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• Bridge the vast scale gap between lab experiments and field-scale application.

• Validate EGS codes in a relevant environment.

• Key strategic choices:
• EGS-relevant stress state (~1500 m depth)

• Temperature friendly to operation and measurement. (~35°C)
• Compensated by circulating chilled water

• Heavy investment in characterization and monitoring.

• A collaborative research community.

Motivations and philosophy



• Experiment 1, intended to 
investigate hydraulic 
fracturing*, at the Sanford 
Underground Research Facility 
(SURF) at 1.5 km. depth.

• Experiment 2 is being designed 
to investigate shear 
stimulation* at 1.25 km depth. 

• Experiment 3 will investigate 
changes in fracturing strategies 
and will be further specified as 
the project proceeds. 

EGS Collab Experiments: Three phases

Each experiment consists of multiple stimulations; and 
characterizations of flow, tracer, and heat transfer behavior. 

*
**

Conceptual design
Monitoring

Stimulation

Production

Borehole Key



Modeling in support of experiment design
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Borehole

• Optical and acoustic televiewer

• Full waveform seismic

• Electromagnetic

• Gamma

• Temperature

• Fluid conductivity

Test “block”

• P- and S-wave characterization using 
mobile and  grouted borehole sensors, 
grouted and mobile sources

• Extended hydrologic characterizations

• Electrical Resistance Tomography (ERT), 
baseline and flow

Core

• Lithologies, fractures, and veins

• X-ray CT, magnetic susceptibility, gamma 
density, p-wave velocity, Ca/Si, Ca/Al, 
Si/Al, and Fe/S ratios, light elements, Ca, 
and Si abundance

Testbed Characterization
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• Acoustic emissions (AE) 

• Continuous Active-Source 
Seismic Monitoring 
(CASSM)* 

• MicroEarthquake (MEQ)*

• Electrical Resistance 
Tomography (ERT) 

• Temperature by distributed 
temperature sensing (DTS), 
thermistors

• Strain by distributed strain 
sensing (DSS)

• Direct 3-D fracture 
displacement using SIMFIP 
at injection and production 
boreholes

Monitoring systems for stimulation and flow
Fracture Perpendicular Configuration

ERT electrodes

thermistors

grouting tube

electrically resistive
grout

ML-CASSM 

(active seismic) sources

or hydrophone 
(depending on borehole)

High frequency 

accelerometers 

(passive seismic) 
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Step-rate Injection Method
for Fracture In-situ Properties 

(Neupane et al., GRC, 2019)



Major experiments/tests performed as part of Exp. 1 

May to July, 2018: 
Stimulations of three 
intervals; established 
hydraulic connection 
between wells.

Oct. to Nov., 2018: 
One month of 
cont. circulation; 
90+% recovery for 
4 days; revealed 
chemical/bio-
complexity.

Dec. 2018: Further 
stimulation of the 142 ft 
interval. Stimulated a large 
natural fracture system and 
new hydraulic fractures

Feb. 2019 to 
present: Long-
term circulation, 
tracer tests, 
thermal tests.

All subjected to continuous 
geophysical monitoring and 
extensive analysis aided by near-
real time numerical modeling.



Multiple types of data corroborate each other

• e.g., to discern the 
nature of the 
fracture(s) 
stimulated in May 
2018 and constrain 
the orientation, we 
had:
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Stimulation and flow tests – Notch 2

 One-sided fracture growing 
towards E1-P & E1-OT

 Main fracture orientation 
consistent with hydraulic 
fracture || SHMax

 Fracture growth direction 
changes from upward, to 
downward, to detached 
structures
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Engaging a large community of researchers in near-real time



Extensive laboratory testing

• Seismic anisotropy

• Anisotropic thermal conductivity

• Elastic constants

• Fracture toughness

• Microbiology

• High-Temperature flow/geochemistry

• Triaxial direct shear test

• True triaxial and triaxial injection

• …
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High-fidelity characteristics/behaviors of rock-fracture-fluid system

Hari Neupane (INL)The CDFNM Team



• Excellent characterization data

• Modeling studies to predict/analyze tests/occurrences

• MEQ/ERT; MEQ/CASSM/DTS; MEQ/DAS comparisons

• Predicted/actual fracture behavior/direction in 
thermally induced stress gradient

• Fracture opening and shear (SIMFIP)

• Analysis/stress testing of multiple test beds

• System evaluation by tracer/thermal tests 

• Observation of fracture intersecting production well

• Data handling

• Team of scientists collaborating from many remote 
locations to modify experimental parameters in real 
time to stimulate rock 1.5 km below ground.

• Identification of negative Joule-Thomson coefficients as 
being a factor in assessing thermal breakthrough 
signatures.

Partial list of successes



• Design-in flexibility to the extent possible. Seek open feedback.

• Shake down/test equipment, sensors, and methods under appropriate 
conditions prior to installation
• Primary systems shaken down but some supporting infrastructure (e.g., grouting 

of instrument holes) would have benefitted from preliminary testing 

• Openly analyze all characterization data, make available to all ASAP
• Amount of data collected during experimental operations can be overwhelming 

– development of robust workflows to review all the data is vital

• Model responses of geophysical tools (microseismic, CASSM, and ERT) to 
optimize sensor placement locations prior to deployment.
• Modeling was performed but in hindsight could have been used better to weigh 

optimization of sensor emplacement against impact on experimental operation 

• Continuously challenge conceptual models and submodels. Recall 
previously ignored processes.
• What you expect may well not be what you get.

EGS Collab High-Level Lessons Learned


