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To my fellow friends and family.

“If you can’t explain it simply, you don’t understand it well enough.”

Albert Einstein
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(solid curves being omitted). (b) Box isotherm for N2 adsorption in HKUST-
1 at 77 K with the solid curves connecting IQRs which can be thought of as
the consensus bounds to the measurements of the adsorbed amount as a
function of P/P°. These curves connecting QL’s and Qu’s are used as pseudo-
experimental isotherms for surface area analysis using BET theory. (c) BET
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reported BET surface area. The solid curves connecting IQRs are omitted.
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temperature.

Figure 3.5. Schematic illustration of the material selection criteria to accomplish
large sub-ambient PSA CO2 swing capacities.

Figure 3.6. (a) Sub-ambient CO2 adsorption (filled symbols with solid lines) and
desorption (open symbols with dashed lines) in XAWVUN predicted by
GCMC molecular simulations. (b) Heat of adsorption of CO2 in XAWVUN as
a function of CO2 uptake, obtained from GCMC simulations. (c) Adsorption
selectivity of CO2 from bulk CO2/N2 0.14/0.86 mixture calculated by binary
GCMC simulations.

Figure 3.A.1. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477
MOFs at (a) 228 K and (b) 243 K.
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Figure 3.A.2. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477
MOFs at 243 K as a function of (a) pore volume, (b) accessible surface area,
(c) largest cavity diameter, and (d) pore limiting diameter.

Figure 3.A.3. () Qaus’ and (b) Qaas®? at 228 K, 243 K, and 258 K in 477 MOFs.
Arrows indicate the optimal range for the heat of adsorption. (c) Correlation
between Qass® and Qags™? at 213 K in 477 MOFs with entries of high swing
capacity 21 MOF candidates noted.

Figure 3.A.4. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC
simulations, (b) heat of adsorption as a function of CO2 uptake obtained from
GCMC simulation, (c) predicted sub-ambient PSA CO2 swing capacity as a
function of desorption pressure, and (d) CO2 adsorption selectivity from bulk
CO2/N2 0.14/0.86 mixture calculated by binary GCMC simulations in
ANUGIA.

Figure 3.A.5. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC
simulations, (b) heat of adsorption as a function of CO2 uptake obtained from
GCMC simulation, (c) predicted sub-ambient PSA CO2 swing capacity as a
function of desorption pressure, and (d) CO2 adsorption selectivity from bulk
CO2/N2 0.14/0.86 mixture calculated by binary GCMC simulations in
WONZOP.

Figure 3.A.6. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC
simulations, (b) heat of adsorption as a function of CO2 uptake obtained from
GCMC simulation, (c) predicted sub-ambient PSA CO2 swing capacity as a
function of desorption pressure, and (d) CO2 adsorption selectivity from bulk
CO2/N2 0.14/0.86 mixture calculated by binary GCMC simulations in
SENWAL.

Figure 4.1. Schematic illustration of the idealized PSA process model. The
model imposes idealized cycle of adsorption (ADS) and desorption (DES)
with feed binary mixture of CO2/Nz2 in molar fraction of 0.14/0.86 (yi).
Components A and B refer to strongly and weakly adsorbing species,
respectively. The model numerically solves for the composition of the
produced gas or molar composition of gas components in the desorption step
(yi"). Adsorption amounts at given desorption conditions can be obtained
(Ni%"). Isothermal operation is assumed at T = 243 K.

Figure 4.2. (a) Schematic illustration of the four-step PSA cycle for the rigorous
process modeling of a hollow fiber bed contactor. The cycle includes counter-
current light product pressurization (PR), adsorption (ADS), co-current
blowdown (coBD), and counter-current evacuation (ccEV). (b) Schematic
illustration of the PCM-based thermally modulated fiber adsorbent and flow
of bulk CO2/N2 mixture in the bed column.

xviii

99

100

103

104

105

114

116



Figure 4.3. (a) Material selection strategy employed in this chapter to filter 143
MOFs by forming clusters. The constraints on each metrics and definitions of
each cluster are described in the text. (b) Adsorbent evaluation metrics
calculated for a CO2/N2 0.14/0.86 mixture at bulk pressures of 0.7 bar and 14.3 119
bar at 243 K. The horizontal and vertical axes are the swing capacity and the
sorbent selection parameter, respectively. Data in black squares correspond to
MOFs that do not belong to any of the clusters we defined.

Figure 4.4. Comparison between mixture adsorption amounts in 30 MOFs
computed from GCMC (horizontal axes) and IAST (vertical axes) for (a) CO2
and (b) Nz at low, intermediate, and high total pressures at 243 K and (c)
adsorption selectivities in 30 MOFs computed from GCMC (horizontal axis)
and IAST (vertical axis). In all cases the gas phase CO2/N2 composition is
0.14/0.86. The diagonal lines have slopes of 1.1, 1, and 0.9 from top to bottom,
respectively, in (a). Similar lines are drawn for slopes of 1.15, 1, and 0.85 from
top to bottom, respectively, in (b) and (c).

121

Figure 4.5. Performance indicators derived from the idealized PSA process
model for 15 MOFs. The indicators were calculated for a CO2/N2 0.14/0.86
mixture at 243 K for 400 combinations of ad-/desorption pressures. Squares,
triangles, and downward-pointing triangles indicate MOFs collected from
cluster I, cluster 11, and cluster I11, respectively, from the pre-selection stage. 122
(a) Encoz-Pucoz2 shown by Pareto fronts across operating pressures in each
material. MOFs in group | are the ones that meet the Puco2 benchmark while
those in group Il do not. (b) ANco2-Pucoz shown with each data points
calculated from all combinations of ad-/desorption pressures.

Figure 4.6. Multi-objective optimization for 15 MOFs in a sub-ambient PSA
using a hollow fiber adsorbent module at 243 K. Pareto fronts are shown for
optimized objectives of (a) Enco2 and Pucoz, (b) Pucoz and Recoz, and (c)
Prcoz and Encos.

124

Figure 4.7. Spearman’s rank-order correlation (p) between rankings of 15 MOFs
from rigorous process modeling (vertical axis) and adsorbent evaluation
metrics (horizontal axis). A general guideline for correlation strength and data 126
interpretation associated with the color coding is provided in detail in Table
4.A.3 in Appendix 4.A.

Figure 4.8. The normalized Pucoz at a fixed Encoz using results from our
rigorous process model (horizontal axis) and an idealized process model
(vertical axis). Normalization was performed using the range of values from
each data set. The red dashed line is a parity line.

129

Figure 4.A.1. (a) Schematic illustration of the origin of a MOF material set used
in this chapter. (b) Comparison of CO2 swing capacities in 143 structures 140
computed by single component adsorption data (horizontal axis) and by
CO2/N2 0.14/0.86 bulk mixture adsorption data (vertical axis) at 243 K over
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adsorption pressure (Pcoz,ads = 2.0 bar) and desorption pressure (Pcoz,des = 0.1
bar).

Figure 4.A.2. (a) CO2 swing capacities of 143 MOFs at 243 K as a function of
pore volume (Ve), pore limiting diameter (PLD), and the difference of heats of
adsorption at zero loading for CO2 and N2 (AQads®). (b) Adsorption selectivities
for CO2 in 143 MOFs at bulk adsorption pressure and at 243 K as a function
of Ve, PLD, and AQads’. Each box in (a) and (b) show desirable ranges of Ve,
PLD, and of AQads’. Data in red symbols in (a) and (b) refer to 28 MOFs in
cluster I which is defined in Chapter 4.

Figure 4.A.3. Performance indicators derived from the idealized PSA process
model for 30 MOFs. The indicators were calculated for a CO2/N2 0.14/0.86
mixture at 243 K at 400 combinations of ad-/desorption pressures. Square,
triangle, and downward-pointing triangle symbols stand for MOFs collected
from clusters I, 11, and 111, respectively, from the pre-selection stage. (a) Encoz-
Pucoz shown by Pareto fronts across operating pressures in each material. (b)
ANcoz-Pucoz shown with data from all combinations of ad-/desorption
pressures.

Figure 4.A.4. Analytical model fits (solid curves) for (a) CO2 and (b) N2 single
component isotherms predicted by GCMC simulations (symbols) at 243 K for
15 MOFs. More information about the analytical model fits is given in Tables
4.A2and 4.A2.1.

Figure 4.A.5. Spearman’s rank-order correlation (p) between rankings of 15
MOFs from idealized PSA process modeling (vertical axis) and adsorbent
evaluation metrics (horizontal axis). MOFs ranked by idealized process model
are based on Pucoz at a fixed Encoz of 400 kwWh/t (Table 4.A.7). MOFs ranked
by adsorbent evaluation metrics are based on the relative performance of
materials using each metric (Table 4.A.4).

Figure 5.1. Schematic illustration of the MOF selection strategy. The number of
MOFs at each stage are shown in brackets (N).

Figure 5.2. Atomic representations of (a) sarin and (b) solvent molecules.
Carbon, oxygen, hydrogen, phosphorus, and fluorine are shown in black, red,
white, orange, and yellow, respectively. Room temperature saturation
pressures for each molecule that were used to determine the bulk mixture
compositions are also shown. Parin is taken from the literature and P%%olvent
were defined using the Antoine equation at 298 K.

Figure 5.3. Adsorption selectivity for sarin calculated via binary mixture GCMC
in rigid approximations of 23 MOFs for each molecular mixture at bulk
pressure of Protal = Psarin + Psolvents at 298 K. Mixture compositions in the bulk
phase were defined to give a partial pressure of sarin of P/P%arin = 0.25 and a
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solvent partial pressure of P/P%owent = 1. MOFs are listed in order of
decreasing sarin selectivity in the sarin/MeOH mixture.

Figure 5.4. Parity plot of adsorption selectivities predicted at 298 K in 23 MOFs
approximated as rigid (horizontal axis) and allowed to have intrinsic flexibility
(vertical axis) for each molecular mixture. The parity line indicates the result
that would be obtained if there was no effect of intrinsic flexibility.

Figure 5.5. The number of MOFs observed as a function of Sriexible/Srigid in each
mixture of (a) sarin/H20, (b) sarin/MeOH, and (c) sarin/IPA. Green dashed
lines show Sriexible/Srigid = 1, indicating the situation with no effect of intrinsic
flexibility. For each histogram the mean («) and standard deviation (o) on
Srlexible/ Srigid are given.

Figure 5.6. Parity plot of adsorption selectivities predicted at 298 K in 23 MOFs
approximated as rigid (horizontal axis) and allowed to have intrinsic flexibility
(vertical axis) for each molecular mixture using unphysical nonpolar (np)
solvents. The parity line indicates the result that would be obtained if there
was no effect of intrinsic flexibility.

Figure 5.7. The number of MOFs observed as a function of Sriexible/Srigid in each
mixture of (a) sarin/H20, (b) sarin/MeOH, and (c) sarin/IPA using unphysical
nonpolar (np) solvents. Green dashed lines show Sriexible/Srigid = 1, indicating
the situation with no effect of intrinsic flexibility. For each histogram the mean
(«) and standard deviation (o) on Sriexible/Srigid are given.

Figure 5.A.1. Comparison of solvent loadings estimated via single component
GCMC simulations at P = P%olvent and 3-P%%olvent and Nsat,approx for (a) H20, (b)
MeOH, and (c) IPA. GCMC at P = P%olvent is in good agreement with Nsat.approx.

Figure 5.A.2. Adsorption selectivities for sarin at 298 K in 23 MOFs (a)
approximated as rigid (Srigia) and (b) allowed to have intrinsic flexibility
(SFiexibie) for each molecular mixture. (c) Ratio of Sriexible t0 Srigia in 23 MOFs
for each molecular mixture. A green dashed line shows Sriexible/Srigia = 1
indicating no effect of intrinsic flexibility on adsorption modeling.

Figure 5.A.3. (a) Parity plot of pore sizes, i.e. LCD and PLD, of 23 MOFs
calculated in rigid approximation (horizontal axis) and in intrinsically flexible
approximation (vertical axis). Error bars for Pore Sizeriexible Show variation
over ten distinct MD snapshots. Sriexible/Srigia as a function of LCD with
simulations of using (b) realistic polar solvents and (c) unphysical nonpolar
(np) solvents. LCD in (b) and (c) are that for rigid MOFs.

XXi

197

199

201

202

211

212

213



SUMMARY

Developing cost-effective and less energy-intensive carbon capture processes for
dilute CO2 sources is of high interest. Adsorption-based CO2 capture such as pressure
swing adsorption (PSA) is one promising approach to this challenge. PSA and other cyclic
adsorption processes are materials-enabled separations that use porous adsorbents,
including metal-organic frameworks (MOFs). This thesis examines post-combustion
carbon capture in sub-ambient PSA, a potential route to an effective adsorption process,

using MOF materials via molecular modeling.

We first estimated the reproducibility of CO2 adsorption isotherm measurements in
MOFs via literature meta-analysis. This chapter provides a comprehensive summary of the
state of knowledge regarding CO2 adsorption in MOFs and its implications for molecular
modeling of adsorption in MOFs. We then examined the upper bounds on CO2 swing
capacity in sub-ambient PSA by Grand Canonical Monte Carlo (GCMC) simulation of an
extensive collection of MOFs. A wide variety of MOFs was found to have swing capacity
exceeding 10 mol/kg at sub-ambient temperatures provided that MOFs are appropriately
selected based on their physical properties. We also assessed the capability of simple
proxies for adsorbent performance and approximate models of cyclic adsorption to predict
the outcomes of detailed process models of adsorption-based CO:2 capture processes. To
this end, we discuss the correlations between predictions from the simpler models and

detailed process models.

As a separate contribution, molecular modeling of chemical warfare agents
(CWASs) adsorption in MOFs was analyzed. Molecular models of adsorption of COsz,
CWAs or other molecules typically employ a rigid framework approximation for
computational convenience. All real frameworks including MOFs, however, have intrinsic
flexibility due to thermal vibrations. We examine the implications of this simple

observation for quantitative predictions of the properties of adsorbed CWA:s.
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CHAPTER 1. INTRODUCTION

1.1 POST-COMBUSTION CO, CAPTURE AND SEPARATION

Developing efficient methods to separate chemical mixtures into pure or purer
forms are of interest for many engineers both in academia and industry.! Physical and
chemical separation processes currently account for 10-15% of the world-wide energy
consumption.’? In this context, the improvement of the separation process of greenhouse

gases such as CO2 from dilute emissions would gain significant global benefits.

Anthropogenic CO2 emissions are one of the main drivers of global climate change.
Itis, however, challenging and expensive to capture CO2 from dilute sources such as power
plants, refinery exhausts, and air.'* Stationary point sources, like power plants, are
practical locations to implement CO2 capture technology.® There are three scenarios where
CO:z2 can be captured and separated in power plants: pre-combustion, oxy-fuel combustion,
and post-combustion. Figure 1.1 lays out these general options of CO2 capture methods
and frequently used materials for each option.® The selection of CO2 capture technology is
based on the fuel composition, the heat, the influence of water, the resulting partial pressure
of the gas mixture, and the configuration of the power plant.” Post-combustion CO2 capture
and separation is the main scenario where substantial efforts have been undertaken to
develop more cost-effective and less energy-intensive processes. The major challenge in
the post-combustion process is in separating the low concentration of CO: out of the high
concentration of N2. The processes of absorption, adsorption, cryogenic distillation,
membranes, and gas hydrates have been found to be potential candidates for post-

combustion CO2 capture.®
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Figure 1.1. Methods and materials for CO2 capture and separation possible for each
combustion process. Post-combustion CO2 capture can play a key role in addressing CO2
emission concerns. Figure adapted from D'Alessandro et al.®

One promising separations process is via adsorption of desired gas molecules using
solid physical adsorbents in packed or fluidized adsorbent beds.® CO: adsorption involves
either physisorption derived by van der Waals interaction or chemisorption derived by
covalent bonding between the CO2 molecules and the surface of a material. Cyclic
adsorption processes include the processes in which desorption is induced by pressure
swing (pressure swing adsorption, PSA), temperature swing (temperature swing
adsorption, TSA), or vacuum swing (vacuum swing adsorption, VSA).**12 Because of its
low energy requirement and fast regeneration, PSA is used as a commercial technology for
a number of applications.!* In a PSA process, the feed gas flows through a packed bed of
adsorbent at elevated pressure until the concentration of the desired gas approaches

equilibrium, which is then regenerated by reducing the pressure. VSA has a similar



operating principle with PSA, but regeneration is accomplished using pressures below 1.0

bar 11,12

1.1.1 Metal-Organic Frameworks

Cyclic adsorption processes are materials-enabled separations that use porous
adsorbents. Porous solid adsorbents such as activated carbon, zeolites, and metal-organic
frameworks (MOFs) have been considered as efficient materials for adsorptive CO2 capture
and separation.*!3> MOFs, also known as porous coordination polymers, are an emerging
class of crystalline porous materials that consist of metal or metal-oxide corners connected
by organic linkers. They have attracted considerable attention due to their structural
properties including high surface area, high porosity and low crystal density.*5420 The
major advantages of MOFs over traditional porous materials are the greater scope for
tailoring these materials for specific applications because of their modular synthesis.*®
Investigation of these materials for CO2 capture and separation has become very active in

the past years*®% both experimentally and computationally.?'-2

For the purpose of computational examination of MOF materials, Chung et al.
developed a computation-ready, experimental (CORE) MOF database.?” The CORE MOF
database (Figure 1.2) contains over 5,000 crystal structures that are made up of
experimentally reported existing structures. This database allows high-throughput
computational screening of MOFs for adsorption and/or diffusion modeling in these
materials. The frameworks are optimized via density functional theory (DFT) calculation
with the PBE functional?®2° that allows reliable adsorption modeling of CO2 and other gas

species.
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Figure 1.2. Schematic illustration for construction of CORE MOF database as adapted from
Chung et al.?” All structures in the CORE MOF database have pore limiting diameters larger
than 2.4 A.

1.2 SUB-AMBIENT GAS PROCESSING FOR CO; CAPTURE

Besides the development of porous adsorbent materials, designing a proper process
strategy is another key in an attempt to create a productive CO2 capture route. To evaluate
the feasibility of processes and adsorbent materials, adsorbent evaluation criteria have been
proposed.?!26 The criteria that are typically used to assess a large number of adsorbent
candidates for capturing gas species of interest (i) include swing capacity (ANi), adsorption

selectivity (Sads,irj), and the regenerability of adsorbent.!*:2

The concept of sub-ambient operation has been widely discussed as a route to
improve Hz capacity in applications of porous materials for Hz storage.®® A general strategy
for increasing PSA swing capacity for weakly adsorbing species like H2 and CO: is to
lower the operation temperature. It is widely assumed, however, that the cooling cost

associated with sub-ambient processes make these conditions impractical for large-scale



CO:z2 capture from flue gases. Recently, however, Air Liquide had developed a prospective
technology for cost and energy effective post-combustion CO2 capture from power plant
flue gas via an energy integrated cold membrane process.3*** They designed a hybrid CO2
capture process based on sub-ambient temperature operation of a hollow fiber membrane
in combination with cryogenic distillation. The pre-treated flue gas is compressed and dried
before being fed into the low-temperature membrane system. A highly selective cold
membrane provides pre-concentration of CO:z prior to partial condensation in the CO2
liquefier. Liquid COz2 is pumped from the phase separator to provide a sequestration-ready
product, and vent from the COz2 liquefier is recycled to the low-temperature membrane
system. The cryogenic heat exchanger provides energy integration between the low
temperature membrane and CO: liquefier. These developments suggest that large-scale
selective adsorption of CO2 with sub-ambient operation may be viable when coupled with
heat integration and power recovery.'?33* A schematic diagram of this sub-ambient

membrane process is shown in Figure 1.3.

Air Liquide had also performed an extensive techno-economic analysis of a process
for compressing and cooling flue gas to conditions giving 14 bar in total pressure, i.e.
partial pressure of around 2.0 bar of CO2, at 240 K.3% |t suggests that the pressure swing
range within moderate CO2 partial pressures up to 2.0 bar is feasible to deliver cold,
compressed flue gas to a sub-ambient gas processing system. In this thesis, a PSA process
which combines sub-ambient gas processing and adopting low regeneration pressure to
avoid a cost-prohibitive pressurization step®® is the target system for adsorptive CO>

capture from post-combustion flue gas.
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Figure 1.3. Schematic diagram of sub-ambient membrane-based CO: cryogenic
purification unit process as adapted from Hasse et al.3® Sub-ambient gas processing can be
adopted in energy-intensive rapidly cycled PSA process for adsorptive CO2 capture and
separation applications by utilizing MOFs.

1.3 MOLECULAR SIMULATION FOR ADSORPTION MODELING

Computational chemistry methods can provide a detailed picture on the molecular
scale that is not easily accessible from experimental methods for a variety of
applications.®*%® They offer an additional dimension to the characterization and
understanding of systems in the fields of physical, chemical, and materials sciences. The
computational approaches that are commonly used to investigate systems at atomistic level
are quantum mechanical calculations and force field-based simulations.®>*° The former
category is required when examining the electronic nature of material properties such as
bond breakage and formation. The latter method is applicable when studying larger systems

and when investigating a wide variety of thermodynamic and dynamic properties. Force



field-based classical simulations typically include energy minimization of structures,

molecular dynamics simulations, and Monte Carlo simulations.
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Figure 1.4. Schematic diagram of the Monte Carlo simulation of adsorption in a porous
material in the Grand Canonical thermodynamic ensemble, Z (y, V, T), as adapted from
Coudert et al.¥

Force field-based classical molecular simulations are a useful tool to quantitatively
predict adsorption behavior and to gain insight into the corresponding molecular level
phenomena.®® They also provide an efficient method that can be used to screen existing
and/or hypothetical crystal structures for specific applications which allow narrowing
down the search to a subset of promising structures.?>3¢3° Furthermore, the molecular level
insights can be combined to develop design principles for specific applications.?>* The
standard force field-based molecular simulation to predict adsorption equilibrium is Grand
Canonical Monte Carlo (GCMC) simulation (illustrated in Figure 1.4). GCMC holds the
chemical potential (), volume (V), and temperature (T) constant while allowing the
number of adsorbate molecules (N) to fluctuate. Fugacity needs to be imposed, which

determines the chemical potential; fugacity can be converted from pressure using the Peng-



Robinson equation of state (or another appropriate equation of state).*>4° GCMC mimics
the experimental equilibrium conditions where the chemical potential and the temperature

between solid reservoir and external gas fluid must be equal.

To model adsorption equilibrium by such a systematic computational approach, van
der Waals interactions and electrostatic interactions are taken into account.** Appropriate
force fields are required to describe van der Waals interactions for adsorbate-adsorbent
interactions and adsorbate-adsorbate interactions.*> The van der Waals interactions are

modeled by the conventional Lennard-Jones potential:

O'.. 12 O'.. 6
Vij(rij) = 4 [(r”) - <r_”> ]
ij i

where i and j stand for interacting atoms, and rij is the distance between interacting atoms.
&ij and aij refer to Lennard-Jones energy and length parameter, respectively. The use of
generic force fields such as the universal force field (UFF)* and the transferable potentials
for phase equilibria (TraPPE) force field* for material screening purpose is reasonably
well justified.*? Therefore, Lennard-Jones parameters for framework atoms and adsorbate
molecules can be taken from UFF and TraPPE force field, respectively, in general. The van
der Waals interactions between adsorbate-adsorbent are typically defined with the Lorentz-

Berthelot mixing rules®:

ij= ij = /€%

Electrostatic interactions are typically modeled pairwise with a long-range Ewald
summation scheme?*® by employing charges for framework atoms and adsorbate molecules.

One of multiple methods to assign electrostatic charges to framework atoms is the density



derived electrostatic and chemical (DDEC) method.*”*° It is based on the electron density
partitioning in periodic structures. The point charges are found by minimizing an
optimization functional to reproduce both the charge distribution and local electrostatic

potential 47-4°

Isosteric heats of adsorption (Qads) are another thermodynamic quantity that can be
computed during GCMC simulations based on the fluctuation method.3*4° These

calculations use the expression

<NV>—-<N><V>
< N2>-—-< N >2

Qaas = RT —
where R, T, and N refers to the ideal gas constant, temperature, and the number of adsorbed
molecules, respectively. V means the sum of the interactions of all adsorbed molecules
among themselves and with adsorbent. < > is an ensemble average over the Monte Carlo

steps.

Typically, GCMC simulations assume that the adsorbents are rigid, that is, relaxation
of the framework atoms due to the presence of adsorbed molecules is neglected. Chapter 5
of this thesis examines some implications of this common assumption. Periodic boundary
conditions are defined in all dimensions allowing simulations to occur in an infinite, perfect
crystal structure.*! In general, GCMC simulation procedure includes initialization cycles
followed by production cycles, where each cycle consists of N steps.*! This is to ensure
well converged results for adsorption amount of gas molecules at desired pressure points.
Random Monte Carlo moves, either accepted or rejected according to Boltzmann-type
weighting criteria, allow translation, rotation, regrowth, reinsertion, deletion and insertion

moves of gas molecules at certain probabilities.**
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CHAPTER 2. HOW REPRODUCIBLE ARE ISOTHERM

MEASUREMENTS IN METAL-ORGANIC FRAMEWORKS?

Scientific progress is severely impeded if experimental measurements are not
reproducible. Materials chemistry and related fields commonly report new materials with
limited attention paid to reproducibility. In this chapter, we describe methods that are well
suited for assessing reproducibility in these fields via retrospective analysis of reported
data. This concept is illustrated by an exhaustive analysis of a topic that has been the focus
of thousands of published studies, gas adsorption in metal-organic framework (MOF)
materials. We show that for the well-studied case of CO2 adsorption there are only 15 of
the thousands of known MOFs for which enough experiments have been reported to allow
strong conclusions to be drawn about the reproducibility of these measurements. Our
results have immediate implications for the characterization of gas adsorption in porous
materials, but more importantly, demonstrate an approach to assessing reproducibility that

will be widely applicable in materials chemistry.

* Contents of this chapter have been reproduced from the previously published article

Jongwoo Park, Joshua D. Howe, David S. Sholl, "How Reproducible Are Isotherm
Measurements in Metal-Organic Frameworks?”, Chemistry of Materials, 29 (2017)
10487-10495.
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2.1 INTRODUCTION

Substantial efforts have been undertaken recently to examine reproducibility in
fields including psychology? and biomedical science®*. In this chapter, we examine the
reproducibility of experimental measurements in a subfield of materials chemistry that has
generated tens of thousands of publications, namely the properties of metal-organic
frameworks (MOFs).>® Specifically, we consider the measurement of equilibrium single-
component adsorption isotherms in these materials. Adsorption isotherms are a
fundamental property for considering MOFs and similar materials in applications involving
chemical separations,” and thousands of papers have been published related to these
applications.®® We examine the issue of reproducibility by a meta-analysis of an exhaustive

compilation of adsorption isotherms in MOFs.

Single-component adsorption isotherms quantify the amount of an adsorbing
species (the sorbate) on the internal and external surfaces of a material (the sorbent) in
equilibrium with a bulk phase of the species at a well-defined pressure. These isotherms
can be routinely measured using widely available commercial instruments, provided
hundreds of milligrams of the sorbent of interest are available. Assuming proper
equilibration and preparation of the system, this implies that differences, if they exist,
between measured isotherms for the same material will typically be related to variations in
the underlying material’s properties. Thousands of distinct MOFs have been synthesized
and characterized,’® and adsorption isotherms have been reported for many of these
materials. Recently, NIST has developed a publicly available database that systematically
collects single-component adsorption data reported for MOFs (and other sorbents) from

the peer-reviewed literature.!* Although no data set of this type can be truly complete, this
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database captures the vast majority of extant experimental adsorption data for MOFs. In
this chapter, we analyze this data set to examine what can be concluded about the

reproducibility of CO2 adsorption isotherms in MOFs.

Reproducibility in adsorption and materials chemistry has previously drawn
interest and been discussed with regards to Hz storage.*®'® These works have discussed
sources of irreproducibility, highlighting concerns such as methodological errors, sample
contamination, and even the “publish or perish” academic culture.!>®® H, adsorption is a
particularly challenging case because the adsorbed amounts are typically low. For more
strongly adsorbing molecules, however, measurements of adsorption isotherms are
typically regarded as “routine” experiments that can be performed with widely available
commercial instruments. Researchers must evaluate reports of material properties and
consider them with respect to one another, so it is important to have a sense of what bounds
may exist on uncertainty in material property measurements. To this end, we aim to
establish uncertainty bounds across reports of adsorption isotherms when those reports
purport to have measured the same material properties under comparable conditions. It is
important to note that this approach does not seek to assign causes to underlying variations

between experimental measurements.

We have established simple statistical metrics for and provided a comprehensive
analysis of what is known about the reproducibility of adsorption isotherms in MOF
materials. As examples, we have cataloged all materials for which repeat measurements of
CO2 adsorption have been reported. We also report a long list of molecules for which no
repeat measurements have been reported in any MOFs. In addition to the immediate

relevance to measurements of this large class of materials, the methods we have used here
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could be applied with only minor modifications to a very wide class of materials chemistry
problems. Widespread adoption of this kind of analysis could aid the reproducibility and,

ultimately, the assessment of utility of new materials in many applications.

2.2 METHODS

2.2.1 A Taxonomy for Describing Reproducibility of Adsorption Isotherms

All adsorption data were obtained from the NIST/ARPA-E Adsorption Database!!
cataloged as NIST Standard Reference Database (SRD) 205, which reproduces data from
peer-reviewed literature reports. This source includes experimental and modeling results,
but only experimental data were used in our analysis. Many published reports do not
distinguish between absolute and excess adsorbed amounts. The differences between these
two quantities are small at all conditions we considered. In addition, the hysteresis between
adsorption and desorption branches was negligible in all cases we considered, if any

desorption branches were reported.

We consider a situation where the adsorbed amount of a specific molecule in a
given sorbent is available over a range of pressures, P, from N independently measured
isotherms measured at a temperature T + 5 K. Using this range of temperatures increases
the number of replicate experiments than can be identified by grouping experiments that
most practitioners would consider to have “similar” temperatures into a single class.
Examples for adsorption of CO2 at 298 £ 5 K in HKUST-1 (a material first reported by
Chui et al.** and also frequently known as Cu-BTC) with N = 18 and UiO-66 (a material
first reported by Cavka et al.’®) with N = 9 are shown in Figures 2.1a and 2.2a. Visual

inspection of these figures indicates that both sets of data include isotherms that are likely
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to be outliers and the variation between measurements is much smaller for UiO-66 than for
HKUST-1. It is important, however, to use well-defined metrics that do not rely on
qualitative judgments about the underlying data to assess these features. We define metrics

for this purpose below.
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Figure 2.1. (a) Experimental data from 18 independent measurements of CO2 adsorption
in HKUST-1 at 298 + 5 K listed in the NIST/ARPA-E Adsorption Database, with
temperatures indicated by color and symbol type. Outliers identified by the methods
defined in the text are indicated. Solid curves show the fitted functions used in analysis of
the data. (b) Box and whisker plot for 13 independent measurements of CO2 adsorption in
HKUST-1 at 298 + 5 K obtained after rejecting outliers. In each box and whisker plot the
top and bottom of the box indicate the upper quartile (Qu) and lower quartile (QL),
respectively, the center line denotes the median, the square corresponding to the mean, and
the whiskers indicate QL — 1.51QR and Qu + 1.51QR, where the interquartile range IQR =

Qu - QL.

To allow direct comparison among all N measurements at the same values of P,
continuous adsorption isotherms were fitted to each experiment, choosing functional forms
that give fits with a high value of R? without accounting for the small variations in the
number of fitting parameters between functional forms. The functional forms adopted here
include Langmuir, Freundlich, and Langmuir-Freundlich isotherm models. The solid
curves in Figures 2.1a and 2.2a show examples of this procedure. All further analysis is

performed using adsorbed amounts defined by these fitted isotherms. When N > 4, outliers
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are identified by Tukey’s method*® as values lying outside the range of a standard box and
whisker plot. This approach designates 5 isotherms for HKUST-1 (Figure 2.1a) and 1
isotherm for UiO-66 (Figure 2.2a) as outliers (data shown without fitted curves). We denote
the number of independent experiments in a given pressure range after removing outliers
as N'. We designate sets of data for which outliers have been removed in this way as having

outlier level O1.
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Figure 2.2. Experimental data from (a) 9 independent measurements of CO2 adsorption in
Ui0O-66 at 298 + 5 K and (b) 4 independent measurements of CO2 adsorption in UiO-66 at
273 + 5 K listed in the NIST/ARPA-E Adsorption Database, with temperatures indicated
by color and symbol type. Outliers identified by the methods defined in the text are
indicated. Solid curves show the fitted functions used in analysis of the data. (c) Summary
of adsorption data for CO2z in UiO-66 at 298 £ 5 K and 273 = 5 K showing preferred
representations of data with N'> 4, N'=3 or 4,and N' = 2.
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When N = 3 or 4, a box and whisker plot is not appropriate. In this case, outliers
are defined as measurements where the root mean square error (RMSE) relative to the set
of N measurements is larger than o/2, where o is the standard deviation of a comparison
measurement.!” Although it is commonly accepted that a lower RMSE indicates better
agreement between two measurements, this criterion was suggested as a guideline to
qualify what is considered as a low RMSE.Y" We describe this procedure in more detail in
Appendix 2.A. Figure 2.2b shows an example for CO2 adsorption in UiO-66 at 273 £ 5 K,
where N = 4 and N' = 3 after identifying 1 isotherm as an outlier. Data sets with outliers
removed in this way are designated as having outlier level O2. A final case that is relatively
common with experimental data is when N = 2. In this case it is not possible to identify
outliers in a reliable manner, so N' = 2. We designate this situation was having outlier level

Os.

In addition to designating how outliers were determined, it is useful to succinctly
describe how many outliers were found, a factor we will refer to as consistency. We denote
the consistency rating as either high, moderate, or low (see Table 2.1 for definitions).
Isotherms are said to have high consistency when N > 2 and the fraction of measurements
labeled as outliers (f) is < 0.25. Isotherms are said to have moderate consistency when 0.25
< f < 0.4 and low consistency when f > 0.4. When N = 2, isotherms can have at most

moderate consistency (when RMSE < 4/2) and otherwise have low consistency.
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Table 2.1. Outlier isotherm detection and consistency rating for adsorption isotherms in
MOFs.

Outlier Outlier Detection Consistency  Consistency Rating
Level Criteria and Methods Rating Criteria and Methods
. Fraction of outliers, f
High f<0.25
Tukey’s method: N > 4 =Y
Label outlier for adsorption amount Fraction of outliers, f
O Lutside the bounds defined by box MCY"® o5 f<04
and whisker plot Low Fraction of outliers, f
f>04
. Fraction of outliers, f
. - . ngh f< 0 25
Error index statistics: N =3 or 4 =4
02 Label outlier for isotherm curves Moderate Fraction of outliers, f
with RMSE larger than o/2 relative 0.25<f<04
Low '
f>04
N=2
03 Moderate RMSE < ¢/2

Inadequate N to label outlier

It is useful to plot the conclusions from the analysis above in a way that represents
the different levels of information available depending on the value of N'. Our suggested
approach to this issue is illustrated in Figures 2.1b and 2.2c. When N' > 4, a box and whisker
plot is appropriate. We refer to examples of this kind as having a reproducibility level of
R1. In these cases the solid curves in Figures 2.1b and 2.2c show the interquartile range,
which can be thought of as the “consensus” bounds to the measurement of the adsorbed
amount as a function of P. It is important to note, however, that reported measurements
can in some cases lie well outside this range, as shown for HKUST-1 in Figure 2.1b. When
N' = 3 or 4, isotherms are plotted using a shaded region that encompasses all of the
measured data, outliers excluded. Examples are shown in Figure 2.2c for CO2 in UiO-66
at P>15barat T=298 +5 Kand P <10 bar at T = 273 £+ 5 K. We refer to the
reproducibility level of data of this kind as R2. Finally, when N' = 2, the pair of fitted

isotherms is plotted, as for P > 10 bar at 273 + 5 K in Figure 2.2c. We denote the
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reproducibility level of examples of this kind as R3 or R4, depending on the variation
between the two isotherms (see Table 2.2 for definitions). In addition to encapsulating the
state of experimental knowledge in a convenient way, the information in these kinds of
figures will be useful for process models that explicitly seek to incorporate parametric
uncertainty.®

Table 2.2. Isotherm reproducibility assessment for adsorption isotherms in MOFs.

Reproducibility
Level

Criteria and Methods

Box isotherm: N' > 4
R1 Isotherm bounds assigned by interquartile range of adsorbed
amount as a function of pressure

Region isotherm: N'=3 or 4
R2 Isotherm bounds assigned by the upper and lower measurement
over a common pressure range

R3 N' = 2: Pair of fitted isotherms with RMSE < ¢/2

R4 N' = 2: Pair of fitted isotherms with RMSE > ¢/2

The discussion above has introduced three complementary characteristics of a
collection of experimental isotherms, namely the outlier level (O1-O3), the consistency
rating (high, moderate, low), and the reproducibility level (R1-R4). We illustrate this
analysis in Appendix 2.A (Figure 2.A.1). We feel that each of these characteristics
represents a different and useful facet of the overall reliability of a set of experimental
measurements and considering them together provides a more nuanced view than
attempting to give a simplistic binary answer to the question of whether a particular
experiment is reproducible. All of the definitions above have been given in terms of data
for adsorption isotherms, but they could readily be adapted to describe repeated

measurements of any well-defined property of a material or chemical.
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2.2.2 Molecular Simulations

Molecular simulations of COz adsorption were performed in the materials for which
there exist enough data in the literature to yield firm conclusions about the reproducibility
of measured isotherms. Grand Canonical Monte Carlo (GCMC) simulations were
conducted to study adsorption properties using RASPA.%-?! “Standard” force fields were
used to describe van der Waals interactions between sorbate/sorbent and sorbate/sorbate.??
Lennard-Jones parameters for MOF atoms and quadrupolar CO2 molecules were taken
from the universal force field (UFF)Z and TraPPE?* force field, respectively. Interactions
between CO2 molecules and MOFs were defined with Lorentz-Berthelot mixing rules.®
Electrostatic interactions were modeled by employing point charges for MOF atoms and
COz2 molecules. Point charges were assigned to MOF atoms using an extended charge
equilibration method for EQeq charges?® and TraPPE charges®* were used for CO:
molecules. The extended charge equilibration method for EQeq charges is a semiempirical
method that is much less computationally expensive than charge assignments on the basis
of electronic structure calculations.?® Random Monte Carlo moves, either accepted or
rejected according to Boltzmann-type weighting criteria, allowed translation, rotation,
regrowth, reinsertion, and deletion and insertion moves at identical probabilities. All MOF
structures were assumed to be rigid in their experimentally reported crystal structures. For
breathing MOFs, the narrow pore or large pore rigid structure was used depending on their
observed structural transition pressure and the pressure being simulated. The simulated
surface area was calculated by using Nz as a probe molecule with overlap distance criteria

set to a size parameter o of 3.31 A. Further details are given in Appendix 2.A.
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2.3 RESULTS AND DISCUSSION

2.3.1 Surface Area Analysis Affecting Gas Adsorption in MOFs

When modeling adsorption in MOFs using atomistic methods, the predicted BET
surface area of the ideal crystal structure is frequently noted to differ from the measured
BET surface area of synthesized materials.?’3! These differences are often ascribed to
defects in the real material, although the identity and characteristics of these defects are
rarely quantified.>> An approach that is widely used when comparing simulated and
experimental data in this situation is to scale the experimental data by the ratio of the
simulated and experimental surface area.?! The assumption underlying this scaling is that
the “non-crystalline” portions of the real material are nonporous (or, more precisely, non-
adsorbing). If this assumption was correct, using scaled experimental data could give
information about the “intrinsic” adsorption properties of the defect-free material. The data
in Figures 2.1 and 2.2 (Section 2.2.1) create an opportunity to examine whether this
approach makes the underlying experimental data more consistent. Figures 2.A.2 and 2.A.4
show the adsorption isotherms for CO2 in HKUST-1 and UiO-66 with and without surface
area scaling. For HKUST-1, scaling increases the adsorbed amount because the measured
surface areas are often substantially less than the simulated surface area. This situation is
not surprising given the sensitivity of HKUST-1 to exposure to even small amounts of
moisture.® In both cases, however, surface area scaling does not significantly reduce the
consensus range of adsorbed amounts. That is, the observed variations in the adsorbed
amount of COz in these materials cannot be ascribed simply to variations in the surface

areas of the reported materials.
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Nonetheless, the surface area of porous materials is an important characteristic that
affects the adsorption properties of gas molecules. The reproducibility analysis metrics
described in Section 2.2.1 were applied to measured N2 adsorption isotherms at 77 K in
HKUST-1 and UiO-66 to gain an understanding of the reproducibility of the surface areas
of these materials. Figures 2.3a and 2.4a show histograms of the adsorbed amount of N2 at
intermediate and low P/P° that are taken from compiling N2 adsorption isotherms in
HKUST-1 (N =90, N' = 86) and UiO-66 (N = 18, N' = 15), respectively. Both histograms
indicate considerable variation in the reported uptake of N2. The methods described above
were applied to give bounds on the consensus N2z isotherms by connecting the upper and
lower quartiles as a function of P/P°. These isotherms were then used for surface area
analysis using BET theory. Figures 2.3b and 2.4b show the BET plots for HKUST-1 and
Ui0O-66, respectively, which were fit over 0.05 < P/P° < 0.15 to calculate BET surface
areas. The consensus isotherms for HKUST-1 vary between 933 and 1486 m?/g, whereas
Ui0-66 varied from 845 to 1170 m?/g. More information about this analysis is given in

Appendix 2.A (Figures 2.A.3, 2.A.5 and Table 2.A.1).

As an aside, we note that analysis of adsorption isotherms from the NIST/ARPA-E
Adsorption Database reveals a large number of literature reports for materials with no
reported BET surface area. The value of reported isotherms to the research community
would be improved if experimenters (and journal reviewers) insisted upon reporting BET

surface areas for any materials in which adsorption was measured.
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Figure 2.3. (a) Histogram of adsorption amount at intermediate P/P° and low P/P° (inset)
taken from experimental data of 90 independent measurements for N2 adsorption in
HKUST-1 at 77 K listed in the NIST/ARPA-E Adsorption Database. (b) BET plots of the
upper and lower bounds on the consensus isotherms obtained with solid curves connecting
IQRs as a function of P/P° over the linear region of P/P° range. The lines are fit over 0.05
< P/P° < 0.15 to calculate BET surface areas.
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Figure 2.4. (a) Histogram of adsorption amount at intermediate P/P° and low P/P° (inset)
taken from experimental data of 18 independent measurements for N2 adsorption in UiO-
66 at 77 K listed in the NIST/ARPA-E Adsorption Database. (b) BET plots of the upper
and lower bounds on the consensus isotherms obtained with solid curves connecting IQRs
as a function of P/P° over the linear region of P/P° range. The lines are fit over 0.05 < P/P°
< 0.15 to calculate BET surface areas.
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2.3.2 Reproducibility of CO2 Adsorption Isotherms in MOFs

Potential applications of porous adsorbents in capturing CO2 have led to an
enormous number of experiments being performed measuring adsorption of CO2 in MOFs
and other materials.3*3® The NIST/ARPA-E Adsorption Database lists 211 measured CO
isotherms in 27 different MOFs with N > 1. We applied the analysis described in Section
2.2.1 to all of these isotherms. Despite the large number of isotherms that have been
reported, there are only 9 materials for which N' > 4 at any temperature T £ 5 K. The results
for each of these materials are shown in Figure 2.A.6 and summarized at specific pressures

in Figure 2.5a.

There are an additional 8 examples for which N' = 3 or 4 at some temperature T
5 K (shown in Figure 2.A.7). The range of adsorbed amounts of COz at 1 bar for each of
these examples is shown in Figure 2.5b. The uptake of CO2 in MOF-74(Mg) is higher than
the other 7 materials because of the strong interactions that exist between CO2 and the large
number of undercoordinated metal sites in this material.®® The large CO2 adsorption
capacity in bio-MOF-11 has been attributed to the presence of multiple Lewis basic sites
and nano-sized channels.®” The remaining materials show a weak correlation between
increasing surface area and COz uptake, but it is clear that this factor alone cannot describe

the results.

The results in Figures 2.5a and 2.5b show that, despite the large number of studies
of COz adsorption in MOFs, firm conclusions about the reproducibility of CO2 isotherms
can only be drawn for a small set of materials. In this set of MOFs, our analysis indicates

that the overall fraction of CO2 adsorption isotherms identified as outliers is 0.21 (0.22 for
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MOFs with outlier level O1 where N > 4 and 0.19 for MOFs with outlier level O2 where
N = 3 or 4, respectively). A more provocative way to state this observation is that around
1in 5 of all COz isotherms in this analysis cannot be used to give information that is even
qualitatively reliable about the properties of the material that was putatively being

characterized.

Our analysis found 10 materials for which two independent CO:2 isotherm
measurements exist at some temperature T + 5 K (i.e. N = N' = 2, listed in Table 2.A.2). It
is also noteworthy that even though temperature variation is a primary means of cycling
materials in adsorption cycles®® and is unavoidable in operation of realistic separation
processes,>>*° essentially nothing is currently known about the reproducibility of CO>

adsorption isotherms at temperatures other than room temperature.

Our results have important implications for modeling of adsorption in MOFs.
Simulation of adsorption isotherms requires defining force fields for sorbate/sorbent
interactions, and a significant body of work exists developing these force fields.*°
Collections of data such as those in Figures 2.5a and 2.5b give the most reliable path
forward for comparing simulation results to experiments with the purpose of testing the
validity of broadly applicable force fields. Figure 2.5¢c compares experimental results with
simulations using “standard” force fields for all of the materials with N' > 3 for CO:
adsorption. It would be surprising if these simulations were in good agreement with
experiments for materials with high densities of open metal sites (OMS) such as the MOF-
74 series*®* or for materials that have marginal stability®® (e.g. HKUST-1), and the results
in Figure 2.5¢ bear out this general expectation. Nevertheless, the simulation results for

almost all of the materials overlap with the experimental data when a 15% relative error
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between simulation and experiment is allowed. Understanding the details of the differences
between experiment and simulation for materials without OMS when these differences are
appreciable (particularly for PCN-200 and MOF-177) is likely to spur advances in these
kinds of simulations. Among other choices that must be made in molecular models, the
choice of point charges on framework atoms can influence the molecular modeling for
adsorption. To illustrate this effect, we compared calculations using DDEC charges®® in
addition to calculations using EQeq charges. Figure 2.A.8 in Appendix 2.A shows the
sensitivity to the choice of charges in the predicted adsorption properties for the materials

shown in Figure 2.5c.

A comprehensive summary of the current state of knowledge regarding CO:2
adsorption in MOFs is shown in Figure 2.6. This reproducibility map shows all known
MOFs for which any conclusions can be drawn about the reproducibility of CO2 adsorption
at any temperature T + 5 K. In this map, materials where the strongest conclusions about
reproducibility can be drawn lie further to the right, materials with the smallest fraction of
outliers lie towards the top, and the font size of the label indicates the number of
independent measurements that exist after discarding outliers (N'). A material can appear
in multiple places on the map for data at different temperature ranges, as is the case for
HKUST-1. It is of course possible, and indeed desirable, that the materials of significant
practical interest will move towards the upper right corner of the reproducibility map in the

future as additional independent measurements are made.
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Figure 2.5. (a) Summary of interquartile range for CO2 adsorption at 10 bar (1 bar for
MOEF-74) for all known MOFs with N' > 4. Box and whisker plots for each material as a
function of pressure are shown in Figure 2.A.6. Numbers of independent measurements
that exist after discarding outliers (N') were used for each material on the horizontal axis.
(b) Summary of range for CO2 adsorption at 1 bar for all known MOFs with N' = 3 or 4.
Further detail for each material as a function of pressure is shown in Figure 2.A.7.
Simulated surface areas were used for each material on the horizontal axis. (¢) Comparison
of CO2 adsorbed amounts from experiments in materials with N' > 3 (horizontal axis) and
predictions from molecular simulations using “standard” force fields (vertical axis) using
the same color scheme and labels as in (a) and (b). Molecular simulations were conducted
at the median temperature, T K, within the temperature range T £ 5 K that was applied for
analysis of experiments. The diagonal lines have slopes of 1.15, 1, and 0.85 from top to
bottom to illustrate the variation from parity between the simulated and experimental
results.
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Figure 2.6. Reproducibility map for a comprehensive summary of reproducibility,
consistency, and outlier levels for COz isotherms in MOFs that were analyzed using our
metrics in this chapter. The definitions of reproducibility level (horizontal axis) and
consistency rating (vertical axis and colored regions) are given in Table 2.2 and Table 2.1,
respectively. Outlier levels are indicated by font in the form O3, 02, and O1. Font sizes
are scaled to N'. The majority of data are for isotherms at 298 + 5 K except for data at 313
+ 5K (%) and at 273 + 5 K (°). Further details for other temperatures are given in Table
2.A.3.

2.3.3 Molecules for Which No Conclusions Can Be Drawn About Reproducibility of

Adsorption in MOFs

The analysis above focused on CO:2 adsorption in MOFs, a situation that has been
measured in many materials. We now turn to what might be considered the other end of
the reproducibility spectrum by asking whether there are adsorbing molecules for which
no conclusions can currently be drawn about the reproducibility of experimental data. To
this end, we analyzed all of the data listed in the NIST/ARPA-E Adsorption Database. The

database includes information on adsorption of 295 distinct sorbates. For 223 (76%) of
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these species, no experimentally measured adsorption isotherms for MOF materials have
been reported, although there may be adsorption data for other porous materials, such as
zeolites. There are 72 sorbates for which at least one adsorption isotherm in one or more
MOFs has been reported. In order to find cases where N > 1 where the reproducibility of
adsorption data could be analyzed, we required that there be experimentally measured
adsorption isotherms for a specific sorbate/sorbent pair from independent research groups
at temperatures within T £ 5 K. For 47 of these 72 species, there is no MOF for which N >
1 with this approach. This means that there are only 25 molecules (8% of the sorbates listed
in the NIST/ARPA-E Adsorption Database) for which any information about
reproducibility is currently available for adsorption in MOFs. For most of these molecules
this information is only available in one or two materials and at the lowest level of
confidence (i.e. N =N'=2). In fact, only 12 of the sorbates have a material and temperature
range (T £ 5 K) pair for which there are three or more independent measurements (N > 2).
The methods applied above for CO2 could also be applied to these sorbates, although doing
so is beyond the scope of this chapter. The three groups of sorbates that have just been
described are listed in Tables 2.A.4-2.A.6. Given the huge number of distinct molecules
that exist and the thousands of MOFs that have been synthesized, the number of
molecule/MOF pairs for which any information about reproducibility is available is sparse

in the extreme.

2.4 CONCLUSIONS

In this chapter we have established metrics for assessing the reproducibility of
adsorption isotherms in MOFs. These metrics rely on comparing independent

measurements of the adsorption isotherm from the open literature and make no pre-
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judgments about which experiments are “better” or “correct”. We applied these methods
to a comprehensive set of CO2 isotherm measurements in MOFs. Despite the widespread
interest in CO2 adsorption in these materials, there are only a small number of MOFs for
which firm conclusions can be drawn about the reproducibility of these measurements. In
the examples where enough data exists to assess the existence of outliers, approximately
20% of isotherms in the literature were classified as outliers. This value should cause
anyone who makes use of single isotherms from the literature for any purpose (validating
a force field for molecular simulations, commenting on whether a material “improves” on
previous properties etc.) to pause. In the absence of direct evidence, we feel that it would
be unwise to assume that the occurrence of outliers is lower than 20% for adsorption of
other gases in MOFs. We want to emphasize that the meta-analysis we have described does
not provide direct physical insight into why a particular measurement is an outlier or why
a material may have a smaller or larger fraction of outliers. Since the actual measurement
of adsorption for gases such as CO:z is relatively routine, it is reasonable to assume that
most outliers occur because of variations in the properties of the materials used in
experiments stemming from materials synthesis, post-synthesis steps such as activation, or

degradation of materials during storage and/or measurement.

The results in this chapter have several implications for experimenters developing
MOFs or related materials for chemical separations applications. First, the amount of effort
needed to move a molecule/material pair into the group with what we have classed as the
highest level of reproducibility is not large. A concerted effort by a small number of
experimental groups could quickly improve the current paucity of examples in this class.

In this context, we note that simply measuring multiple samples from a single synthesized
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batch of a material in multiple locations has less value than having multiple groups
independently synthesize the material of interest, although both approaches are better than
not assessing reproducibility at all. Second, any report that a new material is “interesting”
or “promising” because its adsorption properties differ from existing materials by, say, 15-
20% should be treated with skepticism. There are many examples in the literature where
several functionalized versions of a material are measured and one material is declared the
“best” by some metric. Unless the differences between the materials are large compared to
the typical ranges seen for reliably reproducible examples at similar conditions, there are
limited grounds to conclude that the observed differences are real. Third, we have
deliberately focused on a physical property, single-component adsorption, that has been
very widely measured. Single-component adsorption is far from the only property that
matters in developing sorbents for real applications,*®*¢ and our results point to challenges
that should be considered associated with establishing the reproducibility of other physical

properties that are relevant in this context.

The analysis in this chapter relied on the availability of a comprehensive database
of adsorption isotherms from the open literature. Our methods could be adapted with
minimal changes to many areas of materials chemistry provided that similar collections of
experimental data are available. It is quite likely that the isotherms available in the literature
represent only a fraction, perhaps only a small fraction, of the isotherms that have actually
been measured by investigators around the world. Finding avenues to encourage sharing
of previously unreported data, particularly for materials where the result has been
previously published and is therefore regarded for purposes of publication as “already

known”, would have long-lasting value to the community. Our results suggest one path
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towards this goal, namely identifying materials that can be moved to a firmer set of

conclusions about reproducibility by reporting and analyzing additional measurements,

thus justifying publication of these measurements.
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APPENDIX 2.A. SUPPORTING INFORMATION - CHAPTER 2

2.A.1 Taxonomy for Outlier Level, Consistency Rating, and Reproducibility Level

We have introduced three complementary characteristics of a collection of
experimental adsorption isotherms. The definitions for these characteristics are

summarized in Section 2.A.1.

The detection of outliers in data sets is an essential part of data analysis. We use
several different outlier labeling methods to narrow down our attention to a normal range
of data for meaningful statistical comparison. Outlier level O1 (employing Tukey’s
method) is used when N > 4 to label outliers. Tukey’s method, constructing a box and
whisker plot, is a well-known graphical tool to display statistical information about data
set (i.e. the median, lower quartile, upper quartile, lower extreme, upper extreme, and the
mean). An outlier is defined as a value more than 1.5IQR (IQR = interquartile range) from
either end of the box. Hence, any isotherms having adsorption amount lying outside the
range of a standard box and whisker plot at any pressure point are designated as outliers.

Once outliers are identified, they are excluded from further analysis.

Outlier level O2 uses the root mean square error (RMSE) when N = 3 or 4 to label
outliers. RMSE is commonly used in model evaluation.?? In this case, we calculate RMSE
between two existing measurements to determine the agreement between the
measurements. For a set of 3 or 4 isotherms, we analyze these data in terms of the
standardized RMSE, which allows a comparison between two sets of data. Singh et al.*

recommended a guideline to qualify what is considered a low RMSE based on the standard
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deviation (o) of observations. According to the recommendation, an RMSE smaller than
ol2 is accepted as a low RMSE. Therefore, the O2 level labels and rejects outliers when
RMSE is larger than /2 of a comparison isotherm. When N = 3, we designate as the
comparison isotherm the isotherm with the second-largest uptake of adsorbate at the
greatest pressure common to all three isotherms, essentially comparing against the
“middle” isotherm. When N = 4, we repeat this procedure, assigning the second-largest
uptake at the highest common pressure to be the comparison isotherm for the two isotherms
with the largest and third-largest uptakes, not considering initially the isotherm with the
smallest uptake. If the isotherm with the third-largest uptake is identified as an outlier, the
isotherm with the smallest uptake will also automatically be identified as an outlier.
Otherwise, this procedure will be repeated, designating the isotherm with the third-largest
uptake as the comparison isotherm and comparing the isotherm with the smallest uptake
against it. We note that this analysis procedure biases toward keeping greater uptakes in

the case that N = 4 has highly disparate data.

Lastly, outlier level O3 describes the situation when N = 2. In this case it is not
possible to label outliers in a reliable manner, so we do not label outliers and do not reject

any measurements.

Consistency refers to how many outliers were found among a set of isotherms. The
consistency rating is labeled as high, moderate, or low when N > 2 and as moderate or low
when N = 2, since we do not think it is appropriate to label a set of two isotherms as having
“high” consistency. When N > 2, the rating is defined by the fraction of measurements
labeled as outliers (f). When N = 2, the consistency rating is determined by RMSE criteria

that was used for outlier level O2; two isotherms are defined as having moderate
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consistency when they have RMSE < o/2. The criteria and methods to detect outlier

isotherms and to rate consistency are summarized in Table 2.1.

Once outliers have been rejected, we denote the number of independent
experiments in a given pressure range as N'. We represent the remaining isotherms
graphically using different methods depending on the value of N'. A key aspect of this
approach is to assign consensus bounds to the isotherm quantities that are consistent with
the underlying experimental data. Reproducibility level R1 applies box and whisker plots
as a function of pressure when N' > 4. For R1 level materials, the isotherm bounds are
assigned for interquartile range (IQR) of adsorption amount at each pressure point.
Reproducibility level R2 uses a shaded region that encompasses all of the measured data
after rejecting outlier(s) when N' = 3 or 4. In this case, the region or isotherm bounds are
given by the upper measurement (the isotherm with the largest uptakes) and lower
measurement (the isotherm with the smallest uptakes) over a common pressure range. With
reproducibility level R3 and R4 when N' = 2, the isotherm bounds cannot be made due to
lack of information about the isotherm reproducibility. Only the pair of fitted isotherms
can be plotted, if desired, and the different levels depend on the variation between the two

isotherms.

Isotherm models used to fit experimental measurements include the Langmuir,
Freundlich, and Langmuir-Freundlich models that are available in the NIST/ARPA-E

Adsorption Database:

KP .
I'(P) =T, Tk Langmuir model

I'(P) = kPY/™ ... Freundlich model

I'(P) =T, 13‘(’2; ... Langmuir-Freundlich model
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where I'(P) is the adsorbed amount as a function of pressure (P). We chose a functional
form that give fits with a high value of R? (i.e. R? > 0.99) without accounting the variations
in the number of fitting parameters between forms. A simpler isotherm model of fewer

parameters was chosen if multiple models had similar levels of R?.

The criteria and methods to assess isotherm reproducibility and graphical
representations are described in Table 2.2. Figure 2.A.1 illustrates the overall analysis
platform performed for a set of isotherms to develop of the complementary characteristics

discussed above.

N independent measurements N'independent measurements
(Qutlier Level/Methods) (Reproducibility Level/Methods)
I
N — N>4 S~ — N'>4

(01/Box and whisker plot) \. ™ (R1/Box isotherm)

— N=3 Or‘4 ‘ \. Oltier rejection N'=3or4
(021’RMSE crlterla) ."-_{Frac‘t'b__n of outliers, f) (R21Region isotherm)

L N=2 SN =2
(O3/RMSE criteria) (R3/RMSE < 0/2)

Outlier judgement ' N'=2
(Consistency rating method) -

(R4/RMSE > 0/2)

Figure 2.A.1. Reproducibility analysis flow used in this chapter. The scheme illustrates
that materials with sufficient measurements starting from outlier level O1 can be
characterized with any reproducibility level from R1 to R4, depending on how many
outliers exist. Similarly, materials starting from outlier level O2 can be characterized with
reproducibility level from R2 to R4, but not with R1. The materials with few measurements
starting from outlier level O3 can only be characterized with reproducibility level R3 and
R4, which are the lowest levels of confidence.
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2.A.2 Reproducibility Analysis of CO, Adsorption Isotherms in MOFs

2.A.2.1 Surface Area Scaling and Analysis of N2 Adsorption Isotherms

The quality of MOFs can vary depending on details of their synthesis, activation,
and stability.®> These variations affect the measured BET surface areas of MOFs. An
approach that has been widely used when comparing isotherm data with different surface
areas is to scale the experimental isotherms by the ratio of the simulated and experimental
surface area.®® We applied this method to examine whether it makes the underlying
experimental data more consistent for HKUST-1 and UiO-66. For the surface area scaling
in this chapter, the ratio of simulated to experimental surface area was used as follows:

SAsimulated

exp .SA = (exp,scaled
experimental

In addition, the reproducibility analysis metrics were applied for N2 adsorption
isotherms at 77 K that were complied from the NIST/ARPA-E Adsorption Database for
HKUST-1 and UiO-66. This procedure reveals the utility of our established metrics to
assess the reproducibility of gas adsorption isotherms, and hence results in the consensus
bounds to N2 adsorption amount measurements as for the case of CO2 analysis. In general,
N2 adsorption isotherms measured at 77 K are used to yield porous materials’ surface area
by applying the Brunauer, Emmett, and Teller (BET) theory.*!! Therefore analysis of N2
adsorption range, more importantly, creates a chance to identify the statistically quantified
consensus bounds in BET surface area. The BET analysis is conducted by using BET plot,
P/v(P° - P) as a function of P/P°, as follows:

P _c—1P+ 1
v(P°—P)  wv,c P w,C
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In the BET equation, P° is the pressure of the vapor in equilibrium with its non-vapor phase
(P° = 0.971 bar for N2 at 77 K) and v is the volume of N2 adsorbed per gram of MOF at
STP (cm3(STP)/g). The BET theory to calculate surface area is valid over the pressure
range where the BET plot is linear with the assumption that monolayer formation occurs
within this region.®! The slope ([c-1]/vmC) and intercept (1/vmc) of from the linear region
give the c value that is related to the heat of adsorption and vm which is referred to the
monolayer capacity. The BET surface area, SAser, is then calculated by SAset = VmaoNav,
where oo is the cross-sectional area of the adsorbate at liquid density (oo = 16.2 A? for N2)

and Nav is the Avogadro’s number.

For HKUST-1, the simulated surface area is 2340.7 m?/g (see Section 2.A.4 for
details of simulation) and reported experimental surface areas range from as small as 921
m?/g to as large as 2211 m?/g for the isotherms that are included in box and whisker plot.
The substantial difference in simulated and experimental surface areas is typically ascribed
to intrinsic instability of HKUST-1.12 Figure 2.A.2a is a box isotherm (reproduced from
Figure 2.1b) at 298 £ 5 K with N' = 13 that does not take account of surface area scaling.
Among these 13 measurements, 11 measurements had reported BET surface area (denoted
as N") whereas 2 had not. Figure 2.A.2b is a box isotherm constructed with 13
measurements using 11 scaled isotherms along with 2 non-scaled isotherms. Figure 2.A.2¢c
is a box isotherm made from 11 scaled isotherms (i.e. eliminating the data for which no
surface area was available). With both treatments of the data, surface area scaling leads to
an increase in the apparent adsorbed amount but, critically, to a larger IQR. At least in this
case, therefore, applying surface area scaling does not make the underlying data more self-

consistent.
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Figure 2.A.3 shows that our analysis metrics enable the assessment to BET surface
area range of HKUST-1. Figure 2.A.3a exhibits compiled experimental data of N2
adsorption isotherms in HKUST-1 at 77 K with N = 90. For this specific purpose, BET
adsorption isotherm model was used in fitting and analysis of the data that allow direct
comparison among all N measurements at the same values of P/P°. Outliers are detected
and removed by outlier level O1. Box isotherm by applying the reproducibility level R1 is
shown in Figure 2.A.3b. The solid curves connecting IQRs were defined as the consensus
bounds to the measurements of the adsorbed amount as a function of P/P°. These are now
used as pseudo-experimental isotherms to give upper and lower limits to N2 isotherms with
N' = 86. Note that the solid curves are drawn by conneting Qu and Qv labels at higher P/P°
resolution where boxes at low P/P° are not shown. Ultimately, Figure 2.A.3c (reproduced
from Figure 2.3b) shows the BET plots to determine the upper and lower bounds of BET
surface areas using the pseudo-experimental isotherms. Each BET surface area was
calculated with the fits given in the figure and the methods described above, i.e. SAget =

VmooNAv.
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Figure 2.A.2. (a) Box isotherm for CO2 adsorption in HKUST-1 at 298 + 5 K without
surface area scaling. (b) Box isotherm for CO2 adsorption in HKUST-1 at 298 + 5 K with
surface area scaling which includes non-scaled measurements. (c) Box isotherm for CO2
adsorption in HKUST-1 at 298 + 5 K with surface area scaling which excludes non-scaled
measurements with no reported BET surface area. The solid curves connecting IQRs are
omitted.
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Figure 2.A.3. (a) Experimental data from 90 independent measurements of N2 adsorption
in HKUST-1 at 77 K listed in the NIST/ARPA-E Adsorption Database. Outliers identified
by the methods defined in the text are indicated. BET adsorption isotherm model was used
in fitting and analysis of the data (solid curves being omitted). (b) Box isotherm for N2
adsorption in HKUST-1 at 77 K with the solid curves connecting IQRs which can be
thought of as the consensus bounds to the measurements of the adsorbed amount as a
function of P/P°. These curves connecting QL’s and Qu’s are used as pseudo-experimental
isotherms for surface area analysis using BET theory. (c) BET plots over the standard BET
pressure range using pseudo-experimental isotherms with the same color index as in (b).
Notice that the lines are fit over 0.05 < P/P° < 0.15 which is the most commonly used BET
pressure range for porous materials.
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UiO-66 has widely been investigated as a CO2 adsorbent, in part due to its water
stability.'®** The simulated surface area is 1165.0 m?/g and experimental surface area
ranges from 998 m?/g to 1160 m?/g for the isotherms that are involved in box and whisker
plot, so unlike the situation for HKUST-1, the simulated and experimental surface areas
are in fair agreement. Figure 2.A.4a is a box isotherm (reproduced from Figure 2.2c) at 298
+ 5 K below 15 bar for UiO-66 with N' = 8 that does not take account of surface area
scaling. Among these 8 measurements, 7 measurements had reported BET surface area
(denoted as N") whereas 1 had not. Figure 2.A.4b is a box isotherm constructed with 8
measurements using 7 scaled isotherms along with 1 non-scaled isotherm. Figure 2.A.4c is
a box isotherm made from 7 scaled isotherms (i.e. eliminating the data for which no surface
area is available). Because of the small discrepancies between the simulated and reported
experimental surface areas, only marginal changes in IQRs are observed with surface area
scaling, so surface area scaling does not tighten the consensus range of adsorbed CO:2

amounts.

Figure 2.A.5 demonstrates the procedure of assessing BET surface area range of
UiO-66. Figure 2.A.5a shows compiled experimental data of N2 adsorption isotherms in
UiO-66 at 77 K with N = 18. Outliers are detected and removed by outlier level O1. Figure
2.A.5b shows a box isotherm by applying the reproducibility level R1. The pseudo-
experimental isotherms, as defined for HKUST-1 example, can be obtained to give upper
and lower limits to N2 isotherms with N' = 15. Finally, Figure 2.A.5c (reproduced from
Figure 2.4b) shows the BET plots to determine the upper and lower bounds of BET surface

areas using the pseudo-experimental isotherms.
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Table 2.A.1 summarizes the results of surface area analysis using simulated and
statistically quantified experimental N2 adsorption isotherms at 77 K in HKUST-1 and
UiO-66. Simulated N2 adsorption isotherms at 77 K in both materials were obtained by
Grand Canonical Monte Carlo simulation (data not shown), and the simulation details can
be found in Section 2.A.4. Choosing an appropriate linear P/P° region in a BET plot is
generally known to be somewhat subjective since often several regions give a roughly
linear BET plot.>1% BET surface areas of each material were calculated over different P/P°
ranges, where their BET plots showed linearity within both P/P° ranges, using the
simulated N2 adsorption isotherms. Note that the variation between BET surface areas
calculated over different P/P° ranges are about 10% for both materials indicating only a
minor effect in the selection of P/P° range for these materials. It grants our choice of BET
analysis over 0.05 < P/P° < 0.15 that enabled the statistical quantification of BET surface
area ranges for HKUST-1 and UiO-66 that have been built up from our reproducibility
analysis metrics (curated in the last column of the table). A take-home message at the end
of this analysis is that larger discrepancy in surface area range would result in larger
deviation in CO2 adsorption range (HKUST-1) and smaller difference in surface area

would lead to smaller variation in CO2 adsorption range (UiO-66).
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Figure 2.A.4. (a) Box isotherm for COz adsorption in UiO-66 at 298 + 5 K without surface
area scaling. (b) Box isotherm for CO2 adsorption in UiO-66 at 298 + 5 K with surface area
scaling which includes non-scaled measurements. (c) Box isotherm for CO2 adsorption in
UiO-66 at 298 + 5 K with surface area scaling which excludes non-scaled measurements

with no reported BET surface area. The solid curves connecting IQRs are omitted.
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Figure 2.A.5. (a) Experimental data from 18 independent measurements of N2 adsorption
in UiO-66 at 77 K listed in the NIST/ARPA-E Adsorption Database. Outliers identified by
the methods defined in the text are indicated. BET adsorption isotherm model was used in
fitting and analysis of the data (solid curves being omitted). (b) Box isotherm for N2
adsorption in UiO-66 at 77 K with the solid curves connecting IQRs which can be thought
of as the consensus bounds to the measurements of the adsorbed amount as a function of
P/P°. These curves connecting QL’s and Qu’s are used as pseudo-experimental isotherms
for surface area analysis using BET theory. (c) BET plots over the standard BET pressure
range using pseudo-experimental isotherms with the same color index as in (b). Notice that
the lines are fit over 0.05 < P/P° < 0.15 which is the most commonly used BET pressure
range for porous materials.
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Table 2.A.1. Surface area analysis using reproducibility analysis metrics for N2 adsorption
isotherms at 77 K enabling statistical quantification of consensus bounds in BET surface

area (SABeT).

SAgeT 2 [m?/g] SAgeT range ® [m?/g]
MOFs
P/P°<0.01 0.05<P/P°<0.15 0.05< P/P°<0.15
HKUST-1 1909.5 1667.1 [932.6, 1486.0]
UiO-66 1180.4 1041.7 [844.6, 1169.7]

& SAger calculated by using simulated N2 adsorption isotherms at 77 K over linear region
of BET plot, P/v(P°-P) vs. P/P°. BET analysis were conducted over consistency criteria
pressure range P/P° < 0.01 (proposed by Rouquerol et al.® and shown for IRMOF series by
Walton et al.!%) and over standard pressure range 0.05 < P/P° < 0.3 (proposed by
Brunauer! and 0.05 < P/P° < 0.15 being the most commonly used).

b SAget range quantified from an exhaustive compilation of experimental N2 adsorption
isotherms at 77 K from the NIST/ARPA-E Adsorption Database. SAset range results from
SAget’s calculated with pseudo-experimental N2 adsorption isotherms that are thought of
as the consensus bounds to the N2 measurements by connecting the IQRs (Figure 2.A.3b
and Figure 2.A.5b for HKUST-1 and UiO-66, respectively). BET theory was applied in a
same manner for treating experimental data (Figure 2.A.3c and Figure 2.A.5¢ for HKUST-
1 and UiO-66, respectively).
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2.A.2.2 Box Isotherms for R1 Reproducibility Level MOFs
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Figure 2.A.6. Box isotherms for 9 MOFs at temperatures T £ 5 K ordered from the highest
to lowest N'. The solid curves are omitted. (a) HKUST-1, (b) MOF-74(Mg), and (c) UiO-

66.
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Figure 2.A.6. Continued. (d) ZIF-8, (e) IRMOF-1, and (f) MOF-74(Ni).
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Figure 2.A.6. Continued. (g) MOF-177, (h) MIL-101(Cr), and (i) MIL-53(Al).
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2.A.2.3Region Isotherms for R2 Reproducibility Level MOFs
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74(Mg).

56




Adsorption Amount (mmol/g)
o

[ MIL-53(Cr)at 3005 K
[ N=3

= 300K
304 K

(2]

Adsorption Amount (mmol/g)
%) w = o

B—N'

[ MIL-53(Cr) at 300 + 5 K
3

(d)

-

0 1 ! 1 ) ! 1 1 ) ) !
00 01 02 03 04 05 06 07 08 09 10 11

Pressure (bar)

-

Pressure (bar)

0 ! ! ) 1 ! ! 1 ) 1 1
00 01 02 03 04 05 06 07 08 09 10 11

0 1 1 1 1 1 1 Il 0 Il Il 1 1 1 1 1
0 2 4 6 8 0 12 14 18 0 2 4 6 8 0 12 14 16
Pressure (bar) Pressure (bar)
(e)
20 2.0
ZIF-69 at 298 + 5 K N ZIF-69 at 298 + 5 K
5 [ N=3 ¢ 5 [ N=3
= ° =
21sp ° 28K - g1st 1
E £
i =
> 3
g1of . g1of .
< <
c c
Re) 2
B a
GO05 - 505 4
5 5
< <C
00 1 1 1 1 1 1 1 1 1 1 00 il i 1 i 1 i Il I 1 " 1 " 1 il n Il L 1 i
00 01 02 03 04 05 06 07 08 09 1.0 11 00 01 02 03 04 05 06 07 08 09 10 1.1
Pressure (bar) Pressure (bar)
(f)
6 6
L Bio-MOF-11 at 298 + 5K Bio-MOF-11 at 298+ 5K
ost N=3 1 o5 N =3 -
© 206 K °
E [ o 208k E
Eq} whm Eqf .
€ €
> >
sl 1 gt -
< <
c 2 c
Lot ' . 22t .
= o
o ]
4 <
< <

Figure 2.A.7. Continued. (d) MIL-53(Cr), (e) ZIF-69, and (f) Bio-MOF-11.
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2.A.2.4List of MOFs with N = N' =2 CO2 Isotherms

By analyzing the NIST/ARPA-E Adsorption Database, we identified 15 MOFs
which allow strong conclusions to be drawn about the reproducibility of single-component
adsorption isotherms. Additionally, our reproducibility analysis identified 10 materials for
which two independent CO2 isotherm measurements exist at some temperature T = 5 K.
Table 2.A.2 lists these MOFs having COz2 isotherms with N = N' = 2 at given temperature
and pressure ranges. They refer to the materials categorized from combination of outlier

level O3 and reproducibility level R3 or R4 (refer to yellow arrows in Figure 2.A.1).

Table 2.A.2. List of MOFs for N = N' = 2 CO2 isotherms at given temperature and pressure
ranges identified from the NIST/ARPA-E Adsorption Database. MOFs are ordered
alphabetically.

MOFs T range P range MOFs T range P range
2713x5K NU-100 298 £+ 5 K [0, 1] bar
CAU-1 [0, 1] bar
298 £ 5K 273+5K
NU-1000 [0, 1] bar
273+5K 293+5K
CPM-5 [0, 1] bar
298+ 5K SDU-1 2713+x5K [0, 1] bar
IRMOF-3 298 +5K [0,30] bar UMCM-1 298+ 5K [0, 15] bar
303+x5K ZIF-11 273+5K [0, 1] bar
MOF-508 323+5K [0, 5] bar ZIF-71 298 £ 5 K [0, 1] bar
343 +5K
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2.A.2.5Summary of CO2 Adsorption in MOFs

Table 2.A.3 lists a comprehensive summary of the reproducibility analysis
regarding CO2 adsorption in 27 MOFs. This table curates all known MOFs for which any
conclusions can be drawn about the reproducibility of CO2 adsorption at different
adsorption conditions. In this table, the isotherm models to fit the experimental
measurements, consistency rating defined in Section 2.A.1, different adsorption conditions
including temperature ranges and pressures, evaluation metric as a combination of outlier
level and reproducibility level defined in Section 2.A.1, and quantified CO2 adsorption
range at corresponding conditions are given. A material can appear multiple times for data
with different N and N' depending at different adsorption conditions.

Table 2.A.3. A comprehensive summary of the reproducibility analysis regarding CO2
adsorption in 27 MOFs from NIST/ARPA-E Adsorption Database. Isotherm model,
consistency rating, adsorption conditions, evaluation metric, and quantified CO2 adsorption
range at corresponding conditions are given. All definitions for complementary

characteristics used in this table are as defined in Tables 2.1 and 2.2. List of MOFs is
ordered from Section 2.A.2.2 to Section 2.A.2.4.

MOEs Isotherm Consis_tency Adsor_p_tion Evalua’gion Adsorption
Model Rating Conditions Metric Range @
Low 278 +5K,1bar  O2/R4 [7.0,9.3]
Moderate 298 £ 5K, 10 bar O1/R1 [9.8, 12.5]
: Moderate 313+5K,10bar O1/R2 [10.0, 12.9]
HKUST-1 Langmuir—ion 328 +5K,7.5bar O2/R2 [8.6, 9.6]
High 343 +5K,10 bar O1/R1 [7.6,9.6]
High 375+5K, 10 bar 0O2/R2 [5.1, 5.4]
: High 298 +5K,1bar O1/R1 [7.6, 8.4]
MOF-74(Mg) 'F'f:l?nrgﬂgh High 298+ 5K, 20 bar O1/R2 [11.3, 12.6]
High 318+5K,1bar O1/R2 [7.1,7.7]
High 273 5K, 1 bar O1/R1 [2.4, 3.3]
High 273+5K,10bar 0O2/R2 [7.9,9.3]
UiO-66 Langmuir High 298 +5K,1bar O1l/R1 [1.4,2.0]
High 298 +5K, 15bar O1/R1 [6.4, 7.4]
Moderate 310x5K,1bar 02/R3 [1.3,1.6]

& Adsorption amount in mmol CO2/g MOF as recommended in ITUPAC manual on
Reporting Physisorption Data for Gas/Solid Systems.®
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Table 2.A.3. Continued.

MOFs Isotherm Consistency Adsorption Evaluation Adsorption
Model Rating Conditions Metric Range 2
. Moderate 273+5K,1bar O1/R1 [1.5, 1.6]
Langmuir- .
ZIF-8 ) High 303+5K,15bar O1/R1 [4.5,6.9]
Freundlich
Moderate 323+5K,25bar O3/R3 [3.9,4.1]
IRMOF-1 Langmuir-—— 1 erate 208+5K,30bar O1/R1 [18.7, 21.8]
Freundlich
_ High 298 +5K,1bar O1/R1 [4.3,5.4]
. Langmuir-
MOF-74(Ni) ) Low 318 +5K,1bar  O3/R4 [3.4,3.9]
Freundlich
Moderate 348+5K,1bar 02/R3 [2.2, 2.6]
MOF-177 Langmuir-— ) derate 208 +5K,30bar O1/R1 [29.7, 32.6]
Freundlich
Moderate 273+5K,1bar O3/R3 [3.2,3.3]
MIL-101(Cr)  Freundlich High 313+5K,30bar O1/R1 [20.0, 21.2]
Moderate 328+5K,30bar 0O2/R3 [20.1, 20.3]
b : High 298 +5K,5bhar O1/R1 [2.9, 3.5]*
MIL-53(Al) Langmuir .
High 298 + 5K, 20 bar O1/R1 [8.4,9.9]
MIL-100(Cr)  Freundlich High 303+5K,20bar 0O2/R2 [12.6, 14.8]
b _ High 300£5K,5bhar 0O2/R2 [2.8, 3.1]*
MIL-53(Cr) Langmuir .
High 300+£5K,15bar O2/R2 [8.2,8.4]
ZIF-69 Freundlich High 298 +5K,1bar 0O2/R2 [1.6,1.7]
) ) Moderate 273+5K,1bar O3/R3 [5.8, 6.4]
Bio-MOF-11  Langmuir .
High 298 +5K,1bar 0O2/R2 [4.1,5.0]
Moderate 273+ 5K, 0.2 bar O3/R3 [0.6, 0.8]*
) Moderate 273+5K,1bar O3/R3 [2.3, 2.7]
ZIF-7°¢ Langmuir .
High 303+5K,0.5bar O2/R2 [0.3, 0.5]*
High 303+5K,1bar 0O2/R2 [2.1,2.3]

& Adsorption amount in mmol CO2/g MOF as recommended in ITUPAC manual on
Reporting Physisorption Data for Gas/Solid Systems.®
b Breathing MOFs with asterisks (*) dictating Pwans for a structural transition effect.
Langmuir models are used to fit measurements of both narrow and large pore structures,
and connected.
¢ Gate-opening MOF with asterisk (*) dictating threshold pressure for a gate-opening
effect. Langmuir models are used for measurements before and after a gate-opening, and

connected.
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Table 2.A.3. Continued.

MOF Isotherm Consistency Adsorption Evaluation Adsorption
S
Model Rating Conditions Metric Range 2
High 278 +5K,1bar 0O2/R2 [1.4,1.7]
PCN-200 Langmuir
Moderate 296 £ 5K, 1bar O3/R3 [1.3,1.5]
Moderate 273+5K,1bar O3/R3 [3.3,3.7]
CAU-1 Freundlich
Moderate 298 £5K,1bar O3/R3 [1.7, 2.0]
Low 273+5K,1bar  O3/R4 [2.8, 3.7]
CPM-5 Freundlich
Moderate 298 £ 5K, 1bar O3/R3 [2.2, 2.5]
Langmuir-
IRMOF-3 ) Moderate 298 £ 5K, 30 bar O3/R3 [18.3, 18.6]
Freundlich
Moderate 303+x5K,5bhar O3/R3 [6.2, 6.3]
MOF-508 Langmuir Moderate 323+5K,5har  O3/R3 [4.2,4.3]
Moderate 343+5K,5bar 0O3/R3 [3.1,3.2]
NU-100 Langmuir Moderate 298 +5K,1bar O3/R3 [2.6, 2.7]
Moderate 273+5K,1bar O3/R3 [2.9, 3.0]
NU-1000 Langmuir
Moderate 293+5K,1bar O3/R3 [1.6,1.7]
SDU-1 Langmuir Moderate 273+5K,1bar O3/R3 [1.5, 1.6]
UMCM-1 Freundlich Moderate 298 £ 5K, 15 bar O3/R3 [13.1, 14.4]
ZIF-11 Langmuir Moderate 273+5K,1bar O3/R3 [1.6,1.8]
ZIF-71 Freundlich Moderate 298 £ 5K, 1bar O3/R3 [0.6, 0.7]
Langmuir-
MIL-47(V) ¢ _ Moderate 303 +5K, 20 bar 0O2/R3 [6.9, 7.4]
Freundlich
ZIF-78 ¢ Langmuir Moderate 298 £ 5K, 1bar O2/R3 [2.1, 2.2]

& Adsorption amount in mmol CO2/g MOF as recommended in ITUPAC manual on
Reporting Physisorption Data for Gas/Solid Systems.®
4 MOFs not listed from Section 2.A.2.2 to Section 2.A.2.4 with outlier level O2 and
reproducibility level R3.
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2.A.3 List of Molecules with Unknown Reproducibility of Adsorption in MOFs

In Section 2.A.3, we summarize the adsorbates in the NIST/ARPA-E Adsorption

Database in Tables 2.A.4-2.A.6. The adsorbates are grouped based on whether conclusions

can be drawn about reproducibility (Table 2.A.4), adsorption has been measured in a MOF

but no conclusions can be drawn (Table 2.A.5), or if no experimental adsorption isotherms

are reported (Table 2.A.6).

Table 2.A.4. Adsorbates in the NIST/ARPA-E Adsorption Database for which a

reproducibility assessment can be performed for at least one MOF material (i.e. N > 1 for

at least one MOF). For adsorbates marked with an asterisk (*), the largest number of

independent measurements in any MOF is two (i.e. N < 2 in all MOFs). Adsorbates are

ordered alphabetically and are listed as reported in the NIST/ARPA-E Adsorption

Database.
1-butene* Methane
Acetone* Methanol*
Acetylene* n-Butane*
Ammonia* n-Hexane*
Argon Nitric oxide*
Benzene Nitrogen
Carbon dioxide n-propane
Carbon monoxide* Oxygen
Ethane 0-Xylene*
Ethanol* Propene
Ethene* p-Xylene
Hydrogen Water
Isobutane*

63



Table 2.A.5. Adsorbates in the NIST/ARPA-E Adsorption Database for which an
adsorption isotherm in at least one MOF has been reported, but for which no reproducibility

assessment can be performed (i.e. N < 1 for all MOFs). Adsorbates are ordered
alphabetically and are listed as reported in the NIST/ARPA-E Adsorption Database.

1,2-Dichloroethane
1-Butanol

1-hexanol

1-Octanol
1-Pentanol
1-Propanol
1-propyne
2,2-Dimethyl-Butane
2-Propanol
Acetaldehyde
Acetonitrile

Carbon tetrafluoride
Cis-2-Butene
Cyclohexane
Deuterium

Diethyl ether

Dimethyl ether
Dimethylformamide
Ethenylbenzene
Ethyl acetate
Helium

Hydrogen chloride
Hydrogen sulfide
Hydrogen/Deuterium mixture
Isobutanol
Isobutene

Krypton

Methyl ethyl ketone
m-Xylene
Neopentane
m-Heptane

Nitrous oxide (N2O)

Nitrous oxides (NOx)
n-Nonane

n-Octane
n-Pentane

Pyridine
Sevoflurane
Styrene

Sulfur dioxide
Sulfur hexafluoride
Tert-Butanol
Tetrahydrofuran
Toluene
Trans-2-Butene
Trichloromethane

Xenon
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Table 2.A.6. Adsorbates in the NIST/ARPA-E Adsorption Database for which no
experimentally measured isotherms are reported for any MOF materials (i.e. N = 0 in all

MOFs). Adsorbates are ordered alphabetically and are listed as reported in the
NIST/ARPA-E Adsorption Database.

[Bu4N]J4HPW11C0039
[CpPd(eta3-C3H5)]
[CpPtMe3]
[Pt(cod)Me2]
[Ru(cod)(cot)]
1,1,2-Trichloroethene
1,1-dichloroethylene
1,3-benzothiazole
1-benzothiophene
1-Naphthol
2-ethylhexyl oleate
2-ethylhexyl oleic estolide ester
2-Methoxytoluene
2-Methylbutane
2-Methylisoborneol
2-Methylpyridine
2-Pentanone

3-Hexanol
3-Methoxytoluene
4-atom palladium-4-atom gold cluster
4-Chlorophenol
4-ethyl-4-methyloctane
4-Methoxytoluene
8-Atom gold cluster

8-Atom palladium cluster

Acenaphthene
Acenaphthylene
Acetonitrile-D3
Alizarinred S

Ametryn

Aniline

Anthracene
Benz[a]anthracene
Benzo[A]Pyrene
Bisphenol A

Bromine

Bromobenzene
Bromo-chloro-fluoromethane
Buckminsterfullerene C60
Buckminsterfullerene C70
Butan-1-amine

C2H10Zn

Cadmium

Cadmium(ll) ion
Caffeine

Calcium

Carbon disulfide

Carbon tetrachloride
Cesium

Chlorine

Chlorobenzene
Chromate

Chromium

Chromium hexacarbonyl
Cis-piperylene

Clofibric acid

Congo red

Copper

Copper cluster
Copper(ll) ion

Cumene

Cyanobenzene
Cyclohexene
Cyclopentane

D131 dye
Dibenzothiophene
Dichlofluanid
Dichloromethane
Dichromate

Diethyl sulfide
Difluorocarbene
Diisopropy! fluorophosphate
Dimethyl methylphosphonate
Dimethylamine

Dimethylcyclopentanomethylcyclohexane
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Table 2.A.6. Continued.

Ethylene glycol
Ethylene oxide
Flumetralin
Fluoranthene
Fluorescein
Fluracil
Formaldehyde
Furfural
Glycerin
Glycidol

Gold
Hex-1-ene
Hydrogen cyanide
Hydrogen deuteride
Ibuprofen
Indole

lodine
lodo-Benzene
Iron

Isoamyl alcohol
Isocetane
Isoheptane
Isooctane
Isoprene

Kresoxim-methyl

Lead

Lead(ll) lion

Lithium

Malachite green
m-Chlorotoluene
m-cymene
m-dichlorobenzene
m-Dinitrobenzene
Mercury

Mercury dichloride
Methy! isobutyl ketone
Methyl laurate

Methyl oleate

Methy! oleic estolide ester
Methyl orange

Methyl palmitate

Methy| stearate

Methy!| tertiary-butyl ether
Methyl viologen
Methylcyclohexane
Methylcyclopentanodecalin
Methylene blue
Methylene green
m-Ethyltoluene

m-nitrophenol

Molybdenum hexacarbonyl
n,n-diethylformamide
N719 dye
NaHsPW11TiOs0
Naphthalen-1-amine
Naphthalene
Naproxen

n-decane
n-Docosane
n-Dodecane

Neon

n-heneicosane
n-Heptadecane
n-hexadecane
Nickel

n-lcosane

Nitric acid
Nitrobenzene
Nitrogen dioxide
Nitromethane
n-nonadecane
n-octadecane
n-Pentadecane

n-Perfluoroethane
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Table 2.A.6. Continued.

n-Perfluorohexane
n-Propanal
n-Propylbenzene
n-Tetracosane
n-Tetradecane
n-Tricosane
n-tridecane
n-undecane
o-Chlorotoluene
0-Cymene
o-Dichlorobenzene
o-Ethyltoluene

Oil red O
o-Nitrophenol
Palladium(ll) ion
p-Chlorotoluene
p-Cymene
p-Dichlorobenzene
Pentafluorophenol
Perhydrophenanthrene
Permanganate
Perrhenate
p-Ethyltoluene
p-Fluorotoluene

Phenanthrene

Phenol
Phenylalanine
p-Nitrophenol
p-Nitrotoluene
Polycyclic aromatic hydrocarbons
Pyrazine
Pyrene
Pyrimethanil
Quinoline
R-115

R-124

R-125
R-134A

R-21

R-22

R-23

R-410A
R-507A
Radon
Scandium
Selenium
Silver

Sodium hydroxide
Strontium

Sudan black B

Sulfur

Sulfur trifluoride

Sulfur trioxide

Sulfuric acid

Sulfurous acid
Tebuconazole
Terephthalic acid
Tert-Pentanol
Tetrachloroethene
Tetrachlorogold(1-)
Tetraconazole
Tetrahydrophenanthrene
Tetrahydrothiophene
Thiophene

Titanium
Trans-piperylene
Tribromomethane
Trifluoroethanol
Triiodide
Tris(8-hydroxyquinoline)aluminum
Tritium

Uranium dioxide
Xylene (mixture of isomers)

Zinc
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2.A.4 Molecular Simulation Details

Molecular simulations of CO2 and N2 adsorption were conducted by standard Grand
Canonical Monte Carlo (GCMC) simulations®>!®1° using RASPA 1 This atomistic
classical simulation for adsorption isotherms requires force fields to describe van der Waals
interactions for sorbate/sorbent interactions and sorbate/sorbate interactions.?® “Standard”
force fields, namely the universal force field (UFF)?! and the TraPPE? force field, were
used. Lennard-Jones parameters for MOF atoms and quadrupolar CO2, N2 molecules were,
therefore, taken from UFF and TraPPE force field, respectively, and molecule/MOF
interactions were defined with standard mixing rules. In GCMC simulations associated
with these force fields, truncated potentials with tail corrections are applied. Lennard-Jones
interactions are truncated at 12 A. Simulation boxes are expanded to at least 26 A along
each dimension and triclinic periodic boundary conditions were defined in all dimensions.
Electrostatic interactions were modeled by employing EQeq point charges for MOF
atoms?2* and TraPPE charges for CO2, N2 molecules!®®. The extended charge
equilibration method for EQeq charges is a semiempirical method which is much less
computationally expensive than charge assignments on the basis of electronic structure
calculations.?>%> All GCMC calculations included 5,000 initialization cycles followed by
50,000 production cycles, which were found in initial tests to be sufficient to achieve well
converged results. Random Monte Carlo moves, either accepted or rejected according to
Boltzmann-type weighting criteria, allowed translation, rotation, regrowth, reinsertion,

deletion and insertion moves at identical probabilities.

The materials investigated in this chapter for computational simulations are 15 of

the known MOFs where firm conclusions could be drawn about the measurement
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reproducibility. The structures simulated are HKUST-1, MOF-74(Mg), UiO-66, ZIF-8,
IRMOF-1, MOF-74(Ni), MOF-177, MIL-101(Cr), MIL-53(Al), MIL-100(Cr), MIL-
53(Cr), ZIF-69, Bio-MOF-11, ZIF-7, and PCN-200. The MOF .cif files distributed from
the RASPA molecular simulation code'®!® were used for the crystal structures. All
calculations assumed that the MOFs were rigid, that is, relaxation of the MOF atoms due
to the presence of adsorbed molecules was neglected. For the breathing MOFs, the narrow
pore or large pore structure was used depending on their observed structural transition
pressure and the pressure being simulated. This means that the large pore structure for
MIL-53(Al) and the narrow pore structure for MIL-53(Cr) were used, respectively. For

ZIF-7, the open-framework structure was used.

The choice of charges on framework atoms in molecular models of MOFs can
influence the predictions of these models. In addition to the EQeq charges used for the
calculations in Figure 2.5, the density derived electrostatic and chemical (DDEC) method?>
28 js another method to assign high quality point charges for framework atoms. It has been
observed by Nazarian et al.?* and Haldoupis et al.?® that on average EQeq predicts charges
for metals higher than those predicted by DDEC. Watanabe et al.?® pointed out the
assignment of framework charges always introduces ambiguity even when the true electron
density of a material is known. Figure 2.A.8 shows a comparison between simulated
adsorption of CO2 by employing EQeq and DDEC charges, with other details of the
simulations held fixed. Figure 2.A.8a compares the box isotherm (reproduced from Figure
2.1b) and simulated adsorption isotherm by employing EQeq and DDEC charges in
HKUST-1. Figure 2.A.8b is a parity plot for simulated adsorbed CO: using either EQeq

and DDEC charges for the 15 MOFs where firm conclusions could be drawn about the
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measurement reproducibility at the conditions shown in Figure 2.5. This information
provides a useful baseline for future comparison and potential refinement of molecular

models using the reproducible adsorption information from Figure 2.5,
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Figure 2.A.8. (a) Comparison between experimental box isotherm for CO2 adsorption in
HKUST-1 at 298 + 5 K and simulated isotherms for CO2 adsorption in HKUST-1 at 298
K with EQeq (filled circles) and DDEC (open circles) charges on framework atoms. (b)
Comparison of simulated CO2 adsorbed amounts using EQeq and DDEC charges for the
15 materials that were classified for reproducibility level R1 or R2. The adsorption
conditions for molecular simulations are as stated in Figures 2.5a and 2.5b using the same
color labels. Data is not reported for HKUST-1 at 313 K and MOF-74(Mg) at 318 K.

The simulated surface area calculated in this chapter is so-called *“accessible”
surface area. It corresponds to the area traced out by the center of a probe molecule as the
probe is rolled across the surface of the framework atoms.> The probe should be chosen to
correspond to the size of the adsorbate of interest® — COz in this chapter. N2 has similar
molecular diameter compared to CO2. Therefore, the simulated surface area was calculated

by using N2 as probe molecule with overlap distance criteria set to a size parameter ¢ of

3.31 A1818
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CHAPTER 3. ESTABLISHING UPPER BOUNDS ON COg;
SWING CAPACITY IN SUB-AMBIENT PRESSURE SWING
ADSORPTION VIA MOLECULAR SIMULATION OF

METAL-ORGANIC FRAMEWORKS

Swing capacity is a key performance metric for processes designed to capture CO2
by pressure swing adsorption (PSA). Sub-ambient operation of PSA units enables large
changes in CO2 swing capacity, and can be economically viable when coupled with heat
integration and power recovery. In this chapter, we examine what upper bounds on CO2
swing capacity exist via molecular simulation of a large collection of metal-organic
frameworks (MOFs). As has been observed previously for zeolites, the materials with the
largest swing capacity at a given temperature have large pore volumes and heats of
adsorption within a narrow range of optimal values. A number of materials are identified

with swing capacities up to 40 mol/kg using a pressure swing from 0.1 bar to 2.0 bar.

* Contents of this chapter have been reproduced from the previously published article

Jongwoo Park, Ryan P. Lively, David S. Sholl, "Establishing upper bounds on CO2
swing capacity in sub-ambient pressure swing adsorption via molecular simulation of
metal-organic frameworks”, Journal of Materials Chemistry A, 5 (2017) 12258-12265.
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3.1 INTRODUCTION

Anthropogenic CO2 emissions are one of the main drivers of global climate change.
Unfortunately, it is difficult and expensive to capture CO2 from dilute sources such as
power plants, refinery exhausts, and air.2 As a result there is considerable interest in
developing more cost effective and less energy intensive CO2 capture technology. Porous
solid adsorbents such as activated carbon, zeolites, and metal-organic frameworks (MOFs)
have been considered as efficient materials for adsorptive CO2 capture and separation.?™
Typically, solid adsorbents are used in cyclic adsorption processes in which desorption is
induced by pressure swing (pressure swing adsorption, PSA), temperature swing
(temperature swing adsorption, TSA), or vacuum swing (vacuum swing adsorption,
VSA).258 A critical performance metric that dictates the economic viability of a PSA
process is the swing capacity, that is, the difference between the amount of adsorbed gas
in the adsorbent at the adsorption condition and the residual adsorbed gas at the desorption

condition.®®

A question of broad fundamental interest is how large the CO2 swing capacity for
realistic porous adsorbents can be under practical process conditions. Fang et al. recently
addressed this question via molecular simulations of a large set of cationic zeolites for
several prototypical processes chosen for industrial relevance. By considering PSA cycles
between 1 bar and 5 bar at 300 K, they showed that materials exist with PSA swing capacity

for CO2 as large as 7.5 mol/kg.®

A general strategy for increasing PSA swing capacity, particularly for weakly

adsorbing species, is to lower the temperature. The concept of sub-ambient operation has
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been widely discussed as a route to improve Hz capacity in applications of porous materials
for Hz storage.’® Sub-ambient operations are able to increase deliverable capacity and
adsorption selectivity for H2.1° It is widely assumed, however, that the cooling cost
associated with sub-ambient processes make sub-ambient temperatures impractical for
large-scale CO2 capture from flue gases. Recently, however, Air Liquide had developed a
prospective technology for cost- and energy- efficient post-combustion CO2 capture from
power plant flue gas via an energy integrated cold membrane process.*™*3 Their
developments suggest that large-scale selective adsorption of CO2 with sub-ambient
operation may be viable when coupled with heat integration and power recovery 81114
These observations make it interesting to examine what upper bounds exist on CO2 swing

capacity in sub-ambient PSA using porous adsorbents.

To search for materials that may define the upper limits for sub-ambient PSA CO2
swing capacity, we used molecular simulations of CO: adsorption on the materials
contained in the computation-ready, experimental (CoRE) MOF database.*® This library of
materials is made up of experimentally reported MOF crystal structures that have been
prepared for computational simulations. The set of materials we screened was the
frameworks optimized via density functional theory (DFT) calculation reported recently
by Nazarian et al.*®” for which atomic point charges assigned by the density derived
electrostatic and chemical (DDEC) method*®-?° are available. Our calculation strategy was
driven by the observations of Fang et al. for CO2 adsorption in zeolites.® Their calculations
showed that materials with large pore volume and a CO2 heat of adsorption in a narrow
optimal range were required to achieve a large CO2 swing capacity in typical process

conditions. We adapted these criteria to efficiently screen the CORE MOF database for CO2
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adsorption at sub-ambient conditions. Our calculations show that single component CO2
swing capacities as high as 40 mol/kg at 213 K and 18 mol/kg at 258 K were possible over

a pressure range from 0.1 to 2.0 bar.

Swing capacity is clearly not the only metric that affects the economic viability of
PSA and related cyclic processes for gas capture, especially when these capacities are
based on single component data. Competitive adsorption during treatment of
multicomponent gas mixtures will almost always reduce swing capacities relative to single
component adsorption.®?122 The adsorption selectivity of the component of interest in
mixture adsorption is also critical to the product purity that can be achieved.®?%?2
Additionally, the stability of adsorbents with respect to impurities and degradation, the
lifetime and cost of the adsorbents, and similar factors also influence the viability of any
adsorption process.® Nevertheless, the maximum achievable swing capacity places
bounds on the throughput of PSA and similar cyclic processes. It is therefore useful to
consider the single component CO2 swing capacity before any of the other performance

metrics just listed are examined.

3.2 COMPUTATIONAL METHODS

3.2.1 Energy Optimized CoRE MOF DDEC Charge Database

Material selection of MOFs for prediction of gas adsorption and separation is a
challenge due to large and diverse set of MOF materials that are known.?32° Computational
analysis of molecular adsorption and diffusion in MOFs can provide atomic-level insight
that is often difficult to obtain experimentally.??® To enable high-throughput

computational screening of MOFs, Chung et al. developed the CORE MOF database.'® The
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CoRE MOF database contains over 5,000 MOF structures that are derived from
experimental data but are immediately applicable for classical molecular simulations.>2
Nazarian et al. have recently shown that the DFT optimization of these structures,
particularly those for which solvent was removed from the original experimental data, has
a considerable impact on the prediction of gas adsorption.®3® Thus, we restricted our
attention to structures from the CoRE MOF database that have been optimized via periodic
DFT with the PBE functional. Modeling CO2 adsorption requires a description of
electrostatic interactions between quadrupolar CO2 and framework atoms. We therefore
only considered materials for which the atomic point charges of the framework atoms have
been assigned by the DDEC method.'®2° This approach accurately represents the
electrostatic potential of the DFT-derived electron distribution inside the open pores of
MOFs. The set of energy optimized CoRE MOFs with DDEC charges reported by Nazarian

et al.1®17 contains 477 structures.

3.2.2 Framework Characterization and Monte Carlo Simulation

Each MOF was first examined for its geometric properties.3 Pore volume was
calculated from the helium void fraction by Widom particle insertion.?6-2°32 The accessible
surface area was computed using a sphere representing a nitrogen probe molecule.?6-2%:32
The largest cavity diameter (LCD) and pore limiting diameter (PLD) were calculated by
Zeo++ applying the high-accuracy setting with probe radius corresponding to nitrogen.3*
35 All structures described below have a PLD greater than 2.4 A, indicating a sufficient

window size to admit CO.8
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Atomistic classical simulations were conducted using RASPA.3? Adsorption
isotherms and isosteric heats of adsorption were calculated by standard Grand Canonical
Monte Carlo (GCMC) simulations.?832 All frameworks were approximated as rigid
structures.?6-2°32 The use of generic force fields such as the universal force field (UFF)3®
or DREIDING?® for material screening purposes appears to be reasonably well justified.?>
2938 Hence, van der Waals interaction between hosts and adsorbates was described by
combining Lennard-Jones parameters from the UFF for MOF atoms and from the TraPPE®®
force field for quadrupolar CO2 molecules using the Lorentz-Berthelot mixing rule®.
Electrostatic interactions were modeled by employing DDEC point charges for MOF
atoms®®29 and TraPPE charges for CO2 molecules®2. Simulation volumes were expanded
to at least 26 A along each dimension and periodic boundary conditions were defined in all
dimensions. The isosteric heats of adsorption at zero loading was computed in the
canonical ensemble with one gas molecule added into a simulation box.***2 Further details

of the simulation methods can be found in Appendix 3.A.

3.2.3 Sub-Ambient PSA Process Details

We focused on single component CO2 adsorption to estimate the viability of sub-
ambient gas processing in porous materials. The pressure swing range was set between 0.1
bar and 2.0 bar for desorption (Pdes) and adsorption (Pags), respectively. Air Liquide has
performed an extensive technoeconomic analysis of a process for compressing and cooling
flue gas to conditions giving a partial pressure of approximately 2.0 bar of CO2 at 240
K.112 This analysis suggests that our choice of the pressure swing range is feasible to
deliver cold, compressed flue gas to a sub-ambient gas processing system. The PSA swing

capacity was defined as the difference between gas storage capacity at the adsorption and
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desorption pressures®*?, ANcoz = Ncoz® — Nco2%®. We considered sub-ambient

temperatures of 213, 228, 243, and 258 K.

3.3 RESULTS AND DISCUSSION

3.3.1 Sub-Ambient CO2 Adsorption in UiO-66

UiO-66 and its derivatives have been widely explored as adsorbents due to their
water stability.*3*° We therefore use UiO-66 to illustrate our calculations. The molecular
modeling methods used in our calculations are compared to experimental CO2 isotherms
in Figure 3.1a. Good agreement can be seen between the experimental data and model
predictions. The predicted sub-ambient PSA swing capacity for CO2 in UiO-66 is shown
in Figure 3.1b. The swing capacity increases from about 3 mol/kg at 273 K to around 5.3
mol/kg at 213 K. The heat of adsorption in Figure 3.1c is weakly loading dependent, but is
almost independent of temperature.®®®* The trends in Figure 3.1 are straightforward to
understand. As the temperature is reduced from 273 to 228 K, the amount of CO: in the
MOF at the adsorption pressure (2.0 bar) increases substantially. The residual CO: in the
MOF at the desorption pressure (0.1 bar) also increases with decreasing temperature, but
not as markedly as at the adsorption pressure. As a result, the swing capacity increases
significantly with decreasing temperature. This trend cannot, however, continue
indefinitely. As the adsorbed amount of the adsorption pressure approaches the material’s
saturation loading, no further gains in swing capacity can be achieved by further lowering
the temperature. This effect can be seen in the relatively modest increase in swing capacity
in changing from 228 to 213 K. At temperatures lower than 200 K, the swing capacity in

this material is reduced by lowering the temperature.
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Figure 3.1. (a) Comparison between experimental and simulated adsorption isotherms for
CO2 in UiO-66 at ambient temperatures. The experimental data are from Abid et al.,*
Cmarik et al.,*® and Wiersum et al.* for 273, 298, and 303 K, respectively. (b) Sub-ambient
PSA CO2 swing capacity in UiO-66 with corresponding adsorption isotherms predicted by
GCMC simulations (inset). (c) Heat of adsorption of CO2 in UiO-66 as a function of CO:
uptake, obtained from GCMC simulations.

3.3.2 Sub-Ambient PSA CO2 Swing Capacity in MOFs

Computational screening has been conducted on various libraries of porous
materials for adsorption applications including efforts to find optimal CO2 adsorbents.”%1>
17.21,52-61 \We calculated the CO2 swing capacity as discussed in Section 3.3.1 for the 477
MOFs described in Section 3.2.1. The resulting swing capacities are shown in terms of

each material’s pore volume in Figure 3.2. A striking feature of these results is the existence
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of materials with very high swing capacities, including capacities of 30 — 40 mol/kg at 213
K and 15 - 18 mol/kg at 258 K. At the lowest temperature we examined, increasing pore
volume is correlated with larger swing capacity. At 258 K, however, the materials with the
highest pore volume do not show the highest swing capacity. This phenomenon has been
observed before and its physical origins have been explained by Fang et al.® and others®>*°¢,
who noted that materials with extremely large pores also often have relatively low heats of
adsorption. Fang et al. examined correlations between process dependent swing capacities
and pore volumes of zeolites.® It is very likely that a decrease in swing capacity also occurs
at 213 K for materials with sufficiently large pore volumes, but none of the materials we

examined in Figure 3.2 approach that regime.
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Figure 3.2. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477 MOFs at
(@) 213 K and (b) 258 K.

The computed swing capacities for the 477 MOFs are plotted with respect to each
material’s heat of adsorption at zero loading (Qaas®) in Figure 3.3a and the average heat of
adsorption (Qads®'9) between the pressure swing conditions in Figure 3.3b. Both energetic
quantities demonstrate the presence of the range of optimal values for the heat of

adsorption. The existence of an optimal heat of adsorption for adsorptive storage of gases
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has been investigated before elsewhere.®052%¢ For instance, Fang et al. found that the
optimal average heat of adsorption range for CO2 capture in zeolites was 28 + 3 kJ/mol in
a PSA process that swings between 1 bar and 5 bar at 300 K.® Simmons et al. estimated the
optimal average heat of adsorption range for CO: based on the thermodynamic
methodology developed by Bhatia and Myers, which assumes Langmuir adsorption
isotherms in a homogeneous adsorbent™ to be 22 — 26 kJ/mol in PSA between 1 bar and 6
bar at room temperature.®? The optimal average heat of adsorption for CO2 in MOFs at sub-

ambient temperatures observed in our calculations are similar to these observations.
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Figure 3.3. (a) Heat of adsorption at zero loading and (b) average heat of adsorption
between adsorption and desorption conditions at 213 K in 477 MOFs. Arrows indicate the
optimal range for the heat of adsorption.

The optimal heat range for Qads® and Qads?*? as a function of temperature are shown
in Figure 3.4. The optimal values for both Qads® and Qads®*? are approximately independent
of temperature within the scatter of our data. We note that the analysis of Bhatia and
Myers® predicts that the optimal heat of adsorption is temperature dependent. Extending
the calculations of Simmons et al.%? with this approach, however, indicates that this

variation is around 4 kJ/mol over the temperature range in Figure 3.4 for a simple model
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of CO2 adsorption based on Langmuir isotherms. The qualitative trend in our results is
therefore consistent with the expectations from the Langmuir-based model of Bhatia and
Myers. The optimal Qads®? is about 5 kd/mol larger than the optimal Qaas’. This indicates
that materials in which the heat of adsorption increases with loading have favorable
properties for achieving large swing capacities. The loading dependent heat of adsorption
in UiO-66 shown in Figure 3.1 is one example of this behavior, albeit with only a moderate
pore volume. The general connection between this trend in the heat of adsorption and the
desirable features of a S-shaped isotherm that is not associated with a structural change in
the adsorbent have been pointed out in several previous studies.!%-142662-655 The overall
correlation between Qads® and Qaus®? at 213 K in 477 MOFs is shown in Appendix 3.A
(Figure 3.A.3). This data shows that the heat of adsorption for CO2 increases as a loading

increases in the majority of the materials we examined.
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Figure 3.4. Optimal heat range for heat of adsorption at zero loading (Qads’, black) and

average heat of adsorption (Qadas®"9, red) as a function of temperature.
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3.3.3 Upper Bounds on Sub-Ambient PSA CO2 Swing Capacity in MOFs

Our results above imply the adsorbent evaluation criteria reported by Fang et al.
are applicable to a large variety of porous materials. Figure 3.5 illustrates a screening
process to identify MOF candidates that have a CO2 swing capacity exceeding 10 mol/kg
in sub-ambient PSA. Of the 477 structures we studied, 63 structures satisfy the geometric
criteria of having pore volume above 0.75 cm®/g. 37 structures remain after applying the
energetic criteria we defined for the optimal average heat of adsorption. From this group,
we identified materials that give a CO2 swing capacity larger than 10 mol/kg at all
temperatures from 213 to 258 K. We found 20 structures that satisfy this requirement. It is
useful to note that the geometric and energetic criteria defined in Figure 3.5 could allow

efficient analysis of larger material libraries in the future.

Porous materials for gas adsorption 4:7
- Energy optimized CoRE MOF DDEC charge database structures
Geometric criteria I
63
- Physical adsorption of gases in material pores S T
- Pore volume > 0.75 cm?3/g
Energetic criteria I
- Heat of adsorption at zero loading: 20 £ 5 kdJ/mol strui;,ures
- Average heat of adsorption: 25 + 5 kJ/mal I
Material selection for 20
high CO, adsorption capacity structures
¥

Figure 3.5. Schematic illustration of the material selection criteria to accomplish large sub-
ambient PSA CO2 swing capacities.

The MOF candidates and their predicted swing capacities that emerged from the

procedure described above are listed in Table 3.1. This list contains 20 structures satisfying
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the criteria defined above and one additional structure (XAWVUN) that shows the largest
swing capacity of any material (40.4 mol/kg at 213 K) but does not have a swing capacity
exceeding 10 mol/kg at every temperature. The material properties for each candidate are
provided in Appendix 3.A (Table 3.A.1). It is highly likely that not all the materials listed
in Table 3.1 are viable for practical use in sub-ambient gas processing due to the stability
and lifetime concerns, the cost and ease of material synthesis, and related challenges that
cannot be directly quantified in our calculations. Nevertheless, our computations reveal
that a large number of real materials exist with swing capacities for CO2 at sub-ambient
temperatures that greatly exceed 10 mol/kg. In Section 3.A.3 of Appendix 3.A, several
materials that reach 10 mol/kg swing capacities even at narrower pressure swing conditions

are identified.

In our simulations, XAWVUN, a porous Cu-based coordination network that was
reported for Hz sorption behavior by Sun et al.¢, exhibits the highest overall swing capacity
of 40.4 mol/kg at 213 K. The temperature dependent CO2 adsorption and desorption
isotherms for XAWVUN are shown in Figure 3.6a. The simulated isotherms show no
effects of hysteresis. The material does not satisfy our overall material selection criteria
because the swing capacity drops to 5.8 mol/kg at 258 K. The loading dependent heat of
adsorption is shown in Figure 3.6b. Similar to the results for UiO-66 shown in Figure 3.1,
the heat of adsorption increases as a function of loading. This results in the desirable S-
shaped isotherms4%2 at 213 and 228 K. In Figure 3.6¢, the mixture adsorption selectivity
for CO2 associated with a bulk binary CO2/N2 mixture with molar composition 0.14/0.86
calculated by binary GCMC simulations is shown. The adsorption selectivity increases

from around 5.5 at 273 K to about 15.5 at 213 K with only a marginal change as a function
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of the total pressure. At the latter temperature, this adsorption selectivity corresponds to an
adsorbed mixture with CO2/N2 composition of 0.73/0.27. In Section 3.A.3 of Appendix
3.A, the mixture adsorption selectivity of COz in three other large capacity MOF candidates
is identified. Two of these materials, WONZOP and SENWAL, have selectivities of around
40 at 213 K, corresponding to an adsorbed mixture with CO2/N2 composition 0.875/0.125.
A potential trade-off between swing capacity and selectivity has been discussed
elsewhere.®”-% Understanding the generality of this trade-off and assessing its implications
for practical implementation of sub-ambient CO2 capture will be important future steps.

Table 3.1. MOF candidates from energy optimized CORE MOF DDEC charge database
with large sub-ambient PSA ANco.

ANcoz (mol/kg)

- i a
Metal-Organic Frameworks 213 K 298 K 243 K 58K 273 K

XAWVUN (Cuz(TCPPDA)) ® 40.4 35.2 13.1 5.8 35
ANUGIA (UMCM-152) 31.0 28.6 22.4 10.8 5.8
WONZOP 23.7 22.9 19.2 10.0 5.3
SENWAL 23.6 23.9 21.7 17.3 9.1
YUGLES 22.1 21.4 19.0 135 6.5
NUTQAV (PCN-16) 22.0 21.3 19.0 135 6.6
WONZUV 215 21.7 17.6 10.6 7.3
0JICUG 20.8 22.1 19.0 14.3 10.3
NUTQEZ (PCN-16') 19.8 19.8 17.6 12.6 7.0
SENWOZ 19.2 22.7 21.2 17.7 11.0
MATVEJ 17.2 19.1 175 13.6 8.4
UTEWUM (Cus(BTP)2) 15.8 16.9 15.9 13.2 8.7
XAMDUMO7 15.8 15.7 13.9 10.0 5.6
FIQCEN (HKUST-1) 15.6 15.7 14.1 105 5.9
UTEWOG (Ni3(BTP)2) 14.3 15.3 14.6 12.4 8.5
BIBXUH 13.9 17.0 15.9 13.0 8.7
XUGSEY 12.6 16.0 15.3 12.8 9.4
KEFBEE (I1ZE-1) 12.1 21.1 20.3 17.4 12.1
FEFCUQ 11.1 13.2 12.7 10.4 7.1
QUQFIS 10.2 15.7 15.2 13.1 9.8
SENWIT 10.2 20.6 20.0 17.2 11.9

& CSD reference codes reported in the CoRE MOF database with common names in
brackets (if available). ® Material that exhibited the maximum sub-ambient PSA ANco>
upper bound predicted by GCMC molecular simulation beside the material selection
criteria. © Swing capacities at 273 K are computed to observe the effectiveness of sub-
ambient operation.
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Figures 3.A.4 — 3.A.6 (see Appendix 3.A) illustrate the variation in swing capacity
for several high capacity MOFs as a function of desorption pressure. Increasing the
pressure used for desorption reduces the CO2 swing capacity and also increases the
temperature at which the maximum in this swing capacity occurs. These observations,
coupled with the significant temperature dependence of adsorption selectivity in these and
similar materials highlight that careful process models will be required to closely examine
the trade-offs between process performance and cost associated with varying the desorption

pressure and operating temperature.
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Figure 3.6. (a) Sub-ambient CO: adsorption (filled symbols with solid lines) and
desorption (open symbols with dashed lines) in XAWVUN predicted by GCMC molecular
simulations. (b) Heat of adsorption of CO2 in XAWVUN as a function of CO2 uptake,
obtained from GCMC simulations. (c) Adsorption selectivity of CO2 from bulk CO2/N:
0.14/0.86 mixture calculated by binary GCMC simulations.
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3.4 CONCLUSIONS

In this chapter, we have sought upper bounds on CO2 swing capacity in a sub-ambient
PSA process, which may be viable when coupled with heat integration and power recovery,
via molecular simulation of 477 MOF structures. Swing capacities as high as 30 — 40
mol/kg at 213 K and 15 — 18 mol/kg at 258 K are predicted for the MOFs that have large
pore volume and fall into a narrow range of optimal average heats of adsorption. Our results
enabled formulation of material selection criteria that allow efficient identification of
materials with high CO2 swing capacity. Ultimately, 20 MOF candidates were identified
that show a swing capacity over 10 mol/kg at all the sub-ambient temperatures we

considered.

Our assessment of porous materials for CO2 capture has focused solely on single
component CO2 adsorption. The viability of a practical process clearly also relies on a host
of other factors, including adsorption selectivity, material stability and cost among others.
Nevertheless, establishing upper bounds on swing capacity is critical to understanding the
limits on performance that are physically achievable with PSA and related cyclic
adsorption processes. Our results indicate that use of high capacity MOFs and other porous
materials in sub-ambient CO2 capture processes merits more detailed examination, and this
chapter point to specific materials and more general material characteristics that should be

the focus of future work of this kind.
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APPENDIX 3.A. SUPPORTING INFORMATION - CHAPTER 3

3.A.1 Molecular Simulation Details

Atomistic classical GCMC simulations of single component CO2 adsorption and
desorption, and adsorption of a binary CO2/N2 0.14/0.86 mixture were conducted on the
energy optimized CoORE MOF DDEC charge database using RASPAL. Fugacity was
converted from pressure using the Peng-Robinson equation of state.! All the MOF
structures investigated are approximated by rigid model with triclinic boundary conditions
applied in all dimensions. A rigid and linear model was used for both CO2 and N2
molecules. Lennard-Jones (LJ) parameters for framework atoms are obtained from the
UFF? which is widely used force field for MOFs, and the parameters for CO2 and N2 are
obtained from the TraPPE? force field. In Monte Carlo simulation associated with these
force fields, the truncated potentials with tail corrections are applied. Simulation volumes
are expanded to at least 26 A along each dimension and LJ interactions are truncated at 12
A. Electrostatic interactions were computed pairwise with a long range Ewald summation
scheme* based on atomic point charges assigned via DDEC method. DDEC is one of
multiple methods to assign electrostatic charges to framework atoms, and it is based on the
electron density partitioning in periodic structures.® The point charges are found by
minimizing an optimization functional to reproduce both the charge distribution and local

electrostatic potential.®

All GCMC calculations included 5,000 initialization cycles to equilibrate the
positions of the atoms in the system followed by 50,000 production cycles. A Monte Carlo

cycle consists of N steps where N is the number of molecules in the system. Random Monte
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Carlo moves, either accepted or rejected according to Boltzmann-type weighting criteria,
allowed translation, rotation, regrowth, reinsertion, deletion and insertion moves at the
identical probabilities. For a mixture gas adsorption simulation, a Monte Carlo move that
swapped the identity of existing molecules associated with the competitive adsorption of

each component was imposed in addition to above random Monte Carlo moves.

Isosteric heats of adsorption (Qads) was computed during GCMC simulations based
on the fluctuation method.! The heat of adsorption at zero loading (Qass) was also
computed in the canonical ensemble.®’” Qaas® is an indicator for the host-adsorbate affinity
under infinite dilute conditions.® Random Monte Carlo moves in this simulation allowed

translation, rotation, regrowth, and reinsertion moves at the identical probabilities.

The void fraction of each computation-ready structure was calculated from a
Widom particle insertion method using a He probe molecule (¢/ks = 10.9 K, o = 2.64 A) at
298 K.! The pore volume was calculated by multiplying the void fraction with the unit cell
volume. The accessible surface area was calculated by using N2 as probe molecule with
overlap distance criteria set to a size parameter o of 3.31 A.* The largest cavity diameter
and the pore limiting diameter were calculated by Zeo++ applying the high-accuracy

setting with a probe of radius 1.86 A, corresponding to N2.8

3.A.2 Sub-Ambient PSA CO, Swing Capacity in MOFs

3.A.2.1 Geometric Properties of MOFs for Swing Capacity

The pore volume (Vp) is one of the most critical geometric properties that governs

physisorption of adsorbate molecules. There are also other geometric indicators that could
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potentially be used to estimate CO2 capture performance using porous materials. They
include the accessible surface area (SAacc), largest cavity diameter (LCD), and the pore
limiting diameter (PLD). In this Appendix, we examine correlations between each property

and sub-ambient PSA CO2 swing capacity.

Figure 3.A.1 shows the correlation between Ve and swing capacity at 228 K and
243 K. The existence of materials with large swing capacities of 25 — 35 mol/kg at 228 K
and 18 — 23 mol/kg at 243 K are observed. As discussed, the correlation between Ve and

swing capacity becomes more pronounced at lower temperature.
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Figure 3.A.1. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477 MOFs at
(@) 228 K and (b) 243 K.

Figure 3.A.2 shows the computed PSA swing capacity as a function of four
representative geometric MOF properties at 243 K. Large Vp and SAac show clear
correlations to accomplish high swing capacities. We note that Ve and SAacc are stronlgy
correlated to one another. LCD and PLD exhibit poor correlation to achieve large swing

capacities. Similar results were seen at other temperatures (data not shown).
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Figure 3.A.2. Calculated CO2 swing capacity between 0.1 bar and 2.0 bar in 477 MOFs at
243 K as a function of (a) pore volume, (b) accessible surface area, (c) largest cavity
diameter, and (d) pore limiting diameter.

3.A.2.2 Energetic Properties of MOFs for Swing Capacity

Once geometric criteria are satisfied, it is useful to observe how energetic properties
of MOFs enable large swing capacity as discussed in Chapter 3. The predicted sub-ambient
PSA CO:2 swing capacity as a function of Qads’ and Qa¢s?? is investigated in Figure 3.A.3a
and Figure 3.A.3b, respectively. The presence of the optimal heat range at different
temperatures are observed for both quantities. The optimum for both thermodynamic

quantities to achieve a breakthrough improvement in a PSA process is weakly temperature
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dependent. The correlation between Qads® and Qads®? in Figure 3.A.3c shows that the

majority of the materials show the increase in Qads as loading increases with optimal Qads’

and Qa9 for large swing capacity.
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Figure 3.A.3. (a) Qaa® and (b) Qags™9 at 228 K, 243 K, and 258 K in 477 MOFs. Arrows
indicate the optimal range for the heat of adsorption. (c) Correlation between Qags’ and
Qads®9 at 213 K in 477 MOFs with entries of high swing capacity 21 MOF candidates

noted.
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3.A.2.3MOF Candidates for Large Sub-Ambient PSA CO2 Swing Capacity

Table 3.A.1. MOF candidates for large sub-ambient PSA ANco2 with geometric ® and energetic properties.

Metal-Organic Vp SAxc LCD PLD Qads’ (kJ/mol) Qads?9 (kJ/mol)
Frameworks (cm%g) (m%g) (A) (A) 213K 228K 243K 258K 273K 213K 228K 243K 258K 273K
XAWVUN 1.8 5077 108 9.2 151 145 139 134 129 247 225 175 162 15.7
ANUGIA 1.4 3820 139 6.8 156 151 146 142 137 260 247 211 185 17.7
WONZOP 1.1 2796 110 103 207 198 190 181 173 283 269 245 209 19.9
SENWAL 1.2 3171 87 74 175 169 163 158 153 282 267 248 223 19.7
YUGLES 1.1 3231 109 68 184 178 171 165 159 255 261 242 215 19.2
NUTQAV 1.1 3229 109 69 184 178 172 166 161 281 260 243 216 19.4
WONZUV 1.2 3187 115 98 217 21.0 203 196 190 285 267 234 218 216
0JICUG 1.3 4001 86 79 259 250 244 233 226 264 261 241 236 234
NUTQEZ 1.1 3105 117 83 168 165 162 159 155 269 262 241 213 19.6
SENWOZ 1.1 3189 89 7.1 186 181 175 169 163 293 275 261 238 212
MATVEJ] 1.0 2938 85 67 199 192 186 179 174 287 268 249 228 211
UTEWUM 1.0 2342 150 99 218 214 210 206 202 291 297 297 264 237
XAMDUMO7 0.9 2338 132 67 244 241 238 234 229 262 268 258 238 224
FIQCEN 0.9 2333 132 67 246 243 239 235 230 276 276 260 242 22.5
UTEWOG 1.0 2251 146 96 222 218 214 210 206 273 293 295 267 24.1
BIBXUH 1.0 2458 147 51 188 181 176 171 166 280 269 248 228 212
XUGSEY 1.0 3342 75 58 267 261 252 246 238 284 280 271 252 23.9
KEFBEE 1.1 3088 111 70 190 185 179 174 169 300 282 261 242 22.1
FEFCUQ 0.8 2413 89 64 205 200 195 190 185 297 279 261 239 22.3
QUQFIS 1.0 2646 80 54 227 219 213 205 198 294 271 261 246 @ 227
SENWIT 1.0 3098 85 65 196 190 185 178 173 312 281 268 247 22.5

@ Geometric properties were adapted from CoRE MOF database developed by Chung et al.® with some properties recomputed in this

chapter if needed.
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3.A.3 Desorption Condition in Sub-Ambient PSA CO; Swing Capacity

The choice of desorption pressure in a PSA process strongly affects the energy and
cost efficiency of the overall process.’® The analysis in Chapter 3 used a desorption
pressure of 0.1 bar, which may be considerably lower than is desirable in practice. Here,
we examine the influence of the desorption pressure on the CO2 swing capacities in a

number of large capacity MOFs.

Figures 3.A.4 — 3.A.6 show the computed CO: adsorption isotherms, heat of
adsorption, predicted swing capacities by varying desorption pressures from 0.1 to 1.0 bar
in ANUGIA (Figure 3.A.4), WONZOP (Figure 3.A.5), and SENWAL (Figure 3.A.6). Two
observations can be made from these results. First, all three materials achieve 10 mol/kg
swing capacities at 243 and/or 258 K using a pressure swing between 2.0 bar for adsorption
and 1.0 bar for desorption. Second, the temperature at which the maximum swing capacity
IS observed increases as the desorption pressure is increased. This observation, coupled
with the reduced swing capacity as the desorption pressure is increased, indicate that a set
of trade-offs will dictate the optimal desorption pressure and operating temperature in

designing an optimal PSA process.

Figures 3.A.4 — 3.A.6 also show the mixture adsorption selectivity for CO2 relative
to a bulk binary CO2/N2 0.14/0.86 mixture in ANUGIA (Figure 3.A.4), WONZOP (Figure
3.A.5), and SENWAL (Figure 3.A.6). As expected, lowering the temperature increases the
adsorption selectivity in every example. These materials have higher selectivities than the

high capacity material shown in Figure 3.6. WONZOP (Figure 3.A.5) and SENWAL
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(Figure 3.A.6) both show selectivities exceeding 40 at 213 K. All of the materials in Figures

3.A.4 - 3.A.6 and Figure 3.6 show only moderate selectivity at 258 K and 273 K.
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Figure 3.A.4. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC simulations,

(b) heat of adsorption as a function of CO2 uptake obtained from GCMC simulation, (c)

predicted sub-ambient PSA CO2 swing capacity as a function of desorption pressure, and
(d) COz2 adsorption selectivity from bulk CO2/N2 0.14/0.86 mixture calculated by binary
GCMC simulations in ANUGIA.
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Figure 3.A.5. (a) Sub-ambient CO2 adsorption isotherms computed by GCMC simulations,
(b) heat of adsorption as a function of CO2 uptake obtained from GCMC simulation, (c)
predicted sub-ambient PSA CO:2 swing capacity as a function of desorption pressure, and
(d) COz2 adsorption selectivity from bulk CO2/N2 0.14/0.86 mixture calculated by binary
GCMC simulations in WONZOP.
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Figure 3.A.6. (a) Sub-ambient CO2z adsorption isotherms computed by GCMC simulations,
(b) heat of adsorption as a function of CO2 uptake obtained from GCMC simulation, (c)
predicted sub-ambient PSA CO: swing capacity as a function of desorption pressure, and
(d) CO2 adsorption selectivity from bulk CO2/N2 0.14/0.86 mixture calculated by binary
GCMC simulations in SENWAL.
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CHAPTER 4. HOW WELL DO APPROXIMATE MODELS OF
ADSORPTION-BASED CO, CAPTURE PROCESSES PREDICT

RESULTS OF DETAILED PROCESS MODELS?

Appropriate selection of adsorbent materials is essential in developing adsorption-
based processes such as CO: capture. Approximate methods to evaluate material
candidates exist using adsorbent evaluation metrics or simplified process models. These
approximate methods do not, of course, completely describe the performance of adsorbents
in real separation processes. In this chapter, we assess the correlations between
approximate predictions and detailed process models of pressure swing adsorption (PSA)
at sub-ambient temperatures for post-combustion CO:z capture using metal-organic
frameworks (MOFs). Our results indicate that CO2 swing capacity and adsorbent
regenerability are useful in predicting the ranking of materials for this process. These
results illustrate the opportunities and challenges in bridging approximate and detailed

methods for evaluating adsorbents for cyclic separations processes.

* Contents of this chapter have been submitted for publication in a peer-reviewed journal

Jongwoo Park, Héctor Octavio Rubiera Landa, Yoshiaki Kawajiri, Matthew J. Realff,
Ryan P. Lively, David S. Sholl, "How Well Do Approximate Models of Adsorption-
based CO2 Capture Processes Predict Results of Detailed Process Models?”, submitted
to and under review at Industrial & Engineering Chemistry Research.
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41 INTRODUCTION

Atmospheric CO2 concentrations are rising due to anthropogenic emissions.>? This
has motivated efforts to develop cost-effective and energy-efficient carbon capture
processes.® Cyclic adsorption-based CO2 capture has emerged as a promising approach.
Typical examples of these processes include pressure swing adsorption (PSA), vacuum
swing adsorption (VSA), and temperature swing adsorption (TSA).*’ Adsorption-based
carbon capture is a materials-enabled technology. Porous materials including activated
carbon, zeolites, and metal-organic frameworks (MOFs) have been actively examined for
use in CO2 capture processes.>®1! Although effective cycle configurations are important,
the performance of cyclic adsorption processes depends heavily on the selection of
adsorbent materials.'? Given the large numbers of potential adsorbents that exist, finding
effective means to evaluate adsorbents is a key challenge in developing cyclic adsorption-

based CO:2 capture processes.

A major hurdle in adsorbent evaluation is the choice of performance descriptors.
When screening a large spectrum of adsorbent materials, single component adsorption
isotherms for gas species of interest are typically the only information that can be
reasonably obtained.”** Multiple approximate performance metrics that can readily be
calculated from these isotherms have been proposed.”'?8 These metrics are typically
based on physical intuition.”*2 They have served as proxies to evaluate a wide spectrum of
materials, especially when combined with high-throughput molecular modeling of

adsorption isotherms.1"-23
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Another way to predict the performance of an adsorbent for CO2 capture is to use
simplified process models describing fully detailed PSA and/or VSA processes.?*?" These
models are designed to provide industry-relevant performance descriptors such as product
purity and energy consumption without the complexity of detailed process modeling. The
models avoid the complexity associated with detailed process optimization?*?® and can be
used with limited information beyond single component adsorption isotherms.?®?” These
models do not, however, include detailed cycle configurations, so there is a gap between

what they can predict and the performance of real processes.

Several studies have used detailed process optimization in combination with
approximate metrics to better understand the suitability of materials for adsorption-based
separations.'??%3* These studies have primarily focused on a restricted spectrum of
materials that satisfy targeted constraints of product purity and recovery. Motivated by
these previous contributions, the objective of this chapter is to directly assess the capability
of simple proxies for adsorbent performance and approximate models of cyclic adsorption
to predict the outcomes of detailed process models of adsorption-based CO: capture
processes. We consider the situation where a range of adsorbent materials is available and
each level of modeling is used to rank the materials in terms of performance. After
producing these rankings with models of multiple levels of complexity and fidelity it is
possible to discuss the correlations between predictions from the simpler models and

detailed process models.

We focus below on the use of MOFs as adsorbents for sub-ambient PSA for post-
combustion CO2 capture. Sub-ambient separations have been recently reported by Air
Liquide for large-scale CO2 separation from power plant flue gas via a membrane system,

109



which appeared feasible when implemented with appropriate heat integration and power
recovery.®3" A potential advantage of operating a PSA process at sub-ambient
temperatures is the ability to achieve large swing capacities for adsorption. We previously
examined a large number of MOFs with respect to this metric and showed that many
materials exist with a CO2 swing capacity larger than 10 mol/kg.3® Below, we use the task
of ranking materials of this type for use in sub-ambient temperature CO2 capture as an
example to explore the correlation (or lack of correlation) between predictions based on

simplified models and detailed process optimization.

42 METHODS

4.2.1 Sub-Ambient PSA Process

We focus on an adsorption-based PSA CO: capture process at sub-ambient
temperatures using MOF materials. In Chapter 3%, the viability of the sub-ambient PSA
process using MOFs was estimated using single component CO2 adsorption isotherms
obtained from molecular modeling. Compelling evidence exists that molecular modeling
can accurately predict the adsorption isotherms of CO2 and similar species in a wide range
of MOFs.1+33% The large pore volumes and surface areas of MOFs, coupled with a
suggested process design made them appealing materials as adsorbents.®13 In this chapter
we extend our focus to a bulk mixture of CO2/N2 at compositions relevant to post-
combustion flue gas. Real flue gas contains other contaminants including H20, Oz, CO,
SOx, NOx, and Hg species.*>*® The presence of these contaminants could impact adsorption
properties of primary components and the stability of adsorbents.***® Air Liquide has

demonstrated that dry and clean flue gas feeds can be achieved by appropriate system
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design combined with a sub-ambient heat exchanger.*” Hence we focus on adsorptive
separation of CO2 from a dry bulk binary mixture of CO2/N2 with molar composition
0.14/0.86 with no other components. Typical pressures for PSA desorption and adsorption
are 0.7 bar (Pcoz,des = 0.1 bar) and 14.3 bar (Pcozads = 2.0 bar), respectively, at T = 243 K.
The choice of the pressure swing range and temperature are adapted from earlier
findings.3>2%% The adsorption and desorption pressures are treated as decision variables in

our detailed process models.

4.2.2 Adsorbent Evaluation Metrics

To evaluate materials as adsorbents for gas capture, a general starting point is to
obtain adsorption isotherms for the gases of interest. Multiple efforts have focused on
proposing performance metrics that can be derived from adsorption isotherms to forecast
their capabilities in end-use applications.”!3® Table 4.1 summarizes the metrics used

below to make predictions about PSA processes.’ 1316

The first two metrics are the swing capacity and adsorption selectivity.”?’” Swing
capacity is defined as the difference between gas storage capacities of the species targeted
for capture at the adsorption (Nco2?®) and desorption (Nco2") pressures chosen as bounds
on the process. We used Pcozads = 2.0 bar and Pcoz,des = 0.1 bar. The mixture adsorption
selectivity is defined as the ratio of adsorption capacity of each component and mole
fraction of each component in bulk phase (yi) at the adsorption conditions, Protat = 14.3 bar
(Sads,cozn2®®) and/or Pt = 0.7 bar (Sadscoznz®®). The other two metrics, the sorbent
selection parameter and the adsorbent performance score, combine information from the

swing capacity of the component of interest and of the competing species, and the
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adsorption selectivity at adsorption and desorption pressures under adsorption conditions
in different ways.”1216 Such metrics aim to reflect the trade-off relationships that generally
exist between swing capacity and adsorption selectivity.*34° A remaining metric, the
regenerability, is the ratio of the swing capacity and the adsorbed amount of strongly
adsorbed species at the adsorption pressure. This parameter estimates the fraction of the
adsorption sites that are regenerated during the desorption step.'®'° All adsorbent
evaluation metrics above are calculated from mixture adsorption data (Ni).”*317-1° In
principle, molar composition of the bulk phase at the desorption condition completely
describes the amount of adsorbing molecules at the desorption pressure (Ni%). Estimating
information regarding the desorption condition is, however, complicated because defining
the composition of the bulk phase is not trivial.!>>° Hence relying on adsorption conditions

as described above has been a common practice.” 131721

We obtained mixture adsorption data using molecular modeling via Grand
Canonical Monte Carlo (GCMC) simulations. The MOFs of interest were taken from a
subset of the CORE MOF database®, namely the energy optimized CoRE MOF DDEC
charge database®>°, which includes 477 DFT optimized structures to which high quality
atomic point charges have been assigned. 143 MOFs were selected from this collection that
showed PSA CO:2 swing capacity exceeding 4 mol/kg at 243 K between 0.1 bar and 2.0
bar.® Binary mixture GCMC simulations were conducted in these 143 materials to
calculate adsorption properties of a CO2/N2 mixture at bulk pressures of 0.7 bar and 14.3
bar. The resulting mixture adsorption properties were then used to calculate the adsorbent
evaluation metrics in Table 4.1 for each material. Detailed descriptions of the molecular

modeling and the materials we used are given in Appendix 4.A (Sections 4.A.1 and 4.A.2).
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Table 4.1. Definitions of adsorbent evaluation metrics’**® used to assess adsorbent
materials®>® for post-combustion CO separation with a sub-ambient PSA process.

Adsorbent Evaluation Metric Metric Formula
ANcoz (mol/kg) Swing capacity ANcoy = Ngpp®® — Npgyp 46

) o N. ads/N ads
Sads,CO2N2™ Adsorption selectivity Sadscoz 2™ = —= 2

Ycoz/Yn2
(Sads,coz/zvzMls)2 AN¢o,

(Sads,COZ/NZdeS) ANy,
APScoaiz (mol/kg) ~ Adsorbent performance score  APScoz/nz = Saascoz/nz™* ANcoz

A]VCOZ

ads
02

Ssp.cozinz Sorbent selection parameter  Ssp coz/n2 =

x 100

R (%) Regenerability R =

4.2.3 ldealized PSA Process Model

Adsorbent evaluation metrics do not necessarily translate into process-level
insights. Several simplified adsorption process models have been proposed to overcome
this limitation.?*?” Such models impose multiple assumptions on adsorbents and cycle
configurations but are analogous to cyclic adsorption processes. We adapted an idealized
PSA process model proposed by Ga et al.?” This model provides two process performance
indicators for an idealized ad-/desorption cycles, namely product purity (Pucoz2) and
specific energy consumption (Enco2). The latter quantity provides insight in the separation
cost. In addition, swing capacity (ANcoz and/or ANN2) can be obtained separately. In this
idealized model the composition of the gas products is found by numerically solving a
series of non-linear equations of mixture adsorption capacities. The major assumptions
underlying this idealized description of PSA are that the process operates isothermally
without dispersion or kinetic effects with a two-step cycle configurations for ad-
/desorption, and that adsorption is described as a binary mixture of a strongly and a weakly

adsorbing species. The model assumes the use of a compressor and vacuum, and also
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assumes 100% product recovery is achieved. The idealized PSA process is illustrated in

Figure 4.1.
B
TRafﬁnaI‘e
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Feed A+B N Ny X Product A
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Figure 4.1. Schematic illustration of the idealized PSA process model. The model imposes
idealized cycle of adsorption (ADS) and desorption (DES) with feed binary mixture of
CO2/Nz in molar fraction of 0.14/0.86 (yi). Components A and B refer to strongly and
weakly adsorbing species, respectively. The model numerically solves for the composition
of the produced gas or molar composition of gas components in the desorption step (yi’).
Adsorption amounts at given desorption conditions can be obtained (Ni®"). Isothermal
operation is assumed at T = 243 K.

A fundamental piece of information to perform process modeling is the mixture
adsorption equilibrium. The model outlined above requires an analytical expression or
other methods to estimate the mixture adsorption equilibrium at different pressures,
temperatures, and mole fractions in gas phase.'>>* We employed ideal adsorbed solution
theory (IAST)%*® to predict mixture adsorption. IAST estimates the mixture equilibrium
from single component adsorption isotherms by assuming an ideal solution is formed by
the adsorbed phase.>® We simulated single component adsorption isotherms for CO2 and
N2 at temperatures of 213, 228, 243, 258, and 273 K via GCMC. More details of the

idealized PSA process model and IAST are given in Appendix 4.A (Section 4.A.4).
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4.2.4 Rigorous Process Model

Due to the inherent complexity of cyclic adsorption processes, detailed process
optimization modeling is needed to achieve the highest fidelity regarding the evaluation of
adsorbent materials. We used a rigorous process model with multi-objective
optimization®® to assess the cyclic performance of each MOF considered. Table 4.2

summarizes the definitions used for our process-level objectives.

Table 4.2. Definitions of process-level objectives from multi-objective optimization used
to assess adsorbent materials for post-combustion CO: separation with a sub-ambient PSA
process.

Objectives Objective Formula

Purity, Pucoz (%) p _ Total CO; moles in the extract product % 100
Y, Flicoz 7 4eoz = Toral gas moles in the extract product
Recovery, Recoz (%) R _ Total CO, moles in the extract product % 100
Y, Récoz {70 €c02 = T otal €O, moles fed into the cycle

Total CO, moles in the extract product

Productivity, Preoz (mol/kg-s) - Prcoz = Total adsorbent mass X Cycle time

Zi=cycle configuration Ei
C0, mass in the extract product per cycle

Energy, Encoz (kWhtt) Encg, =

We considered a PSA process model based on a four-step Skarstrom cycle.>>%-61
Figure 4.2a illustrates this cycle, which includes light product pressurization*>® with N2,
adsorption of COz and production of Nz, co-current blowdown, and counter-current
evacuation with production of COz. Our model implemented mathematical expressions to
describe packed-bed operation of a PSA under non-isobaric conditions. This includes
transient balance equations which are a set of non-linear partial differential equations
(PDEs) coupled with molecular diffusion and adsorption properties. The linear driving
force model*®? and the mixture adsorption isotherms predicted by IAST are used for
molecular diffusion and adsorption properties, respectively. A finite volume method was

applied to discretize the PDE system in space by taking account flux function
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approximations.53%* This results in a set of ordinary differential equations (ODES) that were
solved using MATLAB with the odel5s function at default tolerances until the system
reaches the cyclic steady state. Details of PSA modeling are provided in the Section 4.A.5

of Appendix 4.A.

a b
() PR ADS coBD  ccEV ( ) ﬁ Monolithic fiber composite

(Polymeric matrix + MOF + PCM)

b h A AR R R R A s R b e
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Figure 4.2. (a) Schematic illustration of the four-step PSA cycle for the rigorous process
modeling of a hollow fiber bed contactor. The cycle includes counter-current light product
pressurization (PR), adsorption (ADS), co-current blowdown (coBD), and counter-current
evacuation (ccEV). (b) Schematic illustration of the PCM-based thermally modulated fiber
adsorbent and flow of bulk CO2/N2 mixture in the bed column.

Our rigorous process model focused on thermally modulated hollow fiber
adsorbents as illustrated in Figure 4.20.%5-0 Incorporation of fiber adsorbents as structured
contactors in cyclic adsorption processes allows for efficient mass and heat transfer, and
reduced pressure drop relative to packed beds.”*"* We modeled a fiber adsorbent contactor
comprised of a non-adsorbing polymeric matrix, MOF particles, and microencapsulated
phase change materials (PCM).%%%7 Judicious use of PCM can enable near-isothermal
operation of a PSA by its melting and freezing upon CO2 adsorption (exothermic reaction)
and desorption (endothermic reaction).” By assuming this approach for heat management,
we modeled the process as allowing temperature variation modulated with PCM. Details

of the modeling of fiber adsorbent are available in Appendix 4.A (Section 4.A.5). Only the

116



PSA unit is considered in this chapter without assessing other details of the flowsheet that

would be required to completely describe an integration of this unit with a power plant.

Sub-ambient PSA process modeling above was coupled with multi-objective
optimization. Optimization was carried out in MATLAB using the gamultiobj function for
which a variant of the NSGA-II genetic algorithm® " was applied. We consider the
rigorous process modeling as a black-box function with a set of available decision variables
as inputs and process-level objectives at cyclic steady state as outputs. Further details of
the optimization procedures are provided in Appendix 4.A (Section 4.A.5). This
optimization leads to maximizing purity, recovery, and productivity while minimizing

energy consumption under each process condition that is determined by decision variables.

4.3 RESULTS AND DISCUSSION

4.3.1 Adsorbent Evaluation by Approximate Models

It is typically impractical to conduct rigorous process modeling or to perform
detailed experimental testing for hundreds of potential adsorbent materials. We therefore
used approximate models to reduce the number of MOFs to examine with our detailed
process model. We began by examining 143 MOFs using the adsorbent evaluation metrics
in Table 4.1 and then studied 30 of these adsorbents using the idealized PSA process model
described in Section 4.2.3. The goal of this work was not to identify individual “winning”
materials but to reveal a spectrum of materials performance that could then be compared

for selected materials to our more rigorous process model.
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4.3.1.1 Material Selection by Adsorbent Evaluation Metrics

143 MOFs were characterized with the adsorbent evaluation metrics in Table 4.1.
In order to discover high performing materials, previous studies commonly used one or
two of the metrics in Table 4.1.71%-2138 Top-ranked materials for a single metric’*2138 or
those judged to have a good combination of each metric'’-'° were then labeled as potential
adsorbents. We employ the latter screening strategy for the filtering of MOF candidates.

Our strategy is illustrated in Figure 4.3a.

We first set constraints for each metric. A key advantage of sub-ambient gas
processing is that the swing capacity for small molecules can be large.3® On this basis the
lower bound for swing capacity was set to 10 mol/kg. Adsorption selectivity has long been
viewed as controlling the achievable product purity.*? We set a lower bound on the mole
fraction of COz2 in adsorbed phase (xcoz) of 0.9 when considering selectivity. The sorbent
selection parameter includes information from the swing capacities for both CO2 and No.
Increasing or suppressing the adsorption of strongly or weakly adsorbing molecules,
respectively, is a route for efficient separation of gas mixtures.1329.2433 \We therefore set a
constraint to have CO2 swing capacity more than ten times the N2 swing capacity. The
adsorbent performance score is calculated by the product of swing capacity and adsorption
selectivity. We use same constraints of swing capacity and adsorption selectivity when
setting the constraint for this quantity. Having a highly selective adsorbent does not
guarantee high regenerability. We adopted a target regenerability of 75% from previous
work.'® The “best” adsorbents at this stage would be candidates that meet all of these
constraints (cluster I in Figure 4.3a). To ensure we are considering a spectrum of materials,

we also considered materials that satisfy some, but not all, of these constraints. Figure 4.3a
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indicates clusters of materials that have extremely high selectivity but relatively low swing

capacity (cluster I1) or vice versa (cluster 111 in Figure 4.3a).
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Figure 4.3. (a) Material selection strategy employed in this chapter to filter 143 MOFs by
forming clusters. The constraints on each metrics and definitions of each cluster are
described in the text. (b) Adsorbent evaluation metrics calculated for a CO2/N2 0.14/0.86
mixture at bulk pressures of 0.7 bar and 14.3 bar at 243 K. The horizontal and vertical axes
are the swing capacity and the sorbent selection parameter, respectively. Data in black
squares correspond to MOFs that do not belong to any of the clusters we defined.

Figure 4.3b shows the adsorbent evaluation metric data for 143 MOFs and
clustering of this information as defined in Figure 4.3a. 28 MOFs were found from cluster
I. We then selected additional MOFs from clusters Il and I11. The swing capacity for CO2
in MOFs from cluster Il ranges between 6-9 mol/kg, values considerably higher than
typical materials for CO2 capture via PSA at ambient temperatures.’®’” The MOF from
cluster 11 (CSD reference code SERKEG) with the highest sorbent selection parameter was
chosen for further consideration. Similarly, the MOF from cluster 111 (OJICUG) with the
largest swing capacity was chosen. This defined a set of 30 MOFs that were used in our

more detailed models. These materials are indicated with highlighted borders in Figure
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4.3b. Information about selected physical properties of 28 MOFs from cluster | is given in

Figure 4.A.2 (Section 4.A.3 of Appendix 4.A).

4.3.1.2 Material Selection by an Idealized PSA Process Model

We next used the idealized PSA process model defined above?’ to obtain process-
level performance descriptors of 30 MOFs. This approach allows us to incorporate a range
of adsorption and desorption conditions.?*?” The results obtained from this model were

used to further reduce the number of MOFs to which we applied a rigorous process model.

Our process modeling uses IAST to predict mixture adsorption.>* Although there
are indications that applying IAST in MOFs may be viable”>>%, |AST may be inaccurate
at high pressure and for weakly adsorbing molecules®°®, We therefore directly tested IAST
in the 30 MOFs we considered by comparison with mixture GCMC calculations as shown
in Figure 4.4. Both CO2 (Figure 4.4a) and N2 (Figure 4.4b) show good agreement between
direct simulation of mixture adsorption with GCMC and simulation using IAST within the
pressure range of our process. We calculated the fractional IAST error, defined as the ratio
of the difference between IAST and GCMC results to the GCMC result.?® For all 30
materials the fractional error in the CO2 and N2 uptakes were less than 10% and 15%,
respectively. The fractional error for selectivity was also smaller than 15% for every
material (Figure 4.4c). We took this as an indication that using IAST within our process

models was an acceptable approximation.?%-%
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Figure 4.4. Comparison between mixture adsorption amounts in 30 MOFs computed from
GCMC (horizontal axes) and IAST (vertical axes) for (a) CO2 and (b) N2 at low,
intermediate, and high total pressures at 243 K and (c) adsorption selectivities in 30 MOFs
computed from GCMC (horizontal axis) and IAST (vertical axis). In all cases the gas phase
CO2/N2 composition is 0.14/0.86. The diagonal lines have slopes of 1.1, 1, and 0.9 from
top to bottom, respectively, in (a). Similar lines are drawn for slopes of 1.15, 1, and 0.85
from top to bottom, respectively, in (b) and (c).

We used the idealized PSA model to select materials for use in our detailed process
model as indicated in Table 4.A.1. We first chose MOFs that do not have open-metal sites
(OMS) based on previous reports that examined the crystal structures via connectivity
analysis for each metal center.”®’® This choice avoids complications associated with the
limited accuracy of generic force fields for molecular simulations of MOFs with OMS. 178

81 Among the 20 non-OMS MOFs, we sampled MOFs based on the CO2 purity predicted
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by the idealized model, Pucoz. We set 90% purity as the benchmark for this quantity.8? All
MOFs that exceed this benchmark for some combination of process conditions, i.e.
adsorption and desorption pressures, were selected. In addition, four MOFs that did not
exceed this standard were randomly chosen to ensure our final selection included a
spectrum of materials performance. This gave the list of 15 MOFs shown in Figure 4.5.

The process performance indicators for all 30 MOFs are shown in Figure 4.A.3.
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Figure 4.5. Performance indicators derived from the idealized PSA process model for 15
MOFs. The indicators were calculated for a CO2/N2 0.14/0.86 mixture at 243 K for 400
combinations of ad-/desorption pressures. Squares, triangles, and downward-pointing
triangles indicate MOFs collected from cluster I, cluster Il, and cluster Il1, respectively,
from the pre-selection stage. (a) Enco2-Pucoz shown by Pareto fronts across operating
pressures in each material. MOFs in group | are the ones that meet the Puco2 benchmark
while those in group 11 do not. (b) ANcoz2-Puco2 shown with each data points calculated
from all combinations of ad-/desorption pressures.

Figure 4.5 shows ANcoz, Pucoz, and Encoz for each of the 15 MOFs we considered
further. It is important to note that the metrics from Table 4.1 cannot provide any
information about the two latter quantities. These indicators were calculated with the
idealized process model at 20 adsorption pressures equally spaced from 5.0 to 15.0 bar and
20 desorption pressures equally spaced from 0.15 to 0.35 bar. Figure 4.5a shows Pareto

fronts of Encoz-Pucoz across this range of operating conditions. As might be expected,

122



there is a trade-off between Puco2 and Enco2. Figure 4.5b shows ANco2 and Puco2 at each
of the 400 process conditions we considered. The sensitivity of ANcoz-Pucoz as a function

of process pressures is heavily material dependent.

4.3.2 Adsorbent Evaluation by a Detailed Process Model

The steps above defined a shortlist of 15 MOFs with a spectrum of performance for
sub-ambient CO:2 capture as predicted from a series of approximate models. We used
rigorous multi-objective process optimization to develop processes based on each of these
MOFs. This optimization allows each adsorbent to be coupled with process conditions that

maximize their potential

Figure 4.6 shows the Pareto fronts for pairs of process-level objectives. Figure 4.6a
shows minimization of Enco2 and maximization of Puco2. Encoz is a useful proxy for
operating process cost.3* This pair of objectives enables a direct comparison of the
similarity of material evaluation made between the rigorous and idealized process model
described in Section 4.3.1.2. Figures 4.6b and 4.6¢ show other common approaches to
evaluating the capability of adsorbents and the viability of chosen adsorption system.
Figure 4.6b assesses maximization of Puco2 and Reco2. We find the presence of MOFs in
this sub-ambient system approaching 90% and 95% for both Puco2 and Recoz, respectively,
a suggested target®? for these objectives. Figure 4.6¢ assesses maximization of Prcoz2 and
minimization of Encoz. This is useful because it identifies process in which energy
consumption is low while the maximum productivity for a given mass (or volume) of
adsorbent can be reached. We find MOF candidates capable with Prcoz up to ~ 0.1 mol/kg-s

with ~ 250 kWh/t of Encoa.
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Figure 4.6. Multi-objective optimization for 15 MOFs in a sub-ambient PSA using a
hollow fiber adsorbent module at 243 K. Pareto fronts are shown for optimized objectives
of (a) Encoz and Pucoz, (b) Pucoz and Recoz, and (c) Prcoz and Encoz.

The results from Figure 4.6 allow us to revisit the evaluation of each MOF. When
considering Encoz-Pucoz, we ranked MOFs using Puco: at a fixed Encoz of 400 kWh/t. For
Pucoz-Recoz, a ranking was made by the product of Pucoz and Recoz. For Prcoz-Encoz, we
ranked MOFs using Prcoz at a fixed Encoz of 400 kWh/t. These three rankings are
summarized in Table 4.3. We give three separate rankings to emphasize that focusing on
different aspects of process performance favors different materials. For instance, a material
that is a good candidate when the focus is on product purity may be less attractive when
process economics are the dominant concern, and vice versa. The MOF with structure code

SERKEG is an example; it is ranked in the top 5 materials when considering Encoz-Pucoz,
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11 of 15 with respect to Pucoz-Recoz, and the last among the 15 materials with respect to
Prcoz2-Enco2. Some materials, however, are ranked quite consistently in each list. The
MOFs with structure codes SENWOZ and SENWIT, for example, are ranked 1 and 2 in

every list, and SENWAL is ranked either third or fourth in each list.

Table 4.3. Three rankings of MOFs based on multi-objective process optimization.
Definitions of each ranking are given in the text. MOFs whose ranking varies by five or
more places among two rankings are shown in italic.
MOFs Ranked by

(b) Puco2-Recoz2  (€) Prcoz-Encoz

Ranking (a) Encoz-Puco2

1 SENWOZ SENWOZ SENWOZ
2 SENWIT SENWIT SENWIT
3 OJICUG SENWAL SENWAL
4 SENWAL OJICUG BIBXUH
5 SERKEG BIBXUH TERFUT
6 FAKLOU TERFUT FEFDAX
7 FEFDAX FEFDAX RAXCOK
8 RAXCOK CUHPUR OJICUG
9 CUHPUR RAXCOK CUHPUR
10 UTEWUM ZESFUY UTEWOG
11 UTEWOG SERKEG FAKLOU
12 BIBXUH FAKLOU MATVE]
13 MATVE] MATVE] ZESFUY
14 TERFUT UTEWOG UTEWUM
15 ZESFUY UTEWUM SERKEG

4.3.3 Comparing Approximate and Detailed Models of Adsorption-based Carbon

Capture Process

Having introduced the results from each level of modeling, we now turn to
comparing results among these models. We first quantify the similarity of results between
our rigorous process model and adsorbent evaluation metrics. We then conduct the same

analysis comparing from rigorous and simplified process models.
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4.3.3.1 Rigorous Process Model and Adsorbent Evaluation Metrics

For the group of 15 MOFs ranked by our rigorous process model (Table 4.3) we
also developed rankings based on each simplified adsorbent ranking listed in Table 4.1.
The latter rankings are listed in Table 4.A.4. Spearman’s rank-order correlation was used
to compare the results from these two very different levels of modeling. Spearman’s rank-
order correlation is a non-parametric measure of statistical dependence between the
rankings of two variables that assesses how well the relationship between two variables
can be described.®>8 A rank order correlation of 1 indicates perfect correlation between
two rankings, a value of O indicates no correlation between the two rankings, and a value
of -1 occurs if two rankings are perfectly anti-correlated. Spearman’s rank-order
correlations between each process-level ranking and adsorbent evaluation metrics are
shown in Figure 4.7. There is considerable variation between the various ranking methods.
This is consistent with previous findings®-3 that suggested caution must be used in using

adsorbent evaluation metrics.

Rigorous Adsorbent Evaluation Metrics el o
Process Model | ANco; Sads,coaN2"® | Sspcoamz | APScoane | R [l oimilarranks
Encoz-Plcoz 0.50 0.31 0.34 0.54 0.37 0.60
---------- moderate
Pucoz-Recoz | 0.46 -0.16 0.14 0.05 0.79 0.40
0.20
P."cog-Encoz 0.54 -0.19 0.03 0.11 069 | |l dissimilar
0.00

Figure 4.7. Spearman’s rank-order correlation (p) between rankings of 15 MOFs from
rigorous process modeling (vertical axis) and adsorbent evaluation metrics (horizontal
axis). A general guideline for correlation strength and data interpretation associated with
the color coding is provided in detail in Table 4.A.3 in Appendix 4.A.

Among the five adsorbent evaluation metrics, ANco2 and R appear to be the most

useful proxies for process scale performance in our particular process. ANco2 showed a
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comparable moderately similar rank correlation for each of the three process-level
rankings. Regenerability, R, was the most successful adsorbent evaluation metric when
process performance was characterized using purity and recovery or productivity and
energy. R was only moderately successful, however, if the process-level ranking was made
based on energy and purity. Other separation processes that are highly driven by product
purity (e.g. direct air capture of CO2) might results in different correlations. The other three
adsorbent evaluation metrics performed quite poorly. It might be expected that Ssp,cozn2
and APScozn2 would be useful because they use a combination of inputs. We found,
however, that these metrics were dominated by Sads,coanz?® for the CO2 capture process
we considered. As a result, the rank correlations of Ssp.coznz, APScoznz and Sads,coz/n2?%

were quite similar.

As an aside, a possible reason that some metrics make poor predictions in terms of
process-level ranking is that individual metrics only reflect specific features of the cyclic
process.” To this end, we formulated a combined adsorbent evaluation metric (CAEM)
that incorporates linear combinations of the adsorbent evaluation metrics to balance the
contribution of each metric. We analyzed the rank correlations between each process-level
ranking and the CAEM ranking. We found that the rank correlation can be improved by
using CAEM in the absence of a winning single metric as for the case of Encoz-Pucoz. On
the other hand, the effect of CAEM on rank correlation was negligible when a single metric
was already successful, as for the cases of Pucoz-Recoz and Prcoz-Encoz. Details of this

approach are provided in Section 4.A.6.
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4.3.3.2 Rigorous and Idealized PSA Process Models

Following the above analysis, we also quantified the similarity in rankings of
materials provided from the rigorous and idealized PSA process models. The rankings
derived from the idealized PSA model are listed in Table 4.A.7. Unlike the situation for
adsorbent evaluation metrics, the predicted process performance from each level of
modeling can be compared. Because the idealized model only gives Encoz and Pucoz2 but
not Recoz or Prcoz, it is only possible to directly compare these predictions to the detailed

process model for the information in Figure 4.6a.

Figure 4.8 compares the process objectives in terms of Encoz-Pucoz from the
rigorous and idealized process models. The full process optimization (Figure 4.6a) gives a
narrower range of achievable Puco2 than the idealized PSA model results (Figure 4.5a).
Since we are primarily interested in the relative performance of different materials, Figure
4.8 shows a normalized achievable Puco:z at a fixed Encoz of 400 kWh/t for each level of
modeling. The Spearman’s rank-order correlation for these two levels of modeling was
0.54. When ranking MOFs with respect to Encoz-Pucoz using the idealized and detailed
process models, we compared Pucoz at a constraint of Encoz. Because the Pareto fronts are
not always on top of each other as a function of Encoz, the MOF rankings can vary at
different choice of Enco2. We tested the sensitivity of Spearman’s rank-order correlation

to the choice of Encoz as summarized in Table 4.A.8.
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Figure 4.8. The normalized Puco: at a fixed Enco2 using results from our rigorous process
model (horizontal axis) and an idealized process model (vertical axis). Normalization was
performed using the range of values from each data set. The red dashed line is a parity line.

It is also possible to compare the results of the adsorbent evaluation metrics with the
idealized PSA process model. A comparison of MOF rankings from these approaches is
shown in Figure 4.A.5 (Section 4.A.6 of Appendix 4.A). The metrics of adsorption
selectivity, sorbent selection parameter, and the adsorbent performance score are strongly
correlated with the predictions of the idealized PSA model. Somewhat surprisingly, these
are not the same adsorbent evaluation metrics that were best correlated with the predictions
from our rigorous process model. At one level, our data suggests that in terms of the ability
to rank materials according to their performance as defined by the rigorous process model
the idealized PSA model adds little to the information available from the simpler adsorbent
evaluation metrics. This characterization is too simplistic, however, because the idealized
model provides information that is not available from the simple metrics (see Figure 4.5)
and the predictive power of the simple metrics is only available when the right metric

among multiple possible choices is used.
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44 CONCLUSIONS

In this chapter we have examined the value of using approximate models of a sub-
ambient PSA process to evaluate a large number of candidate adsorbents for a CO2 capture
process. This chapter integrates molecular modeling, idealized process model and rigorous
multi-objective process models to consider a spectrum of materials performance indicators.
We examined MOF rankings derived from multiple modeling levels that allow quantitative

measurements on the ranking similarity between approximate and detailed models.

We compared a group of MOFs ranked by rigorous process modeling and adsorbent
evaluation metrics. Our findings showed CO2 swing capacity and the regenerability of
MOFs are successful proxies to predict process-level rankings, while other simple metrics
were not strongly correlated with the detailed results. Our analysis only considered a
specific separation process, a PSA process for CO2 capture from dry flue gas at sub-
ambient temperatures, so we cannot conclude that the same two adsorbent evaluation
metrics will be the best suited to all possible chemical separations. Nevertheless, the
observation that two of the metrics we tested performed far better than the others indicates
that future efforts to use adsorbent evaluation metrics in screening libraries of materials
should carefully consider which metric(s) are best suited for the process of interest. Our
results are an example of the risks that exist if choices about materials selection are made
by relying exclusively on a single metric.2” Moreover, our models considered the
performance of a separations process without regard for many of the practical issues that
can limit scale up and implementation of new separations technologies.®¢ The challenges
that almost inevitably arise during this kind of process development mean that making well

justified choices at the earliest stages of materials selection and process design are critical.
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It is hoped that the multi-level modeling approach we have illustrated here can make these

choices more reliable and efficient in similar efforts in the future.
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APPENDIX 4.A. SUPPORTING INFORMATION - CHAPTER 4

4.A.1 Molecular Modeling Details

Molecular modeling of adsorption of a bulk CO2/N2 0.14/0.86 mixture and single
component CO2 and N2 adsorption were conducted by Grand Canonical Monte Carlo
(GCMC) simulations™?>® using the RASPA software*®. To perform GCMC appropriate
force fields are needed to describe non-bonding interactions such as van der Waals and
electrostatic interactions for adsorbate/adsorbent and adsorbate/adsorbate interactions.®
Classical force fields were used to compute van der Waals interaction, namely the universal
force field (UFF) and the TraPPES force field. Lennard-Jones parameters for MOF atoms
and quadrupolar CO2, N2 molecules were taken from UFF and TraPPE force field,
respectively. Adsorbate/adsorbent interactions were defined with Lorentz-Berthelot
mixing rule.® Truncated potentials with tail corrections are applied where Lennard-Jones
interactions are truncated at 12 A. Simulation boxes are expanded to at least 26 A along x,
y, and z dimensions. Periodic boundary conditions were defined in all dimensions, and
adsorbents and adsorbates were approximated as rigid. Electrostatic interactions were
modeled pairwise with a long-range Ewald summation scheme.'® These interactions are
computed via the density derived electrostatic and chemical (DDEC) point charges for
MOF atoms!'*® and TraPPE charges for CO2 and N2 molecules*®. The DDEC method
assigns high-quality electrostatic point charges on framework atoms which is based on the
electron density partitioning in periodic structures.!** GCMC simulations included 5,000
initialization cycles followed by 50,000 production cycles for which initial tests indicated

good convergence. Attempted Monte Carlo moves include translation, rotation, regrowth,
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reinsertion, deletion and insertion of adsorbates with identical probabilities. For mixture
GCMC, a Monte Carlo move that swapped the identity of existing molecules of which
takes account for the competitive adsorption of each species was imposed in addition to

above random moves.

Pore volumes of computation-ready MOF structures were calculated from the void
fractions of each structure using a Widom particle insertion method with a He probe
molecule (e/ks = 10.9 K, o = 2.64 A) at 298 K.> Pore limiting diameters (PLD) were
calculated with Zeo++*% applying the high-accuracy setting with a N2 probe molecule
using a radius of 1.86 A1 Isosteric heats of adsorption at zero loading (Qacs®) for CO2 and
N2 were computed in the canonical ensemble.'®'” Monte Carlo moves in this simulation
allowed translation, rotation, regrowth, and reinsertion moves of each CO2 and N at the

identical probabilities.

4.A.2 MOF Material Set

Figure 4.A.1a illustrates the origin of 143 MOF structures from the energy optimized
CoRE MOF DDEC charge database.’®?° Such a database enables high-throughput
computational screening of MOFs for modeling of gas adsorption and diffusion in those
materials.’® DFT optimization and assignment of atomic point charges for computation-
ready structures allow reliable adsorption modeling.'>?° In our earlier work of Chapter 3,
PSA CO:2 swing capacities were calculated for 477 structures of the energy optimized
CoRE MOF DDEC charge database at sub-ambient temperatures. 143 of these structures

had single component CO2 swing capacities from ~ 4 mol/kg to ~ 23 mol/kg at 243 K over
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a pressure range from 0.1 bar to 2.0 bar.?! A list of 143 MOFs and swing capacities

estimated from single component adsorption data are tabulated in Section 4.A.7.

Competitive adsorption during treatment of multicomponent gas mixtures almost
always reduce capacities relative to single component adsorption.?2?® Figure 4.A.1b
compares swing capacities of 143 MOFs that are calculated for the difference between
capacities of CO2 at adsorption pressure (Pcozads = 2.0 bar) and desorption pressure
(Pcoz.des = 0.1 bar) from single component adsorption in our earlier study (Chapter 3)?! and
from CO2/N2 bulk mixture adsorption in this chapter. The results show that swing capacity
is reduced by mixture adsorption, although this is not a dramatic effect at the pressures and

temperatures we considered.
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Figure 4.A.1. (a) Schematic illustration of the origin of a MOF material set used in this
chapter. (b) Comparison of CO2 swing capacities in 143 structures computed by single
component adsorption data (horizontal axis) and by CO2/N2 0.14/0.86 bulk mixture
adsorption data (vertical axis) at 243 K over adsorption pressure (Pcoz.ads = 2.0 bar) and
desorption pressure (Pcozdes = 0.1 bar).
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4.A.3 Structure-Property Relationships for Adsorbent Evaluation Metrics

Revealing the structure-property relationships between physical properties of
adsorbent materials and their gas capture performances in various separation systems helps
in selecting adsorbents.??6 We examined such relationships with respect to swing capacity
and adsorption selectivity for CO2 from a CO2/N2 0.14/0.86 bulk mixture adsorption data
in 143 MOFs at a sub-ambient PSA process. The adsorbent evaluation metrics are tabulated
in Section 4.A.7. The chosen physical properties include geometric features of MOFs, i.e.
pore volume and pore size (adopted from the original CoRE MOF database resource'®),
and an energetic feature of MOFs, i.e. the difference of heats of adsorption at zero loading

for CO2 and N2, AQads® = Qads,co2® - Qads,n2° (data not tabulated).

Figure 4.A.2a shows the structure-property relationship for swing capacity as a
function of MOF properties. Like the observation for CO2 swing capacity calculated from
single component adsorption data in our previous study, large pore volume (Vp) and pore
limiting diameter (PLD) along with the difference in heats of adsorption at zero loading for

competing species (AQads®) within a narrow range enable high swing capacity.?!23

Figure 4.A.2b shows the structure-property relationship for adsorption selectivity as
a function of MOF properties. Unlike the swing capacity, smaller Ve and narrower PLD
along with optimal range of AQads are correlated with large adsorption selectivity, i.e. Xcoz
over 0.9.% The optimal ranges of the AQaas® leading to large swing capacity and
adsorption selectivity were observed for similar values. The desirable features of Ve and

PLD, however, were different between swing capacity and adsorption selectivity. This
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illustrates a trade-off relationship that generally exist between swing capacity and

adsorption selectivity.?’

We have identified the desirable Ve, PLD, and AQags for 28 MOFs that were
classified as the cluster | in Chapter 4, i.e. the “best” adsorbents at the stage of using
adsorbent evaluation metrics. These 28 MOFs (shown in red symbols in Figures 4.A.2a

and 4.A.2b) have 0.7 <Vp<1.15 cm®g, 5<PLD <10 A, and 7.5 < AQads’ < 15 kJ/mol.
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Figure 4.A.2. (a) CO2 swing capacities of 143 MOFs at 243 K as a function of pore volume
(Vp), pore limiting diameter (PLD), and the difference of heats of adsorption at zero loading
for CO2 and N2 (AQaa). (b) Adsorption selectivities for CO2 in 143 MOFs at bulk
adsorption pressure and at 243 K as a function of Ve, PLD, and AQags’. Each box in (a) and
(b) show desirable ranges of Ve, PLD, and of AQads’. Data in red symbols in (a) and (b)
refer to 28 MOFs in cluster | which is defined in Chapter 4.

4.A.4 ldealized PSA Model Details and IAST Implementation

We adapted an idealized PSA process model from the prior work of Ga et al.?® Details

of the performance indicators derived from this model and settings used in the model are
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provided. In addition, the details of ideal adsorbed solution theory (IAST) that we used for

prediction of mixture adsorption equilibrium in a series of process modeling are described.

4.A.4.1 Idealized PSA Model Details

The idealized PSA model calculates two performance indicators: product purity
(Pucoz, written as yEcoz here) and energy efficiency indicator (yvesa). The specific energy
consumption we used in this chapter (Encoz) is the reciprocal of the energy efficiency
indicator. These quantities are derived in the form of explicit formulas as below. Swing
capacities for each species can also be obtained separately which are the components in

calculating product purity (ANi, written as Agi here).

Product purit Aqco,
P YE?03: : ) Adi=al— o =12
AgNz + AQCOg with qi=4; —dq;, =1,z

where 4 =r (P highs 1 3"N:.r'_-1.¥‘coz.l‘s]- ' =f (PEV' r, .“F}:,J‘E-o; ]

E E
.‘rN? + -'\..CO_‘ - I.

Energy efficiency (Y = DYcose

. . vpsa = 1 ot .
|ndlcat0r 1 ( P high ) y 1+ Ycoa.fe 1 ( Pej.out ) Y 1
P fe y EU] 1 vac. PEv

The idealized PSA model considers a two-step cycle process that occurs

YRT

’} compr.

isothermally. In the adsorption step, the model assumes the adsorbent is saturated when
exposed to flue gas of known composition (yi) at a specified high-pressure level and
temperature, thus establishing equilibrium at these operating conditions. In the desorption
step, the model assumes equilibrium at the evacuation conditions, thus the adsorption
loadings under these conditions can be described in terms of the unknown purity of the gas
product. The latter calculation is then combined with a separate mass balance that expresses

the gas product composition in terms of the differences between the adsorption loadings at
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equilibrium. The gas product compositions correspond to the molar amounts of the
components left in the bulk gas phase of the extract product stream. Figure 4.1 in Chapter

4 shows a schematic illustration of the model.

The derivations above yield a non-linear algebraic equation in terms of the
unknown purity of the extract product, yEco2. The adsorption loadings are calculated by
IAST. We solve this task numerically by applying the function fsolve in MATLAB, with
default settings and tolerances. The optimset module was used as an optimization option to
solve the equations. Energy efficiency indicator, #vesa, can be calculated directly once
yEcoz is obtained. The required energies in each of the operating steps are described by the
isentropic work of compression and evacuation. The efficiency of the compressor (#7compr)
and vacuum (7vac) were set for 75% and 30%, respectively. The feed pressure (Psg) and

ejection pressure (Pej) were set at 1.0 bar.

Performance indicators above were calculated for 30 MOFs that were selected on
the basis of adsorbent evaluation metrics (Figure 4.A.3). We apply the idealized PSA
process model, along with examining the physical properties of MOFs, to select a small

number of MOFs as possible to impose the rigorous PSA process optimization.

We first chose non-open-metal site (OMS) MOFs to avoid the limited accuracy in
molecular modeling of OMS MOFs, and possible uncertainty propagation in further
process modeling. These OMS MOFs are discarded regardless of the results of
performance indicators of the idealized model. The final selection of MOFs relied on Pucoz
predicted by the idealized PSA process model. All MOFs of Pucoz > 90% were selected

(MOFs in group | among cluster ). Among eight MOFs that belonged to cluster | but did
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not exceed this standard, three MOFs were randomly chosen (MOFs in group Il among
cluster 1). MOFs from clusters Il and 11l are kept irrelevant to Pucoz predicted by the
idealized model. The entire procedure is described in Table 4.A.1 with lists of MOFs in

each category.

b)
95 - 95 | (b) |
Pucoz
+ benchmark, .
n [ |
[} ) [}
90 |-¥-—- -l 90 |- -
U BB "
[ u I3 )
= Lt .| 1 ) f 4
a\c ‘1.‘ ] B > !
e ST a5
g% i 3%°r i
o] ] gilt ]
Q. e 5 [ F Q.
=I; g=_ =
80 | o F = . 80 | -
[ T Ll
i ™
i"" T=243 K, ¥oop, = 0.14 (0.86) 43 K, Yooppp = 0-14 (0.86)
75 - 75 | -
H (P, P..)=([5.0,15.0],[0.15, 0.35]) bar P . P,.)= (5.0 15.0], [0.15, 0.35]) bar
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300 350 400 450 500 550 600 650 2 4 6 8 10 12 14 16 18 20 22
Engo, (KWhY) AN, (mol/kg)

Figure 4.A.3. Performance indicators derived from the idealized PSA process model for
30 MOFs. The indicators were calculated for a CO2/N2 0.14/0.86 mixture at 243 K at 400
combinations of ad-/desorption pressures. Square, triangle, and downward-pointing
triangle symbols stand for MOFs collected from clusters I, 11, and 11, respectively, from
the pre-selection stage. (a) Encoz-Pucoz shown by Pareto fronts across operating pressures
in each material. (b) ANcoz2-Pucoz shown with data from all combinations of ad-/desorption
pressures.
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Table 4.A.1. Material selection at the idealized PSA process modeling stage. MOFs are
listed with CSD reference codes reported in the CORE MOF database with a number of
MOFs in each category in brackets. 15 MOFs that were selected to conduct rigorous
process modeling are shown in bold.

MOFs from Section 4.3.1.1.

Non-open-metal site MOFs

MOFs from Section 4.3.1.2.

Cluster |

Cluster |

Cluster |

BIBXUH, CUHPUR,
FAKLOU, FEFCUQ,
FEFDAX, FIQCEN,
KEFBEE, LASYOU,
MATVEJ, MOCKEV,
NUTQAV, NUTQEZ,
QUQFIS, RAXCOK,
RIFDUGO1, SENWAL,
SENWIT, SENWOZ,
TERFUT, UBUMAH,
UTEWOG, UTEWUM,

BIBXUH, CUHPUR,
FAKLOU, FEFCUQ,
FEFDAX, MATVEJ,
QUQFIS, RAXCOK,
SENWAL, SENWIT,
SENWOZ, TERFUT,
UBUMAH, UTEWOG,
UTEWUM, XINFUW,
XUGSEY, ZESFUY

Group | (Pucoz > 90%)

CUHPUR, FAKLOU,
FEFDAX, RAXCOK,
SENWAL, SENWIT,
SENWOZ, UTEWOG,
UTEWUM, ZESFUY

(# = 10)

Group 11 (Pucoz < 90%)

BIBXUH, MATVE],

XAMDUMO7, XINFUW, (#=18) TERFUT
XUGSEY, YUGLES, #=3)
ZESFUY, ZIKJIO
(#=28)

Cluster Il Cluster 11 Cluster 11
SERKEG SERKEG SERKEG

#=1) #=1) #=1)
Cluster 111 Cluster 111 Cluster 111
OJICUG OJICUG OJICUG

#=1) #=1) #=1)

* Note OJICUG resulted in Pucoz < 90% from prediction of the idealized PSA process

model.
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4.A.4.21AST Implementation

In our idealized and rigorous process models IAST was used to define mixture

adsorption equilibrium.?=2 The constitutive equations? for IAST are listed below.

Descriptions Equations

Raoult’s law ¢ =coyi = (T 0)x

Equilibrium condition I1=11, .2 Iy

Spreading pressure I, = f(cV) = (co) = f q—’ ds
N N

Closure ; L
2% Z 7

i — = 1
X; _ L i
9\ ] [Z, g 1

1 1 ]
N

i=1 i

-1

Mz

Total adsorbed phase concentration Grot = [

1

i=

Adsorbed phase concentration for componenti g =g X, i=1,...

Accurate characterization of single component adsorption isotherms, i.e. fitting the
single component adsorption data to an analytical adsorption model that can best describe
the adsorption behavior, is necessary for reliable mixture adsorption prediction via IAST.2
32 Using the chosen isotherm equation and corresponding parameters enables an analytical

formulation of the spreading pressure which is a key component for IAST calculations.?*=°

Single component adsorption isotherms for CO2 and Nz were estimated by
molecular simulations (see Section 4.A.1). The process models require temperature-
dependent adsorption equilibrium. Therefore we estimated adsorption equilibrium of both
CO2 and N2 at temperatures of 213, 228, 243, 258, and 273 K. We provide the analytical
adsorption models used in this chapter and a summary of isotherm equations applied for
15 chosen MOFs below. Note that fitting for CO2 adsorption is much more complicated

than that for N2 adsorption at low temperatures. This is highly related with the accuracy
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and robustness in rigorous process modeling. Due to this reason, we revisit the parameter
estimation for CO2 isotherms in chosen MOFs we proceed with the rigorous process

modeling (see Section 4.A.4.2.1).

Analytical Models Model Equations and Parameters
0 sat b” ('.:‘} sat b’.l('.:']
H H qi :qi.l 0 +£},33 0 i=1 “ee N.
Dual-site Langmuir I + by I+ bpc!
dsL B; B,
( ) byt = biyy EXPI TI | bin = bpy exp| T s
SH f},'] ('f-.]:’f ! . b,‘z ('ﬁ-lﬂ” . b,'_q f.'f-lﬂ” .

; 9 = qi o =y o0z 5 oo 1T L....N.
dual-site 1+ by ¢} 1+ by 1+ b}
Langmuir-Freundlich by = by exp| 22|, b = by exp| Ba

] i ,1. ] i2 id T ]
(dsLF) o o,
W = Oy exp T I U2 = Opp exp T |’
w bad™ kel bpd™
. g = gy —— gy g ——— i=1,....N.

triple-site 1+ by 1+ bpc™ 1+ b

e - B,‘ B,'"J B,‘_
Langmuir Freundlich biy = by exp _] | bip = by exp| = |- ba=bing CXP| =1,
(tSLF) 1 T 7

o, O O;
Py = g exp [ TI . U =0ng BXP[Tf ] B3 = b EXPIT‘% } ,

07 — 0 )
sat (’i"[b” +2b"2(”f] sat b'3(’i

C[? =4y

i=1,...,N.

quadratic plus Langmuir 1+ biyc? + bpc?” P+ b

(quadL)

B!‘ Bj'-‘ Bi.
by = by exp| Tl I bip = by exp| f . b = by CXP| 71 ,

Summary of Isotherm Equations

MOFs CO;, N, CO,(*) | MOFs CO;, N,  CO:(%

SENWAL dsLF dsL tsLF | ZESFUY dsLF  dsL quadL
SENWOZ dsLF dsL tsLF | CUHPUR dsLF  dsL quadL
SENWIT tsLF dsL tsLF | TERFUT dsLF  dsL tsLF
UTEWUM tsLF dsL tsLF BIBXUH tsLF dsL tsLF
RAXCOK dsLF dsL quadL | MATVEJ] dsLF  dsL quadL
UTEWOG dsLF dsL tsLF | SERKEG dsLF  dsL quadL
FEFDAX dsLF dsL quadL | OJICUG dsLF  dsL dsL
FAKLOU dsLF dsL quadL

* Analytical models applied to CO: isotherms after re-parameterization (Section
4.A4.21).
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Figure 4.A.4 shows the fitting results for CO2 and N2 adsorption isotherms at 243
K via non-linear parameter estimation®*2 for 15 MOFs. All cases show good agreements
between the fits and isotherm data. The choice of isotherm models is material and
component dependent on giving the best fits on isotherms. Models parameters for each

MOF are summarized in Table 4.A.2.

= SENWAL 18 = SENWAL ]
0T . senwoz (@)1 L = seEnwoz (b) ]
[ = SENWIT 1 18- & SENWIT b
—.25F = UTEWUM . —~1al UTEWUM
jo)] o B T
2 1 RAXCOK 21 RAXCOK
Sl = UTEWOG | S 12 = UTEWOG 1
£ FEFDAX £t FEFDAX
@ [ = FAKLOU o O = FakLou ]
® 5 = ZESFUY . ® gl = ZEsFuy ]
st CUHPUR = CUHPUR
10l " TERFUT ] o 6 = TERFUT .
@ BIBXUH T r BIBXUH
© MATVEJ i O 4T & MATVES ]
5[+ SsERKEG CO, isotherm fit ] 2| + SERKEG N, isotherm fit
. oJicuG_* T=043K : OJICUG _ , el T=o043K
0 P ......l PP BT EEPET or PPN BRI T | NPT N
1E-3 0.01 0.1 1 10 100 0.01 0.1 1 10 100 1000
log(P) (bar) log(P) (bar)

Figure 4.A.4. Analytical model fits (solid curves) for (a) CO2 and (b) N2 single component
isotherms predicted by GCMC simulations (symbols) at 243 K for 15 MOFs. More
information about the analytical model fits is given in Tables 4.A.2 and 4.A.2.1.
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Table 4.A.2. Analytical adsorption model parameters for 15 MOFs: COz2 isotherms.

Model Parameters for CO, (component i = 2 in model equations)

sat

sat

sat

421 785} 93 byy  bypg by B> B>, B>; AT O g O 0, 023
SENWAL 7.9 17.9 - 2.4e-6 3.3e-6 - 2.2e3  17e-3 - 9.0e-1 1.0e-1 - 45.4 8.4e2 -
SENWOZ 19.9 114 - 1.3e-4 14e-6 - 1.7 2.4e3 - l.1e-1 509e-1 - 8.0e2 1.6e-5 -
SENWIT 13.8 4.6 9.8 4.3e-6 6.2e-6 6.8e-8 0.7e-3 1.9e3 3.0e3 9.9e-2 54e-1 T7.4e-l 8.9e2 2.7¢2 6.5e-9
UTEWUM 8.4 8.8 7.1 49e-9 3.1e-8 4.6e-8 3.2¢3 15e3 3.7e3  4.9e-1 27e-1 93e-1 23e2 6.0e2 428
RAXCOK 6.8 15.0 - 5.2e-6 3.0e-8 - 2.4e3  3.3e3 - 5.0e-1 7.0e-1 - 24.6 1.8e2 -
UTEWOG 50 94 - 3.5e-3 20e-6 - 3.8e2 2.0e2 - 9.9e-3 3b5el - 1.1e3 5562 -
FEFDAX 6.2 114 - 1.1e-6 2.9e-8 - 2.7e3  3.0e3 - 52e-1 4.3e1 - 82.4 3.4e2 -
FAKLOU 9.9 7.2 - 2.2e-7 53e-7 - 2.6e3  2.9e3 - 21le-1 6.9e-1 - 5.5e2 2.5e-7 -
ZESFUY 8.5 8.7 - 1.9e-8 4.1e-7 - 29e3 29e3 - 2.0e-1  7.3e1 - 6.4e2 9.8 -
CUHPUR 8.7 9.8 - 6.5e-7 4.1e-8 - 2.8e3  3.0e3 - 6.7e-1 7.1e-1 - 3.6e-6 2.2e2 -
TERFUT 10.5 7.0 - 2.3e-7 3286 - 2.2e3  2.4e3 - 3.8e-1 55el - 4,02  9.5e-7 -
BIBXUH 1.5 135 7.0 42e-2 1.3e-5 3.9e-8 222 83e2 3363 5.2e1 25e-1 7.1e1 202 5562  20.8
MATVE] 12.3 4.5 - 2.8e-8 2.4e-6 - 2.7e3  25e3 - 3.3e-1 891 - 41e2 258 -
SERKEG 29 6.0 - 7.3e-4 6.5e-8 - 50.0 3.2e3 - 13e-2 8.lel - 12e3 12e2 -
OJICUG 26.8 6.6 - 19e-7 19e5 - 2.6e3  2.0e3 - 1.2 6.2e-2 - 14.2 4.6e2 -

* Parameter units: gi° [=] mol/kg, ¢i® [=] mol/m3, T [=] K, R = 8.314 x 10"° m®-bar/mol-K and/or = 8.314 J/mol-K
gii*® [=] mol/kg, bijo [=] m3mol, Bij [=] I/mol, o [=] -, ®@ij [=] I/mol (where j refers to adsorption sites)
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Table 4.A.2. Continued: N2 isotherms.

Model Parameters for N> (component i = 1 in model equations)

sat

sat

911 a3 b1 bixg By B,
SENWAL 22.9 2.4e-2 9.9e-6 6.8e-3 8.9e2 1.4e-2
SENWOZ 1.7 20.1 2.5e-8 1.3e-5 2.1e3 8.6e2
SENWIT 2.0 17.8 3.5e-8 1.3e-5 2.0e3 9.1e2
UTEWUM 16.1 4.3 3.4e-6 3.3e-5 1.1e3 1.1e3
RAXCOK 3.5 13.6 4.3e-8 1.1e-5 1.9e3 1.1e3
UTEWOG 4.1 14.7 3.6e-5 3.5e-6 1.1e3 1.2e3
FEFDAX 12.3 2.8 1.0e-5 2.5e-8 1.1e3 2.1e3
FAKLOU 11.3 1.3 9.7e-6 6.6e-9 1.2e3 2.3e3
ZESFUY 2.0 11.2 1.2e-8 1.1e-5 2.4e3 1.2e3
CUHPUR 11.6 3.6 1.2e-5 2.0e-8 1.1e3 2.0e3
TERFUT 3.7 9.9 1.3e-7 1.1e-5 1.7e3 1.1e3
BIBXUH 3.4 14.6 2.3e-8 1.4e-5 2.0e3 1.0e3
MATVE] 2.9 16.7 3.1e-8 1.4e-5 2.0e3 9.5e2
SERKEG 54 2.3e-14 6.9e-6 1.8e-3 1.2e3 2.2e-5
OJICUG 4.4 215 1.5e-7 1.5e-5 1.7e3 8.3e2

* Parameter units: gi° [=] mol/kg, ¢i® [=] mol/m3, T [=] K, R = 8.314 x 10"° m®-bar/mol-K and/or = 8.314 J/mol-K
i [=] mol/kg, bijo [=] m3/mol, Bij [=] J/mol (where j refers to adsorption sites)
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4.A.4.2.1 Re-parameterization of CO2 Isotherms for Rigorous Modeling

The characterization of single component adsorption data requires more cautious
efforts in process optimization where IAST is highly coupled with other complex iterative
calculations.®® Potential numerical challenges in IAST can affect the accuracy and
robustness in rigorous process modeling. The origin of numerical difficulties arises from
the fact that dual-site Langmuir-Freundlich models do not have finite Henry coefficients at
infinite dilution. This limit is, however, an important quantity to accurately predict mixture
equilibrium via IAST at dilute concentrations. Corrections to this deficiency have been

presented in the literature.*

In order to avoid potential numerical difficulties with IAST in the dynamic
simulation and multi-objective optimization, we conducted re-parameterization of CO2
single component adsorption isotherms of chosen MOFs. We employed a Type IV
equilibrium equation, i.e. quadratic plus Langmuir equation, which is able to precisely
describe inflection points along isotherm courses. The structure codes of MOFs for which
CO2 isotherms were re-parameterized to the quadratic plus Langmuir equation are
RAXCOK, FEFDAX, FAKLOU, ZESFUY, CUHPUR, MATVEJ, and SERKEG. Triple-
site Langmuir-Freundlich model also helps to avoid numerical difficulties discussed above
by introducing an additional adsorption site.>* MOFs for which re-parameterization was
achieved by triple-site Langmuir-Freundlich model were SENWAL, SENWOZ, SENWIT,
UTEWUM, UTEWOG, TERFUT, and BIBXUH. For OJICUG, the dual-site Langmuir

equation was used that allows simple calculation of Henry coefficient.
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We found this re-parameterization step significantly reduced the computational
cost and improved robustness of our simulations, without affecting the results of IAST
(data not shown). Table 4.A.2.1 lists the model parameters obtained after the re-
parameterization. Comparison of GCMC simulated adsorption data and model fits using
re-parameterized parameters for CO2 in Table 4.A.2.1 and using parameters in Table 4.A.2
for N2 at five temperatures (213, 228, 243, 258, and 273 K) in 15 MOFs are provided

below.
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Table 4.A.2.1. Analytical adsorption model parameters for 15 MOFs after re-parameterization of CO2 isotherms.

Model Parameters for CO, (component i = 2 in model equations)

sat

sat

sat

421 785} 93 byy  bypg by B> B>, B>; AT O g O 0, 023
SENWAL 16.8 3.8 13.0 48e-7 88e-6 25e-8 19e5 183 3.0e3 1.7e-1 65e-1 721 792 21le2 265
SENWOZ 15.1 35 11.7 3.7e-6 6.0e-6 4.9e-8 6.4e-4 1.9e3 3.0e3 9.5e-2 53e-1 7.4e-1 9.0e2 2.7e2 7.4
SENWIT 13.8 4.6 9.8 4.3e-6 6.2e-6 6.8e-8 0.7e-3 1.9e3 3.0e3 9.9e-2 54e-1 T7.4e-l 8.9e2 2.7¢2 6.5e-9
UTEWUM 84 8.8 7.1 49e-9 3.1e-8 4.6e-8 3.2e3 1.5e3 3.7e3 49e-1 27e-1 93e1 23e2 6.0e2 42.8
RAXCOK 3.4 134 - 43e-2 80e-10 2.3e-8 1.2e-2 4.0e3 3.6e3 - - - - - -
UTEWOG 14.3 9.4 2.4 8.5e-6 3.2e-8 1.8e-8 2.1e3 1.7e3 4.0e3 6.1e-1 4.0e-1 53e-l1 7.2e-8 4.8e2 2.9e2
FEFDAX 3.7 9.7 - 7.7e-3 1.0e-8 2.5e-8 2.7e2 3.1e3 3.5e3 - - - - - -
FAKLOU 2.7 10.9 - 2.3e-2 6.2e-9 25e-8 231 3.5e3 35e3 - - - - - -
ZESFUY 3.0 10.8 - 2.9e-5 7.5e-9 24e-8 8.0e-7 3.5e3 3.4e3 - - - - - -
CUHPUR 3.3 10.8 - 2.5e-2 4.2e-9 8.1e9 4.7e-2 3.5e3 3.7e3 - - - - - -
TERFUT 4.9 9.9 19 45e-8 1.0e-7 7.1e-3 1.1e3 3.0e3 3.1e2 24e-1 6261 17e-1 6.8e2 955 5.5e2
BIBXUH 7.6 15 12.2 14e-8 27e-2 3.8e-8 3.4e3 2.2e3 2.1e3 6.4e-1 2.6e-1 5.1le-1 93.0 3.8e2 3.9e2
MATVEJ] 2.8 14.7 - 2.9e-2 13e-8 6.4e-8 257 2.9e3  3.0e3 - - - - - -
SERKEG 1.0 7.9 - 6.6e-4 29e-8 15e-8 326 3.0e3 35e3 - - - - - -
OJICUG 15.9 16.3 - 43e-6 1.le-7 - 2.1e3 2.9e3 - - - - - - -

* Parameter units: gi° [=] mol/kg, ¢i® [=] mol/m3, T [=] K, R = 8.314 x 10"° m®-bar/mol-K and/or = 8.314 J/mol-K
gii*® [=] mol/kg, bijo [=] m®mol, Bij [=] I/mol, o [=] -, ®@ij [=] I/mol (where j refers to adsorption sites)
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Isosteric heats of adsorption (AHadsi) for each gas species is needed for
temperature-dependent adsorption isotherm fitting. Below summarizes AHadsco2 and

AHagsn2 in 15 MOFs that were calculated using Clausius-Clapeyron equation.

MOFs AHads,co2 (kJ/mol)  AHadsn2 (KJ/mol)

SENWAL -24.9 -9.4
SENWOZ -30.0 -9.5
SENWIT -30.3 -9.9
UTEWUM -28.8 -11.3
RAXCOK -24.8 -11.6
UTEWOG -30.9 -11.5
FEFDAX -25.5 -11.5
FAKLOU -25.6 -11.9
ZESFUY -29.4 -12.3
CUHPUR -23.2 -11.2
TERFUT -37.9 -11.6
BIBXUH -30.8 -10.7
MATVE] -18.4 -10.3
SERKEG -27.1 -12.2
OJICUG -22.3 -9.6
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4.A.5 Rigorous Process Modeling Details

4.A.5.1 PSA Modeling and Thermally Modulated Fiber Adsorbent Modeling Details

A PSA process model that incorporates thermally modulated fiber adsorbents was
developed in a recent study by Rubiera Landa et al.*® The following assumptions were
made in developing the transient balance equations that describe the cyclic adsorption
process using thermally modulated fiber adsorbents. We also refer interested readers to the

original source of Rubiera Landa et al.>® for more details.

e The process is modeled in one spatial dimension (1D) in the direction of fluid flow.

e The ideal-gas law holds.

e The process operates adiabatically.

e A linear driving-force (LDF) approximation®®®" is used to describe mass transfer
between gas phase and fiber composite.

e Fibers are distributed evenly within the module, allowing a uniform gas flow.

¢ Radial distributions within a fiber and a module, including dispersion and heat
conduction, are negligible.

e Mass transfer resistance occurs at the macropores of the fiber adsorbent with negligible
micropore resistance in the MOF crystals and negligible gas-film resistance
surrounding the fibers.

e Pressure drop along the direction of fluid flow is represented by the Happel equation®®
along solid cylinders arranged in parallel.

e Gas viscosity is constant within the temperature range considered.

¢ Heat transfer between fiber composite and gas phase occurs instantaneously.

o Heat transfer between all solid elements of the fiber composite (i.e. polymeric matrix,
MOF crystals, and PCM) occurs instantaneously. This assumption simplifies the
energy balance, which accommodates a simplified melting/solidification of PCM, i.e.
a smooth-interface model.

e Changes in the PCM density are included in the model equations. However, volumetric
expansion and contraction within the microencapsulated PCMs are neglected.

e Temperature dependency of the PCM is taken account.

¢ Melting and solidification kinetics of the PCM are neglected.

e Heat capacities and densities for the solid materials that constitute the fiber composite,
i.e. polymeric matrix and MOF, are constant.
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Below are the transient balances equations with corresponding boundary
conditions, valve behavior expressions for the pressurization boundary condition, and

initial conditions used in our rigorous PSA modeling applying fiber composite adsorbents.

Transient Balance Equations

Total mass balance

o(p\__9 L)_ﬁ _ _ o4;
61(9?.T)_ Bz(u*J?T vfs(] € (] w)(ppMOFZl or’

Mass balance for component i

6C? aq; _ 6 6 aCi .

E - (1 €r) (1 lﬁ)‘PPMOFat aZ(HCz)+aZ(Dax_,zaZ), i=1,...,N
_ i

‘= Ryt

6‘11‘ ldf

Energy balance

0T AT dp_ @, o\ @[ oT
—= C, — ,C — | k,—
o2y * PG~ 5 = g (Ce) + g ke

og
- —(1 ~ €)1 = 1) ¢ pvior Cass. TZ o

or
+ —(1 - Ef)a_z (kcﬁ..f'a_z)

Vis

F 1 el — e N
+ Vfg(l €)1 — ) ¢ pmor f (—AHyq ;) £y
where,

_ d
Er=(l—-ey [PPCMCPCM +pPCMd_T/lPCM]

+ (1 = €)1 = )1 = 9) Ppoty. Cpoty. + (1 = €)1 = ¥) ¢ pmor Cumior
+ (1 = €,)(1 = ¥) ¢ pmor Caas. Z qi

Momentum balance

dp
u=—
ﬁbed 612 i
_ 1 rf - 3rr:s 1 I"?S I'is
Bred = — 3 + 32 _ 2 In| —
Mg T =Ty ry
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atz=0

Boundary Conditions

atz=1L

Counter-current pressurization
0

—y(t,z=0)=0,i=1,...,N;
oz

u(t,z=0)=0;
0
—p(t,z=0)=0;
azp(z )

yilt,z=L)=yip, i=1,..., N;

M(I,Z: L) = fvalve(Apa Ta“ ‘) 3

0 1
—pt,z=L) =—-——ult,z=1);
) 0z Bhred
—T(t,z=0)=0.
gl H2=0 T(t,z=L)=Tp.
Adsorption

yi(laz = 0) = Vi, feed> i = 11 reey N s

u(t,z = 0) = Ufeed »

0 1
B_ZP(I’Z =0) = _,8 u(t,z=0);

bed

T(I': = O) = Tfeed-

0
—yit,z=L)=0,i=1,...,N;
0z

0

u(t,z=1~L) = —ﬁbeda—P(f,Z =L);
Z

p(t,z=L) = pad = Phigh

0
—T(t,z=L) =0.
0z #.z )

Co-current blowdown

5} .
—yilt,z=0=0,i=1,...,N;
0z

u(t,z=0=0;
i)
—p(t,z=0)=0;
aZp( z=0)

0
—T(t,z=0)=0.
0z (*2 )

0
—v(t,z=L)=0,i=1,...,N;
0z

u(t,z=L) = upq :

a 1
— = L = - = L :
aZP(I,Z ) 7 u(t,z=1L);

bed

0
—T(t,z=L)=0.
0z (62 :

Counter-current evacuation

5}
_yi(t’zzO):O, l:l,,N,
0z

u(t,z=0)=ugy;

0 1
—p(t,z=0)= - u(t,z=10);
0z bed

0

—T(t,z=0)=0.

0z t.2 )

iy;(t,z:L)=0,i:1,...,N;
dz

u(t,z=L)=0;

i)

—pt,z=L)=0;

azp(z )

d
—T(t,z=L)=0.
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Valve Behavior Expressions for the Pressurization Boundary Condition
U= min[“ls“Q] = fvalve(Apv T,-- )

1 P\ ! Ly
u1 = kv Prigh abS[M_g[l_(phigh)]] Uz = kv Phigh abs[?g[l_(pcm.)H
Y

2

I1+y

1 _
Perit. = Y

M{,’ = .)‘NZMNz + yCOQMCOz

Initial Conditions

it =0,2) =y, i=1,...,N

qi(t = 0,2) = iy = qi

p(t=0,2) = py

T(t=0,2)=Ty

x(r=0,2) = xp

X0 = [Y1gs -0 YNQ» G10s - -+ QNU,PU,TU]T

Cyclic operation was implemented by initializing the time integration for each step

of cycle configuration in k™ cycle as follows.

Cycle Configuration Time Integration in k" cycle

Counter-current xg for k=1,

.. X (I prstart 7) =
pressurization ’

X1 (2 Ev.ends 2) otherwise.

AdSOI’ption xk(rAd.starLs Z) = xk(t Pr.end» Z)-

Co-current blowdown X(% B start> 7) = Xk (F Ad,end> 2)-

Counter-current evacuation Xk (T Evstart> 2) = Xi(fBd,ends 2)-
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The linear driving-force approximation®®3” for mass transfer calculation is carried

out with the following mathematical descriptions.

Mass transfer
k:k,.mm;—_‘*, g =fe, Ty, i=1,...,N.

4

]
) 8 € 1
kimacm == Dj’p,i[ ] _f ] —
e € | (1 —¢) ¢ pmor
D..:D.E_f i=1 N, D,;=0.0018583 T-"l ! + : ] lq
i = Dai 2z veeen N - My, " Mco. ]| o] oo

Estimation of fiber tortuosity
T = I.O_IH[Ef].

The following auxiliary expressions and parameters necessary to describe the fiber
composites complete the mathematical description of the rigorous process model. The

following smooth-interface model®® approximates the PCM melting/freezing processes.

Auxiliary Expressions and Parameters

Volumetric ratio of PCM to solids in fiber composite

L Vrem _ WpcM/PPCM 5

" Veem + Vmor + Violy,  @pem/Prems + ©MOE/P MOF + @ paly. /0 poly.
Volumetric ratio of MOF to combined volume of polymer and MOF

. Vvor WMOF/ P MOF

" Vyor + Vply.  wwor/PyorF + W poly. /O poly.
Weight fractions of fiber components
wpem = f(wwmor) = 1.0 — wwvor — W oy,

Smooth-Interface Model®® for Phase-Transitions of PCM

AH Tfus. -T
AH g, d fus. GXP) =

—Apem =
T — T ] dr” " { T =T H
- Su |l +exp| ———
S Srr.

Cremi — Cromss

T-T
l+exp[— o ph’]
ph.

Apcm = f(T) =

1+exp[—

PPCM,s — PPCM,{
T T ] Cpem = f(T) = Cpemys —

PPCM,s —

l+exp[— -
ph.
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Process-level objectives (Table 4.2 of Chapter 4) evaluated at cyclic steady state

are derived as the following equations.

Objectives Objective Formula
nE nE
. Purf = 4 = —
Purity Mo nE
i=1
nF
Recovery Recf= —
i pr + Ry feed
nF

Productivity Prod; = ———.
mmor rcycle

_ Wer+ Wag + Wgg + W,

Specific energy consumption En; 5
n; tcycle
where,
TEv,end I Ad,end ( ()) I Ad, end
E p(t,0) f P, f P feed
i = ) il . i,feed = E] S Vil = eed o Vi fee dT.
n; f Or(1,0) RTC0) (1,0) dr Mi.feed Qaa(1,0) RT1.0) (t,0)dr Q feea RT oy et
TEv, start 1 Ad, start 1 Ad, start
IPr.end TPrend 1Ad, end 18d, end TEv,end
- [ pLAGLS = = d d
Nipr = Op(t, )‘.RT(t, L)y,-(r, Ydf.  feyele = Ipr+Iad+ed + gy = tdr+ tdr+ tdr+ tdr.
IPr, start 1Pr, start I Ad, start Bd, start 1 Ev, start

Work terms (W) required for each step of the cycles in calculating the specific

energy consumption are given as the following equations.

Cycle

. . Work Calculation
Configuration
Counte_r-cu_rrent Wo. = 0.
pressurization
PAd.:nd 1 L u
. 1,z =
Adsorption Wi = f 2 phz=1)Quz=1) (M) LA Y
7 compr. ¥ — 1 Pig
1 Ad, start
Co-current _
blowdown W = 0.
[hv.end u
_ 1 t,z=0
Counter-current ,, ~_ Y otz =0) 0tz = 0) P2=0) )y |
evacuation Myac, ¥ — 1 PEv
tF.\-“\lurl
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We proceed with a numerical approximation to obtain solutions of the rigorous
process model described above. We applied the finite volume method (FVM) in order to
discretize the partial differential equation (PDE) system in space and obtain an ordinary
differential equation (ODE) system, which can then be integrated in time. This
discretization is commonly referred to as “method of lines” approach.*’ The required flux
function approximations applied in the FVM are obtained with the third order upwind-
biased scheme, applying the flux monitor function given by Koren et al.** Finally, the ODE
system is integrated in time with the backward differentiation formulas.*? We implemented

these numerical schemes in MATLAB.*

Below we provide a collection of material properties describing the thermally

modulated fiber adsorbents and a set of parameters applied in our PSA process modeling.

Solid and Liquid Properties in Smooth-Interface Model

Properties Symbols Values Units
PCM heat capacity (liquid) Cremy 2140 J/kg-K
PCM heat capacity (solid) Crom.s 2900 JIkg-K
PCM heat of transition AH . 150.0e3 J/kg
PCM heat conductivity (liquid) kpcm 0.15 W/m-K
PCM heat conductivity (solid) kpcm,s 0.17 W/m-K
PCM density (liquid) Premy 760 kg/m?®
PCM density (solid) P PCM.Ls 880 kg/m?3
Smoothing parameter Sir. 1.5 -
Temperature of transition T pus. 243.15 K
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Set of Parameters in Rigorous Process Model

Parameters Symbols Values Units
Molar heat capacity (gas phase) ¢, 30.5 J/mol-K
Molar heat capacity (adsorbed phase) C s, 30.5 J/mol-K
Heat capacity (MOF) C MoF 750 J/kg-K
Heat capacity (polymer) Cpoly. 1465 J/kg-K
Axial dispersion coefficient D s 0.5e-3 m?/s
Compression efficiency 17 compr. 0.7 -
Evacuation efficiency N evac., 0.3 -

Fiber porosity €f 0.6 -
Packing fraction of fiber bed &y 0.7 -

Ratio of gas heat capacities Y 14 -

Gas heat conductivity ke 2.5e-2 W/m-K
Polymer heat conductivity K poty. 1.9e-1 W/m-K
Valve coefficient ky 0.1e-3 m-g*?/s-Pa-mol*/?
Bed length L 1.0 m
Molecular weight (N2) My, 28.0 g/mol
Molecular weight (CO2) M o, 44.0 g/mol
Gas viscosity g 1.5e-5 Pa-s
Ideal gas constant R 8.314 J/mol-K
Single fiber radius r¢ 25.0e-5 m
Free-surface radius T 30.0e-5 m
Density (MOF) PMOF 1.1e3 kg/m?®
Density (polymer) £ poly. 1.2e3 kg/m?®
Lennard-Jones collision diameter (N>) o 3.7 A
Lennard-Jones collision diameter (CO,) T, 3.8 A
Lennard-Jones collision diameter (CO2/N; pair) o 1.5 A
Temperature of operation Top. 243.15 K
Blow-down gas velocity Upgg 0.2 m/s
Evacuation gas velocity IEy 3.2 m/s
Single fiber volume vy 2.0e-7 m3
Free-surface volume Vi 8.6e-8 m?3
Collision integral value, Lennard-Jones (LJ) U 1.3 -
Weight fraction of polymer in fiber composite @ poyy. 0.3 -
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4.A.5.2 Process Optimization Details

We treat the rigorous process modeling as a black-box function with a set of
available decision variables for the PSA cycle as inputs. Five decision variables were
considered: adsorption pressure, velocity of the feed gas, adsorption step time, evacuation
pressure, and weight fraction of MOF in the fiber composite. The outputs are given by the
process-level objectives at cyclic steady state described in detail above. The table below

lists the decision variables considered with their lower and upper bounds.

Set of Decision Variables and Bounds

Decision Variables Symbols  Lower Bounds Upper Bounds Units
Adsorption pressure P nigh 3.0 7.5 atm
Gas velocity of feed U feed 0.15 1.0 m/s
Adsorption step time Iad 15.0 120.0 S
Evacuation pressure PEv 0.15 0.35 atm
MOF weight fraction in fiber  wwyor 0.15 0.40 -

Three bi-objective optimization tasks were conducted by formulating pairs of
process-level objectives. Pareto fronts of below pairs of process objectives were obtained.

e Specific energy consumption and product purity.
¢ Product purity and product recovery.
e Productivity and specific energy consumption.

We applied the multi-objective optimization function gamultiobj included in the
Global Optimization Toolbox available in MATLAB.* The algorithm of this function is a
variant of the NSGA-II genetic algorithm.** Optimization variables and additional

information used in our process optimization is summarized below.

Settings in NSGA-11 Optimizer to Compute Pareto fronts

Optimizer Parameters Values
Number of decision variables 5
Population size 80
Cross-over fraction 0.95
Maximum number generations 30
Function tolerance 7.5e-3
Number of workers (parallelization option) 4
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4.A.6 Comparing Approximate and Detailed Models of Adsorption-based Carbon

Capture Process
4.A.6.1 Spearman’s Rank-Order Correlation

Spearman’s rank-order correlation (p) is defined as below where di and n refer to
the difference between two paired ranks and the number of observations, respectively. Note
all n ranks should be distinct integers without data having tied ranks within each data set.
A general guideline for interpreting Spearman’s rank-order correlation is provided in Table
4.A.3. The sign of the rank order correlation indicates the direction of association between

two variables. Interpretation on the strength of the rank order correlation is adopted from

previous discussions.*>46

6y d?

1=
p nn? —1)

Table 4.A.3. Spearman’s rank-order correlation (p) for a quantitative comparison between

rankings provided by different variables. A general guideline to assess the measure of

ranking dis-/similarity associated with the color coding is adopted from the literature.*>

Direction Range Strength Interpretation
0.80-1.00 very strong
0.60-0.79 strong
Ipl 0.40-0.59 moderate

0.20-0.39 weak observations have dissimilar ranks between
0.00-0.19 veryweak  two variables

observations have similar ranks between two
variables

Spearman’s rank-order correlation reaches to values of 1 and/or -1 when two
rankings are monotonically related. Note that ranks are defined as relative position label of
the observations within the variables so the rank order correlation does not capture

differences in magnitudes of the variables of interest.>4°
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4.A.6.2Rigorous Process Model and Adsorbent Evaluation Metrics
A quantitative comparison of MOF rankings between rigorous process model and adsorbent evaluation metrics were measured
via Spearman’s rank-order correlation in Figure 4.7. Table 4.A.4 lists 15 MOFs and their detailed performance rankings given by each

descriptor.

Table 4.A.4. Spearman’s rank-order correlation (p) between rankings of 15 MOFs from rigorous process modeling and adsorbent
evaluation metrics. Standard deviation (SD) is calculated for normalized performance descriptors derived from each level of modeling
to reflect the dispersion of each descriptor. Detailed MOF rankings (1-15) are given for each performance descriptor.

Rigorous Process Model Adsorbent Evaluation Metrics

Encoz-Puco2  Puco2-Reco2  Prcoz2-Enco2  ANco2 Sads,co2/N2°%  Ssp.cozinz APScoz/n2 R

Ref/0.29 - - 0.50/0.29 0.31/0.24 0.34/0.22 0.54/0.32 0.37/0.34
pISD - Ref/0.28 - 0.46/0.29 -0.16/0.24 0.14/0.22 0.05/0.32 0.79/0.34

- - Ref/0.29 0.54/0.29 -0.19/0.24 0.03/0.22 0.11/0.32 0.69/0.34
SENWOZ 1 1 1 2 5 6 3 2
SENWIT 2 2 2 3 4 4 1 3
OJICUG 3 4 8 4 15 15 15 7
SENWAL 4 3 3 1 11 7 6 1
SERKEG 5 11 15 15 1 1 4 9
FAKLOU 6 12 11 11 3 2 5 11
FEFDAX 7 7 6 10 10 8 10 8
RAXCOK 8 9 7 8 2 3 2 13
CUHPUR 9 8 9 13 8 9 11 12
UTEWUM 10 15 14 6 7 13 7 14
UTEWOG 11 14 10 9 9 14 8 15
BIBXUH 12 5 4 7 13 10 13 4
MATVEJ 13 13 12 5 14 12 12 5
TERFUT 14 6 5 14 12 11 14 6
ZESFUY 15 10 13 12 6 5 9 10
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We formulated a Combined Adsorbent Evaluation Metric (CAEM) defined as the
following equation. CAEM considers all five adsorbent evaluation metrics to balance the
contribution of each metric. Here Di refers to adsorbent evaluation metric and fi is a power

for each metric Di.

CAEM = Z D,
i

CAEM is formed for each pair of process objectives that we examined. This is
possible by tuning fi where 0 < fi < 1. fi are empirical parameters that are meant to best
improve the rank order correlation between process-level rankings (Table 4.A.4) and
CAEM rankings (rankings not tabulated). Case dependent parameters of fi that were found

to work best are summarized in Table 4.A.5.

Table 4.A.5. Summary of the fi parameters in CAEM for each pair of process-level
objectives from rigorous process model. Di refers to adsorbent evaluation metrics of ANcoz,
Sads,coamn2™®, Ssp.cozinz, APScoznz, and R from i = 1 to i = 5. fi stands for a power on
corresponding metrics of i.

Rigorous Adsorbent Evaluation Metrics
Process Model | p, D, Ds D Ds
Encoz-Pucoz fi |0.78 0.20 0.11 0.40 0.17
Pucoz-Reco2 fi | 0.30 0.07 0.05 0.01 0.98
Prcoz2-Encoz fi | 0.30 0.07 0.01 0.05 0.98
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Table 4.A.6 summarizes the same analysis of ranking comparison between rigorous
process modeling and CAEM as in Figure 4.7. Spearman’s rank-order correlation for single
adsorbent evaluation metrics is reproduced from Figure 4.7 to allow clear comparison with

the correlation for CAEM.

For Encoz-Puco2, CAEM improved the rank correlation relative to using single
metrics. All single metrics had p < 0.60 in predicting the materials ranking. This indicates
a fine tuning of fi in CAEM helps to provide better similarity to process-level ranking of
materials when there was no winning single metric. Nevertheless, CAEM did not have
positive impact on rank correlation for Puco2-Reco2 and Prcoz-Encoz. These pairs of
process objectives already had a successful metric in predicting the materials ranking, i.e.
R with p > 0.60. In such cases, adjusting fi is biased to the winning metric, i.e. fs (a power
on R) approaches to 1 as shown in Table 4.A.5. It showed having a balance between single

metrics can be destructive relative to relying on single metrics in these cases.

Table 4.A.6. Spearman’s rank-order correlation (p) between rankings of 15 MOFs from
rigorous process modeling and adsorbent evaluation metrics along with rankings from
CAEMs.

Adsorbent Evaluation Metrics

Pri?szrli)/luc?del d CAEM
ANcoz  Sadscoan2™®  Sspcoznz  APScoznz R
Encoz-Puco2 0.50 0.31 0.34 0.54 0.37 0.66
p Pucoz-Recoz 0.46 -0.16 0.14 0.05 0.79 0.79
Prcoz-Encoz 0.54 -0.19 0.03 0.11 0.69 0.69

172



4.A.6.3Rigorous and ldealized PSA Process Models

A quantitative comparison of MOF rankings between rigorous process model and
idealized PSA process model were measured via Spearman’s rank-order correlation in
Figure 4.8. Table 4.A.7 lists 15 MOFs and their detailed performance rankings given by

each level of process model.

Table 4.A.7. Spearman’s rank-order correlation (p) between rankings of 15 MOFs from
rigorous process modeling and idealized PSA process modeling. MOF rankings are
provided from objectives of Encoz-Pucoz using achievable Pucoz at a fixed Encoz of 400
kWh/t. Standard deviation (SD) is calculated for normalized Pucoz at Enco2 constraint for
each level of modeling to reflect the dispersion of each normalized Pucoz. Detailed MOF
rankings (1-15) are given for each level of process model.

Rigorous Idealized PSA
Process Model Process Model
Encoz-Puco2 Encoz-Puco2
pISD Ref/0.29 0.54/0.29
SENWOZ 1 5
SENWIT 2 4
OJICUG 3 10
SENWAL 4 11
SERKEG 5 1
FAKLOU 6 3
FEFDAX 7 9
RAXCOK 8 2
CUHPUR 9 6
UTEWUM 10 7
UTEWOG 11 12
BIBXUH 12 14
MATVEJ] 13 15
TERFUT 14 13
ZESFUY 15 8

Table 4.A.8 summarizes the sensitivity of rank order correlation between two
process models as a function of different choice of Enco2 constraints. The choice of Encoz
constraints were made within Encoz range where Encoz-Puco2 Pareto fronts were likely to

cross over each other.
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Table 4.A.8. Spearman’s rank-order correlation (p) between rankings of 15 MOFs from
rigorous process modeling and idealized PSA process modeling. MOF rankings are
provided from objectives of Enco2-Pucoz using achievable Pucoz as a function of choice
of Enco2. Spearman’s rank-order correlation for rankings made at corresponding Encoz
constraints are shown.

Rigorous Process Idealized PSA Process Model

Model Encoz = 350 kWh/t Encoz = 400 kWh/t Encoz = 450 kWh/t

Encoz =350 kWh/t p=0.71 - -

Encoz =400 kWh/t - p=0.54 -

Enco2 = 450 kWh/t - - p=0.41

As for the last comparison of the rankings of MOFs in terms of their performance
derived from models of multiple levels of complexity and fidelity, Figure 4.A.5
summarizes Spearman’s rank-order correlation between rankings of 15 MOFs from from
idealized PSA process model and adsorbent evaluation metrics. This is a similar analysis
that was made in Figure 4.7 but with “pseudo”-process scale performance derived from a
simplified process model. Unlike the observations for the rigorous process modeling,
Sads,co2/N2®®, Ssp.coznz, and APScoznz appeared to be highly successful metrics for
predicting pseudo-process scale performance. On the other hand, ANco2 and R were found
as relatively poor proxies for predicting pseudo-process scale performance. It may imply
the importance of process optimization for each material that can cause considerable

variation in process-level evaluation of those materials.

el 1.00
---------- similarranks

Idealized PSA Adsorbent Evaluation Metrics 0.80
Process Model | ANco» Sads coaNz*® | Sspcoama | APScoanz | R 059

.......... moderate
Encos-Pucoz | -0.20 0.92 0.76 0.77 -0.28 0.40
0.20

---------- dissimilar
0.00

Figure 4.A.5. Spearman’s rank-order correlation (p) between rankings of 15 MOFs from
idealized PSA process modeling (vertical axis) and adsorbent evaluation metrics
(horizontal axis). MOFs ranked by idealized process model are based on Pucoz at a fixed
Encoz of 400 kWh/t (Table 4.A.7). MOFs ranked by adsorbent evaluation metrics are based
on the relative performance of materials using each metric (Table 4.A.4).
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4.A.7 Numerical Data for Analysis

Table 4.A.9. List of 143 MOFs and swing capacities (ANcoz in mol/kg) estimated from COz2 single component adsorption data.

CSD code ANco2 CSD code ANco2 CSD code ANco2 CSD code ANco2 CSD code ANco2
BETGAK 6.67 ZIKJIO 13.75 VACFOV01 7.10 FAPTOH 7.18 HIHGOW 7.18
NUVWIL 6.17 CANRUG 6.34 WONZOP 19.17 FECZAQ 9.56 IBICAZ 6.28
OTAVOV 5.15 KAYBUJ 4,16 WONZUV  17.55 FEFCUQ 12.73 IBICED 5.58
QOCRUW 6.10 NALWOO 5.79 XIBZUF 4.96 FEFDAX 12.67 IBICON 5.53
ANUGIA 22.41 NOCKUM 5,59 ZESFUY 11.49 FERHAN 12.31 IBIDAA 5.73
FIQCEN 14.10 XENKIM  6.77 AFITIT 6.08 FIJCUX 6.23 IGOCOX 5.66
FUSWIA 7.22 BIBXUH 15.90 AMILUE 7.71 FIJCUX01 6.28 ISOHEE 10.47
JAVNIE 7.97 DUXZIG01 5.87 AMIMEP 7.85 FUNBEW 13.83 JIVFUQ 4,52
LAGCED 5.30 EBEMEF 5.88 BEPMIU 1.47 FUNBIA 6.05 KEFBEE 20.26
LASYOU 12.52 IXODUV 9.25 BEPPAP 7.51 FUNBOG 945 KEWZOD 10.08
MOCKEV 17.31 IXOFAD 9.35 BICDAU 12.82 FUNCAT 8.80 LAWGEW 7.04
MOYYEF 9.61 IXOFEH 9.28 COGWEB 7.66 FUNCEX 6.81 LAWGIA 7.07
MOYYIJ 9.19 IXOFIL 9.34 CUHPUR 11.73 FUTKEL  5.73 LAWGOG 6.92
NUTQAV 18.99 LAGNUE 5.22 DEYVUA 493 GACQAE 11.07 LAWGUM 7.10
NUTQEZ 17.55 LOQLEJ 7.98 DIDDOK 20.65 GIMSIG 5.53 LUVTEC 6.73
RAZYIC 5.62 ODIXEG 21.78 ECAHAT 6.92 GUYLOC 6.23 MATTUX  6.21
RAZYOI 6.75 OJICUG 19.03 EDUSIF 6.85 GUYMAP 6.05 MATVAF 9.18
SUKYIH 16.89 RABHAZ 5.88 EMITUQ 7.14 HAMJOW 5.61 MATVEJ] 17.47
UTEWUM 15.87 SEHTEF 577 EXEWAG 6.62 HIFTOG 551 MIBQAR 7.02
XAMDUMO7 13.94 SERJUV 6.31 EZUCIM 4.38 HIFTOGO1 7.04 MIBQAR16 7.08
XAWVUN 13.11 SERKEG 6.90 FAKLOU 11.94 HIFTOGO02 5.51 MIBQAR18 6.99
YUGLES 18.97 UTEWOG 14.60 FAPTIB 7.79 HIFVOI 6.91 MODNIC 4.47
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Table 4.A.9. Continued.

CSD code ANco2 CSD code ANco2 CSD code ANco2 CSD code ANco2 CSD code ANco2
OFERUNO02 6.71 RELLAW 9.12 SENWAL 21.72 UWELIS 5.67 XINFUW 1257
OFUYUL 4.96 RIFDUGO1 14.96 SENWIT 19.95 VAZTOG 6.98 XINWUO 553
PEVPUD 6.90 SAHYOQO03 7.10 SENWOzZ 21.18 VUSKAW 6.73 XUGSEY  15.27
PIFPIE 5.37 SAHYOQ04 7.07 TASXIW  6.96 VUSKEA 6.72 YARYEV 4.44
QUQFIS 15.22 SAHYOQO05 6.81 TERFUT 11.32 WIYFAM 10.45 YEKXET 9.02
QUQPOI 7.43 SAKRED 9.87 UBUMAH 14.80 XEXMEU 9.07 YEZFIU 7.00
RAXCOK 14.22 SEFBOV 10.99 UNIGEE 6.72
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Table 4.A.10. Adsorbent evaluation metric data (Figure 4.3b) calculated from CO2/N2 0.14/0.86 mixture adsorption data in 143 MOFs.

CSD ANco? Sads?ds Ssp APS R CSD ANco? Sads?ds Ssp APS R
code (mol/kg) (mol/kg) (%) code (mol/kg) (mol/kg) (%)
BETGAK 6.3 124.1 9.7e3 777.2 60.7 ZIKJIO 12.7 106.3 1.0e4 1.4e3 84.2
NUVWIL 5.8 188.1 6.6e4 1.1e3 96.5 CANRUG 5.9 122.3 1.3e4 723.1 54.9
OTAVOV 43 42.9 823.9 184.8 89.9 KAYBUJ 4.3 146.2 2.0e4 625.4 46.4
QOCRUW 5.9 188.1 4.3e4 1.1e3 64.1 NALWOO 4.7 48.0 227.7 224.9 69.1
ANUGIA 16.4 32.9 586.2 540.0 96.5 NOCKUM 5.1 242.6 2.2e5 1.2e3 423
FIQCEN 12.2 64.2 1.8e3 782.9 90.2 XENKIM 6.7 278.5 1.4e6 1.9e3 455
FUSWIA 6.6 103.5 4.2e3 684.1 69.1 BIBXUH 14.0 71.1 4.0e3 997.9 92.8
JAVNIE 7.4 110.5 5.2e3 817.5 69.7 DUXZIGO1 4.0 13.2 49.7 53.3 94.2
LAGCED 4.6 48.6 1.4e3 223.6 88.0 EBEMEF 4.0 13.3 50.9 53.7 94.3
LASYOU 11.6 98.3 1.6e4 1.1e3 86.8 IXODUV 8.4 82.6 8.0e3 695.0 83.1
MOCKEV 16.4 156.3 2.7e4 2.6e3 87.0 IXOFAD 8.5 81.9 7.9e3 697.8 83.4
MOYYEF 8.8 90.0 8.4e3 792.7 87.5 IXOFEH 8.5 89.5 1.1e4 763.5 83.0
MOYYIJ 7.2 26.8 93.8 193.2 81.8 IXOFIL 8.5 80.8 7.4e3 683.9 83.4
NUTQAV 16.4 63.1 3.6e3 1.0e3 95.5 LAGNUE 5.0 119.5 2.6e4 599.1 64.4
NUTQEZ 15.0 57.8 2.6e3 864.3 94.3 LOQLEJ 5.8 30.7 103.9 177.4 77.3
RAZYIC 5.0 87.4 1.1e4 435.1 79.8 ODIXEG 14.7 26.9 192.4 393.6 94.0
RAZYOI 6.0 68.8 3.9e3 414.8 79.2 0JICUG 15.8 45.7 344.6 722.6 86.7
SUKYIH 10.8 21.5 113.7 233.3 92.2 RABHAZ 4.9 40.5 764.8 199.5 94.0
UTEWUM 14.3 103.3 2.4e3 1.5€3 78.7 SEHTEF 5.7 198.2 2.3e5 1.1e3 46.1
XAMDUMO7 11.9 59.4 1.5e3 709.1 90.3 SERJUV 5.7 102.1 4.4e3 583.3 79.1
XAWVUN 9.6 13.1 43.3 125.2 95.9 SERKEG 6.7 312.1 1.9¢6 2.1e3 85.4
YUGLES 16.3 61.6 3.4e3 1.0e3 95.5 UTEWOG  13.1 100.8 2.4e3 1.3e3 77.5
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Table 4.A.10. Continued.

CsD ANco? Sags?9s Ssp APS R CsD ANco? Sags?4 Ssp APS R
code (mol/kg) (mol/kQg) (%) code (mol/kg) (mol/kQg) (%)
VACFOV0l 6.7 124.6 7.0e3 834.9 56.8 FAPTOH 6.7 100.6 1.5e4 670.3 73.4
WONZOP 15.0 437 778.2 653.5 94.8 FECZAQ 8.6 84.5 4.2¢3 727.4 84.3
WONZUV 13.3 35.0 267.9 465.9 89.5 FEFCUQ 11.2 70.4 2.8e3 788.6 89.0
XIBZUF 4.2 298.4 7.1e4 1.2e3 30.3 FEFDAX 11.6 98.1 6.1e3 1.1e3 85.8
ZESFUY 10.7 1101 1.5e4 1.2e3 82.9 FERHAN 10.1 47.4 620.7 478.1 88.6
AFITIT 5.5 81.0 3.2e3 442.6 79.9 FIJCUX 5.8 107.0 1.4e4 619.2 74.1
AMILUE 6.7 74.6 1.7e3 497.3 83.6 FIJCUX01 59 105.1 1.5e4 617.9 76.5
AMIMEP 6.8 75.4 1.5e3 515.0 82.6 FUNBEW 93 24.3 57.1 226.6 84.9
BEPMIU 6.7 84.0 4.9¢3 558.7 93.4 FUNBIA 5.7 119.3 2.1e4 678.6 76.0
BEPPAP 6.7 84.0 5.1e3 563.1 93.6 FUNBOG 7.1 19.4 14.0 137.3 73.9
BICDAU 8.7 16.5 69.0 143.0 94.3 FUNCAT 7.8 71.9 2.9e3 562.6 85.7
COGWEB 7.2 129.4 1.1e4 937.6 66.2 FUNCEX 5.8 135 9.6 785 79.3
CUHPUR 10.7 102.8 5.6e3 1.1e3 81.6 FUTKEL 5.2 95.1 2.e3 494.9 63.8
DEYVUA 4.8 98.6 5.6e3 468.1 48.3 GACQAE 98 65.7 2.1e3 641.4 87.5
DIDDOK 14.3 25.3 216.7 362.8 95.2 GIMSIG 5.0 67.3 4.9e3 333.4 80.7
ECAHAT 4.6 13.0 711 59.2 90.8 GUYLOC 6.0 169.7 5.3e4 1.0e3 64.5
EDUSIF 5.6 10.0 216 56.2 95.5 GUYMAP 59 158.4 4.4e4 934.2 63.5
EMITUQ 6.7 152.8 1.5e4 1.0e3 65.5 HAMJOW 57 205.6 8.6e4 1.2e3 45.1
EXEWAG 6.3 138.0 3.8e4 865.4 70.8 HIFTOG 5.1 95.1 4.2¢3 481.6 67.7
EZUCIM 42 1101 4.1e3 460.0 46.5 HIFTOG0O1 5.7 10.3 226 58.7 95.4
FAKLOU 11.3 164.9 4.4e4 1.9e3 82.4 HIFTOG02 5.1 95.0 4.1e3 480.5 67.5
FAPTIB 7.3 124.2 5.5e4 911.5 75.0 HIFVOI 5.1 23.3 64.7 118.4 815
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Table 4.A.10. Continued.

CsD ANco? Sags?9s Ssp APS R CsD ANco? Sags?4 Ssp APS R
code (mol/kg) (mol/kQg) (%) code (mol/kg) (mol/kQg) (%)
HIHGOW 6.8 111.9 8.0e3 755.9 65.8 OFERUNO2 438 19.6 150.6 93.0 95.0
IBICAZ 5.7 83.9 4.9¢3 474.1 91.6 OFUYUL 5.0 207.1 2.6e5 1.0e3 495
IBICED 5.0 78.6 4.4e3 390.4 92.3 PEVPUD 5.9 9.9 21.8 57.9 96.0
IBICON 4.9 78.1 4.2¢3 384.9 92.0 PIFPIE 5.2 144.0 3.3¢5 743.7 61.2
IBIDAA 5.1 75.1 4.0e3 380.6 92.9 QUQFIS 13.6 75.5 5.4e3 1.0e3 88.7
IGOCOX 5.3 1255 5.5e4 663.0 63.6 QUQPOI 6.9 120.5 2.4e3 836.7 51.7
ISOHEE 9.6 96.8 7.3e3 929.4 82.6 RAXCOK 135 168.8 3.2¢4 2.3e3 78.8
JIVFUQ 45 187.4 1.5e6 849.5 46.3 RELLAW 85 114.1 1.5e4 968.7 80.4
KEFBEE 18.7 103.7 1.2¢4 1.9e3 93.7 RIFDUGO1  13.9 110.6 6.7e3 1.5e3 86.0
KEWZOD 9.5 120.9 1.6e4 1.1e3 73.7 SAHYOQ03 5.7 10.3 224 58.6 95.4
LAWGEW 57 10.3 226 58.5 95.4 SAHYOQ04 58 10.5 23.4 60.9 95.4
LAWGIA 5.7 10.2 222 58.3 95.4 SAHYOQO05 5.6 10.0 21.3 55.6 95.4
LAWGOG 5.7 10.3 225 58.6 95.4 SAKRED 8.7 65.8 3.5e3 568.6 90.6
LAWGUM 5.7 10.3 23.1 59.3 95.4 SEFBOV 9.6 62.9 3.3e3 605.6 92.8
LUVTEC 5.9 68.2 3.8e3 403.2 92.0 SENWAL  19.7 92.4 8.0e3 1.8e3 96.4
MATTUX 5.9 127.3 2.5e4 748.4 68.3 SENWIT 18.7 139.9 2.0e4 2.6e3 93.4
MATVAF 8.8 164.0 2.2¢4 1.4e3 70.1 SENWOZ  19.6 113.4 1.2e4 2.2e3 95.3
MATVE] 15.4 67.0 2.9¢3 1.1e3 92.7 TASXIW 6.8 179.4 1.3e7 1.2e3 65.3
MIBQAR 5.7 10.3 22.9 58.7 95.5 TERFUT 10.1 73.1 3.1e3 734.8 88.8
MIBQAR16 57 10.2 225 58.3 95.5 UBUMAH 133 81.3 7.1e3 1.1e3 93.7
MIBQAR18 57 10.2 224 58.2 95.5 UNIGEE 5.5 9.8 20.8 53.9 95.5
MODNIC 3.5 24.1 172.9 83.7 94.0 UWELIS 5.6 213.7 1.6e6 1.2e3 44.8
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Table 4.A.10. Continued.

CSD ANco? Sads?ds Ssp APS R CSD ANco? Sads?ds Ssp APS R

code (mol/kg) (mol/kg) (%) code (mol/kg) (mol/kg) (%)
VAZTOG 5.6 10.1 21.8 57.0 95.4 XINWUO 43 28.8 331.9 1245 93.8
VUSKAW 5.6 9.9 21.4 55.2 95.5 XUGSEY 135 75.7 2.2e3 1.0e3 83.9
VUSKEA 5.4 9.7 20.7 52.7 95.6 YARYEV 39 40.5 227.3 157.6 85.0
WIYFAM 7.9 26.0 154.7 204.3 90.1 YEKXET 8.5 132.3 1.7¢e4 1.1e3 74.3
XEXMEU 8.4 122.5 1.9e4 1.0e3 88.1 YEZFIU 6.1 65.1 733.3 400.1 80.3
XINFUW 11.5 92.8 8.0e3 1.1e3 83.9
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Table 4.A.11. Mixture adsorption amounts and adsorption selectivities (Figure 4.4) computed from GCMC and IAST at 243 K in 30
MOFs.

MOEs Nco2 (mol/kg) Nn2 (mol/kg) Sads,cozinz
Ptotal = 0.7 bar Ptotai = 2.1 bar Ptotal = 14.3 bar Ptotai = 0.7 bar Ptotai = 2.1 bar Ptota = 14.3 bar Ptotal = 0.7 bar Ptota = 14.3 bar

GCMC IAST GCMC IAST GCMC IAST | GCMC IAST GCMC IAST GCMC IAST | GCMC IAST GCMC IAST

FIQCEN 1.33 1.35 2.77 2.77 13.54 13.50 | 0.29 0.28 0.72 0.67 1.30 1.49 27.75 30.04 64.15 55.82
LASYOU 1.76 1.83 6.76 6.94 13.38 13.21 | 0.50 0.55 0.99 1.09 0.84 0.93 21.53 20.56  98.32 86.94
MOCKEV 2.45 2.48 8.10 8.54 18.82 18.78 | 0.37 0.36 0.89 0.99 0.74 0.77 40.32 41.79 156.31  149.06
NUTQAV 0.77 0.78 2.15 2.22 17.14 16.45 | 0.35 0.36 0.92 0.96 1.67 191 13.67 13.44 63.12 53.02
NUTQEZ 0.91 0.91 2.68 2.74 15.87 15.52 | 0.38 0.40 0.98 1.04 1.69 191 14.62 1413 57.76 49.93
UTEWUM 3.86 3.70 6.30 6.17 18.15 18.74 | 0.30 0.33 0.62 0.64 1.08 1.04 80.28 69.78 103.3 110.23
XAMDUMO7 1.28 131 2.67 2.67 13.21 13.20 | 0.29 0.28 0.72 0.66 1.37 1.40 27.01 29.28 59.44 58.09

YUGLES 0.77 0.77 2.13 2.20 17.02 16.41 | 0.35 0.36 0.92 0.96 1.70 1.86 13.55 13.26  61.63 54.15
ZIKJIO 2.40 2.50 7.42 7.34 15.13 1547 | 0.44 0.48 0.92 1.03 0.87 0.92 33.20 3211 106.26  103.08
BIBXUH 1.10 111 3.66 3.86 15.14 14.90 | 0.36 0.37 0.97 1.08 131 1.49 18.66 18.67 71.05 61.51
UTEWOG 3.81 3.68 6.00 5.97 16.95 17.43 | 0.31 0.33 0.66 0.65 1.03 1.14 76.52 69.00 100.84 93.81
ZESFUY 221 2.40 8.10 7.51 12.91 13.33 | 0.45 0.51 0.82 0.92 0.72 0.82 30.46 29.20 110.08  99.64
CUHPUR 2.42 2.37 6.36 6.56 13.10 13.39 | 0.33 0.29 0.75 0.69 0.78 0.86 44.46 49.84 102.76  95.27
FAKLOU 241 2.54 7.72 7.42 13.69 13.88 | 0.35 0.39 0.62 0.71 0.51 0.58 42.70 40.12 164.86  146.87
FEFCUQ 1.38 1.41 3.77 3.83 12.58 12.51 | 0.33 0.34 0.79 0.84 1.10 1.25 25.50 25.14 70.39 61.32
FEFDAX 1.92 1.87 5.21 5.48 13.52 13.75 | 0.33 0.33 0.77 0.82 0.85 0.96 35.59 3490 98.12 88.15
KEFBEE 1.26 1.27 471 5.14 19.97 19.66 | 0.37 0.38 1.01 1.12 1.18 131 21.04 2049 103.74  91.87
MATVE] 121 1.25 3.83 3.89 16.56 16.56 | 0.32 0.34 0.88 0.92 1.45 1.49 22.98 22.92  69.96 68.41
QUQFIS 1.73 1.76 4.84 5.27 15.31 1493 | 0.53 0.51 1.21 131 1.25 1.39 20.12 21.02 7553 65.87

RAXCOK 3.64 3.62 10.27 1040 17.12 17.23 | 0.41 0.38 0.71 0.78 0.62 0.69 54.92 58.63 168.84  152.02
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Table 4.A.11. Continued.

MOEs Ncoz (mol/kg) Nn2 (mol/kg) Sads,co2/N?
Ptotat = 0.7 bar Ptota = 2.1 bar Ptotat = 14.3 bar Ptotat = 0.7 bar Ptotat = 2.1 bar Ptotal = 14.3 bar Ptotat = 0.7 bar Ptotar = 14.3 bar

GCMC IAST GCMC IAST GCMC IAST | GCMC IAST GCMC IAST GCMC IAST | GCMC IAST GCMC IAST

RIFDUGO1 2.25 2.22 6.30 6.58 16.12 16.11 0.32 031 0.78 0.84  0.90 0.94 | 43.78 43.81 11057  105.09
SENWAL  0.73 0.76 2.62 2.61 20.44 20.06 0.24 026  0.75 0.76  1.36 151 18.85 18.19 92.39 81.84
SENWIT 1.32 1.30 4.79 5.24 19.99 19.77 0.27 027  0.82 091 0.88 0.94 | 29.56 29.23 139.88  129.85
SENWOzZ  0.97 1.00 3.55 3.75 20.53 20.37 0.25 026  0.79 083 111 1.26 | 23.62 23.62 11337 99.39
TERFUT 1.27 1.28 3.33 3.41 11.32 11.19 0.29 030 071 0.75 0.95 1.04 | 26.54 25.77 73.13 66.27
UBUMAH  0.90 0.91 3.54 3.89 14.19 13.90 0.33 035 0091 098  1.07 1.22 16.58 16.22 81.25 69.65
XINFUW 2.22 2.35 7.41 7.18 13.76 13.91 0.48 0.54 0.96 101 091 0.93 | 28,57 26.56 92.8 92.15
XUGSEY 2.58 2.58 5.73 5.94 16.06 16.27 0.40 034 097 087 130 149 | 39.45 46.23 75.65 66.8
SERKEG 1.14 1.19 3.35 3.29 7.84 7.47 0.15 0.16  0.32 032 015 0.17 | 47.65 46.37 312.13  285.02
OJICUG 2.42 2.28 5.98 6.15 18.22 19.64 0.33 029  0.96 084 245 2.35 | 45.26 48.45 45.73 53.79
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CHAPTER 5. IMPACT OF INTRINSIC FRAMEWORK
FLEXIBILITY FOR SELECTIVE ADSORPTION OF SARIN IN
NON-AQUEQOUS SOLVENTS USING

METAL-ORGANIC FRAMEWORKS

Molecular modeling of mixture adsorption in nanoporous materials can provide
insight into the molecular-level details that underlie adsorptive separations. Modeling of
adsorption often employs a rigid framework approximation for computational
convenience. All real materials, however, have intrinsic flexibility due to thermal
vibrations. In this chapter, we examine quantitative predictions of the adsorption selectivity
for a dilute concentration of a chemical warfare agent, sarin, from bulk mixtures with
aqueous and non-aqueous (methanol, isopropyl alcohol) solvents using metal-organic
frameworks (MOFs). These predictions were made in MOFs approximated as rigid and
also in MOFs allowed to have intrinsic flexibility. Including framework flexibility appears
to be important for making quantitative predictions of adsorption selectivity, particularly
for sarin/water mixtures. Our observations suggest the intrinsic flexibility of MOFs can
have a nontrivial impact on adsorption modeling of molecular mixtures, particularly for

mixtures containing polar species and molecules of different sizes.

* Contents of this chapter are part of a manuscript in preparation

Jongwoo Park, Mayank Agrawal, Dorina F. Sava Gallis, Jacob A. Harvey, Jeffery A.
Greathouse, David S. Sholl, "Impact of Intrinsic Framework Flexibility for Selective
Adsorption of Sarin in Non-Aqueous Solvents using Metal-Organic Frameworks”, in
preparation.
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5.1 INTRODUCTION

Due to the extremely toxic properties of chemical warfare agents (CWAs)*?, efforts
have been made to develop methods and materials for the detection and destruction of
CWAs*S, Sarin, for instance, is an organophosphate nerve agent, one of the major
categories of CWAs.® Catalytic degradation of CWAs into less toxic compounds using
porous materials is a viable method of decontaminating these agents. Activated carbon and
metal oxides have been widely investigated for this purpose, but finding alternative types
of protective materials is of significant interest.>® Metal-organic frameworks (MOFs) have
emerged as promising candidates due to their large pores that enable easy access of CWAs
to internal catalytic sites.*° Nonetheless, an efficient detoxification procedure for CWAs
in porous materials can be possible only if CWAs are selectively captured in those
materials.*>*? It is therefore useful to consider adsorption properties of CWAs before their

catalytic activity is examined.

The majority of studies of catalytic degradation of CWAs to date have focused on
hydrolysis.**° Nucleophilic water substitutes at the phosphorus atom of the agent via
hydrolysis that leads to elimination of the toxic leaving group.’-2° Nevertheless, situations
exist where hydrolysis reactions are not appropriate. The damage-free decontamination of
electronics after exposure to CWAs, for example, is incompatible with hydrolysis.?! This
motivates interest in the detection and detoxification of CWAs in non-aqueous solvents.?!-
24 In the context of considering adsorption of CWAs in the nanopores of MOFs, these
observations motivated us to examine the adsorption selectivity for CWAs in the presence

of a range of solvents using MOFs.
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Molecular modeling has been used to predict the adsorption properties of a variety
of adsorbing molecules in a wide range of MOFs.2>2° Adsorption modeling of this kind,
often referred to high-throughput materials screening, almost always assumes that the MOF
structure can be held rigid during simulation of adsorption, an assumption that leads to very
significant computational efficiencies. This approximation assumes that the relaxation of
the framework atoms due to the presence of adsorbed molecules can be neglected.®0-3
Although there are classes of MOFs that undergo significant adsorption-induced
deformations, including swelling and transitions between bistable states,3 there are also
many MOFs for which assuming that the change in volume in response to adsorption, AV,
is zero is well justified. In all MOFs, however, and indeed in all materials, thermal
vibrations cause atoms to move with small displacements.>-3" We refer to these movements
as the intrinsic flexibility of the adsorbent. Several recent studies have shown that this
intrinsic flexibility can in some cases have a nontrivial impact on the predictions of

molecular modeling of adsorption in MOFs, 3841

In this chapter, we examine the adsorption of sarin in MOFs in the presence of water,
methanol, and isopropyl alcohol via molecular simulations for a collection of 23 sarin-
selective hydrophobic MOFs. In each material, we examined the impact of intrinsic
flexibility with AV =0 on adsorption selectivity. Our findings provide insight on the impact
of this kind of flexibility on mixture adsorption when molecular mixtures consist of
adsorbates of different polarities and sizes which, to our best knowledge, has not been

examined before.
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5.2 COMPUTATIONAL METHODS

5.2.1 MOF Selection Criteria and Bulk Mixture Conditions

We selected a set of adsorbent materials from a large collection of experimentally
known MOFs. A subset of the CORE MOF database*? for which high-quality atomic point
charges have been assigned*® contains 2932 crystal structures. It has been reported that Zr-
based UiO-66 and its derivatives are effective catalysts for sarin degradation.141%444° We
therefore also considered UiO-66 and 36 UiO-66 derivatives with distinctive functional
groups.*® The same type of atomic point charges as for the CORE MOF database have been

assigned previously to these frameworks.*® This gave an initial set of 2969 MOFs.

Because it is computationally intensive to carry out molecular simulations for
adsorption of bulky molecules in MOFs with intrinsic flexibility, we needed to reduce the
number of materials. The material selection criteria used in this chapter is illustrated in
Figure 5.1. We aimed to find CWA-selective, hydrophobic MOFs with sufficient pore size
to admit sarin. 2469 structures were first chosen from the initial set that have largest cavity
diameters larger than 4 A, indicating a sufficient pore size to admit sarin. We then selected
CWA-selective hydrophobic MOFs in order to find materials that would be suitable for
CWA capture under humid conditions. To do so, we used the constraints of Henry
constants (Kn) as suggested in similar earlier work by Matito-Martos et al.l*4" We
calculated room temperature Henry constants for sarin and soman, another extensively
studied nerve agent!3, (Kncwa) and that for water (Kn,H20) using methods defined further
below. Including information about the adsorption affinity of soman gives a more general

perspective on finding CWA-selective materials candidates, although below we

190



exclusively examine the adsorption of sarin. We retained only those MOFs for which
Kn,cwa was larger than 107 mol/kg-Pa for both sarin and soman and also had Kn Hzo less
than 10° mol/kg-Pa. This selection procedure resulted in 23 MOFs. More information

about these 23 materials is given in Appendix 5.A (Table 5.A.1).

CoRE MOF DDEC Charge Database +

UiO-66(-R) MOFs with DDEC Charge
(N = 2969)

Sufficient Pore Size MOFs
- Largest cavity diameter > 4 A

(N = 2469)

Hydrophobic MOFs
- Khcwa > 10 mol/kg-Pa
- KH,HZO < 10_5 mOII’kgPa
(N=23)

NVT MD snapshot generation

Binary GCMC in rigid structures
Binary GCMC in flexible structures

Figure 5.1. Schematic illustration of the MOF selection strategy. The number of MOFs at
each stage are shown in brackets (N).

We explored the adsorption of sarin in the presence of three solvents at 298 K,
sarin/water (H20), sarin/methanol (MeOH), and sarin/isopropyl alcohol (IPA). The
mixture compositions in the bulk phase were defined by the partial pressures of sarin (Psarin)
and each solvent i (Pi). To represent a dilute concentration of sarin in solvent saturated
environments, we set Psarin = 0.001 bar in mixtures with Pi set to the saturation pressure of
each solvent (P%). The adsorption selectivity for sarin at was then calculated at total
pressures of each mixture.*® Figure 5.2 shows atomic representations of sarin and the

solvent molecules.
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S a’ ?JA\)

H,0 MeOH IPA

POHQD =0.03 bar IDOMEDH =0.15bar IDO‘PA: 0.05 bar

P in = 0.004 bar

Figure 5.2. Atomic representations of (a) sarin and (b) solvent molecules. Carbon, oxygen,
hydrogen, phosphorus, and fluorine are shown in black, red, white, orange, and yellow,
respectively. Room temperature saturation pressures for each molecule that were used to
determine the bulk mixture compositions are also shown. P%arin is taken from the literature?
and P%oivent were defined using the Antoine equation®® at 298 K.

5.2.2 Flexible Snapshot Method

We performed simulations allowing intrinsic flexibility for the 23 MOFs chosen
above. The flexible snapshot method first introduced by Gee et al.** was used to generate
an ensemble of empty MOF frameworks by simulating the dynamics of each MOF.* NVT
molecular dynamics (MD) simulations were conducted after structure relaxation using
classical force fields® in LAMMPS®! at 300 K with a time step of 1.0 fs. Each MOF was
described using the UFFAMOF force field of Coupry et al.® The temperature was
controlled via a Nosé-Hoover thermostat with a 0.1 ps decay period. As a result, NVT MD
snapshots are generated that represent intrinsically flexible empty MOFs. This method
cannot capture aspects of flexibility that might arise due to coupling with adsorbate degrees
of freedom.** Adsorption in the flexible material was characterized by averaging

independent Grand Canonical Monte Carlo (GCMC) simulations of each snapshot.
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The computational cost of the flexible snapshot method is proportional to the
number of NVT MD snapshots employed for GCMC calculations. To this end, selecting
uncorrelated MD snapshots from each structure is important.*! In this chapter, MD
snapshots were taken every 100 ps from a production period of 1 ns, which is consistent
with the recent work of Agrawal et al.** In principle it would also be possible to use ab
initio MD as an alternative method to generate framework snapshots.>?°® This method,
however, is even more computationally demanding than classical simulations we have used

here.

5.2.3 Adsorption Modeling of Rigid and Intrinsically Flexible MOFs

Molecular modeling of adsorption of binary molecular mixtures in MOFs was
conducted with GCMC simulations using RASPA.>*% MOF structures reported by the
CoRE MOF database and a set of UiO-66 derivatives were first relaxed using the
UFF4MOF force field® in LAMMPS®! followed by fixing the atoms in the relaxed
structures. We refer to these structures as rigid MOFs while carrying out GCMC
simulations. GCMC simulations were also performed independently in the snhapshots
generated for each structure as described above; we refer to these results below as coming
from flexible MOFs. To perform GCMC appropriate force fields are needed to describe
non-bonding interactions such as van der Waals and Coulombic interactions for
adsorbate/adsorbent and adsorbate/adsorbate interactions. Standard force fields were used
to compute van der Waals interaction, namely the universal force field (UFF)% and the
TraPPE® force field. Lennard-Jones parameters for MOF atoms and sarin, solvent
molecules were taken from UFF and TraPPE force field, respectively. Adsorbate/adsorbent

interactions were defined with Lorentz-Berthelot mixing rules.®® Periodic boundary
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conditions were defined in all dimensions and adsorbates were approximated as rigid.
Coulombic interactions were modeled pairwise with a long-range Ewald summation
scheme.®® These interactions are computed via the DDEC point charges for MOF atoms®*
62 and TraPPE charges for sarin and solvent molecules®**°. Attempted Monte Carlo moves
include translation, rotation, regrowth, reinsertion, deletion and insertion of adsorbates
with identical probabilities. In addition, a Monte Carlo move that swapped the identity of

adsorbed molecules was used.

Henry constants, K, for sarin, soman, and water used as a material selection criteria
as discussed in Section 5.2.1 were computed via a Widom particle insertion method®® with
the force fields just discussed. All Kn calculations were performed at 298 K in rigid MOFs

only. Ky data for all MOFs considered in Figure 5.1 are provided in Table 5.A.2.

Using the flexible snapshot method, the adsorption properties of intrinsically
flexible MOFs are approximated by performing independent GCMC simulations in distinct
MOF structures taken from MD snapshots. The adsorption data were then averaged over
GCMC results from each MD snapshot. We used 10 snapshots for each material.

Preliminary tests indicated that this was sufficient to achieve converged results.

5.3 RESULTS AND DISCUSSION

5.3.1 Selective Adsorption of Sarin in Non-/Aqueous Environments

Our discussion focuses on adsorption selectivity for sarin at conditions
corresponding to the liquid state for each solvent. This means that the MOFs were typically

highly loaded with solvent molecules (see Figure 5.A.1). The computed adsorption
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selectivity for sarin in the 23 MOFs at 298 K by employing the rigid framework
approximation, Srigid, IS shown in Figure 5.3. As might be expected, chosen MOFs were
selective for sarin in every co-adsorbed solvents. This suggests they could be effective for
catalytic degradation of sarin, assuming of course that catalytically active sites can be

created in each material.

PP’ =025

-sarin.’MeOH _
Bl s=rin/iPA |

sarin/H20

Figure 5.3. Adsorption selectivity for sarin calculated via binary mixture GCMC in rigid
approximations of 23 MOFs for each molecular mixture at bulk pressure of Ptotal = Psarin +
Psolvents at 298 K. Mixture compositions in the bulk phase were defined to give a partial
pressure of sarin of P/P%ain = 0.25 and a solvent partial pressure of P/P%olvent = 1. MOFs
are listed in order of decreasing sarin selectivity in the sarin/MeOH mixture.

In almost every MOF, the sarin adsorption selectivity was larger for the non-
aqueous solvents than for H20. This trend is reasonable because the non-aqueous
molecules are larger than water and also typically have weaker adsorption affinity as
characterized by Kn (see Table 5.A.2). Based on size alone the sarin/IPA mixture might be
expected to show the highest selectivity among the mixtures we examined. IPA, however,
has a weaker degree of interaction with polar solutes than MeOH®* (see also Table 5.A.3).

This appears to result in lower adsorption selectivity from sarin/IPA mixtures than from
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sarin/MeOH mixtures in most MOFs, although we observed a small number of materials

where this trend was reversed.

5.3.2 Impact of Intrinsic MOF Flexibility on Mixture Adsorption Modeling

We repeated the GCMC simulations of adsorption of sarin-containing binary
mixtures allowing intrinsic flexibility of the MOFs with AV = 0 using the flexible snapshot
method. Figure 5.4 compares the computed selectivities from rigid and flexible
representations of the MOFs. An immediate observation is that for many of the MOFs there
is a clear quantitative discrepancy between the two calculations for all three sarin-
containing mixtures. Modeling the MOFs as rigid tends to underestimates the adsorption
selectivity, although there are exceptions to this description. In most cases, the increased
selectivity in the flexible MOFs was associated with higher adsorbed amounts of sarin and
lower adsorbed amounts of the solvent than in the rigid MOF. In examples where the
selectivity in the flexible material was smaller than in the rigid material, this typically arose
because sarin adsorption was reduced in the flexible materials without as much change in
the number of solvent molecules. The observation made above from Figure 5.3 that sarin
is more selectively adsorbed from non-aqueous solvents than water is also seen in our

simulations of flexible MOFs (see also Figure 5.A.2).
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Figure 5.4. Parity plot of adsorption selectivities predicted at 298 K in 23 MOFs
approximated as rigid (horizontal axis) and allowed to have intrinsic flexibility (vertical
axis) for each molecular mixture. The parity line indicates the result that would be obtained
if there was no effect of intrinsic flexibility.

As noted above, high-throughput screening of MOFs or other porous adsorbents
essentially always relies on rigid framework calculations because of their computational
efficiency. One common goal of material screening is to rank a large number of materials.
It is therefore useful to ask whether rankings of MOFs based on rigid and flexible
calculations are similar for the sarin mixtures we studied. We approached this by
calculating Spearman’s rank-order correlation, p, to the rankings for sarin/H20,
sarin/MeOH and sarin/IPA selectivities from rigid and flexible calculations.®>% This
ranking can vary between -1 and 1, with values of -1, 0 and 1 corresponding to rankings
that are anti-correlated, uncorrelated and completely correlated, respectively. For the 23
materials we studied, p for sarin/H20 was 0.08, for sarin/MeOH was 0.15 and for sarin/IPA
was 0.23. These values show there is little correlation between the two rankings.®® To
illustrate this another way, the three most selective MOFs from our set of 23 for

sarin/MeOH as predicted using rigid structures have CSD reference codes WAYMIU,
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COMDOY and HAFQOW (see Figure 5.3). With our calculations for intrinsically flexible
structures, these three MOFs are ranked 2", 20" and 11" for sarin/MeOH selectivity. This
suggests that attempting to accurately select a handful of the “best” MOFs for this
separation based on rigid structure calculations may be difficult. It is important to note,
however, that the rigid calculations do correctly describe key trends in CWA adsorption.
For example, both the rigid and flexible structure calculations predict that sarin selectivity
as a function of solvent follows the general trend sarin/MeOH > sarin/IPA > sarin/H20

mixtures.

Figure 5.5 shows the number of MOF seen as a function of Sriexible/Srigia for each
mixture. For sarin/MeOH and sarin/IPA, the rigid MOF calculations underestimate the
result from the flexible materials by 60-70%, on average and the rigid MOFs only
overpredict the selectivity in 17% of materials. For sarin/H20, however, the rigid MOFs
underestimate the selectivity by an average of 322%. The variability in the difference
between the rigid and flexible calculations is more marked for aqueous mixtures than non-
aqueous mixtures. Three of the 23 MOFs we examined showed more than 600% higher
selectivity for sarin/H20 in the flexible calculations, while for two MOFs the selectivity

for the same mixture was overestimated by the rigid MOF calculation.
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Figure 5.5. The number of MOFs observed as a function of Sriexible/Srigid in each mixture
of (a) sarin/Hz0, (b) sarin/MeOH, and (c) sarin/IPA. Green dashed lines show Sriexible/Srigid
=1, indicating the situation with no effect of intrinsic flexibility. For each histogram the
mean (u) and standard deviation (o) on Sriexible/Srigid are given.

Agrawal et al.** recently conducted similar studies for four different bulk mixtures
containing equimolar mixtures of nonpolar adsorbates with similar sizes in 100 randomly
chosen MOFs. At conditions were the pores were filled with many molecules, the mean
and standard deviation of log(Sriexible/Srigia) from their simulations were -0.01 and 0.57,
respectively. This means that on average the selectivities predicted with rigid structures
were quite accurate, although there is considerable variation in this statement from case to

case. Describing our data in the same logarithmic terms gives a mean (standard deviation)
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of 0.43 (0.30), 0.17 (0.22), and 0.20 (0.21) for sarin/H20, sarin/MeOH, and sarin/IPA
mixtures, respectively. This indicates that unlike the results of Agrawal et al. the mixtures
of polar molecules of disparate sizes that we examined show systematic deviations between

rigid and flexible structures, even on average.

5.3.3 Effect of Coulombic Interactions of Molecular Mixtures

It is worthwhile trying to understand what aspects of the adsorbing molecules
contribute the most to lack of quantitative agreement between simulations with rigid and
flexible MOFs. The bulk mixtures we considered contain solvents that have distinct
polarities and molecular sizes, but the results above cannot indicate whether one of these
two factors plays a dominant role. To probe this issue, we performed simulations with
unphysical nonpolar versions of each solvent by removing the point charges from each
solvent molecule. The same binary GCMC simulations as above were carried with these
unphysical solvent models for rigid and flexible MOFs. These simulations used the same
partial pressures for each component as were used above; we did not attempt to determine

the effective vapor pressure of the unphysical solvents.

In Figure 5.6, we repeated the same analysis as in Figure 5.4 but using the
unphysical nonpolar solvents in the GCMC simulations. Much, although not all, of the
difference between the rigid and flexible results seen in Figure 5.4 disappears when using
the nonpolar solvents. This indicates that the polarity of adsorbing species was more
responsible for the influence of framework flexibility than solvent size. The decreased sarin
selectivity in intrinsically flexible MOFs when using nonpolar solvents occurs primarily

because of lower sarin uptakes rather than changes in loadings of solvent molecules relative
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to the rigid MOFs. We note that Coulombic interactions in these molecular mixtures are
not totally eliminated because the atomic point charges for sarin remained non-zero in these

simulations.
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Figure 5.6. Parity plot of adsorption selectivities predicted at 298 K in 23 MOFs
approximated as rigid (horizontal axis) and allowed to have intrinsic flexibility (vertical
axis) for each molecular mixture using unphysical nonpolar (np) solvents. The parity line
indicates the result that would be obtained if there was no effect of intrinsic flexibility.

We revisit in Figure 5.7 the histograms of Sriexible/Srigia after omitting the point
charges on solvent molecules. Both x« and o were significantly reduced in each binary
mixture compared to those shown in Figure 5.5. In agreement with Figure 5.6, this indicates
that solvent polarity is more important than solvent size in determining the impact of
framework flexibility on selective adsorption of sarin. The selectivity in the sarin/H20
mixture, however, is still more affected by intrinsic flexibility than other two mixtures. The
difference in molecular sizes of sarin and the solvents is largest for sarin/H20. This implies
that the impact of framework flexibility on adsorption can also be affected by the disparity

in molecular size between adsorbing species.
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Figure 5.7. The number of MOFs observed as a function of Sriexible/Srigia in each mixture
of (a) sarin/H20, (b) sarin/MeOH, and (c) sarin/IPA using unphysical nonpolar (np)
solvents. Green dashed lines show Sriexible/Srigia = 1, indicating the situation with no effect
of intrinsic flexibility. For each histogram the mean (1) and standard deviation (o) on
Srlexible/Srigid are given.

54 SUMMARY

In this chapter, we examined the adsorptive capture of sarin under bulk mixture
adsorption conditions with aqueous and non-aqueous solvents in a collection of sarin-
selective hydrophobic MOFs that were approximated as rigid and intrinsically flexible.
Efficient catalytic degradation of sarin in MOFs under any of non-/aqueous environments
can be feasible only if sarin is selectively adsorbed in the frameworks in advance.

Quantitative molecular modeling of adsorption, however, can be affected by taking account
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of intrinsic flexibility that all porous materials indeed have by nature. Higher adsorption
selectivity for sarin in non-aqueous solvents was predicted, both in rigid and intrinsically
flexible MOFs, for which indicating the sarin detoxification using those solvents may be
viable in properly chosen MOFs when hydrolysis is incompatible. More importantly we
assessed the nontrivial deviation in adsorption properties predicted via rigid and
intrinsically flexible MOFs. Our observations implied the impact of flexibility of this kind
upon mixture adsorption is not negligible for mixtures containing polar adsorbates and
adsorbates of disparate sizes.

We exclusively focused on adsorption of sarin in a limited number of materials.
Although our observations do not represent the wide spectrum of materials, we were able
to make an immediate alert that caution must be used in adsorption modeling of complex
molecules combined with including the details in the molecular modeling of adsorption. In
addition, we cannot simply expand our findings with respect to adsorption property into
catalytic activity of sarin in the same mixtures. However, our assessment suggests that
computational explorations on sarin hydrolysis or other catalytic reactions in MOFs also
have to be conducted with caution considering the approximations used in their

calculations.
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APPENDIX 5.A. SUPPORTING INFORMATION - CHAPTER 5

5.A.1 MOF Material Set

Table 5.A.1 curates a list of 23 MOFs chosen via MOF selection criteria illustrated

in Figure 5.1 in Chapter 5.

Table 5.A.1. List of 23 MOFs chosen via MOF selection criteria. MOFs are listed with
CSD reference codes reported in the CORE MOF database!, except UiO-66-CF3?, in
alphabetical order. The physical properties of MOFs are adapted from the CORE MOF
database and calculated for UiO-66-CFs in this work.

MOFs Metal Type Ve (cm3/g)  SAac (M2/g) LCD (A) PLD (A)
AMAFOK Cu 0.30 513.32 6.60 5.66
BARZAW  Zn 0.26 337.15 7.74 2.56
BZRZOK Cu 0.28 340.18 7.66 2.74
COMDOY  Ga 0.48 971.33 6.12 5.54
EGELUYO1 Al 0.67 1555.22 7.46 7.05
EHALOP Al 0.65 1632.09 7.57 7.12
HAFQOW Al 0.65 1593.41 7.39 6.93
KEDQAN Zn 0.39 551.92 6.47 4.70
OFORUX Cd, Cu 0.26 264.75 5.54 5.06
ONIX0OZ Cu 0.74 1971.77 9.94 9.19
OVICUS Zn 0.29 409.62 5.88 5.25
QONQEQ Al 0.67 1519.12 7.41 7.01
RAZYIC Cu 0.43 1033.43 7.88 6.21
SABVOH Al 0.59 1333.73 6.27 5.98
SABVOH01 Al 0.59 1377.25 6.49 6.20
SABVUN Al 0.61 1439.47 7.02 6.76
UiO-66-CF3  Zn 0.36 554.21 7.20 3.20
UTEWOG Ni 0.95 1702.39 14.60 9.55
UTEXAT Zn 0.61 1068.81 6.27 4.01
UTEXIB Co 0.60 1082.64 6.30 3.96
WAYMIU Al 0.60 1412.09 7.35 6.91
WAYMOA Al 0.65 1471.49 7.08 6.89
XUNJEW Zn 0.40 778.07 7.72 4.21

* Abbreviations stand for Vp: pore volume; SAacc: accessible surface area; LCD: largest
cavity diameter; and PLD: pore limiting diameter.
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5.A.2 Adsorption Conditions for Solvents and Mixtures

Table 5.A.2 summarizes Henry constants (Kn) computed via a Widom particle
insertion method?® for sarin, soman, and H20 in 23 MOFs at 298 K as a part of the material
selection criteria. Ku calculated for non-aqueous solvents of MeOH and IPA at 298 K are

also summarized.

Table 5.A.2. Henry constants (Kn) computed for CWAs of sarin, soman, and solvents of
H20, MeOH, IPA in 23 MOFs at 298 K.

MOFs KH,sarin KH,soman KH,H20 KH,Me0H KH,ipA

AMAFOK 1.60E-01 1.75E+01 3.90E-06 5.31E-08 1.27E-08
BARZAW 4.47E-01 2.06E-01 1.55E-06 4.43E-08 1.06E-08
BZRZOK 3.75E-01 1.02E-03 2.06E-06 4.61E-08 1.10E-08
COMDOY 6.10E-02 2.52E+02 5.88E-06 6.28E-08 1.50E-08
EGELUYO01 6.47E-03 4.73E+01 7.45E-06 1.75E-07 4,18E-08
EHALOP 5.12E-03 5.04E+01 8.36E-06 1.76E-07 4,19E-08
HAFQOW 5.78E-03 4.29E+02 8.11E-06 1.74E-07 4,17E-08
KEDQAN 6.76E-02 8.94E-03 4.41E-06 5.06E-08 1.21E-08
OFORUX 1.48E-01 2.37E-03 2.11E-06 2.68E-08 6.41E-09
ONIX0OZ 2.99E-03 1.18E-03 9.09E-06 9.29E-08 2.22E-08
OVICUS 6.34E-01 1.83E-01 8.57E-06 5.59E-08 1.34E-08
QONQEQ 6.06E-03 2.62E+01 6.88E-06 1.75E-07 4,18E-08
RAZYIC 1.20E-02 5.62E+01 9.39E-06 6.88E-08 1.64E-08
SABVOH 7.91E-02 2.47E+03 6.67E-06 1.65E-07 3.94E-08
SABVOHO01 1.14E-01 2.60E+02 6.91E-06 1.64E-07 3.92E-08
SABVUN 2.40E-02 1.53E+02 6.92E-06 1.69E-07 4.03E-08
UiO-66-CFs  9.49E-03 1.20E-02 2.03E-06 3.74E-07 1.90E-07
UTEWOG 4.21E-02 7.69E+00 8.90E-06 1.05E-07 2.52E-08
UTEXAT 4.98E-03 1.54E-01 8.36E-06 7.20E-08 1.72E-08
UTEXIB 5.45E-03 5.30E+02 8.32E-06 7.90E-08 1.89E-08
WAYMIU 2.14E-02 2.99E+03 7.62E-06 1.69E-07 4.03E-08
WAYMOA 9.25E-03 9.69E+01 6.29E-06 1.73E-07 4,13E-08
XUNJEW 2.31E-03 3.22E+00 3.53E-06 5.61E-08 1.34E-08
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For the bulk mixture adsorption condition, the partial pressure of each solvent was
set to represent MOFs being exposed to liquid solvents. It is useful to understand whether
the pores of the MOFs would be filled by solvent molecules under these conditions. We
examined this by performing single component GCMC simulations of each solvent in the
rigid MOF structure. Figure 5.A.1 shows the resulting adsorption loading from GCMC at
P%onvent as well as a simple approximate of the saturation loading of each solvent (Nsat,approx)
as calculated with Eqg. (5.A.1) using the room temperature liquid density of each solvent
(pligsolvent)®. It is clear that under these conditions the pore of each MOF are essentially

completely filled with solvent molecules.
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Figure 5.A.1. Comparison of solvent loadings estimated via single component GCMC
simulations at P = P%qlvent and 3-Psolvent® and Nsatapprox for (a) H20, (b) MeOH, and (c) IPA.
GCMC at P = P%ovent is in good agreement with Nsatapprox.

211



5.A.3 Adsorption Selectivity in Rigid and Intrinsically Flexible MOFs

Figure 5.A.2 shows adsorption selectivity calculations at 298 K at fixed P/P%arin =
0.25, and their ratio to allow direct comparisons between two approximations (reproduced
from Figures 5.3 to 5.5 in Chapter 5). The conclusions of what types of mixture and MOFs
could give higher sarin adsorption selectivity, i.e. sarin/H20 vs. sarin/MeOH, can be
similarly drawn between two approximations, though their numerical deviation is

nontrivial.
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Figure 5.A.2. Adsorption selectivities for sarin at 298 K in 23 MOFs (a) approximated as
rigid (Srigia) and (b) allowed to have intrinsic flexibility (Sriexible) for each molecular
mixture. (C) Ratio of Sriexible t0 Srigia iIN 23 MOFs for each molecular mixture. A green
dashed line shows Sriexible/Srigid = 1 indicating no effect of intrinsic flexibility on adsorption
modeling.
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5.A.4 Effect of MOF Properties on Quantitative Predictions of Selectivity

Figure 5.A.3a compares LCD and PLD in rigid MOFs against those in flexible
MOFs. Pore sizes in flexible MOFs were averaged over those from each MD snapshot.
There were only marginal structural changes in MOFs by including intrinsic flexibility.

Figures 5.A.3b and 5.A.3c show the ratio of adsorption selectivity in rigid and
flexible MOFs as a function of LCD of each MOF using polar and nonpolar solvent
molecules, respectively. MOFs that have small LCDs are more affected by intrinsic
flexibility. However, we find insufficient correlation considering LCDs to identify the

underlying reasons for the sensitivity of flexibility as a function of molecular mixtures.
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Figure 5.A.3. (a) Parity plot of pore sizes, i.e. LCD and PLD, of 23 MOFs calculated in
rigid approximation (horizontal axis) and in intrinsically flexible approximation (vertical
axis). Error bars for Pore Sizeriexible Show variation over ten distinct MD snapshots.
Sriexible/ Srigid @s a function of LCD with simulations of using (b) realistic polar solvents and
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5.A.5 Molecular Modeling Details

For GCMC simulations®’, truncated potentials with tail corrections are applied
where Lennard-Jones interactions are truncated at 12 A. Simulation boxes are expanded to
at least 26 A along x, y, and z dimensions. GCMC simulations included 5,000 initialization
cycles followed by 50,000 production cycles. Henry constants were computed using
200,000 production cycles while including an identical Widom probability.

Pore volumes of computation-ready MOF structures were calculated from the void
fractions of each structure using a Widom particle insertion method with a He probe
molecule (e/ks = 10.9 K, o = 2.64 A) at 298 K.” Accessible surface areas were calculated
by using N2 as probe molecule with overlap distance criteria set to a size parameter ¢ of
3.31 A7 Largest cavity diameters and pore limiting diameters were calculated with
Zeo++%° applying the high-accuracy setting with a N2 probe molecule using a radius of
1.86 A8

For binary GCMC simulations using “unphysical” nonpolar solvent molecules we
omitted Coulombic adsorbate/adsorbate interactions'. Point charges were retained on sarin
in these calculations.

Table 5.A.3 summarizes two molecular descriptors for the solvents examined in
this work. It shows that molecular mixtures consist of adsorbates of different sizes and

polarities.

Table 5.A.3. Molecular descriptors for the solvents. Kinetic diameter! and polarity
index'?%3 of H20, MeOH, and IPA are listed. Polarity index is a relative measure of the
degree of interaction of the solvent with various polar test solutes.

H,O MeOH IPA
Kinetic diameter, d (&) 2.6 4.3 4.7
Polarity index 10.2 5.1 3.9

* Sarin* has a molecular shape of ~5 A x ~ 12 A,
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5.A.6 Numerical Data for Analysis

Table 5.A.4. Numerical data in Figures 5.3, 5.4, and 5.5. Adsorption selectivities for sarin
over solvents predicted in rigid MOFs (Srigia) and intrinsically flexible MOFs (Sriexibte), and

their ratio (Sriexible/Srigid): sarin/H20 mixture.

MOFs SRigid SFlexible SFiexible/ Srigid
AMAFOK 5.16 4.66 0.90
BARZAW 5.10 35.82 7.02
BZRZOK 5.05 32.36 6.40
COMDOY 3.81 13.14 3.45
EGELUYO01 4.19 28.07 6.69
EHALOP 7.99 25.46 3.19
HAFQOW 9.36 24.56 2.62
KEDQAN 5.52 21.40 3.88
OFORUX 4.18 6.04 144
ONIX0z 9.10 19.88 2.19
OVICUS 1.72 12.56 1.63
QONQEQ 8.36 26.69 3.19
RAZYIC 8.80 25.29 2.88
SABVOH 4.85 23.45 4.84
SABVOHO01 6.74 20.32 3.03
SABVUN 5.48 22.16 4.04
Ui0-66-CFs 33.62 11.52 0.34
UTEWOG 12.97 26.57 2.05
UTEXAT 5.59 22.39 4.01
UTEXIB 7.66 18.99 2.48
WAYMIU 6.95 23.62 3.40
WAYMOA 7.23 23.94 3.31
XUNJEW 6.65 6.93 1.04
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Table 5.A.4. Continued: sarin/MeOH mixture.

MOFs Srigid SFlexible SFlexible/ Srigid
AMAFOK 28.06 23.41 0.83
BARZAW 26.99 54.44 2.02
BZRZOK 23.44 37.51 1.60
COMDOY 39.83 22.25 0.56
EGELUYO01 23.02 28.86 1.25
EHALOP 12.75 32.71 2.56
HAFQOW 31.04 33.03 1.06
KEDQAN 14.78 35.03 2.37
OFORUX 21.99 15.38 0.70
ONIX0z 26.99 33.38 1.24
OVICUS 19.67 21.92 1.11
QONQEQ 11.40 44.77 3.93
RAZYIC 22.09 28.11 1.27
SABVOH 11.86 41.04 3.46
SABVOHO01 10.81 32.46 3.00
SABVUN 27.71 38.20 1.38
UiO-66-CF3 14.04 24.26 1.73
UTEWOG 29.37 41.82 1.42
UTEXAT 20.30 22.89 1.13
UTEXIB 12.48 24.89 1.99
WAYMIU 42.12 45.23 1.07
WAYMOA 22.83 39.33 1.72
XUNJEW 22.20 21.66 0.98
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Table 5.A.4. Continued: sarin/IPA mixture.

MOFs Srigid SFlexible SFlexible/ Srigid
AMAFOK 16.26 9.61 0.59
BARZAW 13.36 37.70 2.82
BZRZOK 19.70 33.66 1.71
COMDOY 11.32 15.34 1.36
EGELUYO01 15.54 29.30 1.89
EHALOP 18.29 33.06 1.81
HAFQOW 18.47 24.67 1.34
KEDQAN 19.74 28.53 1.45
OFORUX 17.83 9.09 0.51
ONIX0z 17.92 26.38 1.47
OVICUS 19.08 15.60 0.82
QONQEQ 8.84 28,51 3.23
RAZYIC 14.76 25.17 1.70
SABVOH 16.72 42.49 2.54
SABVOHO01 20.01 35.40 1.77
SABVUN 17.42 27.13 1.56
UiO-66-CF3 8.61 13.53 1.57
UTEWOG 14.17 36.17 2.55
UTEXAT 9.28 23.70 2.55
UTEXIB 8.39 20.92 2.49
WAYMIU 15.32 30.21 1.97
WAYMOA 15.50 33.84 2.18
XUNJEW 13.87 10.55 0.76
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Table 5.A.5. Numerical data in Figures 5.6 and 5.7. Adsorption selectivities for sarin over
solvents in rigid MOFs (Srigia) and intrinsically flexible MOFs (Sriexibie), and their ratio

(Sriexible/Srigid) calculated by using unphysical nonpolar (np) solvents: sarin/H20(np)

mixture.
MOFs Srigid SFlexible SFlexible/ Srigid
AMAFOK 4.64 3.61 0.78
BARZAW 5.13 10.91 2.12
BZRZOK 5.29 10.64 2.01
COMDOY 3.71 8.11 2.19
EGELUYO01 4.42 8.10 1.83
EHALOP 8.25 13.64 1.65
HAFQOW 10.74 1751 1.63
KEDQAN 5.30 12.41 2.34
OFORUX 4.10 6.02 1.47
ONIXO0z 9.98 11.82 1.18
OVICUS 6.97 12.61 1.81
QONQEQ 8.07 13.74 1.70
RAZYIC 9.95 16.73 1.68
SABVOH 5.05 14.04 2.78
SABVOHO01 7.37 15.72 2.13
SABVUN 5.57 13.61 2.45
UiO-66-CF3 27.62 10.53 0.38
UTEWOG 13.21 14,72 1.11
UTEXAT 6.06 13.40 2.21
UTEXIB 6.87 8.99 1.31
WAYMIU 7.18 12.25 1.70
WAYMOA 8.04 13.21 1.64
XUNJEW 6.02 6.93 1.15
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Table 5.A.5. Continued: sarin/MeOH(np) mixture.

MOFs Srigid SFlexible SFlexible/ Srigid
AMAFOK 29.11 20.40 0.70
BARZAW 25.20 34.41 1.37
BZRZOK 24.09 2751 1.14
COMDOY 36.28 20.25 0.56
EGELUYO01 23.72 25.86 1.09
EHALOP 13.48 17.71 1.31
HAFQOW 31.70 33.03 1.04
KEDQAN 14.02 25.10 1.79
OFORUX 19.49 13.38 0.69
ONIX0z 26.02 24.83 0.95
OVICUS 20.17 18.91 0.94
QONQEQ 10.97 17.58 1.60
RAZYIC 22.90 21.17 0.92
SABVOH 12.08 21.04 1.74
SABVOHO01 11.95 18.46 1.55
SABVUN 28.52 33.23 1.16
UiO-66-CF3 14.84 15.26 1.03
UTEWOG 28.90 30.80 1.07
UTEXAT 21.03 22.32 1.06
UTEXIB 11.88 14.94 1.26
WAYMIU 41.67 39.92 0.96
WAYMOA 21.08 29.68 141
XUNJEW 22.92 19.66 0.86
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Table 5.A.5. Continued: sarin/IPA(np) mixture.

MOFs Srigid SFlexible SFlexible/ Srigid
AMAFOK 15.77 10.62 0.67
BARZAW 14.94 17.72 1.19
BZRZOK 20.92 23.31 1.11
COMDOY 10.73 13.13 1.22
EGELUYO01 16.79 21.30 1.27
EHALOP 19.94 23.56 1.18
HAFQOW 18.91 19.05 1.01
KEDQAN 20.17 18.03 0.89
OFORUX 14.26 8.99 0.63
ONIX0Oz 19.72 22.84 1.16
OVICUS 18.77 15.02 0.80
QONQEQ 9.40 10.25 1.09
RAZYIC 14.90 16.82 1.13
SABVOH 17.22 27.92 1.62
SABVOHO01 20.86 25.47 1.22
SABVUN 18.56 23.33 1.26
UiO-66-CF3 8.80 10.85 1.23
UTEWOG 13.77 15.20 1.10
UTEXAT 8.81 10.79 1.22
UTEXIB 7.93 8.99 1.13
WAYMIU 14.18 17.22 1.21
WAYMOA 15.74 23.76 151
XUNJEW 14.05 11.29 0.80
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CHAPTER 6. SUMMARY AND OUTLOOK

6.1 SUMMARY OF DISSERTATION IMPACT

This dissertation used atomistic simulations to examine a sub-ambient PSA process
employing MOF adsorbents as a potential route towards post-combustion CO2 capture.
This filled a critical gap in knowledge about this kind of sub-ambient gas processing. We
also provided fundamental insights into a standard approximation of adsorption modeling

as exemplified by CWA adsorption in MOFs.

Reproducibility of experiments in psychology and biomedical science has received
enormous attention in recent years, but similar efforts have not been made in materials
chemistry. Chapter 2 addressed this issue using a meta-analysis of results from a specific
area of materials chemistry, adsorption properties of MOFs.! This represented an
innovative approach to tackling an important general problem in materials chemistry, and
the methods we introduced could be applied widely in materials chemistry and related
disciplines. This also gave us useful information on the viability of applying molecular

modeling to CO2 adsorption in MOFs.

Recent process developments have indicated that sub-ambient temperature
processes may be made economically viable for large-scale CO2 capture. Chapter 3 tackled
the important question of how whether this choice can substantially increase the CO2
capacity possible in structured adsorbents.? We showed by molecular simulation that CO>

swing capacities as high as 40 mol/kg were possible with appropriately chosen MOFs. This
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improves upon commonly accepted limits of CO2 swing capacity in a similar class of

materials by an order of magnitude.

Appropriate selection of adsorbent materials is essential in developing adsorption-
based processes such as CO2 capture. Approximate methods such as adsorbent evaluation
metrics do not completely describe the performance of adsorbents in real separation
processes. Chapter 4 assessed the correlation between approximate predictions and detailed
process model predictions of MOFs in a sub-ambient PSA. We illustrated the opportunities
and challenges in bridging approximate and detailed methods for evaluating adsorbents for

cyclic separation processes.

Molecular modeling of adsorption of CO2 and similar species in a wide range of
MOFs typically employ a rigid framework approximation. Nevertheless, all real
frameworks have intrinsic flexibility due to thermal vibrations. Chapter 5 demonstrated the
adsorptive separation of CWAs under bulk mixture adsorption conditions with solvents of
different polarities and sizes in MOFs. Our observations implied the intrinsic flexibility
can have significant effects on quantitative analysis of adsorbed molecules when

electrostatic interactions between those molecules are non-trivial.

6.2 SUGGESTIONS FOR FUTURE WORK

6.2.1 Reproducibility Analysis of Porous Material Intrinsic Properties

In Chapter 2, we examined the reproducibility of CO2 isotherm measurements in
MOF materials where ~ 20% of measurements were labeled outliers on the basis of our

metrics. We pointed out that the meta-analysis described does not provide direct physical
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insight into why a particular measurement is an outlier or why a material may have a
smaller or larger fraction of outliers. Because the measurements of simple gas adsorption
are relatively routine®?, it is reasonable to assume that most outliers occur because of
variations in the intrinsic properties of porous materials. Identification of reproducibility
on those properties of MOFs, therefore, merits further examination in terms of
understanding isotherm reproducibility. A challenge in this regard would be collecting
simple quantities that can imply the intrinsic properties of materials from hundreds and
thousands of existing literatures. The recent development of a simple text mining
algorithm* enabled identification of surface area and pore volumes of MOFs from hundreds
and thousands of reported literatures with high accuracy. This kind of approach may be a
useful tool to facilitate the collection of a large set of reference data of those properties and
additional material information. It may then be possible to conduct similar reproducibility

analysis as in Chapter 2 on various intrinsic materials properties.

6.2.2 Engineering the Inflection in Adsorption Isotherms

Chapters 3 and 4 identified high performing MOF candidates estimated at the
approximate molecular level (i.e. adsorbent evaluation metrics) and detailed process level
(i.e. industry-relevant process objectives) in terms of CO: capture in a sub-ambient PSA.
A common feature, although perhaps not a necessary condition, that underlies for high
performance is these MOFs have inflections in their CO2 adsorption isotherms that are
bracketed within the operating pressure range at temperatures we examined. Such
adsorption behavior in several rigid MOFs (i.e. materials with no structural volume change
upon gas adsorption) at low temperatures was studied in the literature.> Nonetheless, the

origin of the inflection in isotherms for rigid frameworks that compromise the majority of
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existing MOFs is still relatively unexamined. Understanding the inflection mechanism of
the sub-ambient CO2 adsorption isotherms in rigid MOFs would, therefore, enable utilizing
many existing MOFs in a process. This would also lead to exploiting the inflection point
induced into the pressure swing range by material engineering to achieve larger swing
capacity (and/or other performance metrics) in a cyclic adsorption process. Simon et al.®
have posed a statistical mechanical model of gas adsorption dictating the condition for the
inflection point in isotherm is related to the chemical potential of the adsorbate. Similar
efforts could pave a way to derive thermodynamic principle that induces inflections in

isotherms.

6.2.3 Sub-Ambient CO2 Adsorption Modeling in Intrinsically Flexible MOFs

CO:2 adsorption modeling in the presence of N2 throughout this thesis was
conducted employing a rigid framework approximation of MOFs. In Chapter 5, however,
we observed considerable discrepancies of adsorption selectivity for CWA over various
solvents between calculations in rigid and intrinsically flexible frameworks. Such impact
was dominantly attributed to the fact that bulk mixtures we examined were consisted of
molecules of having strong interactions between adsorbing molecules. This is consistent
with previous observations indicating electrostatic interactions are a contributing factor in
under-/overestimation of adsorption properties by including the flexibility effect, even for
large pore MOFs.” Gee et al. showed flexibility in adsorption modeling can also be
significant in MOFs at high loadings of adsorbing molecules.® CO2 in post-combustion flue
gas is a quadrupolar molecule that can induce non-trivial electrostatic interactions with N2
or with other species in a flue gas mixture. In addition, the results in Chapters 3 and 4

pointed large CO2 adsorbed amounts at sub-ambient temperatures were attained in large
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open pore MOFs. These observations, thereby, make it interesting to consider sub-ambient
CO2 adsorption behavior under a bulk flue gas mixture condition in large pore MOFs by

taking account of their intrinsic flexibility.
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