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Reduce the cost of capital and improve reliability of solar by 

leveraging industry data and advanced analytics to quantify 

and predict system performance degradation.

Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

PROJECT NAME: Deciphering 
Degradation: Machine Learning on Real-
World Performance Data
Principal Investigator (PI): Adam Shinn
PI Email: adam.shinn@kwhanalytics.com

Project Contributors: Alexander Barriga, Paul Young, Aditi Raval, Hao Shen, Jason Kaminsky, and Adam Shinn
Institution: kWh Analytics, Inc.

• By identifying drivers of system performance 
degradation, we enable the industry to improve the 
reliability of solar and attract capital to high 
performing systems from the finance community.

• Data-driven analysis on Solar PV system 
performance and degradation is limited.

• Training a machine learning model on industry data 
can drive insights into impacts on degradation & 
system performance.

• Need to analyze additional systems to improve the 
accuracy of the machine learning model.

• We will disseminate the results and educate the 
finance community in order to move capital to 
developing high-performing systems and improve the 
overall reliability of systems in the solar industry.

1. Aggregate the largest dataset on real-world solar 
performance.

2. Analyze system degradation rates using RdTools.
3. Train a machine learning model to identify the key 

features that determine system performance.
4. Disseminate findings and educate the finance 

community on where to deploy capital.

PROJECT OVERVIEW / OBJECTIVES 

BACKGROUND

METHODS

NEXT STEPS

KEY OUTCOMES / MILESTONES
• We have analyzed the degradation rates from over 

10,000 solar systems using the open source RdTools
methodology.

• We have begun developing a machine learning 
model to identify predictor variables of system 
degradation.
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PROJECT WORKFLOW AND IMPACT

Degradation results measured using RdTools methodology

Initial Model Development Approach & Success Metrics

Model Approach:
§ Gradient Boosted Trees, Ensemble
Potential Success Metrics:
§ R-Squared: How much variance is explained by features?
§ Mean Bias Difference: Is there systematic bias in model predictions?
§ Mean Absolute Difference: How far off is the prediction?

§ The market will naturally fund 
and allocate capital to develop 
solar systems that perform 
better (e.g. lower performance 
losses from degradation

§ Collect sub-daily interval data on 
energy generation & weather

§ Collect system design and system 
metadata

§ Open Source methodology for 
calculating YoY system performance 
degradation

§ Can be measured at revenue grade 
meter, inverter, or sub-inverter

§ Data-driven insights on causes of 
degradation and performance 
loss will inform intelligent 
investments into high performing 
solar systems

§ The machine learning model 
will identify key features that 
drive degradation and 
performance loss

Model Features:
§ Module Metadata: Make/Model, Technology, Vintage, CEC Fields
§ Environmental Factors: Module Temp, Temp Cycling, Humidity, etc.
§ System Design: Inverter type, Mount Type, Shading, etc.
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