance from each level of 

modeling can be compared. Because the idealized model only gives EnCO2 and PuCO2 but 

not ReCO2 or PrCO2, it is only possible to directly compare these predictions to the detailed 

process model for the information in Figure 4.6a. 

Figure 4.8 compares the process objectives in terms of EnCO2-PuCO2 from the 

rigorous and idealized process models. The full process optimization (Figure 4.6a) gives a 

narrower range of achievable PuCO2 than the idealized PSA model results (Figure 4.5a). 

Since we are primarily interested in the relative performance of different materials, Figure 

4.8 shows a normalized achievable PuCO2 at a fixed EnCO2 of 400 kWh/t for each level of 

modeling. The Spearman’s rank-order correlation for these two levels of modeling was 

0.54. When ranking MOFs with respect to EnCO2-PuCO2 using the idealized and detailed 

process models, we compared PuCO2 at a constraint of EnCO2. Because the Pareto fronts are 

not always on top of each other as a function of EnCO2, the MOF rankings can vary at 

different choice of EnCO2. We tested the sensitivity of Spearman’s rank-order correlation 

to the choice of EnCO2 as summarized in Table 4.A.8. 
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Figure 4.8. The normalized PuCO2 at a fixed EnCO2 using results from our rigorous process 
model (horizontal axis) and an idealized process model (vertical axis). Normalization was 
performed using the range of values from each data set. The red dashed line is a parity line. 

It is also possible to compare the results of the adsorbent evaluation metrics with the 

idealized PSA process model. A comparison of MOF rankings from these approaches is 

shown in Figure 4.A.5 (Section 4.A.6 of Appendix 4.A). The metrics of adsorption 

selectivity, sorbent selection parameter, and the adsorbent performance score are strongly 

correlated with the predictions of the idealized PSA model. Somewhat surprisingly, these 

are not the same adsorbent evaluation metrics that were best correlated with the predictions 

from our rigorous process model. At one level, our data suggests that in terms of the ability 

to rank materials according to their performance as defined by the rigorous process model 

the idealized PSA model adds little to the information available from the simpler adsorbent 

evaluation metrics. This characterization is too simplistic, however, because the idealized 

model provides information that is not available from the simple metrics (see Figure 4.5) 

and the predictive power of the simple metrics is only available when the right metric 

among multiple possible choices is used. 
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4.4 CONCLUSIONS 

In this chapter we have examined the value of using approximate models of a sub-

ambient PSA process to evaluate a large number of candidate adsorbents for a CO2 capture 

process. This chapter integrates molecular modeling, idealized process model and rigorous 

multi-objective process models to consider a spectrum of materials performance indicators. 

We examined MOF rankings derived from multiple modeling levels that allow quantitative 

measurements on the ranking similarity between approximate and detailed models. 

We compared a group of MOFs ranked by rigorous process modeling and adsorbent 

evaluation metrics. Our findings showed CO2 swing capacity and the regenerability of 

MOFs are successful proxies to predict process-level rankings, while other simple metrics 

were not strongly correlated with the detailed results. Our analysis only considered a 

specific separation process, a PSA process for CO2 capture from dry flue gas at sub-

ambient temperatures, so we cannot conclude that the same two adsorbent evaluation 

metrics will be the best suited to all possible chemical separations. Nevertheless, the 

observation that two of the metrics we tested performed far better than the others indicates 

that future efforts to use adsorbent evaluation metrics in screening libraries of materials 

should carefully consider which metric(s) are best suited for the process of interest. Our 

results are an example of the risks that exist if choices about materials selection are made 

by relying exclusively on a single metric.87 Moreover, our models considered the 

performance of a separations process without regard for many of the practical issues that 

can limit scale up and implementation of new separations technologies.88 The challenges 

that almost inevitably arise during this kind of process development mean that making well 

justified choices at the earliest stages of materials selection and process design are critical. 



131 
 

It is hoped that the multi-level modeling approach we have illustrated here can make these 

choices more reliable and efficient in similar efforts in the future. 
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APPENDIX 4.A. SUPPORTING INFORMATION – CHAPTER 4 

4.A.1  Molecular Modeling Details 

 Molecular modeling of adsorption of a bulk CO2/N2 0.14/0.86 mixture and single 

component CO2 and N2 adsorption were conducted by Grand Canonical Monte Carlo 

(GCMC) simulations1,2-5 using the RASPA software4,5. To perform GCMC appropriate 

force fields are needed to describe non-bonding interactions such as van der Waals and 

electrostatic interactions for adsorbate/adsorbent and adsorbate/adsorbate interactions.6 

Classical force fields were used to compute van der Waals interaction, namely the universal 

force field (UFF)7 and the TraPPE8 force field. Lennard-Jones parameters for MOF atoms 

and quadrupolar CO2, N2 molecules were taken from UFF and TraPPE force field, 

respectively. Adsorbate/adsorbent interactions were defined with Lorentz-Berthelot 

mixing rule.9 Truncated potentials with tail corrections are applied where Lennard-Jones 

interactions are truncated at 12 Å. Simulation boxes are expanded to at least 26 Å along x, 

y, and z dimensions. Periodic boundary conditions were defined in all dimensions, and 

adsorbents and adsorbates were approximated as rigid. Electrostatic interactions were 

modeled pairwise with a long-range Ewald summation scheme.10 These interactions are 

computed via the density derived electrostatic and chemical (DDEC) point charges for 

MOF atoms11-13 and TraPPE charges for CO2 and N2 molecules4,5. The DDEC method 

assigns high-quality electrostatic point charges on framework atoms which is based on the 

electron density partitioning in periodic structures.11-13 GCMC simulations included 5,000 

initialization cycles followed by 50,000 production cycles for which initial tests indicated 

good convergence. Attempted Monte Carlo moves include translation, rotation, regrowth, 
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reinsertion, deletion and insertion of adsorbates with identical probabilities. For mixture 

GCMC, a Monte Carlo move that swapped the identity of existing molecules of which 

takes account for the competitive adsorption of each species was imposed in addition to 

above random moves. 

Pore volumes of computation-ready MOF structures were calculated from the void 

fractions of each structure using a Widom particle insertion method with a He probe 

molecule (ε/kB = 10.9 K, σ = 2.64 Å) at 298 K.5 Pore limiting diameters (PLD) were 

calculated with Zeo++14,15 applying the high-accuracy setting with a N2 probe molecule 

using a radius of 1.86 Å.14 Isosteric heats of adsorption at zero loading (Qads0) for CO2 and 

N2 were computed in the canonical ensemble.16,17 Monte Carlo moves in this simulation 

allowed translation, rotation, regrowth, and reinsertion moves of each CO2 and N2 at the 

identical probabilities. 

4.A.2  MOF Material Set 

Figure 4.A.1a illustrates the origin of 143 MOF structures from the energy optimized 

CoRE MOF DDEC charge database.18-20 Such a database enables high-throughput 

computational screening of MOFs for modeling of gas adsorption and diffusion in those 

materials.18 DFT optimization and assignment of atomic point charges for computation-

ready structures allow reliable adsorption modeling.19,20 In our earlier work of Chapter 3, 

PSA CO2 swing capacities were calculated for 477 structures of the energy optimized 

CoRE MOF DDEC charge database at sub-ambient temperatures. 143 of these structures 

had single component CO2 swing capacities from ~ 4 mol/kg to ~ 23 mol/kg at 243 K over 
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a pressure range from 0.1 bar to 2.0 bar.21 A list of 143 MOFs and swing capacities 

estimated from single component adsorption data are tabulated in Section 4.A.7. 

Competitive adsorption during treatment of multicomponent gas mixtures almost 

always reduce capacities relative to single component adsorption.22,23 Figure 4.A.1b 

compares swing capacities of 143 MOFs that are calculated for the difference between 

capacities of CO2 at adsorption pressure (PCO2,ads = 2.0 bar) and desorption pressure 

(PCO2,des = 0.1 bar) from single component adsorption in our earlier study (Chapter 3)21 and 

from CO2/N2 bulk mixture adsorption in this chapter. The results show that swing capacity 

is reduced by mixture adsorption, although this is not a dramatic effect at the pressures and 

temperatures we considered. 

 
Figure 4.A.1. (a) Schematic illustration of the origin of a MOF material set used in this 
chapter. (b) Comparison of CO2 swing capacities in 143 structures computed by single 
component adsorption data (horizontal axis) and by CO2/N2 0.14/0.86 bulk mixture 
adsorption data (vertical axis) at 243 K over adsorption pressure (PCO2,ads = 2.0 bar) and 
desorption pressure (PCO2,des = 0.1 bar). 
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4.A.3  Structure-Property Relationships for Adsorbent Evaluation Metrics 

Revealing the structure-property relationships between physical properties of 

adsorbent materials and their gas capture performances in various separation systems helps 

in selecting adsorbents.23-26 We examined such relationships with respect to swing capacity 

and adsorption selectivity for CO2 from a CO2/N2 0.14/0.86 bulk mixture adsorption data 

in 143 MOFs at a sub-ambient PSA process. The adsorbent evaluation metrics are tabulated 

in Section 4.A.7. The chosen physical properties include geometric features of MOFs, i.e. 

pore volume and pore size (adopted from the original CoRE MOF database resource18), 

and an energetic feature of MOFs, i.e. the difference of heats of adsorption at zero loading 

for CO2 and N2, ΔQads0 = Qads,CO20 - Qads,N20 (data not tabulated). 

Figure 4.A.2a shows the structure-property relationship for swing capacity as a 

function of MOF properties. Like the observation for CO2 swing capacity calculated from 

single component adsorption data in our previous study, large pore volume (VP) and pore 

limiting diameter (PLD) along with the difference in heats of adsorption at zero loading for 

competing species (ΔQads0) within a narrow range enable high swing capacity.21,23 

Figure 4.A.2b shows the structure-property relationship for adsorption selectivity as 

a function of MOF properties. Unlike the swing capacity, smaller VP and narrower PLD 

along with optimal range of ΔQads0 are correlated with large adsorption selectivity, i.e. xCO2 

over 0.9.25,26 The optimal ranges of the ΔQads0 leading to large swing capacity and 

adsorption selectivity were observed for similar values. The desirable features of VP and 

PLD, however, were different between swing capacity and adsorption selectivity. This 
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illustrates a trade-off relationship that generally exist between swing capacity and 

adsorption selectivity.27 

We have identified the desirable VP, PLD, and ΔQads0 for 28 MOFs that were 

classified as the cluster I in Chapter 4, i.e. the “best” adsorbents at the stage of using 

adsorbent evaluation metrics. These 28 MOFs (shown in red symbols in Figures 4.A.2a 

and 4.A.2b) have 0.7 ≤ VP ≤ 1.15 cm3/g, 5 ≤ PLD ≤ 10 Å, and 7.5 ≤ ΔQads0 ≤ 15 kJ/mol. 

 
Figure 4.A.2. (a) CO2 swing capacities of 143 MOFs at 243 K as a function of pore volume 
(VP), pore limiting diameter (PLD), and the difference of heats of adsorption at zero loading 
for CO2 and N2 (ΔQads0). (b) Adsorption selectivities for CO2 in 143 MOFs at bulk 
adsorption pressure and at 243 K as a function of VP, PLD, and ΔQads0. Each box in (a) and 
(b) show desirable ranges of VP, PLD, and of ΔQads0. Data in red symbols in (a) and (b) 
refer to 28 MOFs in cluster I which is defined in Chapter 4. 

4.A.4  Idealized PSA Model Details and IAST Implementation 

We adapted an idealized PSA process model from the prior work of Ga et al.28 Details 

of the performance indicators derived from this model and settings used in the model are 
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provided. In addition, the details of ideal adsorbed solution theory (IAST) that we used for 

prediction of mixture adsorption equilibrium in a series of process modeling are described. 

4.A.4.1 Idealized PSA Model Details 

 The idealized PSA model calculates two performance indicators: product purity 

(PuCO2, written as yECO2 here) and energy efficiency indicator (ηVPSA). The specific energy 

consumption we used in this chapter (EnCO2) is the reciprocal of the energy efficiency 

indicator. These quantities are derived in the form of explicit formulas as below. Swing 

capacities for each species can also be obtained separately which are the components in 

calculating product purity (ΔNi, written as Δqi here). 

Product purity 
     with      

where       
              

Energy efficiency 
indicator 

 

The idealized PSA model considers a two-step cycle process that occurs 

isothermally. In the adsorption step, the model assumes the adsorbent is saturated when 

exposed to flue gas of known composition (yi) at a specified high-pressure level and 

temperature, thus establishing equilibrium at these operating conditions. In the desorption 

step, the model assumes equilibrium at the evacuation conditions, thus the adsorption 

loadings under these conditions can be described in terms of the unknown purity of the gas 

product. The latter calculation is then combined with a separate mass balance that expresses 

the gas product composition in terms of the differences between the adsorption loadings at 
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equilibrium. The gas product compositions correspond to the molar amounts of the 

components left in the bulk gas phase of the extract product stream. Figure 4.1 in Chapter 

4 shows a schematic illustration of the model. 

The derivations above yield a non-linear algebraic equation in terms of the 

unknown purity of the extract product, yECO2. The adsorption loadings are calculated by 

IAST. We solve this task numerically by applying the function fsolve in MATLAB, with 

default settings and tolerances. The optimset module was used as an optimization option to 

solve the equations. Energy efficiency indicator, ηVPSA, can be calculated directly once 

yECO2 is obtained. The required energies in each of the operating steps are described by the 

isentropic work of compression and evacuation. The efficiency of the compressor (ηcompr) 

and vacuum (ηvac) were set for 75% and 30%, respectively. The feed pressure (Pfg) and 

ejection pressure (Pej) were set at 1.0 bar. 

Performance indicators above were calculated for 30 MOFs that were selected on 

the basis of adsorbent evaluation metrics (Figure 4.A.3). We apply the idealized PSA 

process model, along with examining the physical properties of MOFs, to select a small 

number of MOFs as possible to impose the rigorous PSA process optimization. 

We first chose non-open-metal site (OMS) MOFs to avoid the limited accuracy in 

molecular modeling of OMS MOFs, and possible uncertainty propagation in further 

process modeling. These OMS MOFs are discarded regardless of the results of 

performance indicators of the idealized model. The final selection of MOFs relied on PuCO2 

predicted by the idealized PSA process model. All MOFs of PuCO2 ≥ 90% were selected 

(MOFs in group I among cluster I). Among eight MOFs that belonged to cluster I but did 
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not exceed this standard, three MOFs were randomly chosen (MOFs in group II among 

cluster I). MOFs from clusters II and III are kept irrelevant to PuCO2 predicted by the 

idealized model. The entire procedure is described in Table 4.A.1 with lists of MOFs in 

each category. 

 
Figure 4.A.3. Performance indicators derived from the idealized PSA process model for 
30 MOFs. The indicators were calculated for a CO2/N2 0.14/0.86 mixture at 243 K at 400 
combinations of ad-/desorption pressures. Square, triangle, and downward-pointing 
triangle symbols stand for MOFs collected from clusters I, II, and III, respectively, from 
the pre-selection stage. (a) EnCO2-PuCO2 shown by Pareto fronts across operating pressures 
in each material. (b) ΔNCO2-PuCO2 shown with data from all combinations of ad-/desorption 
pressures.  
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Table 4.A.1. Material selection at the idealized PSA process modeling stage. MOFs are 
listed with CSD reference codes reported in the CoRE MOF database with a number of 
MOFs in each category in brackets. 15 MOFs that were selected to conduct rigorous 
process modeling are shown in bold. 
MOFs from Section 4.3.1.1. Non-open-metal site MOFs MOFs from Section 4.3.1.2. 
Cluster I Cluster I Cluster I 
BIBXUH, CUHPUR, 
FAKLOU, FEFCUQ, 
FEFDAX, FIQCEN, 
KEFBEE, LASYOU, 
MATVEJ, MOCKEV, 
NUTQAV, NUTQEZ, 
QUQFIS, RAXCOK, 
RIFDUG01, SENWAL, 
SENWIT, SENWOZ, 
TERFUT, UBUMAH, 
UTEWOG, UTEWUM, 
XAMDUM07, XINFUW, 
XUGSEY, YUGLES, 
ZESFUY, ZIKJIO 

(# = 28) 

BIBXUH, CUHPUR, 
FAKLOU, FEFCUQ, 
FEFDAX, MATVEJ, 
QUQFIS, RAXCOK, 
SENWAL, SENWIT, 
SENWOZ, TERFUT, 
UBUMAH, UTEWOG, 
UTEWUM, XINFUW, 
XUGSEY, ZESFUY 

(# = 18) 

Group I (PuCO2 ≥ 90%) 
CUHPUR, FAKLOU, 
FEFDAX, RAXCOK, 
SENWAL, SENWIT, 
SENWOZ, UTEWOG, 
UTEWUM, ZESFUY 

(# = 10) 
Group II (PuCO2 < 90%) 

BIBXUH, MATVEJ, 
TERFUT 

(# = 3) 

Cluster II Cluster II Cluster II 
SERKEG 

(# = 1) 
SERKEG 

(# = 1) 
SERKEG 

(# = 1) 
Cluster III Cluster III Cluster III 
OJICUG 

(# = 1) 
OJICUG 

(# = 1) 
OJICUG 

(# = 1) 
* Note OJICUG resulted in PuCO2 < 90% from prediction of the idealized PSA process 
model. 
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4.A.4.2 IAST Implementation 

 In our idealized and rigorous process models IAST was used to define mixture 

adsorption equilibrium.29-32 The constitutive equations29 for IAST are listed below. 

Descriptions Equations 
Raoult’s law  
Equilibrium condition  

Spreading pressure 
 

Closure 
 

Total adsorbed phase concentration 
 

Adsorbed phase concentration for component i  

Accurate characterization of single component adsorption isotherms, i.e. fitting the 

single component adsorption data to an analytical adsorption model that can best describe 

the adsorption behavior, is necessary for reliable mixture adsorption prediction via IAST.29-

32 Using the chosen isotherm equation and corresponding parameters enables an analytical 

formulation of the spreading pressure which is a key component for IAST calculations.29,30 

Single component adsorption isotherms for CO2 and N2 were estimated by 

molecular simulations (see Section 4.A.1). The process models require temperature-

dependent adsorption equilibrium. Therefore we estimated adsorption equilibrium of both 

CO2 and N2 at temperatures of 213, 228, 243, 258, and 273 K. We provide the analytical 

adsorption models used in this chapter and a summary of isotherm equations applied for 

15 chosen MOFs below. Note that fitting for CO2 adsorption is much more complicated 

than that for N2 adsorption at low temperatures. This is highly related with the accuracy 
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and robustness in rigorous process modeling. Due to this reason, we revisit the parameter 

estimation for CO2 isotherms in chosen MOFs we proceed with the rigorous process 

modeling (see Section 4.A.4.2.1). 

Analytical Models Model Equations and Parameters 

Dual-site Langmuir 
(dsL) 

 

 

dual-site 
Langmuir-Freundlich 
(dsLF) 

 

 

triple-site 
Langmuir-Freundlich 
(tsLF) 

 

 

 

quadratic plus Langmuir 
(quadL)  

 

 

Summary of Isotherm Equations 
MOFs CO2 N2 CO2 (*) MOFs CO2 N2 CO2 (*) 

SENWAL dsLF dsL tsLF ZESFUY dsLF dsL quadL 
SENWOZ dsLF dsL tsLF CUHPUR dsLF dsL quadL 
SENWIT tsLF dsL tsLF TERFUT dsLF dsL tsLF 
UTEWUM tsLF dsL tsLF BIBXUH tsLF dsL tsLF 
RAXCOK dsLF dsL quadL MATVEJ dsLF dsL quadL 
UTEWOG dsLF dsL tsLF SERKEG dsLF dsL quadL 
FEFDAX dsLF dsL quadL OJICUG dsLF dsL dsL 
FAKLOU dsLF dsL quadL     

* Analytical models applied to CO2 isotherms after re-parameterization (Section 
4.A.4.2.1). 
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Figure 4.A.4 shows the fitting results for CO2 and N2 adsorption isotherms at 243 

K via non-linear parameter estimation31,32 for 15 MOFs. All cases show good agreements 

between the fits and isotherm data. The choice of isotherm models is material and 

component dependent on giving the best fits on isotherms. Models parameters for each 

MOF are summarized in Table 4.A.2. 

 
Figure 4.A.4. Analytical model fits (solid curves) for (a) CO2 and (b) N2 single component 
isotherms predicted by GCMC simulations (symbols) at 243 K for 15 MOFs. More 
information about the analytical model fits is given in Tables 4.A.2 and 4.A.2.1. 
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Table 4.A.2. Analytical adsorption model parameters for 15 MOFs: CO2 isotherms. 

Model Parameters for CO2 (component i = 2 in model equations) 

                
SENWAL 7.9 17.9 - 2.4e-6 3.3e-6 - 2.2e3 1.7e-3 - 9.0e-1 1.0e-1 - 45.4 8.4e2 - 
SENWOZ 19.9 11.4 - 1.3e-4 1.4e-6 - 1.7 2.4e3 - 1.1e-1 5.9e-1 - 8.0e2 1.6e-5 - 
SENWIT 13.8 4.6 9.8 4.3e-6 6.2e-6 6.8e-8 0.7e-3 1.9e3 3.0e3 9.9e-2 5.4e-1 7.4e-1 8.9e2 2.7e2 6.5e-9 
UTEWUM 8.4 8.8 7.1 4.9e-9 3.1e-8 4.6e-8 3.2e3 1.5e3 3.7e3 4.9e-1 2.7e-1 9.3e-1 2.3e2 6.0e2 42.8 
RAXCOK 6.8 15.0 - 5.2e-6 3.0e-8 - 2.4e3 3.3e3 - 5.0e-1 7.0e-1 - 24.6 1.8e2 - 
UTEWOG 5.0 9.4 - 3.5e-3 2.0e-6 - 3.8e2 2.0e2 - 9.9e-3 3.5e-1 - 1.1e3 5.5e2 - 
FEFDAX 6.2 11.4 - 1.1e-6 2.9e-8 - 2.7e3 3.0e3 - 5.2e-1 4.3e-1 - 82.4 3.4e2 - 
FAKLOU 9.9 7.2 - 2.2e-7 5.3e-7 - 2.6e3 2.9e3 - 2.1e-1 6.9e-1 - 5.5e2 2.5e-7 - 
ZESFUY 8.5 8.7 - 1.9e-8 4.1e-7 - 2.9e3 2.9e3 - 2.0e-1 7.3e-1 - 6.4e2 9.8 - 
CUHPUR 8.7 9.8 - 6.5e-7 4.1e-8 - 2.8e3 3.0e3 - 6.7e-1 7.1e-1 - 3.6e-6 2.2e2 - 
TERFUT 10.5 7.0 - 2.3e-7 3.2e-6 - 2.2e3 2.4e3 - 3.8e-1 5.5e-1 - 4.0e2 9.5e-7 - 
BIBXUH 1.5 13.5 7.0 4.2e-2 1.3e-5 3.9e-8 2.2e2 8.3e2 3.3e3 5.2e-1 2.5e-1 7.1e-1 20.2 5.5e2 20.8 
MATVEJ 12.3 4.5 - 2.8e-8 2.4e-6 - 2.7e3 2.5e3 - 3.3e-1 8.9e-1 - 4.1e2 25.8 - 
SERKEG 2.9 6.0 - 7.3e-4 6.5e-8 - 50.0 3.2e3 - 1.3e-2 8.1e-1 - 1.2e3 1.2e2 - 
OJICUG 26.8 6.6 - 1.9e-7 1.9e-5 - 2.6e3 2.0e3 - 1.2 6.2e-2 - 14.2 4.6e2 - 

* Parameter units: qi0 [=] mol/kg, ci0 [=] mol/m3, T [=] K, R = 8.314 x 10-5 m3∙bar/mol∙K and/or = 8.314 J/mol∙K 
                              qijsat [=] mol/kg, bij0 [=] m3/mol, Bij [=] J/mol, θij0 [=] -, Θij [=] J/mol (where j refers to adsorption sites) 
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Table 4.A.2. Continued: N2 isotherms. 

Model Parameters for N2 (component i = 1 in model equations) 

       
SENWAL 22.9 2.4e-2 9.9e-6 6.8e-3 8.9e2 1.4e-2 
SENWOZ 1.7 20.1 2.5e-8 1.3e-5 2.1e3 8.6e2 
SENWIT 2.0 17.8 3.5e-8 1.3e-5 2.0e3 9.1e2 
UTEWUM 16.1 4.3 3.4e-6 3.3e-5 1.1e3 1.1e3 
RAXCOK 3.5 13.6 4.3e-8 1.1e-5 1.9e3 1.1e3 
UTEWOG 4.1 14.7 3.6e-5 3.5e-6 1.1e3 1.2e3 
FEFDAX 12.3 2.8 1.0e-5 2.5e-8 1.1e3 2.1e3 
FAKLOU 11.3 1.3 9.7e-6 6.6e-9 1.2e3 2.3e3 
ZESFUY 2.0 11.2 1.2e-8 1.1e-5 2.4e3 1.2e3 
CUHPUR 11.6 3.6 1.2e-5 2.0e-8 1.1e3 2.0e3 
TERFUT 3.7 9.9 1.3e-7 1.1e-5 1.7e3 1.1e3 
BIBXUH 3.4 14.6 2.3e-8 1.4e-5 2.0e3 1.0e3 
MATVEJ 2.9 16.7 3.1e-8 1.4e-5 2.0e3 9.5e2 
SERKEG 5.4 2.3e-14 6.9e-6 1.8e-3 1.2e3 2.2e-5 
OJICUG 4.4 21.5 1.5e-7 1.5e-5 1.7e3 8.3e2 

* Parameter units: qi0 [=] mol/kg, ci0 [=] mol/m3, T [=] K, R = 8.314 x 10-5 m3∙bar/mol∙K and/or = 8.314 J/mol∙K 
                              qijsat [=] mol/kg, bij0 [=] m3/mol, Bij [=] J/mol (where j refers to adsorption sites) 
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4.A.4.2.1 Re-parameterization of CO2 Isotherms for Rigorous Modeling 

 The characterization of single component adsorption data requires more cautious 

efforts in process optimization where IAST is highly coupled with other complex iterative 

calculations.33 Potential numerical challenges in IAST can affect the accuracy and 

robustness in rigorous process modeling. The origin of numerical difficulties arises from 

the fact that dual-site Langmuir-Freundlich models do not have finite Henry coefficients at 

infinite dilution. This limit is, however, an important quantity to accurately predict mixture 

equilibrium via IAST at dilute concentrations. Corrections to this deficiency have been 

presented in the literature.34 

In order to avoid potential numerical difficulties with IAST in the dynamic 

simulation and multi-objective optimization, we conducted re-parameterization of CO2 

single component adsorption isotherms of chosen MOFs. We employed a Type IV 

equilibrium equation, i.e. quadratic plus Langmuir equation, which is able to precisely 

describe inflection points along isotherm courses. The structure codes of MOFs for which 

CO2 isotherms were re-parameterized to the quadratic plus Langmuir equation are 

RAXCOK, FEFDAX, FAKLOU, ZESFUY, CUHPUR, MATVEJ, and SERKEG. Triple-

site Langmuir-Freundlich model also helps to avoid numerical difficulties discussed above 

by introducing an additional adsorption site.34 MOFs for which re-parameterization was 

achieved by triple-site Langmuir-Freundlich model were SENWAL, SENWOZ, SENWIT, 

UTEWUM, UTEWOG, TERFUT, and BIBXUH. For OJICUG, the dual-site Langmuir 

equation was used that allows simple calculation of Henry coefficient. 
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We found this re-parameterization step significantly reduced the computational 

cost and improved robustness of our simulations, without affecting the results of IAST 

(data not shown). Table 4.A.2.1 lists the model parameters obtained after the re-

parameterization. Comparison of GCMC simulated adsorption data and model fits using 

re-parameterized parameters for CO2 in Table 4.A.2.1 and using parameters in Table 4.A.2 

for N2 at five temperatures (213, 228, 243, 258, and 273 K) in 15 MOFs are provided 

below. 
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Table 4.A.2.1. Analytical adsorption model parameters for 15 MOFs after re-parameterization of CO2 isotherms. 

Model Parameters for CO2 (component i = 2 in model equations) 

                
SENWAL 16.8 3.8 13.0 4.8e-7 8.8e-6 2.5e-8 1.9e-5 1.8e3 3.0e3 1.7e-1 6.5e-1 7.2e-1 7.9e2 2.1e2 26.5 
SENWOZ 15.1 3.5 11.7 3.7e-6 6.0e-6 4.9e-8 6.4e-4 1.9e3 3.0e3 9.5e-2 5.3e-1 7.4e-1 9.0e2 2.7e2 7.4 
SENWIT 13.8 4.6 9.8 4.3e-6 6.2e-6 6.8e-8 0.7e-3 1.9e3 3.0e3 9.9e-2 5.4e-1 7.4e-1 8.9e2 2.7e2 6.5e-9 
UTEWUM 8.4 8.8 7.1 4.9e-9 3.1e-8 4.6e-8 3.2e3 1.5e3 3.7e3 4.9e-1 2.7e-1 9.3e-1 2.3e2 6.0e2 42.8 
RAXCOK 3.4 13.4 - 4.3e-2 8.0e-10 2.3e-8 1.2e-2 4.0e3 3.6e3 - - - - - - 
UTEWOG 14.3 9.4 2.4 8.5e-6 3.2e-8 1.8e-8 2.1e3 1.7e3 4.0e3 6.1e-1 4.0e-1 5.3e-1 7.2e-8 4.8e2 2.9e2 
FEFDAX 3.7 9.7 - 7.7e-3 1.0e-8 2.5e-8 2.7e2 3.1e3 3.5e3 - - - - - - 
FAKLOU 2.7 10.9 - 2.3e-2 6.2e-9 2.5e-8 23.1 3.5e3 3.5e3 - - - - - - 
ZESFUY 3.0 10.8 - 2.9e-5 7.5e-9 2.4e-8 8.0e-7 3.5e3 3.4e3 - - - - - - 
CUHPUR 3.3 10.8 - 2.5e-2 4.2e-9 8.1e-9 4.7e-2 3.5e3 3.7e3 - - - - - - 
TERFUT 4.9 9.9 1.9 4.5e-8 1.0e-7 7.1e-3 1.1e3 3.0e3 3.1e2 2.4e-1 6.2e-1 1.7e-1 6.8e2 95.5 5.5e2 
BIBXUH 7.6 1.5 12.2 1.4e-8 2.7e-2 3.8e-8 3.4e3 2.2e3 2.1e3 6.4e-1 2.6e-1 5.1e-1 93.0 3.8e2 3.9e2 
MATVEJ 2.8 14.7 - 2.9e-2 1.3e-8 6.4e-8 25.7 2.9e3 3.0e3 - - - - - - 
SERKEG 1.0 7.9 - 6.6e-4 2.9e-8 1.5e-8 32.6 3.0e3 3.5e3 - - - - - - 
OJICUG 15.9 16.3 - 4.3e-6 1.1e-7 - 2.1e3 2.9e3 - - - - - - - 

* Parameter units: qi0 [=] mol/kg, ci0 [=] mol/m3, T [=] K, R = 8.314 x 10-5 m3∙bar/mol∙K and/or = 8.314 J/mol∙K 
                              qijsat [=] mol/kg, bij0 [=] m3/mol, Bij [=] J/mol, θij0 [=] -, Θij [=] J/mol (where j refers to adsorption sites) 
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MOFs Adsorption Data and Model Fits 
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MOFs Adsorption Data and Model Fits 
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MOFs Adsorption Data and Model Fits 
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MOFs Adsorption Data and Model Fits 
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Isosteric heats of adsorption (ΔHads,i) for each gas species is needed for 

temperature-dependent adsorption isotherm fitting. Below summarizes ΔHads,CO2 and 

ΔHads,N2 in 15 MOFs that were calculated using Clausius-Clapeyron equation. 

MOFs ΔHads,CO2 (kJ/mol) ΔHads,N2 (kJ/mol) 
SENWAL -24.9 -9.4 
SENWOZ -30.0 -9.5 
SENWIT -30.3 -9.9 
UTEWUM -28.8 -11.3 
RAXCOK -24.8 -11.6 
UTEWOG -30.9 -11.5 
FEFDAX -25.5 -11.5 
FAKLOU -25.6 -11.9 
ZESFUY -29.4 -12.3 
CUHPUR -23.2 -11.2 
TERFUT -37.9 -11.6 
BIBXUH -30.8 -10.7 
MATVEJ -18.4 -10.3 
SERKEG -27.1 -12.2 
OJICUG -22.3 -9.6 
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4.A.5  Rigorous Process Modeling Details 

4.A.5.1 PSA Modeling and Thermally Modulated Fiber Adsorbent Modeling Details 

 A PSA process model that incorporates thermally modulated fiber adsorbents was 

developed in a recent study by Rubiera Landa et al.35 The following assumptions were 

made in developing the transient balance equations that describe the cyclic adsorption 

process using thermally modulated fiber adsorbents. We also refer interested readers to the 

original source of Rubiera Landa et al.35 for more details. 

• The process is modeled in one spatial dimension (1D) in the direction of fluid flow. 
• The ideal-gas law holds. 
• The process operates adiabatically. 
• A linear driving-force (LDF) approximation36,37 is used to describe mass transfer 

between gas phase and fiber composite. 
• Fibers are distributed evenly within the module, allowing a uniform gas flow. 
• Radial distributions within a fiber and a module, including dispersion and heat 

conduction, are negligible. 
• Mass transfer resistance occurs at the macropores of the fiber adsorbent with negligible 

micropore resistance in the MOF crystals and negligible gas-film resistance 
surrounding the fibers. 

• Pressure drop along the direction of fluid flow is represented by the Happel equation38 
along solid cylinders arranged in parallel. 

• Gas viscosity is constant within the temperature range considered. 
• Heat transfer between fiber composite and gas phase occurs instantaneously. 
• Heat transfer between all solid elements of the fiber composite (i.e. polymeric matrix, 

MOF crystals, and PCM) occurs instantaneously. This assumption simplifies the 
energy balance, which accommodates a simplified melting/solidification of PCM, i.e. 
a smooth-interface model. 

• Changes in the PCM density are included in the model equations. However, volumetric 
expansion and contraction within the microencapsulated PCMs are neglected. 

• Temperature dependency of the PCM is taken account. 
• Melting and solidification kinetics of the PCM are neglected. 
• Heat capacities and densities for the solid materials that constitute the fiber composite, 

i.e. polymeric matrix and MOF, are constant. 
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Below are the transient balances equations with corresponding boundary 

conditions, valve behavior expressions for the pressurization boundary condition, and 

initial conditions used in our rigorous PSA modeling applying fiber composite adsorbents. 

Transient Balance Equations 
Total mass balance 

 
Mass balance for component i 

 

 

 
Energy balance 

 

where, 

 
Momentum balance 
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Boundary Conditions 
at  at  

Counter-current pressurization 

 

 

 

 

 

  

 

 
Adsorption 

 

 

 

 

 

  

 

 
Co-current blowdown 

 

 

 

 

 

 

 

 
Counter-current evacuation 
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Valve Behavior Expressions for the Pressurization Boundary Condition 

 

      

 
 

 

Initial Conditions 

 
 

 
 
 

 

 

Cyclic operation was implemented by initializing the time integration for each step 

of cycle configuration in kth cycle as follows. 

Cycle Configuration Time Integration in kth cycle 

Counter-current 
pressurization  
Adsorption  
Co-current blowdown  
Counter-current evacuation  
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The linear driving-force approximation36,37 for mass transfer calculation is carried 

out with the following mathematical descriptions. 

Mass transfer 

 

 

          
Estimation of fiber tortuosity 

 

The following auxiliary expressions and parameters necessary to describe the fiber 

composites complete the mathematical description of the rigorous process model. The 

following smooth-interface model39 approximates the PCM melting/freezing processes. 

Auxiliary Expressions and Parameters 
Volumetric ratio of PCM to solids in fiber composite 

 
Volumetric ratio of MOF to combined volume of polymer and MOF 

 
Weight fractions of fiber components 

 
 

Smooth-Interface Model39 for Phase-Transitions of PCM 
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Process-level objectives (Table 4.2 of Chapter 4) evaluated at cyclic steady state 

are derived as the following equations. 

Objectives Objective Formula 

Purity 
 

Recovery 
 

Productivity 
 

Specific energy consumption 
 

where, 

 

 

 

 

 

Work terms (W) required for each step of the cycles in calculating the specific 

energy consumption are given as the following equations. 

Cycle 
Configuration Work Calculation 

Counter-current 
pressurization  

Adsorption 

 
Co-current 
blowdown  

Counter-current 
evacuation 
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We proceed with a numerical approximation to obtain solutions of the rigorous 

process model described above. We applied the finite volume method (FVM) in order to 

discretize the partial differential equation (PDE) system in space and obtain an ordinary 

differential equation (ODE) system, which can then be integrated in time. This 

discretization is commonly referred to as “method of lines” approach.40 The required flux 

function approximations applied in the FVM are obtained with the third order upwind-

biased scheme, applying the flux monitor function given by Koren et al.41 Finally, the ODE 

system is integrated in time with the backward differentiation formulas.42 We implemented 

these numerical schemes in MATLAB.43 

Below we provide a collection of material properties describing the thermally 

modulated fiber adsorbents and a set of parameters applied in our PSA process modeling. 

Solid and Liquid Properties in Smooth-Interface Model 
Properties Symbols Values Units 
PCM heat capacity (liquid)  2140 J/kg∙K 

PCM heat capacity (solid)  2900 J/kg∙K 

PCM heat of transition  150.0e3 J/kg 

PCM heat conductivity (liquid)  0.15 W/m∙K 

PCM heat conductivity (solid)  0.17 W/m∙K 

PCM density (liquid)  760 kg/m3 

PCM density (solid)  880 kg/m3 

Smoothing parameter  1.5 - 

Temperature of transition  243.15 K 
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Set of Parameters in Rigorous Process Model 
Parameters Symbols  Values Units 
Molar heat capacity (gas phase)  30.5 J/mol∙K 
Molar heat capacity (adsorbed phase)  30.5 J/mol∙K 
Heat capacity (MOF)  750 J/kg∙K 
Heat capacity (polymer)  1465 J/kg∙K 
Axial dispersion coefficient  0.5e-3 m2/s 
Compression efficiency  0.7 - 
Evacuation efficiency  0.3 - 
Fiber porosity  0.6 - 
Packing fraction of fiber bed  0.7 - 
Ratio of gas heat capacities  1.4 - 
Gas heat conductivity  2.5e-2 W/m∙K 
Polymer heat conductivity  1.9e-1 W/m∙K 
Valve coefficient  0.1e-3 m∙g1/2/s∙Pa∙mol1/2 
Bed length  1.0 m 
Molecular weight (N2)  28.0 g/mol 
Molecular weight (CO2)  44.0 g/mol 
Gas viscosity  1.5e-5 Pa∙s 
Ideal gas constant  8.314 J/mol∙K 
Single fiber radius  25.0e-5 m 
Free-surface radius  30.0e-5 m 
Density (MOF)  1.1e3 kg/m3 
Density (polymer)  1.2e3 kg/m3 
Lennard-Jones collision diameter (N2)  3.7 Å 
Lennard-Jones collision diameter (CO2)  3.8 Å 
Lennard-Jones collision diameter (CO2/N2 pair)  1.5 Å 
Temperature of operation  243.15 K 
Blow-down gas velocity  0.2 m/s 
Evacuation gas velocity  3.2 m/s 
Single fiber volume  2.0e-7 m3 
Free-surface volume  8.6e-8 m3 
Collision integral value, Lennard-Jones (LJ)  1.3 - 
Weight fraction of polymer in fiber composite  0.3 - 
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4.A.5.2 Process Optimization Details 

 We treat the rigorous process modeling as a black-box function with a set of 

available decision variables for the PSA cycle as inputs. Five decision variables were 

considered: adsorption pressure, velocity of the feed gas, adsorption step time, evacuation 

pressure, and weight fraction of MOF in the fiber composite. The outputs are given by the 

process-level objectives at cyclic steady state described in detail above. The table below 

lists the decision variables considered with their lower and upper bounds. 

Set of Decision Variables and Bounds 
Decision Variables Symbols Lower Bounds Upper Bounds Units 
Adsorption pressure  3.0 7.5 atm 
Gas velocity of feed  0.15 1.0 m/s 
Adsorption step time  15.0 120.0 s 
Evacuation pressure  0.15 0.35 atm 
MOF weight fraction in fiber  0.15 0.40 - 

Three bi-objective optimization tasks were conducted by formulating pairs of 

process-level objectives. Pareto fronts of below pairs of process objectives were obtained. 

• Specific energy consumption and product purity. 
• Product purity and product recovery. 
• Productivity and specific energy consumption. 

We applied the multi-objective optimization function gamultiobj included in the 

Global Optimization Toolbox available in MATLAB.43 The algorithm of this function is a 

variant of the NSGA-II genetic algorithm.44 Optimization variables and additional 

information used in our process optimization is summarized below. 

Settings in NSGA-II Optimizer to Compute Pareto fronts 
Optimizer Parameters Values 
Number of decision variables 5 
Population size 80 
Cross-over fraction  0.95 
Maximum number generations 30 
Function tolerance 7.5e-3 
Number of workers (parallelization option)  4 
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4.A.6  Comparing Approximate and Detailed Models of Adsorption-based Carbon 

Capture Process 

4.A.6.1 Spearman’s Rank-Order Correlation 

 Spearman’s rank-order correlation (ρ) is defined as below where di and n refer to 

the difference between two paired ranks and the number of observations, respectively. Note 

all n ranks should be distinct integers without data having tied ranks within each data set. 

A general guideline for interpreting Spearman’s rank-order correlation is provided in Table 

4.A.3. The sign of the rank order correlation indicates the direction of association between 

two variables. Interpretation on the strength of the rank order correlation is adopted from 

previous discussions.45,46 

𝜌𝜌 = 1 −
6∑𝑑𝑑𝑖𝑖2

𝑛𝑛(𝑛𝑛2 − 1)
 

Table 4.A.3. Spearman’s rank-order correlation (ρ) for a quantitative comparison between 
rankings provided by different variables. A general guideline to assess the measure of 
ranking dis-/similarity associated with the color coding is adopted from the literature.45,46 
Direction Range Strength Interpretation 

∣ρ∣ 

0.80 – 1.00 very strong 
observations have similar ranks between two 
variables 0.60 – 0.79 strong 

0.40 – 0.59 moderate 
0.20 – 0.39 weak observations have dissimilar ranks between 

two variables 0.00 – 0.19 very weak 

Spearman’s rank-order correlation reaches to values of 1 and/or -1 when two 

rankings are monotonically related. Note that ranks are defined as relative position label of 

the observations within the variables so the rank order correlation does not capture 

differences in magnitudes of the variables of interest.45,46 
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4.A.6.2 Rigorous Process Model and Adsorbent Evaluation Metrics 

 A quantitative comparison of MOF rankings between rigorous process model and adsorbent evaluation metrics were measured 

via Spearman’s rank-order correlation in Figure 4.7. Table 4.A.4 lists 15 MOFs and their detailed performance rankings given by each 

descriptor. 

Table 4.A.4. Spearman’s rank-order correlation (ρ) between rankings of 15 MOFs from rigorous process modeling and adsorbent 
evaluation metrics. Standard deviation (SD) is calculated for normalized performance descriptors derived from each level of modeling 
to reflect the dispersion of each descriptor. Detailed MOF rankings (1-15) are given for each performance descriptor. 

 Rigorous Process Model Adsorbent Evaluation Metrics 
EnCO2-PuCO2 PuCO2-ReCO2 PrCO2-EnCO2 ΔNCO2 Sads,CO2/N2ads SSP,CO2/N2 APSCO2/N2 R 

ρ/SD 
Ref/0.29 - - 0.50/0.29 0.31/0.24 0.34/0.22 0.54/0.32 0.37/0.34 
- Ref/0.28 - 0.46/0.29 -0.16/0.24 0.14/0.22 0.05/0.32 0.79/0.34 
- - Ref/0.29 0.54/0.29 -0.19/0.24 0.03/0.22 0.11/0.32 0.69/0.34 

SENWOZ 1 1 1 2 5 6 3 2 
SENWIT 2 2 2 3 4 4 1 3 
OJICUG 3 4 8 4 15 15 15 7 
SENWAL 4 3 3 1 11 7 6 1 
SERKEG 5 11 15 15 1 1 4 9 
FAKLOU 6 12 11 11 3 2 5 11 
FEFDAX 7 7 6 10 10 8 10 8 
RAXCOK 8 9 7 8 2 3 2 13 
CUHPUR 9 8 9 13 8 9 11 12 
UTEWUM 10 15 14 6 7 13 7 14 
UTEWOG 11 14 10 9 9 14 8 15 
BIBXUH 12 5 4 7 13 10 13 4 
MATVEJ 13 13 12 5 14 12 12 5 
TERFUT 14 6 5 14 12 11 14 6 
ZESFUY 15 10 13 12 6 5 9 10 
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We formulated a Combined Adsorbent Evaluation Metric (CAEM) defined as the 

following equation. CAEM considers all five adsorbent evaluation metrics to balance the 

contribution of each metric. Here Di refers to adsorbent evaluation metric and fi is a power 

for each metric Di. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝐷𝐷𝑖𝑖𝑓𝑓𝑖𝑖
𝑖𝑖

 

CAEM is formed for each pair of process objectives that we examined. This is 

possible by tuning fi where 0 ≤ fi ≤ 1. fi are empirical parameters that are meant to best 

improve the rank order correlation between process-level rankings (Table 4.A.4) and 

CAEM rankings (rankings not tabulated). Case dependent parameters of fi that were found 

to work best are summarized in Table 4.A.5. 

Table 4.A.5. Summary of the fi parameters in CAEM for each pair of process-level 
objectives from rigorous process model. Di refers to adsorbent evaluation metrics of ΔNCO2, 
Sads,CO2/N2

ads, SSP,CO2/N2, APSCO2/N2, and R from i = 1 to i = 5. fi stands for a power on 
corresponding metrics of i. 

Rigorous 
Process Model 

Adsorbent Evaluation Metrics 

D1 D2 D3 D4 D5 

EnCO2-PuCO2 fi 0.78 0.20 0.11 0.40 0.17 

PuCO2-ReCO2 fi 0.30 0.07 0.05 0.01 0.98 

PrCO2-EnCO2 fi 0.30 0.07 0.01 0.05 0.98 
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Table 4.A.6 summarizes the same analysis of ranking comparison between rigorous 

process modeling and CAEM as in Figure 4.7. Spearman’s rank-order correlation for single 

adsorbent evaluation metrics is reproduced from Figure 4.7 to allow clear comparison with 

the correlation for CAEM. 

For EnCO2-PuCO2, CAEM improved the rank correlation relative to using single 

metrics. All single metrics had ρ < 0.60 in predicting the materials ranking. This indicates 

a fine tuning of fi in CAEM helps to provide better similarity to process-level ranking of 

materials when there was no winning single metric. Nevertheless, CAEM did not have 

positive impact on rank correlation for PuCO2-ReCO2 and PrCO2-EnCO2. These pairs of 

process objectives already had a successful metric in predicting the materials ranking, i.e. 

R with ρ ≥ 0.60. In such cases, adjusting fi is biased to the winning metric, i.e. f5 (a power 

on R) approaches to 1 as shown in Table 4.A.5. It showed having a balance between single 

metrics can be destructive relative to relying on single metrics in these cases. 

Table 4.A.6. Spearman’s rank-order correlation (ρ) between rankings of 15 MOFs from 
rigorous process modeling and adsorbent evaluation metrics along with rankings from 
CAEMs. 

 Rigorous 
Process Model 

Adsorbent Evaluation Metrics 
CAEM 

ΔNCO2 Sads,CO2/N2
ads SSP,CO2/N2 APSCO2/N2 R 

ρ 

EnCO2-PuCO2 0.50 0.31 0.34 0.54 0.37 0.66 

PuCO2-ReCO2 0.46 -0.16 0.14 0.05 0.79 0.79 

PrCO2-EnCO2 0.54 -0.19 0.03 0.11 0.69 0.69 
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4.A.6.3 Rigorous and Idealized PSA Process Models 

 A quantitative comparison of MOF rankings between rigorous process model and 

idealized PSA process model were measured via Spearman’s rank-order correlation in 

Figure 4.8. Table 4.A.7 lists 15 MOFs and their detailed performance rankings given by 

each level of process model. 

Table 4.A.7. Spearman’s rank-order correlation (ρ) between rankings of 15 MOFs from 
rigorous process modeling and idealized PSA process modeling. MOF rankings are 
provided from objectives of EnCO2-PuCO2 using achievable PuCO2 at a fixed EnCO2 of 400 
kWh/t. Standard deviation (SD) is calculated for normalized PuCO2 at EnCO2 constraint for 
each level of modeling to reflect the dispersion of each normalized PuCO2. Detailed MOF 
rankings (1-15) are given for each level of process model. 

 
Rigorous 

Process Model 
Idealized PSA 
Process Model 

EnCO2-PuCO2 EnCO2-PuCO2 
ρ/SD Ref/0.29 0.54/0.29 
SENWOZ 1 5 
SENWIT 2 4 
OJICUG 3 10 
SENWAL 4 11 
SERKEG 5 1 
FAKLOU 6 3 
FEFDAX 7 9 
RAXCOK 8 2 
CUHPUR 9 6 
UTEWUM 10 7 
UTEWOG 11 12 
BIBXUH 12 14 
MATVEJ 13 15 
TERFUT 14 13 
ZESFUY 15 8 

Table 4.A.8 summarizes the sensitivity of rank order correlation between two 

process models as a function of different choice of EnCO2 constraints. The choice of EnCO2 

constraints were made within EnCO2 range where EnCO2-PuCO2 Pareto fronts were likely to 

cross over each other. 
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Table 4.A.8. Spearman’s rank-order correlation (ρ) between rankings of 15 MOFs from 
rigorous process modeling and idealized PSA process modeling. MOF rankings are 
provided from objectives of EnCO2-PuCO2 using achievable PuCO2 as a function of choice 
of EnCO2. Spearman’s rank-order correlation for rankings made at corresponding EnCO2 
constraints are shown. 

Rigorous Process 
Model 

Idealized PSA Process Model 
EnCO2 = 350 kWh/t EnCO2 = 400 kWh/t EnCO2 = 450 kWh/t 

EnCO2 = 350 kWh/t ρ = 0.71 - - 
EnCO2 = 400 kWh/t - ρ = 0.54 - 
EnCO2 = 450 kWh/t - - ρ = 0.41 

As for the last comparison of the rankings of MOFs in terms of their performance 

derived from models of multiple levels of complexity and fidelity, Figure 4.A.5 

summarizes Spearman’s rank-order correlation between rankings of 15 MOFs from from 

idealized PSA process model and adsorbent evaluation metrics. This is a similar analysis 

that was made in Figure 4.7 but with “pseudo”-process scale performance derived from a 

simplified process model. Unlike the observations for the rigorous process modeling, 

Sads,CO2/N2ads, SSP,CO2/N2, and APSCO2/N2 appeared to be highly successful metrics for 

predicting pseudo-process scale performance. On the other hand, ΔNCO2 and R were found 

as relatively poor proxies for predicting pseudo-process scale performance. It may imply 

the importance of process optimization for each material that can cause considerable 

variation in process-level evaluation of those materials. 

 
Figure 4.A.5. Spearman’s rank-order correlation (ρ) between rankings of 15 MOFs from 
idealized PSA process modeling (vertical axis) and adsorbent evaluation metrics 
(horizontal axis). MOFs ranked by idealized process model are based on PuCO2 at a fixed 
EnCO2 of 400 kWh/t (Table 4.A.7). MOFs ranked by adsorbent evaluation metrics are based 
on the relative performance of materials using each metric (Table 4.A.4). 
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4.A.7  Numerical Data for Analysis 

Table 4.A.9. List of 143 MOFs and swing capacities (ΔNCO2 in mol/kg) estimated from CO2 single component adsorption data. 

CSD code ΔNCO2 CSD code ΔNCO2 CSD code ΔNCO2 CSD code ΔNCO2 CSD code ΔNCO2 
BETGAK 6.67 ZIKJIO 13.75 VACFOV01 7.10 FAPTOH 7.18 HIHGOW 7.18 
NUVWIL 6.17 CANRUG 6.34 WONZOP 19.17 FECZAQ 9.56 IBICAZ 6.28 
OTAVOV 5.15 KAYBUJ 4.16 WONZUV 17.55 FEFCUQ 12.73 IBICED 5.58 
QOCRUW 6.10 NALWOO 5.79 XIBZUF 4.96 FEFDAX 12.67 IBICON 5.53 
ANUGIA 22.41 NOCKUM 5.59 ZESFUY 11.49 FERHAN 12.31 IBIDAA 5.73 
FIQCEN 14.10 XENKIM 6.77 AFITIT 6.08 FIJCUX 6.23 IGOCOX 5.66 
FUSWIA 7.22 BIBXUH 15.90 AMILUE 7.71 FIJCUX01 6.28 ISOHEE 10.47 
JAVNIE 7.97 DUXZIG01 5.87 AMIMEP 7.85 FUNBEW 13.83 JIVFUQ 4.52 
LAGCED 5.30 EBEMEF 5.88 BEPMIU 7.47 FUNBIA 6.05 KEFBEE 20.26 
LASYOU 12.52 IXODUV 9.25 BEPPAP 7.51 FUNBOG 9.45 KEWZOD 10.08 
MOCKEV 17.31 IXOFAD 9.35 BICDAU 12.82 FUNCAT 8.80 LAWGEW 7.04 
MOYYEF 9.61 IXOFEH 9.28 COGWEB 7.66 FUNCEX 6.81 LAWGIA 7.07 
MOYYIJ 9.19 IXOFIL 9.34 CUHPUR 11.73 FUTKEL 5.73 LAWGOG 6.92 
NUTQAV 18.99 LAGNUE 5.22 DEYVUA 4.93 GACQAE 11.07 LAWGUM 7.10 
NUTQEZ 17.55 LOQLEJ 7.98 DIDDOK 20.65 GIMSIG 5.53 LUVTEC 6.73 
RAZYIC 5.62 ODIXEG 21.78 ECAHAT 6.92 GUYLOC 6.23 MATTUX 6.21 
RAZYOI 6.75 OJICUG 19.03 EDUSIF 6.85 GUYMAP 6.05 MATVAF 9.18 
SUKYIH 16.89 RABHAZ 5.88 EMITUQ 7.14 HAMJOW 5.61 MATVEJ 17.47 
UTEWUM 15.87 SEHTEF 5.77 EXEWAG 6.62 HIFTOG 5.51 MIBQAR 7.02 
XAMDUM07 13.94 SERJUV 6.31 EZUCIM 4.38 HIFTOG01 7.04 MIBQAR16 7.08 
XAWVUN 13.11 SERKEG 6.90 FAKLOU 11.94 HIFTOG02 5.51 MIBQAR18 6.99 
YUGLES 18.97 UTEWOG 14.60 FAPTIB 7.79 HIFVOI 6.91 MODNIC 4.47 
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Table 4.A.9. Continued. 

CSD code ΔNCO2 CSD code ΔNCO2 CSD code ΔNCO2 CSD code ΔNCO2 CSD code ΔNCO2 
OFERUN02 6.71 RELLAW 9.12 SENWAL 21.72 UWELIS 5.67 XINFUW 12.57 
OFUYUL 4.96 RIFDUG01 14.96 SENWIT 19.95 VAZTOG 6.98 XINWUO 5.53 
PEVPUD 6.90 SAHYOQ03 7.10 SENWOZ 21.18 VUSKAW 6.73 XUGSEY 15.27 
PIFPIE 5.37 SAHYOQ04 7.07 TASXIW 6.96 VUSKEA 6.72 YARYEV 4.44 
QUQFIS 15.22 SAHYOQ05 6.81 TERFUT 11.32 WIYFAM 10.45 YEKXET 9.02 
QUQPOI 7.43 SAKRED 9.87 UBUMAH 14.80 XEXMEU 9.07 YEZFIU 7.00 
RAXCOK 14.22 SEFBOV 10.99 UNIGEE 6.72     
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Table 4.A.10. Adsorbent evaluation metric data (Figure 4.3b) calculated from CO2/N2 0.14/0.86 mixture adsorption data in 143 MOFs. 

CSD 
code 

ΔNCO2 

(mol/kg) 
Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
CSD 
code 

ΔNCO2 

(mol/kg) 
Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
BETGAK 6.3 124.1 9.7e3 777.2 60.7 ZIKJIO 12.7 106.3 1.0e4 1.4e3 84.2 
NUVWIL 5.8 188.1 6.6e4 1.1e3 96.5 CANRUG 5.9 122.3 1.3e4 723.1 54.9 
OTAVOV 4.3 42.9 823.9 184.8 89.9 KAYBUJ 4.3 146.2 2.0e4 625.4 46.4 
QOCRUW 5.9 188.1 4.3e4 1.1e3 64.1 NALWOO 4.7 48.0 227.7 224.9 69.1 
ANUGIA 16.4 32.9 586.2 540.0 96.5 NOCKUM 5.1 242.6 2.2e5 1.2e3 42.3 
FIQCEN 12.2 64.2 1.8e3 782.9 90.2 XENKIM 6.7 278.5 1.4e6 1.9e3 45.5 
FUSWIA 6.6 103.5 4.2e3 684.1 69.1 BIBXUH 14.0 71.1 4.0e3 997.9 92.8 
JAVNIE 7.4 110.5 5.2e3 817.5 69.7 DUXZIG01 4.0 13.2 49.7 53.3 94.2 
LAGCED 4.6 48.6 1.4e3 223.6 88.0 EBEMEF 4.0 13.3 50.9 53.7 94.3 
LASYOU 11.6 98.3 1.6e4 1.1e3 86.8 IXODUV 8.4 82.6 8.0e3 695.0 83.1 
MOCKEV 16.4 156.3 2.7e4 2.6e3 87.0 IXOFAD 8.5 81.9 7.9e3 697.8 83.4 
MOYYEF 8.8 90.0 8.4e3 792.7 87.5 IXOFEH 8.5 89.5 1.1e4 763.5 83.0 
MOYYIJ 7.2 26.8 93.8 193.2 81.8 IXOFIL 8.5 80.8 7.4e3 683.9 83.4 
NUTQAV 16.4 63.1 3.6e3 1.0e3 95.5 LAGNUE 5.0 119.5 2.6e4 599.1 64.4 
NUTQEZ 15.0 57.8 2.6e3 864.3 94.3 LOQLEJ 5.8 30.7 103.9 177.4 77.3 
RAZYIC 5.0 87.4 1.1e4 435.1 79.8 ODIXEG 14.7 26.9 192.4 393.6 94.0 
RAZYOI 6.0 68.8 3.9e3 414.8 79.2 OJICUG 15.8 45.7 344.6 722.6 86.7 
SUKYIH 10.8 21.5 113.7 233.3 92.2 RABHAZ 4.9 40.5 764.8 199.5 94.0 
UTEWUM 14.3 103.3 2.4e3 1.5e3 78.7 SEHTEF 5.7 198.2 2.3e5 1.1e3 46.1 
XAMDUM07 11.9 59.4 1.5e3 709.1 90.3 SERJUV 5.7 102.1 4.4e3 583.3 79.1 
XAWVUN 9.6 13.1 43.3 125.2 95.9 SERKEG 6.7 312.1 1.9e6 2.1e3 85.4 
YUGLES 16.3 61.6 3.4e3 1.0e3 95.5 UTEWOG 13.1 100.8 2.4e3 1.3e3 77.5 
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Table 4.A.10. Continued. 

CSD 
code 

ΔNCO2 
(mol/kg) 

Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
CSD 
code 

ΔNCO2 
(mol/kg) 

Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
VACFOV01 6.7 124.6 7.0e3 834.9 56.8 FAPTOH 6.7 100.6 1.5e4 670.3 73.4 
WONZOP 15.0 43.7 778.2 653.5 94.8 FECZAQ 8.6 84.5 4.2e3 727.4 84.3 
WONZUV 13.3 35.0 267.9 465.9 89.5 FEFCUQ 11.2 70.4 2.8e3 788.6 89.0 
XIBZUF 4.2 298.4 7.1e4 1.2e3 30.3 FEFDAX 11.6 98.1 6.1e3 1.1e3 85.8 
ZESFUY 10.7 110.1 1.5e4 1.2e3 82.9 FERHAN 10.1 47.4 620.7 478.1 88.6 
AFITIT 5.5 81.0 3.2e3 442.6 79.9 FIJCUX 5.8 107.0 1.4e4 619.2 74.1 
AMILUE 6.7 74.6 1.7e3 497.3 83.6 FIJCUX01 5.9 105.1 1.5e4 617.9 76.5 
AMIMEP 6.8 75.4 1.5e3 515.0 82.6 FUNBEW 9.3 24.3 57.1 226.6 84.9 
BEPMIU 6.7 84.0 4.9e3 558.7 93.4 FUNBIA 5.7 119.3 2.1e4 678.6 76.0 
BEPPAP 6.7 84.0 5.1e3 563.1 93.6 FUNBOG 7.1 19.4 14.0 137.3 73.9 
BICDAU 8.7 16.5 69.0 143.0 94.3 FUNCAT 7.8 71.9 2.9e3 562.6 85.7 
COGWEB 7.2 129.4 1.1e4 937.6 66.2 FUNCEX 5.8 13.5 9.6 78.5 79.3 
CUHPUR 10.7 102.8 5.6e3 1.1e3 81.6 FUTKEL 5.2 95.1 2.e3 494.9 63.8 
DEYVUA 4.8 98.6 5.6e3 468.1 48.3 GACQAE 9.8 65.7 2.1e3 641.4 87.5 
DIDDOK 14.3 25.3 216.7 362.8 95.2 GIMSIG 5.0 67.3 4.9e3 333.4 80.7 
ECAHAT 4.6 13.0 71.1 59.2 90.8 GUYLOC 6.0 169.7 5.3e4 1.0e3 64.5 
EDUSIF 5.6 10.0 21.6 56.2 95.5 GUYMAP 5.9 158.4 4.4e4 934.2 63.5 
EMITUQ 6.7 152.8 1.5e4 1.0e3 65.5 HAMJOW 5.7 205.6 8.6e4 1.2e3 45.1 
EXEWAG 6.3 138.0 3.8e4 865.4 70.8 HIFTOG 5.1 95.1 4.2e3 481.6 67.7 
EZUCIM 4.2 110.1 4.1e3 460.0 46.5 HIFTOG01 5.7 10.3 22.6 58.7 95.4 
FAKLOU 11.3 164.9 4.4e4 1.9e3 82.4 HIFTOG02 5.1 95.0 4.1e3 480.5 67.5 
FAPTIB 7.3 124.2 5.5e4 911.5 75.0 HIFVOI 5.1 23.3 64.7 118.4 81.5 
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Table 4.A.10. Continued. 

CSD 
code 

ΔNCO2 
(mol/kg) 

Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
CSD 
code 

ΔNCO2 
(mol/kg) 

Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
HIHGOW 6.8 111.9 8.0e3 755.9 65.8 OFERUN02 4.8 19.6 150.6 93.0 95.0 
IBICAZ 5.7 83.9 4.9e3 474.1 91.6 OFUYUL 5.0 207.1 2.6e5 1.0e3 49.5 
IBICED 5.0 78.6 4.4e3 390.4 92.3 PEVPUD 5.9 9.9 21.8 57.9 96.0 
IBICON 4.9 78.1 4.2e3 384.9 92.0 PIFPIE 5.2 144.0 3.3e5 743.7 61.2 
IBIDAA 5.1 75.1 4.0e3 380.6 92.9 QUQFIS 13.6 75.5 5.4e3 1.0e3 88.7 
IGOCOX 5.3 125.5 5.5e4 663.0 63.6 QUQPOI 6.9 120.5 2.4e3 836.7 51.7 
ISOHEE 9.6 96.8 7.3e3 929.4 82.6 RAXCOK 13.5 168.8 3.2e4 2.3e3 78.8 
JIVFUQ 4.5 187.4 1.5e6 849.5 46.3 RELLAW 8.5 114.1 1.5e4 968.7 80.4 
KEFBEE 18.7 103.7 1.2e4 1.9e3 93.7 RIFDUG01 13.9 110.6 6.7e3 1.5e3 86.0 
KEWZOD 9.5 120.9 1.6e4 1.1e3 73.7 SAHYOQ03 5.7 10.3 22.4 58.6 95.4 
LAWGEW 5.7 10.3 22.6 58.5 95.4 SAHYOQ04 5.8 10.5 23.4 60.9 95.4 
LAWGIA 5.7 10.2 22.2 58.3 95.4 SAHYOQ05 5.6 10.0 21.3 55.6 95.4 
LAWGOG 5.7 10.3 22.5 58.6 95.4 SAKRED 8.7 65.8 3.5e3 568.6 90.6 
LAWGUM 5.7 10.3 23.1 59.3 95.4 SEFBOV 9.6 62.9 3.3e3 605.6 92.8 
LUVTEC 5.9 68.2 3.8e3 403.2 92.0 SENWAL 19.7 92.4 8.0e3 1.8e3 96.4 
MATTUX 5.9 127.3 2.5e4 748.4 68.3 SENWIT 18.7 139.9 2.0e4 2.6e3 93.4 
MATVAF 8.8 164.0 2.2e4 1.4e3 70.1 SENWOZ 19.6 113.4 1.2e4 2.2e3 95.3 
MATVEJ 15.4 67.0 2.9e3 1.1e3 92.7 TASXIW 6.8 179.4 1.3e7 1.2e3 65.3 
MIBQAR 5.7 10.3 22.9 58.7 95.5 TERFUT 10.1 73.1 3.1e3 734.8 88.8 
MIBQAR16 5.7 10.2 22.5 58.3 95.5 UBUMAH 13.3 81.3 7.1e3 1.1e3 93.7 
MIBQAR18 5.7 10.2 22.4 58.2 95.5 UNIGEE 5.5 9.8 20.8 53.9 95.5 
MODNIC 3.5 24.1 172.9 83.7 94.0 UWELIS 5.6 213.7 1.6e6 1.2e3 44.8 
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Table 4.A.10. Continued. 

CSD 
code 

ΔNCO2 

(mol/kg) 
Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
CSD 
code 

ΔNCO2 

(mol/kg) 
Sadsads 

 
SSP 

 
APS 

(mol/kg) 
R 

(%) 
VAZTOG 5.6 10.1 21.8 57.0 95.4 XINWUO 4.3 28.8 331.9 124.5 93.8 
VUSKAW 5.6 9.9 21.4 55.2 95.5 XUGSEY 13.5 75.7 2.2e3 1.0e3 83.9 
VUSKEA 5.4 9.7 20.7 52.7 95.6 YARYEV 3.9 40.5 227.3 157.6 85.0 
WIYFAM 7.9 26.0 154.7 204.3 90.1 YEKXET 8.5 132.3 1.7e4 1.1e3 74.3 
XEXMEU 8.4 122.5 1.9e4 1.0e3 88.1 YEZFIU 6.1 65.1 733.3 400.1 80.3 
XINFUW 11.5 92.8 8.0e3 1.1e3 83.9       
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Table 4.A.11. Mixture adsorption amounts and adsorption selectivities (Figure 4.4) computed from GCMC and IAST at 243 K in 30 
MOFs. 

MOFs NCO2 (mol/kg) NN2 (mol/kg) Sads,CO2/N2 

Ptotal = 0.7 bar Ptotal = 2.1 bar Ptotal = 14.3 bar Ptotal = 0.7 bar Ptotal = 2.1 bar Ptotal = 14.3 bar Ptotal = 0.7 bar Ptotal = 14.3 bar 

 GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST 
FIQCEN 1.33 1.35 2.77 2.77 13.54 13.50 0.29 0.28 0.72 0.67 1.30 1.49 27.75 30.04 64.15 55.82 
LASYOU 1.76 1.83 6.76 6.94 13.38 13.21 0.50 0.55 0.99 1.09 0.84 0.93 21.53 20.56 98.32 86.94 
MOCKEV 2.45 2.48 8.10 8.54 18.82 18.78 0.37 0.36 0.89 0.99 0.74 0.77 40.32 41.79 156.31 149.06 
NUTQAV 0.77 0.78 2.15 2.22 17.14 16.45 0.35 0.36 0.92 0.96 1.67 1.91 13.67 13.44 63.12 53.02 
NUTQEZ 0.91 0.91 2.68 2.74 15.87 15.52 0.38 0.40 0.98 1.04 1.69 1.91 14.62 14.13 57.76 49.93 
UTEWUM 3.86 3.70 6.30 6.17 18.15 18.74 0.30 0.33 0.62 0.64 1.08 1.04 80.28 69.78 103.3 110.23 
XAMDUM07 1.28 1.31 2.67 2.67 13.21 13.20 0.29 0.28 0.72 0.66 1.37 1.40 27.01 29.28 59.44 58.09 
YUGLES 0.77 0.77 2.13 2.20 17.02 16.41 0.35 0.36 0.92 0.96 1.70 1.86 13.55 13.26 61.63 54.15 
ZIKJIO 2.40 2.50 7.42 7.34 15.13 15.47 0.44 0.48 0.92 1.03 0.87 0.92 33.20 32.11 106.26 103.08 
BIBXUH 1.10 1.11 3.66 3.86 15.14 14.90 0.36 0.37 0.97 1.08 1.31 1.49 18.66 18.67 71.05 61.51 
UTEWOG 3.81 3.68 6.00 5.97 16.95 17.43 0.31 0.33 0.66 0.65 1.03 1.14 76.52 69.00 100.84 93.81 
ZESFUY 2.21 2.40 8.10 7.51 12.91 13.33 0.45 0.51 0.82 0.92 0.72 0.82 30.46 29.20 110.08 99.64 
CUHPUR 2.42 2.37 6.36 6.56 13.10 13.39 0.33 0.29 0.75 0.69 0.78 0.86 44.46 49.84 102.76 95.27 
FAKLOU 2.41 2.54 7.72 7.42 13.69 13.88 0.35 0.39 0.62 0.71 0.51 0.58 42.70 40.12 164.86 146.87 
FEFCUQ 1.38 1.41 3.77 3.83 12.58 12.51 0.33 0.34 0.79 0.84 1.10 1.25 25.50 25.14 70.39 61.32 
FEFDAX 1.92 1.87 5.21 5.48 13.52 13.75 0.33 0.33 0.77 0.82 0.85 0.96 35.59 34.90 98.12 88.15 
KEFBEE 1.26 1.27 4.71 5.14 19.97 19.66 0.37 0.38 1.01 1.12 1.18 1.31 21.04 20.49 103.74 91.87 
MATVEJ 1.21 1.25 3.83 3.89 16.56 16.56 0.32 0.34 0.88 0.92 1.45 1.49 22.98 22.92 69.96 68.41 
QUQFIS 1.73 1.76 4.84 5.27 15.31 14.93 0.53 0.51 1.21 1.31 1.25 1.39 20.12 21.02 75.53 65.87 
RAXCOK 3.64 3.62 10.27 10.40 17.12 17.23 0.41 0.38 0.71 0.78 0.62 0.69 54.92 58.63 168.84 152.02 
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Table 4.A.11. Continued. 

MOFs NCO2 (mol/kg) NN2 (mol/kg) Sads,CO2/N2 

Ptotal = 0.7 bar Ptotal = 2.1 bar Ptotal = 14.3 bar Ptotal = 0.7 bar Ptotal = 2.1 bar Ptotal = 14.3 bar Ptotal = 0.7 bar Ptotal = 14.3 bar 

 GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST GCMC IAST 
RIFDUG01 2.25 2.22 6.30 6.58 16.12 16.11 0.32 0.31 0.78 0.84 0.90 0.94 43.78 43.81 110.57 105.09 
SENWAL 0.73 0.76 2.62 2.61 20.44 20.06 0.24 0.26 0.75 0.76 1.36 1.51 18.85 18.19 92.39 81.84 
SENWIT 1.32 1.30 4.79 5.24 19.99 19.77 0.27 0.27 0.82 0.91 0.88 0.94 29.56 29.23 139.88 129.85 
SENWOZ 0.97 1.00 3.55 3.75 20.53 20.37 0.25 0.26 0.79 0.83 1.11 1.26 23.62 23.62 113.37 99.39 
TERFUT 1.27 1.28 3.33 3.41 11.32 11.19 0.29 0.30 0.71 0.75 0.95 1.04 26.54 25.77 73.13 66.27 
UBUMAH 0.90 0.91 3.54 3.89 14.19 13.90 0.33 0.35 0.91 0.98 1.07 1.22 16.58 16.22 81.25 69.65 
XINFUW 2.22 2.35 7.41 7.18 13.76 13.91 0.48 0.54 0.96 1.01 0.91 0.93 28.57 26.56 92.8 92.15 
XUGSEY 2.58 2.58 5.73 5.94 16.06 16.27 0.40 0.34 0.97 0.87 1.30 1.49 39.45 46.23 75.65 66.8 
SERKEG 1.14 1.19 3.35 3.29 7.84 7.47 0.15 0.16 0.32 0.32 0.15 0.17 47.65 46.37 312.13 285.02 
OJICUG 2.42 2.28 5.98 6.15 18.22 19.64 0.33 0.29 0.96 0.84 2.45 2.35 45.26 48.45 45.73 53.79 
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CHAPTER 5. IMPACT OF INTRINSIC FRAMEWORK 

FLEXIBILITY FOR SELECTIVE ADSORPTION OF SARIN IN 

NON-AQUEOUS SOLVENTS USING                                     

METAL-ORGANIC FRAMEWORKS 

 Molecular modeling of mixture adsorption in nanoporous materials can provide 

insight into the molecular-level details that underlie adsorptive separations. Modeling of 

adsorption often employs a rigid framework approximation for computational 

convenience. All real materials, however, have intrinsic flexibility due to thermal 

vibrations. In this chapter, we examine quantitative predictions of the adsorption selectivity 

for a dilute concentration of a chemical warfare agent, sarin, from bulk mixtures with 

aqueous and non-aqueous (methanol, isopropyl alcohol) solvents using metal-organic 

frameworks (MOFs). These predictions were made in MOFs approximated as rigid and 

also in MOFs allowed to have intrinsic flexibility. Including framework flexibility appears 

to be important for making quantitative predictions of adsorption selectivity, particularly 

for sarin/water mixtures. Our observations suggest the intrinsic flexibility of MOFs can 

have a nontrivial impact on adsorption modeling of molecular mixtures, particularly for 

mixtures containing polar species and molecules of different sizes. 

 

* Contents of this chapter are part of a manuscript in preparation 

Jongwoo Park, Mayank Agrawal, Dorina F. Sava Gallis, Jacob A. Harvey, Jeffery A. 
Greathouse, David S. Sholl, ″Impact of Intrinsic Framework Flexibility for Selective 
Adsorption of Sarin in Non-Aqueous Solvents using Metal-Organic Frameworks″, in 
preparation.  
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5.1 INTRODUCTION 

Due to the extremely toxic properties of chemical warfare agents (CWAs)1,2, efforts 

have been made to develop methods and materials for the detection and destruction of 

CWAs3-5. Sarin, for instance, is an organophosphate nerve agent, one of the major 

categories of CWAs.6,7 Catalytic degradation of CWAs into less toxic compounds using 

porous materials is a viable method of decontaminating these agents. Activated carbon and 

metal oxides have been widely investigated for this purpose, but finding alternative types 

of protective materials is of significant interest.2,3 Metal-organic frameworks (MOFs) have 

emerged as promising candidates due to their large pores that enable easy access of CWAs 

to internal catalytic sites.4-10 Nonetheless, an efficient detoxification procedure for CWAs 

in porous materials can be possible only if CWAs are selectively captured in those 

materials.11,12 It is therefore useful to consider adsorption properties of CWAs before their 

catalytic activity is examined. 

The majority of studies of catalytic degradation of CWAs to date have focused on 

hydrolysis.13-19 Nucleophilic water substitutes at the phosphorus atom of the agent via 

hydrolysis that leads to elimination of the toxic leaving group.17-20 Nevertheless, situations 

exist where hydrolysis reactions are not appropriate. The damage-free decontamination of 

electronics after exposure to CWAs, for example, is incompatible with hydrolysis.21 This 

motivates interest in the detection and detoxification of CWAs in non-aqueous solvents.21-

24 In the context of considering adsorption of CWAs in the nanopores of MOFs, these 

observations motivated us to examine the adsorption selectivity for CWAs in the presence 

of a range of solvents using MOFs. 
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Molecular modeling has been used to predict the adsorption properties of a variety 

of adsorbing molecules in a wide range of MOFs.25-29 Adsorption modeling of this kind, 

often referred to high-throughput materials screening, almost always assumes that the MOF 

structure can be held rigid during simulation of adsorption, an assumption that leads to very 

significant computational efficiencies. This approximation assumes that the relaxation of 

the framework atoms due to the presence of adsorbed molecules can be neglected.30-33 

Although there are classes of MOFs that undergo significant adsorption-induced 

deformations, including swelling and transitions between bistable states,34 there are also 

many MOFs for which assuming that the change in volume in response to adsorption, ΔV, 

is zero is well justified. In all MOFs, however, and indeed in all materials, thermal 

vibrations cause atoms to move with small displacements.35-37 We refer to these movements 

as the intrinsic flexibility of the adsorbent. Several recent studies have shown that this 

intrinsic flexibility can in some cases have a nontrivial impact on the predictions of 

molecular modeling of adsorption in MOFs.38-41 

In this chapter, we examine the adsorption of sarin in MOFs in the presence of water, 

methanol, and isopropyl alcohol via molecular simulations for a collection of 23 sarin-

selective hydrophobic MOFs. In each material, we examined the impact of intrinsic 

flexibility with ΔV = 0 on adsorption selectivity. Our findings provide insight on the impact 

of this kind of flexibility on mixture adsorption when molecular mixtures consist of 

adsorbates of different polarities and sizes which, to our best knowledge, has not been 

examined before. 
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5.2 COMPUTATIONAL METHODS 

5.2.1 MOF Selection Criteria and Bulk Mixture Conditions 

 We selected a set of adsorbent materials from a large collection of experimentally 

known MOFs. A subset of the CoRE MOF database42 for which high-quality atomic point 

charges have been assigned43 contains 2932 crystal structures. It has been reported that Zr-

based UiO-66 and its derivatives are effective catalysts for sarin degradation.14-19,44,45 We 

therefore also considered UiO-66 and 36 UiO-66 derivatives with distinctive functional 

groups.46 The same type of atomic point charges as for the CoRE MOF database have been 

assigned previously to these frameworks.46 This gave an initial set of 2969 MOFs. 

Because it is computationally intensive to carry out molecular simulations for 

adsorption of bulky molecules in MOFs with intrinsic flexibility, we needed to reduce the 

number of materials. The material selection criteria used in this chapter is illustrated in 

Figure 5.1. We aimed to find CWA-selective, hydrophobic MOFs with sufficient pore size 

to admit sarin. 2469 structures were first chosen from the initial set that have largest cavity 

diameters larger than 4 Å, indicating a sufficient pore size to admit sarin. We then selected 

CWA-selective hydrophobic MOFs in order to find materials that would be suitable for 

CWA capture under humid conditions. To do so, we used the constraints of Henry 

constants (KH) as suggested in similar earlier work by Matito-Martos et al.11,47 We 

calculated room temperature Henry constants for sarin and soman, another extensively 

studied nerve agent1-3, (KH,CWA) and that for water (KH,H2O) using methods defined further 

below. Including information about the adsorption affinity of soman gives a more general 

perspective on finding CWA-selective materials candidates, although below we 
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exclusively examine the adsorption of sarin. We retained only those MOFs for which 

KH,CWA was larger than 10-3 mol/kg∙Pa for both sarin and soman and also had KH,H2O less 

than 10-5 mol/kg∙Pa. This selection procedure resulted in 23 MOFs. More information 

about these 23 materials is given in Appendix 5.A (Table 5.A.1). 

 

Figure 5.1. Schematic illustration of the MOF selection strategy. The number of MOFs at 
each stage are shown in brackets (N). 

We explored the adsorption of sarin in the presence of three solvents at 298 K, 

sarin/water (H2O), sarin/methanol (MeOH), and sarin/isopropyl alcohol (IPA). The 

mixture compositions in the bulk phase were defined by the partial pressures of sarin (Psarin) 

and each solvent i (Pi). To represent a dilute concentration of sarin in solvent saturated 

environments, we set Psarin = 0.001 bar in mixtures with Pi set to the saturation pressure of 

each solvent (P0i). The adsorption selectivity for sarin at was then calculated at total 

pressures of each mixture.48 Figure 5.2 shows atomic representations of sarin and the 

solvent molecules. 
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Figure 5.2. Atomic representations of (a) sarin and (b) solvent molecules. Carbon, oxygen, 
hydrogen, phosphorus, and fluorine are shown in black, red, white, orange, and yellow, 
respectively. Room temperature saturation pressures for each molecule that were used to 
determine the bulk mixture compositions are also shown. P0sarin is taken from the literature2 
and P0solvent were defined using the Antoine equation49 at 298 K. 

5.2.2 Flexible Snapshot Method 

 We performed simulations allowing intrinsic flexibility for the 23 MOFs chosen 

above. The flexible snapshot method first introduced by Gee et al.40 was used to generate 

an ensemble of empty MOF frameworks by simulating the dynamics of each MOF.41 NVT 

molecular dynamics (MD) simulations were conducted after structure relaxation using 

classical force fields50 in LAMMPS51 at 300 K with a time step of 1.0 fs. Each MOF was 

described using the UFF4MOF force field of Coupry et al.50 The temperature was 

controlled via a Nosé-Hoover thermostat with a 0.1 ps decay period. As a result, NVT MD 

snapshots are generated that represent intrinsically flexible empty MOFs. This method 

cannot capture aspects of flexibility that might arise due to coupling with adsorbate degrees 

of freedom.41 Adsorption in the flexible material was characterized by averaging 

independent Grand Canonical Monte Carlo (GCMC) simulations of each snapshot. 
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The computational cost of the flexible snapshot method is proportional to the 

number of NVT MD snapshots employed for GCMC calculations. To this end, selecting 

uncorrelated MD snapshots from each structure is important.41 In this chapter, MD 

snapshots were taken every 100 ps from a production period of 1 ns, which is consistent 

with the recent work of Agrawal et al.41 In principle it would also be possible to use ab 

initio MD as an alternative method to generate framework snapshots.52,53 This method, 

however, is even more computationally demanding than classical simulations we have used 

here. 

5.2.3 Adsorption Modeling of Rigid and Intrinsically Flexible MOFs 

 Molecular modeling of adsorption of binary molecular mixtures in MOFs was 

conducted with GCMC simulations using RASPA.54,55 MOF structures reported by the 

CoRE MOF database and a set of UiO-66 derivatives were first relaxed using the 

UFF4MOF force field50 in LAMMPS51 followed by fixing the atoms in the relaxed 

structures. We refer to these structures as rigid MOFs while carrying out GCMC 

simulations. GCMC simulations were also performed independently in the snapshots 

generated for each structure as described above; we refer to these results below as coming 

from flexible MOFs. To perform GCMC appropriate force fields are needed to describe 

non-bonding interactions such as van der Waals and Coulombic interactions for 

adsorbate/adsorbent and adsorbate/adsorbate interactions. Standard force fields were used 

to compute van der Waals interaction, namely the universal force field (UFF)56 and the 

TraPPE57 force field. Lennard-Jones parameters for MOF atoms and sarin, solvent 

molecules were taken from UFF and TraPPE force field, respectively. Adsorbate/adsorbent 

interactions were defined with Lorentz-Berthelot mixing rules.58 Periodic boundary 
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conditions were defined in all dimensions and adsorbates were approximated as rigid. 

Coulombic interactions were modeled pairwise with a long-range Ewald summation 

scheme.59 These interactions are computed via the DDEC point charges for MOF atoms60-

62 and TraPPE charges for sarin and solvent molecules54,55. Attempted Monte Carlo moves 

include translation, rotation, regrowth, reinsertion, deletion and insertion of adsorbates 

with identical probabilities. In addition, a Monte Carlo move that swapped the identity of 

adsorbed molecules was used. 

Henry constants, KH, for sarin, soman, and water used as a material selection criteria 

as discussed in Section 5.2.1 were computed via a Widom particle insertion method63 with 

the force fields just discussed. All KH calculations were performed at 298 K in rigid MOFs 

only. KH data for all MOFs considered in Figure 5.1 are provided in Table 5.A.2. 

Using the flexible snapshot method, the adsorption properties of intrinsically 

flexible MOFs are approximated by performing independent GCMC simulations in distinct 

MOF structures taken from MD snapshots. The adsorption data were then averaged over 

GCMC results from each MD snapshot. We used 10 snapshots for each material. 

Preliminary tests indicated that this was sufficient to achieve converged results. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Selective Adsorption of Sarin in Non-/Aqueous Environments 

 Our discussion focuses on adsorption selectivity for sarin at conditions 

corresponding to the liquid state for each solvent. This means that the MOFs were typically 

highly loaded with solvent molecules (see Figure 5.A.1). The computed adsorption 
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selectivity for sarin in the 23 MOFs at 298 K by employing the rigid framework 

approximation, SRigid, is shown in Figure 5.3. As might be expected, chosen MOFs were 

selective for sarin in every co-adsorbed solvents. This suggests they could be effective for 

catalytic degradation of sarin, assuming of course that catalytically active sites can be 

created in each material. 

 
Figure 5.3. Adsorption selectivity for sarin calculated via binary mixture GCMC in rigid 
approximations of 23 MOFs for each molecular mixture at bulk pressure of Ptotal = Psarin + 
Psolvents at 298 K. Mixture compositions in the bulk phase were defined to give a partial 
pressure of sarin of P/P0sarin = 0.25 and a solvent partial pressure of P/P0solvent = 1. MOFs 
are listed in order of decreasing sarin selectivity in the sarin/MeOH mixture. 

In almost every MOF, the sarin adsorption selectivity was larger for the non-

aqueous solvents than for H2O. This trend is reasonable because the non-aqueous 

molecules are larger than water and also typically have weaker adsorption affinity as 

characterized by KH (see Table 5.A.2). Based on size alone the sarin/IPA mixture might be 

expected to show the highest selectivity among the mixtures we examined. IPA, however, 

has a weaker degree of interaction with polar solutes than MeOH64 (see also Table 5.A.3). 

This appears to result in lower adsorption selectivity from sarin/IPA mixtures than from 
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sarin/MeOH mixtures in most MOFs, although we observed a small number of materials 

where this trend was reversed. 

5.3.2 Impact of Intrinsic MOF Flexibility on Mixture Adsorption Modeling 

 We repeated the GCMC simulations of adsorption of sarin-containing binary 

mixtures allowing intrinsic flexibility of the MOFs with ΔV = 0 using the flexible snapshot 

method. Figure 5.4 compares the computed selectivities from rigid and flexible 

representations of the MOFs. An immediate observation is that for many of the MOFs there 

is a clear quantitative discrepancy between the two calculations for all three sarin-

containing mixtures. Modeling the MOFs as rigid tends to underestimates the adsorption 

selectivity, although there are exceptions to this description. In most cases, the increased 

selectivity in the flexible MOFs was associated with higher adsorbed amounts of sarin and 

lower adsorbed amounts of the solvent than in the rigid MOF. In examples where the 

selectivity in the flexible material was smaller than in the rigid material, this typically arose 

because sarin adsorption was reduced in the flexible materials without as much change in 

the number of solvent molecules. The observation made above from Figure 5.3 that sarin 

is more selectively adsorbed from non-aqueous solvents than water is also seen in our 

simulations of flexible MOFs (see also Figure 5.A.2). 



197 
 

 

Figure 5.4. Parity plot of adsorption selectivities predicted at 298 K in 23 MOFs 
approximated as rigid (horizontal axis) and allowed to have intrinsic flexibility (vertical 
axis) for each molecular mixture. The parity line indicates the result that would be obtained 
if there was no effect of intrinsic flexibility. 

As noted above, high-throughput screening of MOFs or other porous adsorbents 

essentially always relies on rigid framework calculations because of their computational 

efficiency. One common goal of material screening is to rank a large number of materials. 

It is therefore useful to ask whether rankings of MOFs based on rigid and flexible 

calculations are similar for the sarin mixtures we studied. We approached this by 

calculating Spearman’s rank-order correlation, ρ, to the rankings for sarin/H2O, 

sarin/MeOH and sarin/IPA selectivities from rigid and flexible calculations.65,66 This 

ranking can vary between -1 and 1, with values of -1, 0 and 1 corresponding to rankings 

that are anti-correlated, uncorrelated and completely correlated, respectively. For the 23 

materials we studied, ρ for sarin/H2O was 0.08, for sarin/MeOH was 0.15 and for sarin/IPA 

was 0.23. These values show there is little correlation between the two rankings.65 To 

illustrate this another way, the three most selective MOFs from our set of 23 for 

sarin/MeOH as predicted using rigid structures have CSD reference codes WAYMIU, 
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COMDOY and HAFQOW (see Figure 5.3). With our calculations for intrinsically flexible 

structures, these three MOFs are ranked 2nd, 20th and 11th for sarin/MeOH selectivity. This 

suggests that attempting to accurately select a handful of the “best” MOFs for this 

separation based on rigid structure calculations may be difficult. It is important to note, 

however, that the rigid calculations do correctly describe key trends in CWA adsorption. 

For example, both the rigid and flexible structure calculations predict that sarin selectivity 

as a function of solvent follows the general trend sarin/MeOH > sarin/IPA > sarin/H2O 

mixtures. 

Figure 5.5 shows the number of MOF seen as a function of SFlexible/SRigid for each 

mixture. For sarin/MeOH and sarin/IPA, the rigid MOF calculations underestimate the 

result from the flexible materials by 60-70%, on average and the rigid MOFs only 

overpredict the selectivity in 17% of materials. For sarin/H2O, however, the rigid MOFs 

underestimate the selectivity by an average of 322%. The variability in the difference 

between the rigid and flexible calculations is more marked for aqueous mixtures than non-

aqueous mixtures. Three of the 23 MOFs we examined showed more than 600% higher 

selectivity for sarin/H2O in the flexible calculations, while for two MOFs the selectivity 

for the same mixture was overestimated by the rigid MOF calculation. 
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Figure 5.5. The number of MOFs observed as a function of SFlexible/SRigid in each mixture 
of (a) sarin/H2O, (b) sarin/MeOH, and (c) sarin/IPA. Green dashed lines show SFlexible/SRigid 
= 1, indicating the situation with no effect of intrinsic flexibility. For each histogram the 
mean (μ) and standard deviation (σ) on SFlexible/SRigid are given. 

Agrawal et al.41 recently conducted similar studies for four different bulk mixtures 

containing equimolar mixtures of nonpolar adsorbates with similar sizes in 100 randomly 

chosen MOFs. At conditions were the pores were filled with many molecules, the mean 

and standard deviation of log(SFlexible/SRigid) from their simulations were -0.01 and 0.57, 

respectively. This means that on average the selectivities predicted with rigid structures 

were quite accurate, although there is considerable variation in this statement from case to 

case. Describing our data in the same logarithmic terms gives a mean (standard deviation) 
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of 0.43 (0.30), 0.17 (0.22), and 0.20 (0.21) for sarin/H2O, sarin/MeOH, and sarin/IPA 

mixtures, respectively. This indicates that unlike the results of Agrawal et al. the mixtures 

of polar molecules of disparate sizes that we examined show systematic deviations between 

rigid and flexible structures, even on average. 

5.3.3 Effect of Coulombic Interactions of Molecular Mixtures 

 It is worthwhile trying to understand what aspects of the adsorbing molecules 

contribute the most to lack of quantitative agreement between simulations with rigid and 

flexible MOFs. The bulk mixtures we considered contain solvents that have distinct 

polarities and molecular sizes, but the results above cannot indicate whether one of these 

two factors plays a dominant role. To probe this issue, we performed simulations with 

unphysical nonpolar versions of each solvent by removing the point charges from each 

solvent molecule. The same binary GCMC simulations as above were carried with these 

unphysical solvent models for rigid and flexible MOFs. These simulations used the same 

partial pressures for each component as were used above; we did not attempt to determine 

the effective vapor pressure of the unphysical solvents. 

In Figure 5.6, we repeated the same analysis as in Figure 5.4 but using the 

unphysical nonpolar solvents in the GCMC simulations. Much, although not all, of the 

difference between the rigid and flexible results seen in Figure 5.4 disappears when using 

the nonpolar solvents. This indicates that the polarity of adsorbing species was more 

responsible for the influence of framework flexibility than solvent size. The decreased sarin 

selectivity in intrinsically flexible MOFs when using nonpolar solvents occurs primarily 

because of lower sarin uptakes rather than changes in loadings of solvent molecules relative 
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to the rigid MOFs. We note that Coulombic interactions in these molecular mixtures are 

not totally eliminated because the atomic point charges for sarin remained non-zero in these 

simulations. 

 

Figure 5.6. Parity plot of adsorption selectivities predicted at 298 K in 23 MOFs 
approximated as rigid (horizontal axis) and allowed to have intrinsic flexibility (vertical 
axis) for each molecular mixture using unphysical nonpolar (np) solvents. The parity line 
indicates the result that would be obtained if there was no effect of intrinsic flexibility. 

We revisit in Figure 5.7 the histograms of SFlexible/SRigid after omitting the point 

charges on solvent molecules. Both μ and σ were significantly reduced in each binary 

mixture compared to those shown in Figure 5.5. In agreement with Figure 5.6, this indicates 

that solvent polarity is more important than solvent size in determining the impact of 

framework flexibility on selective adsorption of sarin. The selectivity in the sarin/H2O 

mixture, however, is still more affected by intrinsic flexibility than other two mixtures. The 

difference in molecular sizes of sarin and the solvents is largest for sarin/H2O. This implies 

that the impact of framework flexibility on adsorption can also be affected by the disparity 

in molecular size between adsorbing species. 
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Figure 5.7. The number of MOFs observed as a function of SFlexible/SRigid in each mixture 
of (a) sarin/H2O, (b) sarin/MeOH, and (c) sarin/IPA using unphysical nonpolar (np) 
solvents. Green dashed lines show SFlexible/SRigid = 1, indicating the situation with no effect 
of intrinsic flexibility. For each histogram the mean (μ) and standard deviation (σ) on 
SFlexible/SRigid are given. 

5.4 SUMMARY 

In this chapter, we examined the adsorptive capture of sarin under bulk mixture 

adsorption conditions with aqueous and non-aqueous solvents in a collection of sarin-

selective hydrophobic MOFs that were approximated as rigid and intrinsically flexible. 

Efficient catalytic degradation of sarin in MOFs under any of non-/aqueous environments 

can be feasible only if sarin is selectively adsorbed in the frameworks in advance. 

Quantitative molecular modeling of adsorption, however, can be affected by taking account 
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of intrinsic flexibility that all porous materials indeed have by nature. Higher adsorption 

selectivity for sarin in non-aqueous solvents was predicted, both in rigid and intrinsically 

flexible MOFs, for which indicating the sarin detoxification using those solvents may be 

viable in properly chosen MOFs when hydrolysis is incompatible. More importantly we 

assessed the nontrivial deviation in adsorption properties predicted via rigid and 

intrinsically flexible MOFs. Our observations implied the impact of flexibility of this kind 

upon mixture adsorption is not negligible for mixtures containing polar adsorbates and 

adsorbates of disparate sizes. 

We exclusively focused on adsorption of sarin in a limited number of materials. 

Although our observations do not represent the wide spectrum of materials, we were able 

to make an immediate alert that caution must be used in adsorption modeling of complex 

molecules combined with including the details in the molecular modeling of adsorption. In 

addition, we cannot simply expand our findings with respect to adsorption property into 

catalytic activity of sarin in the same mixtures. However, our assessment suggests that 

computational explorations on sarin hydrolysis or other catalytic reactions in MOFs also 

have to be conducted with caution considering the approximations used in their 

calculations. 
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APPENDIX 5.A. SUPPORTING INFORMATION – CHAPTER 5 

5.A.1  MOF Material Set 

 Table 5.A.1 curates a list of 23 MOFs chosen via MOF selection criteria illustrated 

in Figure 5.1 in Chapter 5. 

Table 5.A.1. List of 23 MOFs chosen via MOF selection criteria. MOFs are listed with 
CSD reference codes reported in the CoRE MOF database1, except UiO-66-CF32, in 
alphabetical order. The physical properties of MOFs are adapted from the CoRE MOF 
database and calculated for UiO-66-CF3 in this work. 
MOFs Metal Type VP (cm3/g) SAacc (m2/g) LCD (Å) PLD (Å) 
AMAFOK Cu 0.30 513.32 6.60 5.66 
BARZAW Zn 0.26 337.15 7.74 2.56 
BZRZOK Cu 0.28 340.18 7.66 2.74 
COMDOY Ga 0.48 971.33 6.12 5.54 
EGELUY01 Al 0.67 1555.22 7.46 7.05 
EHALOP Al 0.65 1632.09 7.57 7.12 
HAFQOW Al 0.65 1593.41 7.39 6.93 
KEDQAN Zn 0.39 551.92 6.47 4.70 
OFORUX Cd, Cu 0.26 264.75 5.54 5.06 
ONIXOZ Cu 0.74 1971.77 9.94 9.19 
OVICUS Zn 0.29 409.62 5.88 5.25 
QONQEQ Al 0.67 1519.12 7.41 7.01 
RAZYIC Cu 0.43 1033.43 7.88 6.21 
SABVOH Al 0.59 1333.73 6.27 5.98 
SABVOH01 Al 0.59 1377.25 6.49 6.20 
SABVUN Al 0.61 1439.47 7.02 6.76 
UiO-66-CF3 Zn 0.36 554.21 7.20 3.20 
UTEWOG Ni 0.95 1702.39 14.60 9.55 
UTEXAT Zn 0.61 1068.81 6.27 4.01 
UTEXIB Co 0.60 1082.64 6.30 3.96 
WAYMIU Al 0.60 1412.09 7.35 6.91 
WAYMOA Al 0.65 1471.49 7.08 6.89 
XUNJEW Zn 0.40 778.07 7.72 4.21 

* Abbreviations stand for VP: pore volume; SAacc: accessible surface area; LCD: largest 
cavity diameter; and PLD: pore limiting diameter. 
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5.A.2  Adsorption Conditions for Solvents and Mixtures 

 Table 5.A.2 summarizes Henry constants (KH) computed via a Widom particle 

insertion method3 for sarin, soman, and H2O in 23 MOFs at 298 K as a part of the material 

selection criteria. KH calculated for non-aqueous solvents of MeOH and IPA at 298 K are 

also summarized. 

Table 5.A.2. Henry constants (KH) computed for CWAs of sarin, soman, and solvents of 
H2O, MeOH, IPA in 23 MOFs at 298 K. 
MOFs KH,sarin KH,soman KH,H2O KH,MeOH KH,IPA 
AMAFOK 1.60E-01 1.75E+01 3.90E-06 5.31E-08 1.27E-08 
BARZAW 4.47E-01 2.06E-01 1.55E-06 4.43E-08 1.06E-08 
BZRZOK 3.75E-01 1.02E-03 2.06E-06 4.61E-08 1.10E-08 
COMDOY 6.10E-02 2.52E+02 5.88E-06 6.28E-08 1.50E-08 
EGELUY01 6.47E-03 4.73E+01 7.45E-06 1.75E-07 4.18E-08 
EHALOP 5.12E-03 5.04E+01 8.36E-06 1.76E-07 4.19E-08 
HAFQOW 5.78E-03 4.29E+02 8.11E-06 1.74E-07 4.17E-08 
KEDQAN 6.76E-02 8.94E-03 4.41E-06 5.06E-08 1.21E-08 
OFORUX 1.48E-01 2.37E-03 2.11E-06 2.68E-08 6.41E-09 
ONIXOZ 2.99E-03 1.18E-03 9.09E-06 9.29E-08 2.22E-08 
OVICUS 6.34E-01 1.83E-01 8.57E-06 5.59E-08 1.34E-08 
QONQEQ 6.06E-03 2.62E+01 6.88E-06 1.75E-07 4.18E-08 
RAZYIC 1.20E-02 5.62E+01 9.39E-06 6.88E-08 1.64E-08 
SABVOH 7.91E-02 2.47E+03 6.67E-06 1.65E-07 3.94E-08 
SABVOH01 1.14E-01 2.60E+02 6.91E-06 1.64E-07 3.92E-08 
SABVUN 2.40E-02 1.53E+02 6.92E-06 1.69E-07 4.03E-08 
UiO-66-CF3 9.49E-03 1.20E-02 2.03E-06 3.74E-07 1.90E-07 
UTEWOG 4.21E-02 7.69E+00 8.90E-06 1.05E-07 2.52E-08 
UTEXAT 4.98E-03 1.54E-01 8.36E-06 7.20E-08 1.72E-08 
UTEXIB 5.45E-03 5.30E+02 8.32E-06 7.90E-08 1.89E-08 
WAYMIU 2.14E-02 2.99E+03 7.62E-06 1.69E-07 4.03E-08 
WAYMOA 9.25E-03 9.69E+01 6.29E-06 1.73E-07 4.13E-08 
XUNJEW 2.31E-03 3.22E+00 3.53E-06 5.61E-08 1.34E-08 
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For the bulk mixture adsorption condition, the partial pressure of each solvent was 

set to represent MOFs being exposed to liquid solvents. It is useful to understand whether 

the pores of the MOFs would be filled by solvent molecules under these conditions. We 

examined this by performing single component GCMC simulations of each solvent in the 

rigid MOF structure. Figure 5.A.1 shows the resulting adsorption loading from GCMC at 

P0solvent as well as a simple approximate of the saturation loading of each solvent (Nsat,approx) 

as calculated with Eq. (5.A.1) using the room temperature liquid density of each solvent 

(ρliq,solvent)4. It is clear that under these conditions the pore of each MOF are essentially 

completely filled with solvent molecules. 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 𝑉𝑉𝑃𝑃 ∙ 𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙
1

𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
   (5.A.1) 

 
Figure 5.A.1. Comparison of solvent loadings estimated via single component GCMC 
simulations at P = P0solvent and 3∙P0solvent5 and Nsat,approx for (a) H2O, (b) MeOH, and (c) IPA. 
GCMC at P = P0solvent is in good agreement with Nsat,approx. 
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5.A.3  Adsorption Selectivity in Rigid and Intrinsically Flexible MOFs 

 Figure 5.A.2 shows adsorption selectivity calculations at 298 K at fixed P/P0sarin = 

0.25, and their ratio to allow direct comparisons between two approximations (reproduced 

from Figures 5.3 to 5.5 in Chapter 5). The conclusions of what types of mixture and MOFs 

could give higher sarin adsorption selectivity, i.e. sarin/H2O vs. sarin/MeOH, can be 

similarly drawn between two approximations, though their numerical deviation is 

nontrivial. 

 
Figure 5.A.2. Adsorption selectivities for sarin at 298 K in 23 MOFs (a) approximated as 
rigid (SRigid) and (b) allowed to have intrinsic flexibility (SFlexible) for each molecular 
mixture. (c) Ratio of SFlexible to SRigid in 23 MOFs for each molecular mixture. A green 
dashed line shows SFlexible/SRigid = 1 indicating no effect of intrinsic flexibility on adsorption 
modeling. 
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5.A.4  Effect of MOF Properties on Quantitative Predictions of Selectivity 

 Figure 5.A.3a compares LCD and PLD in rigid MOFs against those in flexible 

MOFs. Pore sizes in flexible MOFs were averaged over those from each MD snapshot. 

There were only marginal structural changes in MOFs by including intrinsic flexibility. 

Figures 5.A.3b and 5.A.3c show the ratio of adsorption selectivity in rigid and 

flexible MOFs as a function of LCD of each MOF using polar and nonpolar solvent 

molecules, respectively. MOFs that have small LCDs are more affected by intrinsic 

flexibility. However, we find insufficient correlation considering LCDs to identify the 

underlying reasons for the sensitivity of flexibility as a function of molecular mixtures. 

 
Figure 5.A.3. (a) Parity plot of pore sizes, i.e. LCD and PLD, of 23 MOFs calculated in 
rigid approximation (horizontal axis) and in intrinsically flexible approximation (vertical 
axis). Error bars for Pore SizeFlexible show variation over ten distinct MD snapshots. 
SFlexible/SRigid as a function of LCD with simulations of using (b) realistic polar solvents and 
(c) unphysical nonpolar (np) solvents. LCD in (b) and (c) are that for rigid MOFs. 
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5.A.5  Molecular Modeling Details 

For GCMC simulations6,7, truncated potentials with tail corrections are applied 

where Lennard-Jones interactions are truncated at 12 Å. Simulation boxes are expanded to 

at least 26 Å along x, y, and z dimensions. GCMC simulations included 5,000 initialization 

cycles followed by 50,000 production cycles. Henry constants were computed using 

200,000 production cycles while including an identical Widom probability. 

Pore volumes of computation-ready MOF structures were calculated from the void 

fractions of each structure using a Widom particle insertion method with a He probe 

molecule (ε/kB = 10.9 K, σ = 2.64 Å) at 298 K.7 Accessible surface areas were calculated 

by using N2 as probe molecule with overlap distance criteria set to a size parameter σ of 

3.31 Å.7 Largest cavity diameters and pore limiting diameters were calculated with 

Zeo++8,9 applying the high-accuracy setting with a N2 probe molecule using a radius of 

1.86 Å.8 

For binary GCMC simulations using “unphysical” nonpolar solvent molecules we 

omitted Coulombic adsorbate/adsorbate interactions10. Point charges were retained on sarin 

in these calculations. 

Table 5.A.3 summarizes two molecular descriptors for the solvents examined in 

this work. It shows that molecular mixtures consist of adsorbates of different sizes and 

polarities. 

Table 5.A.3. Molecular descriptors for the solvents. Kinetic diameter11 and polarity 
index12,13 of H2O, MeOH, and IPA are listed. Polarity index is a relative measure of the 
degree of interaction of the solvent with various polar test solutes. 
 H2O MeOH IPA 
Kinetic diameter, d (Å) 2.6 4.3 4.7 
Polarity index 10.2 5.1 3.9 

* Sarin14 has a molecular shape of ~ 5 Å x ~ 12 Å. 
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5.A.6  Numerical Data for Analysis 

Table 5.A.4. Numerical data in Figures 5.3, 5.4, and 5.5. Adsorption selectivities for sarin 

over solvents predicted in rigid MOFs (SRigid) and intrinsically flexible MOFs (SFlexible), and 

their ratio (SFlexible/SRigid): sarin/H2O mixture. 

MOFs SRigid SFlexible SFlexible/SRigid 

AMAFOK 5.16 4.66 0.90 

BARZAW 5.10 35.82 7.02 

BZRZOK 5.05 32.36 6.40 

COMDOY 3.81 13.14 3.45 

EGELUY01 4.19 28.07 6.69 

EHALOP 7.99 25.46 3.19 

HAFQOW 9.36 24.56 2.62 

KEDQAN 5.52 21.40 3.88 

OFORUX 4.18 6.04 1.44 

ONIXOZ 9.10 19.88 2.19 

OVICUS 7.72 12.56 1.63 

QONQEQ 8.36 26.69 3.19 

RAZYIC 8.80 25.29 2.88 

SABVOH 4.85 23.45 4.84 

SABVOH01 6.74 20.32 3.03 

SABVUN 5.48 22.16 4.04 

UiO-66-CF3 33.62 11.52 0.34 

UTEWOG 12.97 26.57 2.05 

UTEXAT 5.59 22.39 4.01 

UTEXIB 7.66 18.99 2.48 

WAYMIU 6.95 23.62 3.40 

WAYMOA 7.23 23.94 3.31 

XUNJEW 6.65 6.93 1.04 
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Table 5.A.4. Continued: sarin/MeOH mixture. 

MOFs SRigid SFlexible SFlexible/SRigid 

AMAFOK 28.06 23.41 0.83 

BARZAW 26.99 54.44 2.02 

BZRZOK 23.44 37.51 1.60 

COMDOY 39.83 22.25 0.56 

EGELUY01 23.02 28.86 1.25 

EHALOP 12.75 32.71 2.56 

HAFQOW 31.04 33.03 1.06 

KEDQAN 14.78 35.03 2.37 

OFORUX 21.99 15.38 0.70 

ONIXOZ 26.99 33.38 1.24 

OVICUS 19.67 21.92 1.11 

QONQEQ 11.40 44.77 3.93 

RAZYIC 22.09 28.11 1.27 

SABVOH 11.86 41.04 3.46 

SABVOH01 10.81 32.46 3.00 

SABVUN 27.71 38.20 1.38 

UiO-66-CF3 14.04 24.26 1.73 

UTEWOG 29.37 41.82 1.42 

UTEXAT 20.30 22.89 1.13 

UTEXIB 12.48 24.89 1.99 

WAYMIU 42.12 45.23 1.07 

WAYMOA 22.83 39.33 1.72 

XUNJEW 22.20 21.66 0.98 
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Table 5.A.4. Continued: sarin/IPA mixture. 

MOFs SRigid SFlexible SFlexible/SRigid 

AMAFOK 16.26 9.61 0.59 

BARZAW 13.36 37.70 2.82 

BZRZOK 19.70 33.66 1.71 

COMDOY 11.32 15.34 1.36 

EGELUY01 15.54 29.30 1.89 

EHALOP 18.29 33.06 1.81 

HAFQOW 18.47 24.67 1.34 

KEDQAN 19.74 28.53 1.45 

OFORUX 17.83 9.09 0.51 

ONIXOZ 17.92 26.38 1.47 

OVICUS 19.08 15.60 0.82 

QONQEQ 8.84 28.51 3.23 

RAZYIC 14.76 25.17 1.70 

SABVOH 16.72 42.49 2.54 

SABVOH01 20.01 35.40 1.77 

SABVUN 17.42 27.13 1.56 

UiO-66-CF3 8.61 13.53 1.57 

UTEWOG 14.17 36.17 2.55 

UTEXAT 9.28 23.70 2.55 

UTEXIB 8.39 20.92 2.49 

WAYMIU 15.32 30.21 1.97 

WAYMOA 15.50 33.84 2.18 

XUNJEW 13.87 10.55 0.76 
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Table 5.A.5. Numerical data in Figures 5.6 and 5.7. Adsorption selectivities for sarin over 

solvents in rigid MOFs (SRigid) and intrinsically flexible MOFs (SFlexible), and their ratio 

(SFlexible/SRigid) calculated by using unphysical nonpolar (np) solvents: sarin/H2O(np) 

mixture. 

MOFs SRigid SFlexible SFlexible/SRigid 

AMAFOK 4.64 3.61 0.78 

BARZAW 5.13 10.91 2.12 

BZRZOK 5.29 10.64 2.01 

COMDOY 3.71 8.11 2.19 

EGELUY01 4.42 8.10 1.83 

EHALOP 8.25 13.64 1.65 

HAFQOW 10.74 17.51 1.63 

KEDQAN 5.30 12.41 2.34 

OFORUX 4.10 6.02 1.47 

ONIXOZ 9.98 11.82 1.18 

OVICUS 6.97 12.61 1.81 

QONQEQ 8.07 13.74 1.70 

RAZYIC 9.95 16.73 1.68 

SABVOH 5.05 14.04 2.78 

SABVOH01 7.37 15.72 2.13 

SABVUN 5.57 13.61 2.45 

UiO-66-CF3 27.62 10.53 0.38 

UTEWOG 13.21 14.72 1.11 

UTEXAT 6.06 13.40 2.21 

UTEXIB 6.87 8.99 1.31 

WAYMIU 7.18 12.25 1.70 

WAYMOA 8.04 13.21 1.64 

XUNJEW 6.02 6.93 1.15 
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Table 5.A.5. Continued: sarin/MeOH(np) mixture. 

MOFs SRigid SFlexible SFlexible/SRigid 

AMAFOK 29.11 20.40 0.70 

BARZAW 25.20 34.41 1.37 

BZRZOK 24.09 27.51 1.14 

COMDOY 36.28 20.25 0.56 

EGELUY01 23.72 25.86 1.09 

EHALOP 13.48 17.71 1.31 

HAFQOW 31.70 33.03 1.04 

KEDQAN 14.02 25.10 1.79 

OFORUX 19.49 13.38 0.69 

ONIXOZ 26.02 24.83 0.95 

OVICUS 20.17 18.91 0.94 

QONQEQ 10.97 17.58 1.60 

RAZYIC 22.90 21.17 0.92 

SABVOH 12.08 21.04 1.74 

SABVOH01 11.95 18.46 1.55 

SABVUN 28.52 33.23 1.16 

UiO-66-CF3 14.84 15.26 1.03 

UTEWOG 28.90 30.80 1.07 

UTEXAT 21.03 22.32 1.06 

UTEXIB 11.88 14.94 1.26 

WAYMIU 41.67 39.92 0.96 

WAYMOA 21.08 29.68 1.41 

XUNJEW 22.92 19.66 0.86 
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Table 5.A.5. Continued: sarin/IPA(np) mixture. 

MOFs SRigid SFlexible SFlexible/SRigid 

AMAFOK 15.77 10.62 0.67 

BARZAW 14.94 17.72 1.19 

BZRZOK 20.92 23.31 1.11 

COMDOY 10.73 13.13 1.22 

EGELUY01 16.79 21.30 1.27 

EHALOP 19.94 23.56 1.18 

HAFQOW 18.91 19.05 1.01 

KEDQAN 20.17 18.03 0.89 

OFORUX 14.26 8.99 0.63 

ONIXOZ 19.72 22.84 1.16 

OVICUS 18.77 15.02 0.80 

QONQEQ 9.40 10.25 1.09 

RAZYIC 14.90 16.82 1.13 

SABVOH 17.22 27.92 1.62 

SABVOH01 20.86 25.47 1.22 

SABVUN 18.56 23.33 1.26 

UiO-66-CF3 8.80 10.85 1.23 

UTEWOG 13.77 15.20 1.10 

UTEXAT 8.81 10.79 1.22 

UTEXIB 7.93 8.99 1.13 

WAYMIU 14.18 17.22 1.21 

WAYMOA 15.74 23.76 1.51 

XUNJEW 14.05 11.29 0.80 
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CHAPTER 6. SUMMARY AND OUTLOOK 

6.1 SUMMARY OF DISSERTATION IMPACT 

This dissertation used atomistic simulations to examine a sub-ambient PSA process 

employing MOF adsorbents as a potential route towards post-combustion CO2 capture. 

This filled a critical gap in knowledge about this kind of sub-ambient gas processing. We 

also provided fundamental insights into a standard approximation of adsorption modeling 

as exemplified by CWA adsorption in MOFs. 

Reproducibility of experiments in psychology and biomedical science has received 

enormous attention in recent years, but similar efforts have not been made in materials 

chemistry. Chapter 2 addressed this issue using a meta-analysis of results from a specific 

area of materials chemistry, adsorption properties of MOFs.1 This represented an 

innovative approach to tackling an important general problem in materials chemistry, and 

the methods we introduced could be applied widely in materials chemistry and related 

disciplines. This also gave us useful information on the viability of applying molecular 

modeling to CO2 adsorption in MOFs. 

Recent process developments have indicated that sub-ambient temperature 

processes may be made economically viable for large-scale CO2 capture. Chapter 3 tackled 

the important question of how whether this choice can substantially increase the CO2 

capacity possible in structured adsorbents.2 We showed by molecular simulation that CO2 

swing capacities as high as 40 mol/kg were possible with appropriately chosen MOFs. This 
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improves upon commonly accepted limits of CO2 swing capacity in a similar class of 

materials by an order of magnitude. 

Appropriate selection of adsorbent materials is essential in developing adsorption-

based processes such as CO2 capture. Approximate methods such as adsorbent evaluation 

metrics do not completely describe the performance of adsorbents in real separation 

processes. Chapter 4 assessed the correlation between approximate predictions and detailed 

process model predictions of MOFs in a sub-ambient PSA. We illustrated the opportunities 

and challenges in bridging approximate and detailed methods for evaluating adsorbents for 

cyclic separation processes. 

Molecular modeling of adsorption of CO2 and similar species in a wide range of 

MOFs typically employ a rigid framework approximation. Nevertheless, all real 

frameworks have intrinsic flexibility due to thermal vibrations. Chapter 5 demonstrated the 

adsorptive separation of CWAs under bulk mixture adsorption conditions with solvents of 

different polarities and sizes in MOFs. Our observations implied the intrinsic flexibility 

can have significant effects on quantitative analysis of adsorbed molecules when 

electrostatic interactions between those molecules are non-trivial. 

6.2 SUGGESTIONS FOR FUTURE WORK 

6.2.1 Reproducibility Analysis of Porous Material Intrinsic Properties 

In Chapter 2, we examined the reproducibility of CO2 isotherm measurements in 

MOF materials where ~ 20% of measurements were labeled outliers on the basis of our 

metrics. We pointed out that the meta-analysis described does not provide direct physical 
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insight into why a particular measurement is an outlier or why a material may have a 

smaller or larger fraction of outliers. Because the measurements of simple gas adsorption 

are relatively routine1,3, it is reasonable to assume that most outliers occur because of 

variations in the intrinsic properties of porous materials. Identification of reproducibility 

on those properties of MOFs, therefore, merits further examination in terms of 

understanding isotherm reproducibility. A challenge in this regard would be collecting 

simple quantities that can imply the intrinsic properties of materials from hundreds and 

thousands of existing literatures. The recent development of a simple text mining 

algorithm4 enabled identification of surface area and pore volumes of MOFs from hundreds 

and thousands of reported literatures with high accuracy. This kind of approach may be a 

useful tool to facilitate the collection of a large set of reference data of those properties and 

additional material information. It may then be possible to conduct similar reproducibility 

analysis as in Chapter 2 on various intrinsic materials properties. 

6.2.2 Engineering the Inflection in Adsorption Isotherms 

Chapters 3 and 4 identified high performing MOF candidates estimated at the 

approximate molecular level (i.e. adsorbent evaluation metrics) and detailed process level 

(i.e. industry-relevant process objectives) in terms of CO2 capture in a sub-ambient PSA. 

A common feature, although perhaps not a necessary condition, that underlies for high 

performance is these MOFs have inflections in their CO2 adsorption isotherms that are 

bracketed within the operating pressure range at temperatures we examined. Such 

adsorption behavior in several rigid MOFs (i.e. materials with no structural volume change 

upon gas adsorption) at low temperatures was studied in the literature.5 Nonetheless, the 

origin of the inflection in isotherms for rigid frameworks that compromise the majority of 
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existing MOFs is still relatively unexamined. Understanding the inflection mechanism of 

the sub-ambient CO2 adsorption isotherms in rigid MOFs would, therefore, enable utilizing 

many existing MOFs in a process. This would also lead to exploiting the inflection point 

induced into the pressure swing range by material engineering to achieve larger swing 

capacity (and/or other performance metrics) in a cyclic adsorption process. Simon et al.6 

have posed a statistical mechanical model of gas adsorption dictating the condition for the 

inflection point in isotherm is related to the chemical potential of the adsorbate. Similar 

efforts could pave a way to derive thermodynamic principle that induces inflections in 

isotherms. 

6.2.3 Sub-Ambient CO2 Adsorption Modeling in Intrinsically Flexible MOFs 

CO2 adsorption modeling in the presence of N2 throughout this thesis was 

conducted employing a rigid framework approximation of MOFs. In Chapter 5, however, 

we observed considerable discrepancies of adsorption selectivity for CWA over various 

solvents between calculations in rigid and intrinsically flexible frameworks. Such impact 

was dominantly attributed to the fact that bulk mixtures we examined were consisted of 

molecules of having strong interactions between adsorbing molecules. This is consistent 

with previous observations indicating electrostatic interactions are a contributing factor in 

under-/overestimation of adsorption properties by including the flexibility effect, even for 

large pore MOFs.7 Gee et al. showed flexibility in adsorption modeling can also be 

significant in MOFs at high loadings of adsorbing molecules.8 CO2 in post-combustion flue 

gas is a quadrupolar molecule that can induce non-trivial electrostatic interactions with N2 

or with other species in a flue gas mixture. In addition, the results in Chapters 3 and 4 

pointed large CO2 adsorbed amounts at sub-ambient temperatures were attained in large 
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open pore MOFs. These observations, thereby, make it interesting to consider sub-ambient 

CO2 adsorption behavior under a bulk flue gas mixture condition in large pore MOFs by 

taking account of their intrinsic flexibility. 
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