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Reduce the cost of capital and improve reliability of solar by
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 Data-driven analysis on Solar PV system
performance and degradation is limited.
 Training a machine learning model on industry data PROJECT WORKFLOW AND IMPACT
can drive insights into impacts on degradation &
system performance.

Support Funding of Aggregate Solar Measure
PROJECT OVERVIEW / OBJECTIVES Reliable Solar Systems Performance Data Degradation Rates
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By identifying drivers of system performance and allocate capital to develop energy generation & weather calculating YoY system performance
degradation, we enable the industry to improve the solar systems that perform = Collect system design and system degradation
reliability of solar and attract capital to high better (e.g. lower performance metadata " Canbe measured at revenue grade
losses from degradation meter, inverter, or sub-inverter

performing systems from the finance community.

L Initial Residential Results:

Degradation results measured using RdTools methodology
Measured Degradation of 10,034 Residential Systems
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e We have analyzed the degradation rates from over In High-rerrorming Degradation on Degradation
. Solar Systems . . 0.0 ) ) ) !
10,000 solar systems using the open source RdTools = The machine learning model 10 8 6 4 2 0 2 4
methodology. = Data-driven insights on causes of will identify key features that Rate of Change (%/year)
. . . degradation and performance drive degradation and
*  We have begun developing a machine learning loss will inform intelligent performance loss
model to identify predictor variables of system investments into high performing

degradation solar systems

NEXT STEPS Initial Model Development Approach & Success Metrics

 Need to analyze additional systems to improve the

accuracy of the machine learning model. Mode! A'pproach: Model Features:
. . " Gradient Boosted Trees, Ensemble * Module Metadata: Make/Model, Technology, Vintage, CEC Fields
* We will disseminate the results and educate the Potential Success Metrics: " Environmental Factors: Module Temp, Temp Cycling, Humidity, etc.
finance community in order to move capital to = R-Squared: How much variance is explained by features? = System Design: Inverter type, Mount Type, Shading, etc.
developing high-performing systems and improve the * Mean Bias Difference: Is there systematic bias in model predictions?
overall reliability of systems in the solar industry. = Mean Absolute Difference: How far off is the prediction?
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