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Abstract 

Hexagonal boron nitride nanosheets (h-BNNS), the isoelectric analog to graphene, have received 

much attention over the past decade due to their high thermal oxidative resistance, high bandgap, 

catalytic activity and low cost. The molecular functional groups that terminate boron and 

nitrogen zigzag and/or armchair edges directly affect their chemical, physical and electronic 

properties. However, an understanding of the exact molecular edge termination present in h-

BNNS is lacking. Here, high-resolution magic-angle spinning (MAS) solid-state NMR (SSNMR) 

spectroscopy and plane-wave density-functional theory (DFT) calculations are used to determine 

the exact molecular edge termination in exfoliated h-BNNS. 1H→11B cross-polarization MAS 

(CPMAS) SSNMR spectra of h-BNNS revealed multiple hydroxyl/oxygen coordinate boron 

edge sites that were not detectable in direct excitation experiments. A dynamic nuclear 

polarization (DNP)-enhanced 1H→15N CPMAS spectrum of h-BNNS displayed four distinct 15N 

resonances while a 2D 1H{14N} dipolar-HMQC spectrum revealed three distinct 14N 

environments. Plane-wave DFT calculations were used to construct model edge structures and 

predict the corresponding 11B, 14N and 15N SSNMR spectra. Comparison of the experimental and 

predicted SSNMR spectra confirms that zigzag and armchair edges with both amine and boron 

hydroxide/oxide termination are present. The detailed characterization of h-BNNS molecular 



edge termination will provide usefulness for many material science applications and the 

techniques outlined here should be applicable to comprehensively understand the molecular edge 

terminations in other 2D materials. 

Introduction 

Atomically thin layered materials are of high importance due to their unique physical, 

chemical and electronic properties. Since the pioneering work by Novoselov et. al. on graphene in 

2004,1 extensive work has emerged on graphene2-6 and other two-dimensional (2D) materials, such 

as hexagonal boron nitride (h-BN) nanosheets (h-BNNS),7-15 transition metal dichalcogenide 

nanosheets,7, 11, 16 borophenes,17-20 phosphorenes,21-23 etc. h-BN, an isoelectric analog to graphite, 

can be exfoliated to yield h-BNNS in a similar manner as graphene (Scheme 1).8-9, 24-27 h-BNNS, 

sometimes referred to as white graphene, has received much attention over the past decade due to 

their high thermal oxidative resistance (ca. 840 oC),28 high bandgap (5-6 eV),8, 25, 29-30 catalytic 

activity,31-35 and low cost. Recently, h-BN/h-BNNS31, 34-36 and h-BN hybrids37-39 have been shown 

to be promising metal-free catalysts for a variety of reactions. Notably, h-BN was recently shown 

to be an excellent catalyst for the selective oxidative dehydrogenation (ODH) of propane to 

propene, a critical feedstock chemical.31  

A comprehensive understanding of structure-function relationships is required for the 

rational design and further development of next-generation materials. While the bulk structure of 

h-BN has been known for over a half century from X-ray diffraction (XRD) studies,40 the exact 

molecular edge termination of h-BN and h-BNNS (Scheme 1) is unknown, despite their likely 

importance for catalysis31-34 and material science applications.41-44 Previously, a high-resolution 

transmission electron microscopy (HRTEM) study of mono-layered h-BNNS revealed both zigzag 

and armchair edge termination of the sheets occurs.45 However, microscopy images may not be 



representative of the ensemble and many edge terminations have been proposed. For example, Lin 

et. al. suggested boron edges terminated with hydroxyl groups are favored as a result from 

sonication assisted hydrolysis during the aqueous exfoliation process in water.27 Density-

functional theory (DFT) calculations by Lopez-Bezanilla et. al. suggested that armchair edges are 

favorable, with B-OH and N-OH functional groups stabilized through a hydrogen-bonding 

network.46 Numerous other computational studies have predicted stable molecular edge structures 

and the corresponding electronic properties for h-BN systems.42, 47-55 Furthermore, several edge 

structures have been proposed as catalytically active sites for the selective ODH of alkanes to 

alkenes.31-33, 35 Arunachalam et. al. used one-dimensional (1D) direct excitation 1H and 11B solid-

state NMR (SSNMR) experiments to characterize h-BNNS. They suggested that both N-H and B-

OH edge termination occurs, however, their 1D NMR spectra do not provide definitive evidence 

for N-H and B-OH edge terminations.56 In summary, analysis of the prior literature clearly 

demonstrates that the exact molecular edge termination of h-BN and h-BNNS is still unknown. 

The molecular structure of the h-BNNS edges is likely unknown because common 

characterization techniques for 2D materials, such as scanning electron microscopy (SEM) or 

TEM, powder or single-crystal XRD, X-ray photoelectron spectroscopy (XPS) and Raman 

spectroscopy, often provide only a partial picture of molecular structure. It is often difficult to 

determine the exact molecular structure of edge/defect sites in 2D materials because they 

typically exhibit structural disorder and the bulk sites are orders of magnitude higher in 

concentration. High-resolution magic-angle spinning (MAS) solid-state NMR (SSNMR) 

spectroscopy is a powerful technique to probe and comprehensively characterize layered 

materials.57-63 For example, 13C homonuclear correlation SSNMR experiments of 13C-labeled 

graphene oxide provide the molecular structure and bonding connectivities between sp2 carbons 



and functional groups present within the material.64 Polarization transfer techniques, such as 

cross-polarization (CP), heteronuclear multiple-quantum correlation (HMQC) and insensitive 

nuclei polarization transfer (INEPT), may be used to selectively detect only edge and/or defect 

sites within materials, thus allowing for the possibility to determine the exact molecular structure 

of edge and/or defect sites.65-69 

 

 

 

Scheme 1. Illustration for the sonication assisted exfoliation of bulk h-BN to h-BNNS. The 

nitrogen (N-) and boron (B-) zigzag and armchair edges are indicated. Two possible zigzag 

molecular edge terminations are shown. 

 

Here, we use state-of-the-art high-resolution SSNMR spectroscopy, including dynamic nuclear 

polarization (DNP) and fast magic angle spinning (MAS) heteronuclear correlation experiments, 

in conjunction with periodic plane-wave density-functional theory (DFT) calculations to probe and 

determine the exact molecular edge termination in h-BNNS. h-BNNS were synthesized via 

sonication assisted exfoliation of h-BN in water. Electron microscopy (SEM and TEM) images 

before (h-BN) and after (h-BNNS) sonication confirmed the nanosheets were successfully 



exfoliated from the bulk material with lateral dimensions between 40 and 250 nm and typical 

sheets consisting of ca. 10-50 BN layers. Variable temperature diffusive reflectance infrared 

Fourier transform (DRIFTS) spectroscopy suggested possible molecular functional groups present 

on the edge of the BN sheets. 1H→11B CPMAS SSNMR spectroscopy experiments revealed 

hydroxyl/oxygen coordinated boron edge sites that were not detectable in direct excitation 11B 

NMR experiments. DNP-enhanced 11B homonuclear correlation spin-diffusion experiments 

confirm the proximity of the boron edge sites to that of bulk boron atoms within the BN lattice.  

DNP-enhanced 1H→15N CPMAS experiments at natural isotopic abundance (ca. 0.37 %) revealed 

four distinct nitrogenenvironments while 1H{14N} dipolar-HMQC (D-HMQC) experiments 

indicated three distinct nitrogen environments. Measurement of the 1H-14N dipolar coupling 

constant unambiguously confirms the presence of N-H edge termination. Finally, periodic plane-

wave DFT calculations were performed to build model edge structures and predict 11B, 14N and 

15N SSNMR spectra. DFT calculated 11B spectra of model edge termination structures illustrated 

that increasing hydroxyl/oxygen coordination decreased the 11B isotropic chemical shift (diso), 

lending credence to the assigned boron edge molecular structures. Comparison between the 

experimental and DFT calculated 14N and 15N NMR spectra confirms that both N-H armchair and 

zigzag amine edge termination occurs, with the armchair N-H edge termination being the more 

prevalent amine termination. 

 



Results and Discussion 

 

Figure 1. (A) SEM image of h-BN showing lateral dimensions and layer thickness. (B-E) TEM 

images of h-BNNS showing (B) lateral dimension, (C) thickness (~ 25 layers), (D) honeycomb 

lattice and (E) edge sites. (F-G) Variable temperature DRIFTS spectra of (F) h-BN and (G) h-

BNNS ranging from  40 oC (green) to 300 oC (red) under an He atmosphere. 

 

Electron Microscopy. SEM and TEM imaging are frequently used to investigate the exfoliation 

of bulk materials to atomically thin layered materials.6, 26, 70-73 Here, we used SEM and TEM to 

directly image the bulk (h-BN) and exfoliated (h-BNNS) materials to determine the lateral 

dimensions, layer thickness and attempted to unravel the edge termination. An SEM image of h-

BN clearly demonstrates the bulk-like nature of the material with layer thickness up to ca. 300 nm 

(Figure 1A). Assuming an interlayer spacing equal to 3.33 Å, a thickness of 300 nm corresponds 

to ca. 900 BN layers (Scheme 1).40 Analysis of the individual h-BN flakes shows there is a large 



distribution of lateral sizes, ranging from ca. 10 nm to 1 µm (Figure 1A). After liquid exfoliation, 

there are clear changes in the lateral sizes and thickness of the sheets. A low magnification TEM 

image of h-BNNS indicates sheet-like features as the contrast is fairly constant across the image 

(Figure 1B). By obtaining higher magnification TEM images of the sheets parallel to the plane of 

the electron beam, we can conclude the thickness ranges from ca. 3-17 nm, corresponding to ca. 

10-50 BN layers (interlayer spacing ca. 3.6 Å, Figure S1). The reduced thickness confirms the 

successful exfoliation of h-BN (Figure 1C and S2). It should be noted that the lateral sheet width 

of h-BNNS is ca. 40 to 250 nm, a much smaller size distribution than was observed for h-BN 

(Figure 1B and S3A). Previously, it was suggested that sonication assisted hydrolysis occurs 

during the exfoliation of h-BN in water, leading to smaller lateral sheet dimensions and B-(OH)2 

edge terminations.27 However, it is important to keep in mind that centrifugation is used to isolate 

the exfoliated nanosheets after sonication, likely favoring a smaller range of lateral dimensions 

and layer thicknesses.9, 24  We attempted to obtain high magnification TEM images of the edges 

of h-BNNS to determine whether zigzag and/or armchair termination is present (Figure 1E and 

Figure S3B). Unfortunately, edge features could not be resolved due to the high amount of disorder 

at the edges and the stacking of multiple layers.  

IR Spectroscopy. To determine the possible functional groups present on the edges of h-BN 

and h-BNNS, we performed diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 

at temperatures ranging from 40 oC to 300 oC under a constant flow of He. The DRIFTS spectra 

of h-BN (Figure 1F) and h-BNNS (Figure 1G) both exhibit a high-intensity B-N stretch (ca. 1450 

cm–1) and a low, broad intensity peak at ca. 3400 cm–1, the stretching frequency region typical of 

N-H and O-H bonds.74 A third peak is observed in the DRIFTS spectrum of h-BNNS of medium 

intensity at ca. 1115 cm–1, approximately the same frequency observed for a B-O-H bend in boric 



acid.75-76 Upon heating the sample from 40 oC to 300 oC, only the peak at ca. 3400 cm–1 decreased 

in intensity, indicating the removal of absorbed water and/or edge hydroxyl groups. 

 In summary, electron microscopy and infrared spectroscopy suggest that h-BNNS was 

successfully exfoliated from the bulk material (h-BN) in an aqueous solution (H2O) and the edges 

are highly disordered, possibly due to amine, hydroxide and oxide edge functionalization. 

However, there is still a lack of understanding about the type of edge termination (zigzag and/or 

armchair) and the molecular edge composition; that is, whether amine, hydroxyl or oxide 

functional groups are present on the zigzag and/or armchair edges. Therefore, we turn to high-

resolution SSNMR spectroscopy and periodic plane-wave DFT calculations to probe and 

unambiguously determine the possible molecular edge terminations in h-BNNS.  

 

 



 

Figure 2: MAS 11B spin echo and 1H→11B cross polarization MAS (CPMAS) NMR spectra of 

(A, C) h-BN and (B, D) h-BNNS. The black (top) spectra correspond to the experimental data and 

the red (bottom) spectra are analytical simulations of central transition quadrupolar powder 

patterns. The 1H→11B CPMAS NMR spectra were obtained with a 320 µs CP contact time. The 

dashed gray line indicates diso(11B) for the bulk BN3 11B signals (spectra A, B and the transparent 

red fit for C and D). (E, F) 2D 1H→11B dipolar-refocused INEPT (D-RINEPT) spectra of (E) h-

BN and (F) h-BNNS obtained with 480 µs of total 𝑆𝑅4%& heteronuclear dipolar recoupling. Spectra 

A-D were acquired at 14.1 T with 25 kHz MAS and spectra E-F were acquired at 9.4 T with 50 

kHz MAS.  
 

11B Solid-State NMR Spectroscopy. The molecular edge termination of h-BN and h-BNNS was 

first investigated by 11B SSNMR spectroscopy. 11B is an I = 3/2 half-integer quadrupolar nucleus 

that has a high natural isotopic abundance (ca. 80 %) and a relatively high Larmor frequency 



(n0(11B) = 128 MHz and n0(1H) = 400 MHz at 9.4 T). 11B isotropic chemical shifts (diso) and electric 

field gradient (EFG) tensor parameters [quadrupolar coupling constant (CQ) and asymmetry 

parameter (h)] provide information about the elements and symmetry around the boron nucleus.77-

80  Direct excitation 11B spin echo spectra were recorded for h-BN (Figure 2A) and h-BNNS (Figure 

2B) with 25 kHz MAS at 14.1 T (n0(1H) = 600 MHz). The 11B spin echo SSNMR spectra of both 

samples display a single quadrupolar powder pattern which is consistent with previously reported 

11B SSNMR spectra of bulk h-BN81-83 and corresponds to the boron atoms within the bulk of the 

sheets (diso= 29.5 ppm, CQ = 2.85 MHz and h = 0.0). The direct excitation 11B spin echo spectra 

appear to indicate that all boron are trigonal-planar BN3 in both h-BN and h-BNNS because only 

a single site is observed. However, the 11B NMR signals from edge sites will be overwhelmed by 

the intense 11B NMR signals from bulk-like boron atoms within the BN sheets that correspond to 

ca. 95-99% of all boron atoms in the sample. Therefore, surface/edge-selective SSNMR techniques 

are required to resolve additional 11B NMR signals that were previously obscured in the direct 

excitation spectra. The NMR signals of 11B spins near to the edges can be selectively detected by 

transferring polarization from 1H spins.65-69 While recent work has shown that defect sites can be 

created in the interior of the BN sheets resulting from electron beam irradiation or oxidative 

etching,84-88 the TEM images of h-BNNS show that the bulk of the sheets are relatively pristine 

and defect-free, suggesting that 1H spins should mainly be limited to the outer edges (Figure 1D).  

Cross polarization (CP) was first used to transfer magnetization from 1H to 11B and selectively 

detect 11B spins at or near the edge of the BN sheets. The 1H→11B CPMAS spectra of h-BN (Figure 

2C) and h-BNNS (Figure 2D) display a relatively featureless broad signal from ca. 7-32 ppm and 

a sharp signal near 2 ppm. Both 11B CPMAS spectra were fit to seven identical central transition 

quadrupolar powder pattern sites with varying peak areas (Table 1). The reliability of the peak fits 



was confirmed by fitting the edge-selective 11B SSNMR spectra obtained at 9.4 T to identical 

parameters (diso, CQ, h and peak area, Figure S4).  

 Simulations suggest that the relatively featureless NMR signal (7-32 ppm) in the 1H→11B 

CPMAS spectra consist of multiple 3-coordinate boron sites with a distribution in their diso (ca. 30-

20 ppm) and the same CQ (2.85 MHz) and h (0.0) for each site (Table 1). It is well known that 

trigonal-planar 11B nuclei typically exhibit a CQ between 2.5 and 3.0 MHz.79, 83, 89 Therefore, the 

simulation suggests that all sites with chemical shifts between 30 and 20 ppm possess trigonal-

planar symmetry. The 11B signal that resonates at the highest observed frequency (diso = 30.2 ppm, 

red fit) is similar to the direct excitation 11B spin echo spectrum, suggesting this site corresponds 

to bulk-like BN3  sites near to the edge of the sheets. The other trigonal-planar 11B signals observed 

in the 1H→11B CPMAS spectra show a lower diso(11B) compared to the BN3 sites. Based upon 

literature 11B chemical shifts,79, 83, 89 it is known that diso(11B) is reduced when oxygen atoms or 

hydroxide groups substitute for nitrogen atoms around trigonal-planar boron sites. Therefore, 11B 

NMR signals with a diso of 27-28 ppm (blue and green fits) likely arise from edge sites with a 

single OH group (trigonal-planar BN2(OH)), while sites with lower diso between 20-24 ppm (pink 

and orange fits) likely result from edge sites with two hydroxyl groups or one hydroxyl group and 

one bridging oxygen atom (trigonal-planar BN(OH)2 or BNO(OH) sites). The sharp, well-resolved 

signals with an diso of 1.2 ppm (brown fit) and 2.6 ppm (purple fit) correspond to four-coordinate 

boron environments, likely coordinated by nitrogen and multiple hydroxyl groups/bridging oxygen 

atoms.79, 90-92 The relatively small CQ of 1 MHz and low chemical shift confirms there is tetrahedral 

symmetry at these boron sites. All of the 11B spectral fits and peak assignments are validated by 

periodic plane-wave DFT calculations (see below). It is worth noting that the relative 11B peak 

areas observed in the 1H→11B CPMAS spectrum of h-BNNS is nearly constant across the 



distribution in the diso(11B), while for the bulk material (h-BN) the higher frequency signals are 

much more abundant than the lower frequency signals (Table 1, Figure S5). This suggests that 

additional oxidation/hydrolysis of the edges occurs during the sonication process in an aqueous 

solution used to exfoliate the BN layers. 

 
Table 1: Relative peak areas for the fitted 1H→11B CPMAS spectra of h-BN and h-BNNSa 

diso 
(ppm) 

Relative Peak 
Population for 

h-BN (%) 

Relative Peak 
Population for 
h-BNNS (%) 

30.2b 13.4 18.5 
28.3b 29.1 26.7 
26.8b 29.8 6.8 
23.6b 18.6 13.0 
20.3b 3.6 14.8 
2.6c 3.1 9.2 
1.2c 2.4 11.0 

ah-BN and h-BNNS 1H→11B CPMAS spectra were fit to the exact same parameter. bCQ = 2.85 
MHz and h = 0.0. cCQ = 1.0 MHz and h = 0.0. 
 

In order to observe the 1H chemical shifts associated with the boron terminated edges, we 

recorded two-dimensional (2D) 1H→11B dipolar-refocused INEPT (D-RINEPT)93-94 heteronuclear 

correlation (HETCOR) spectra for h-BN and h-BNNS at 9.4 T with 50 kHz MAS (Figure 2E and 

2F). The 1H SSNMR spin echo spectrum of h-BNNS was previously reported and it was suggested 

that the higher frequency 1H signals (ca. 8 ppm) corresponded to hydroxyl groups on the edges of 

the BN sheets.56 However, this assignment was only justified by noting that the 1H NMR signal of 

boric acid resonates at ca. 8.8 ppm (Figure S6). Here we obtained 2D 1H→11B D-RINEPT NMR 

spectra with a short duration of 𝑆𝑅4%& heteronuclear dipolar recoupling  (480 µs in total) to directly 

observe 1H spins in close proximity to boron atoms. The 2D 1H→11B D-RINEPT spectra of h-BN 

and h-BNNS exhibit 11B correlations to broad 1H signals spanning a frequency from ca. 1-12 ppm 

with maximum signal correlation occurring at ca. 5.5 ppm and 7 ppm for the four- and three-

coordinate boron sites, respectively.  



 

Figure 3: DNP-enhanced 1D 1H→11B CP 11B spin-diffusion spectra of (A) h-BN and (B) h-BNNS. 

All spectra were acquired on a 400 MHz/263 GHz DNP spectrometer with 10 kHz MAS and a 

sample temperature of ca. 100 K. Three 11B spin-diffusion spectra are shown for simplicity (left) 

and the corresponding curves (right) show all spin diffusion points ranging from 0.1 ms to 100 ms 

(Figure S7). The blue, red and green dots represent bulk (BN3), 3-coordinate edge and 4-coordinate 

edge, respectively. The black line does not represent any significance but is used as a guide for the 

reader. The blue, red and green dashed regions overlaid on the 1D spectra indicate the regions of 

integration used to construct the spin-diffusion curves.  

 

 Edge selective 1D 11B spin-diffusion SSNMR experiments were performed to confirm that 

the 11B NMR signals in the edge selective SSNMR experiments originate from boron atoms 

residing on the edge of the BN sheets and are not from residual precursors or impurity phases. It 

has previously been demonstrated that 11B spin-diffusion readily occurs between 11B spins within 

organic and inorganic boron compounds.80, 95 In 11B spin-diffusion experiments, the 11B NMR 

signals are measured as a function of the 11B spin-diffusion period. The rate at which spin-diffusion 



occurs is primarily determined by the distance (dipolar coupling constant) between the two 

spins.95-97 Dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS)68, 98-

101 was used to enhance the sensitivity of the edge selective NMR signals, allowing the 11B spin-

diffusion experiments to be performed in just minutes. The h-BN and h-BNNS samples were 

prepared for DNP by impregnating them with a TEKPol tetrachloroethane solution.68, 102 High 1H 

DNP enhancements (eH) above 200 were observed for h-BN and h-BNNS, consistent with prior 

observations that boron nitride materials give high proton DNP enhancements (Figure S8).83, 103 

Eight 1D 11B spin-diffusion SSNMR spectra were recorded for both h-BN (Figure 3A) and h-

BNNS (Figure 3B) with varying 11B spin-diffusion times from 100 µs to 100 ms. As the 11B spin-

diffusion period increases, there is a clear transfer of signal intensity from the edge 11B NMR 

signals to bulk-like 11B NMR signals, indicating 11B spin-diffusion from edge site boron atoms to 

bulk-like boron atoms occurs rapidly. Importantly, the 11B spin-diffusion experiments confirm that 

the assigned edge signals are not from phase-separated precursors or impurities.  

 



 

Figure 4: (A) DNP-enhanced 1H→15N CPMAS spectra of (top) h-BN and (bottom) h-BNNS 

recorded at natural isotopic abundance and with a 5 ms CP contact time. Both spectra were 

acquired on a 400 MHz/263 GHz DNP spectrometer with 10 kHz MAS and a sample temperature 

of ca. 100 K. (B) 2D 1H{14N} dipolar-HMQC (D-HMQC) spectra of (red) h-BN and (blue) h-

BNNS acquired at 9.4 T with 50 kHz MAS. Both spectra were acquired with 400 µs of total 𝑆𝑅4%& 

heteronuclear dipolar recoupling. (C) 1H-14N dipolar recoupling build-up curve of (black 

diamonds) h-BNNS (1H peak at ~ 7 ppm) and numerically simulated (SIMPSON)104 curves for 

corresponding N-H distances of (red) 0.98 Å, (purple) 1.0 Å, (green) 1.02 Å and (orange) 1.82 Å 

(resembling an N-OH group). 



 
15N and 14N Solid-State NMR Spectroscopy. 14N and 15N SSNMR spectroscopy was used 

to determine the exact nitrogen molecular edge termination present in h-BN and h-BNNS. 

Nitrogen has two NMR active nuclei, 14N and 15N, with 15N being preferred because it is an I = 1/2 

nucleus whereas 14N is an I = 1 quadrupolar nucleus. However, the low natural isotopic abundance 

of 15N (ca. 0.37 %) would normally necessitate 15N-labelling to perform edge selective 15N 

SSNMR experiments. However, natural isotopic abundance 15N SSNMR spectra could be recorded 

with DNP SENS. The DNP-enhanced 1H → 15N CPMAS spectra of h-BN (top) and h-BNNS 

(bottom) were obtained in more than 12 hours each, despite the fact that the 1H DNP enhancements 

were above 200 for each sample; without the sensitivity gains provided by DNP these experiments 

would have required over 20 years of signal averaging for each sample. The 15N CPMAS spectra 

were acquired with a 5 ms CP contact time to observe 15N signals from bulk-like nitrogen sites 

(trigonal-planar NB3) in addition to edge terminated 15N sites. The 15N SSNMR spectra are ca. 40 

ppm broad and can be fit to four distinct nitrogen sites (Figure 4, Table S1, chemical shifts 

referenced to nitromethane). 

To the best of our knowledge there have been four reported nitrogen SSNMR spectra of h-

BN: (i) a direct excitation 14N spectrum (diso = –318 ppm),105-106 (ii) a direct excitation 15N 

spectrum (diso = –282 ppm, ca. 10 % 15N enrichment),107 (iii) a 1H→15N CPMAS spectrum (diso = 

–282 ppm and –305 ppm, ca. 10 % 15N enrichment)107 and (iv) a 11B→15N CPMAS spectrum (diso 

= –320 ppm, recorded at natural isotopic abundance).106 The diso(15N) reported in the previously 

acquired 1H→15N CPMAS spectrum of h-BN matches that observed in our 1H→15N CPMAS 

spectra of h-BN and h-BNNS, where they attributed the higher frequency signal (~ –282 ppm) to 

NB3 and the lower frequency signal (~ –305 ppm) to NB2H.107 In addition, 15N SSNMR 



spectroscopy experiments on borazine-based compounds containing trigonal-planar NB3 and 

NB2H groups revealed that NB3 environments typically show diso(15N) between ca. –257 and –286 

ppm and NB2H environments typically show diso(15N) between ca. –284 and –313 ppm.108-110 

Furthermore, previous ab initio 15N chemical shift calculations of hydrogen-saturated a-BN 

clusters suggest that a NB3 site within the BN lattice has a predicted diso(15N) = –285 ppm and a 

NB2H group residing on the edge of the BN sheet has a predicted diso(15N) = –305 ppm.111 

Therefore, we initially suggest that the two higher frequency 15N signals correspond to bulk NB3 

sites near the edge of the BN sheet (diso ~ –280 ppm and –288 ppm, blue and pink fits, respectively). 

The two lower frequency 15N signals correspond to NB2H groups residing on zigzag or armchair 

edges (diso ~ –297 ppm and –305 ppm, brown and green fits, respectively).   

We next turn to fast MAS (nrot = 50 kHz) 14N SSNMR spectroscopy. 14N is appealing for 

SSNMR spectroscopy because of its high natural isotopic abundance (ca. 99.6%). Fast MAS 

1H{14N} heteronuclear multiple-quantum correlation (HMQC) experiments are often used to 

indirectly detect 14N solid-state NMR spectra with high sensitivity.112-114 The 2D 1H{14N} dipolar-

HMQC (D-HMQC) SSNMR spectra of h-BN (Figure 4B, red) and h-BNNS (Figure 4B, blue) both 

reveal three distinct 14N signals at ca. –275 ppm, –125 ppm and 100 ppm. Since 14N is an I = 1 

quadrupolar nucleus, the observed peak position is determined by both the diso(14N/15N) and the 

quadrupolar induced shift (QIS), which is related to the symmetry at the nitrogen nucleus (the QIS 

is proportional to the square of the CQ). The peak-width is mainly determined by the second-order 

quadrupolar interaction and is therefore also proportional to the square of CQ.  

It has been previously reported that bulk NB3 sites in h-BN exhibit spherical symmetry (CQ 

= 140 kHz),106 indicating that NB3 14N and 15N signals will be observed at ca. the same peak 

position determined by the diso because the QIS is negligible for low CQ sites. Therefore, the sharp, 



low intensity 14N NMR signal at ca. –275 ppm is assignted to NB3 sites near the edge of the BN 

sheet. The two higher frequency, more intense 14N NMR signals experience additional spectral 

broadening and a substantial QIS due to a significant 14N quadrupolar interaction (CQ > 1 MHz). 

The observation of a significant CQ suggests the edge termination is such that the local symmetry 

around the 14N nucleus is distorted. The most intense 14N NMR signal (~ –125 ppm) illustrates 

strong correlations to 1H spins at ca. 6 ppm while the highest frequency 14N NMR signal (~ 100 

ppm) is correlated to 1H spins at ca. 3 ppm. Previously, Arunachalam et. al. reported that the N-H 

1H NMR signal of h-BNNS resonates at 1.6 ppm, in contradiction with the results presented here.56 

However, their peak assignment had no experimental basis. 

To confirm the presence of covalently bonded N-H groups on the edge of the BN sheets as 

previous literature seems to suggest, a 1H{14N} dipolar-HMQC signal build-up curve was recorded 

to estimate the 1H-14N heteronuclear dipolar coupling constant and corresponding inter-nuclear 

distance (Figure 4C). The dipolar coupling constant between to spins (Dij) is inversely proportional 

to the inter-nuclear distance cubed (Dij µ rij-3) and the rate at which coherence is generated is 

directly related to the dipolar coupling constant. Therefore, by comparing the experimental dipolar 

recoupling build-up curve for h-BNNS (black diamonds) to that of numerically simulated curves 

(SIMPSON)104 for different N-H bond distances, we can clearly see that the two most intense 14N 

signals correspond to NB2H groups residing on the edge of the BN sheet. It is worth mentioning 

that the experimental dipolar recoupling build-up curve deviates from the numerical simulations 

at long recoupling times. The deviation of the experimental curve is most likely due to three 

parameters: (i) the effective refocused transverse relaxation constant (T2’) under heteronuclear 

dipolar recoupling, (ii) different 14N CQ for the two sites and (iii) an extensive 1H-14N dipolar 

coupling network from B-OH edges and bulk nitrogen atoms within the lattice (see Supporting 



Information for more discussion). Nevertheless, the 14N and 15N SSNMR experiments confirm 

there are two distinct NB2H edge sites present in h-BN and h-BNNS. Below, plane-wave DFT 

calculations are used to create structural models of the edge terminations and predicted 1H, 11B, 

14N and 15N NMR spectra are compared to the corresponding experimental spectra. 

 



 

Figure 5: Plane-wave DFT calculated edge structures and NMR parameters. (A) Three structural 

models of zigzag edges with N-H and B-OH termination (1, orange), armchair edges with N-H 

and B-OH termination (2, green) and armchair edges with B-OH and B-O termination (3, purple). 

The unfilled hexagons correspond to 11B predict chemical shifts in B-E and the filled rectangles 

correspond to 1H and 14N predicted chemical shifts and SQ frequencies in G. (B-E) Comparison 

of the experimental (B) 11B CPMAS spectrum of h-BNNS from Figure 2 and the predicted 11B 

spectra from models (C) 1, (D) 2 and (E) 3. (F) Comparison of the (black, top) experimental DNP-

enhanced 1H→15N CPMAS spectrum of h-BNNS and predicted 15N NMR spectra for model 1 

(orange) and model 2 (green, bottom). (G) Experimental 1H{14N} D-HMQC spectrum of h-BNNS 

from Figure 4 overlaid with predicted 1H chemical shifts and 14N SQ NMR spectra for model 1 

and model 2. (H) Comparison of the (black, top) experimental 14N projection of h-BNNS and 

simulated spectra for (orange, middle) 1 and (green, bottom) 2.  

 



Plane-Wave DFT Calculations. Plane-wave DFT calculations of NMR parameters 

(chemical shielding tensors, EFG tensors and scalar (J-) couplings) using the gauge including 

projected augmented wave (GIPAW)115 approach are frequently applied to aid in the interpretation 

and deconvolution of SSNMR spectra for organic and inorganic solids.116-125 Here, we utilize 

periodic plane-wave DFT calculations using the GIPAW approach115 as implemented in 

CASTEP126 to build structural models of h-BNNS edge termination and calculate 1H, 11B and 

14N/15N chemical shifts and 11B and 14N EFG tensors. Three structural edge termination models 

were constructed based upon the experimental SSNMR data discussed above and the previous 

hypothesis that h-BNNS possesses both zigzag and armchair edge termination (Figure 5A).45 The 

three structural models possess the following molecular edge terminations: (1) zigzag edge with 

NB2H and BN2(OH) termination, (2) armchair edge with NB2H and BN2(OH) termination and (3) 

armchair edge with BN2O, BNO(OH) and BNO(OH)2.  

First, the plane-wave DFT calculated diso(11B) and EFG tensors for models 1, 2 and 3 are 

compared with the experimental 1H→11B CPMAS spectrum of h-BNNS (Figure 5B-E). The exact 

calculated diso(11B) and EFG tensors for 1, 2 and 3 are given in Table S3. The calculated 11B NMR 

spectra of 1 (zigzag NB2H and BN2(OH)) and 2 (armchair NB2H and  BN2(OH)) reveal two distinct 

boron sites corresponding to bulk (BN3, blue) and edge (BN2(OH), red) boron atoms. There is only 

a slight difference in the calculated diso(11B) for the two sites, with the edge site (BN2(OH)) 

exhibiting a higher predicted diso(11B) for the zigzag edge termination (1) and a lower predicted 

diso(11B) for the armchair edge termination (2) when compared to the bulk sites (BN3). As 

mentioned above, we hypothesized that the diso(11B) only decreases by ca. 2-3 ppm for an BN2(OH) 

edge compared to BN3 within the BN lattice. The plane-wave DFT calculations are not expected 

to accurately differentiate the slight difference in the diso(11B) for BN2(OH) and BN3 sites as the 



chemical shielding to chemical shift calibration curve indicates a relative uncertainty of ca. 2 ppm 

(Figure S12A, Table S4). The DFT calculated 11B spectrum of 3 (armchair B-OH and B-O) 

exhibits four distinct boron sites due to BN3 (blue), BN2O (pink), BNO(OH) (brown) and 

BNO(OH)2 (green, four-coordinate) environments. The predicted diso(11B) decreases with 

increasing O/OH coordination, giving credence to our previous assignment above. The DFT 

calculated peak position (diso = 4.7  ppm) and CQ  (0.7 MHz)  for the four-coordinate site 

(BNO(OH)2) matches the experimentally observed 4-coordinate boron site well, further suggesting 

this edge termination is present in h-BN and h-BNNS.  

 We next turn to the calculated diso(15N) for the zigzag (1) and armchair (2) NB2H edge 

termination models and compare that with the experimental 1H→15N CPMAS spectrum of h-

BNNS (Figure 5F, Table S5). The predicted 15N NMR spectra of 1 (zigzag, orange) and 2 

(armchair, green) display excellent agreement with the experimental 1H→15N CPMAS spectra of 

h-BN and h-BNNS (calculated diso within ca. 3.5 ppm of experimental diso). Both 1 and 2 exhibit 

two distinct 15N environments corresponding to NB3 (bulk) and NB2H (edge), where the bulk site 

exhibits a higher calculated diso(15N) and the edge site exhibits a lower calculated diso(15N), in 

agreement with previous literature.107-111 The individual NB3 and NB2H sites for the different edge 

terminations (zigzag and armchair) also exhibit slightly different predicted diso(15N), where the 

NB3 site for the zigzag edge termination (1, −280.0 ppm) is predicted to have a higher calculated 

diso(15N) than the armchair NB3 site (2, −288.8 ppm) and the zigzag NB2H site (1, −303.7 ppm) is 

predicted to have a lower calculated diso(15N) than the armchair NB2H site (2, −293.4 ppm). 

Notably, the plane-wave DFT calculations predict that the 15N signals for zigzag (1) and armchair 

(2) NB2H edge terminations can be clearly resolved, allowing us to suggest that both zigzag and 

armchair NB2H edge termination occurs. 



 Comparison of the DFT calculated diso(14N) and EFG tensors (CQ and h) with the 2D 

1H{14N} D-HMQC 14N SQ frequency projection of h-BNNS unambiguously shows that both 

NB2H armchair (green, 2) and zigzag (orange, 1) edge terminations are present as the armchair 

and zigzag NB2H 14N signals are clearly resolved (Figure 5H). Here, the QIS for 14N offers 

enhanced resolution compared to 15N because the NB2H armchair and zigzag nitrogen atoms have 

a different CQ (DFT calc. = 1.4 MHz and 2.2 MHz, respectively). Furthermore, comparison of the 

relative peak intensities for the zigzag and armchair edge termination illustrates that the armchair 

NB2H edge termination is the most prevalent, consistent with the relative peak intensities obtained 

from the 1H→15N CPMAS spectrum of h-BNNS (Figure 5F). For both zigzag (1) and armchair (2) 

NB2H edge termination models, the predicted 1H and 14N peak positions show reasonable overlap 

with the experimental 2D 1H{14N} D-HMQC spectrum (Figure 5G), corroborating all of the 

previous peak assignments. 

 

Conclusions 

In summary, the exact molecular edge termination of h-BN and h-BNNS was identified by 

high-resolution MAS SSNMR spectroscopy and plane-wave DFT calculations. 1H→11B CPMAS 

SSNMR experiments revealed multiple hydroxyl/oxygen coordinated boron edge sites (three and 

four-coordinate boron) that are not detected in direct excitation 11B SSNMR experiments. 1D 

DNP-enhanced edge-selective 11B spin-diffusion experiments confirm the boron edge sites 

observed in the 1H→11B CPMAS spectra reside on the edge on the BN sheet and are not from 

residual precursors or impurity phases. DNP-enhanced 1H→15N CPMAS spectra revealed four 

distinct 15N environments and 2D 1H{14N} D-HMQC spectra revealed three distinct 14N 

environments. Finally, periodic plane-wave DFT calculations were used to build edge structural 



models and predict 11B, 14N and 15N SSNMR spectra. The DFT calculated 11B SSNMR spectra for 

zigzag/armchair edge termination containing BN2O, BN2(OH), BNO(OH) and BNO(OH)2 edge 

functional groups illustrated that the diso(11B) decreases as the hydroxyl/oxygen coordination 

increases, explaining the appearance of the 1H→11B CPMAS spectra. Comparison of the 

experimental and DFT calculated 14N and 15N NMR spectra confirm that both N-H armchair and 

zigzag edge termination occurs with the N-H armchair edge termination being the more prevalent 

of the two. The comprehensive structural characterization of h-BNNS edge termination will aid 

the development of this extensively studied material. Furthermore, the techniques outlined here 

should provide a detailed strategy to characterize edge/defect sites in other atomically thin-layered 

materials of interest. 

  

Methods 

Bulk h-BN Exfoliation. The exfoliation of h-BN to h-BNNS was modified from previous 

literature.56 To summarize, 1 g of h-BN (nanopowder, SkySpring Nanomaterials, Inc.) was 

dispersed in 500 mL of DI H2O. The h-BN dispersion was sonicated for ca. 4.5 hours (1 second/5 

second on/off duty cycle) using a 500 W tip sonicator at 50 % amplitude. To avoid sample 

heating, the aqueous solution was cooled by submerging ca. 1/3 of the beaker containing the h-

BN dispersion in an ice bath. After ca. 4.5 hours of total sonication (total time including delays 

ca. 27 hours), the dispersion was allowed to settle at room temperature overnight. Isolated h-

BNNS were obtained by centrifuging the dispersion at 4500 RPM for 45 min, followed by 

removing the top 2/3 of the supernatant. Powdered h-BNNS was then obtained by drying the 

supernatant at 60 oC for 24 hours.  



Electron Microscopy. h-BN and h-BNNS were suspended in ethanol, then dispersed onto 

transmission electron microscope grids that have ultrathin carbon film (less than 3 nm) supported 

by a lacey carbon film on copper mesh (Ted Pella, Inc). The TEM grids were observed by Teneo 

SEM (Thermo Fisher Scientific) at an acceleration voltage of 20 kV. TEM characterization was 

performed on a Titan Themis TEM (Thermo Fisher Scientific) at 200 kV.  

Diffuse Reflectance Infrared Fourier Transform Spectroscopy. The diffuse reflectance infrared 

Fourier transform spectroscopy (DRIFTS) spectra were collected using an Agilent Cary 670 

FTIR equipped with a linearized Mercury-Cadmium-Telluride (MCT) detector, a Harrick diffuse 

reflectance accessory, and a Praying Mantis high-temperature reaction chamber. About 20 mg of 

the powder sample is packed into the IR sample holder equipped with KBr windows. All spectra 

were obtained at a resolution of 2 cm-1 from 700 – 4000 cm-1 under atmospheric pressure. The 

sample was heated to 300 °C in a dynamic He flow (40 mL/min) to remove any adsorbed species 

from the sample surface. The IR spectra were collected continuously at variable temperatures 

under a constant 40 mL/min He flow. All sample spectra are subtracted against KBr as the 

background. 

Solid-State NMR Spectroscopy: SSNMR experiments were performed on either a 9.4 T (n0(1H) = 

400 MHz) or 14.1 T (n0(1H) = 600 MHz) Bruker wide-bore magnet spectrometer equipped with 

a Bruker Avance III HD or Bruker Avance II consoles, respectively. SSNMR experiments 

conducted at 9.4 T and 14.1 T were performed using a Bruker 1.3 mm HX MAS and 2.5 mm 

HXY MAS probe, respectively. In order to tune the 1.3 mm HX MAS probe to 14N (n0(14N) = 

28.9 MHz), a 20 pF shunt capacitor was inserted in parallel to the X-channel variable tuning 

capacitor. The magnetic field strengths were calibrated using 1H chemical shifts referenced to 

neat tetramethylsilane with adamantane (d(1H) = 1.82 ppm) as a secondary chemical shift 



reference. Previously reported relative NMR frequencies were used to indirectly reference 11B 

and 14N chemical shifts.127 Bruker Topspin 3.6.0 was used to process the NMR spectra.  

 All experimental parameters (MAS frequencies, number of scans, t1 TD points, t1 dwell 

(Dt1), t1 acquisition times, CP/dipolar recoupling durations and total experiment acquisition 

times) are given in Table S6. Longitudinal relaxation (T1) measurements were performed for 1H 

and 11B using a saturation recovery experiment. All experiments were performed with recycle 

delays of 1.3 × 𝑇% unless noted otherwise. 1H radio frequency (RF) pulses were directly 

calibrated on each sample. All 1H p/2 RF pulse lengths were 2.5 µs (100 kHz RF field) in 

duration. Low-power, central transition selective 11B p/2 RF pulses were 5.0 µs and 7.5 µs in 

duration for spectra acquired at 9.4 T (1.3 mm HX probe) and 14.1 T (2.5 mm HXY probe), 

respectively. Rotor assisted population transfer (RAPT) was used to enhance the sensitivity of 

the direct excitation 11B NMR spectra of h-BN and h-BNNS acquired at 14.1 T (Figure 1A and 

1C).128-129 20 µs 14N excitation pulses (1 rotor period with 50 kHz MAS) were used in the 

1H{14N} D-HMQC experiments. 25 kHz of continuous-wave (CW) 1H heteronuclear decoupling 

was performed during the acquisition of 11B NMR spectra at 50 kHz MAS. 100 kHz of SPINAL-

64 1H heteronuclear decoupling was performed during the acquisition of 11B NMR spectra at 

MAS frequencies of 25 kHz and below.130 The symmetry-based 𝑆𝑅4%& heteronuclear dipolar 

recoupling sequences was applied on the 1H channel (100 kHz at 50 kHz MAS) to reintroduce 

1H-11B or 1H-14N dipolar couplings in the D-RINEPT and D-HMQC experiments, respectively.93, 

131-132 D-RINEPT and D-HMQC experiments were performed with previously described pulse 

sequences.93, 132-135 

Dynamic Nuclear Polarization. DNP-enhanced SSNMR spectra were acquired on a 9.4 T 400 

MHz/263 GHz Bruker solid-state NMR/gyrotron spectrometer equipped with an Avance III 



console. All experiments were performed with a Bruker 3.2 mm DNP HXY probe at a sample 

temperature of a ca. 100 K and with an MAS frequency of 10 kHz. The h-BN and h-BNNS 

samples were prepared for DNP by impregnating 20.0 and 15.1 mg of sample with 17 µL and 14 

µL of a 16 mM TEKPol tetrachloroethane (TCE) solution, respectively.102 Both samples were 

packed into 3.2 mm sapphire DNP rotors with a Teflon insert and zirconia drive cap. To promote 

further DNP enhancements, both samples were degassed to remove dissolved oxygen. This was 

accomplished by initially freezing the sample at ca. 100 K and then allowing it to warm in the 

sample catcher for ca. 5 minutes, followed by re-freezing to ca. 100 K. The magnetic field 

strength was calibrated using 1H chemical shifts referenced to neat tetramethylsilane with TCE 

(d(1H) = 6.2 ppm) as a secondary chemical shift reference. Previously reported relative NMR 

frequencies were used to indirectly reference 11B and 15N chemical shifts.127 All DNP 

experiments were performed with a gyrotron cathode current of 160 mA. 1H, 1H→11B CPMAS 

and direct excitation 11B DNP enhancements were determined by performing NMR experiments 

with and without microwave irradiation and comparing the relative NMR signal intensities 

(Figure S8). 1H, 15N and low-power CT selective 11B p/2 pulse lengths were 2.5 µs, 7.0 µs and 

10.5 µs in duration. 100 kHz of 1H heteronuclear decoupling was performed during the 

acquisition of 11B and 15N using the SPINAL-64 decoupling sequence.130 11B spin-diffusion 

experiments were performed with previously described pulse sequences.95, 136  

Density-Functional Theory Calculations. Periodic plane-wave DFT calculations were performed 

with the GIPAW approach115 as used in CASTEP version 2017 R2.126 Geometry optimizations 

and NMR calculations were performed using the Generalized Gradient Approximation with the 

exchange-correlation Perdew-Burke-Ernzerhof functional137 (dispersion corrections were added 

using the Tkatchenko-Scheffler method138) and On-the-Fly ultrasoft Pseudopotential139-140 with 



zeroth-order regular approximation relativistic treatment.141 A 630 eV kinetic energy cut-off and 

0.07 Å-1 k-point spacing was chosen for all calculations.  

All structures were initially constructed from a previously reported crystal structure of h-

BN consisting of two BN layers.40 Zigzag and armchair edge terminations were obtained by 

building a super cell of the lattice and cleaving the crystal at h k l cleave planes of 0 -1 0 and 1 1 

0, respectively. A 15 Å vacuum was applied to both the vertical and horizontal plane to represent 

an edge terminated environment for an isolated nanosheet consisting of two BN layers (Figure 

S13). Structures 1 and 2 had a net charge of zero while structure 3 had a net charge of –1 to 

account for the negatively charged four-coordinate boron species. All structures were geometry 

optimized and converged before performing the NMR calculations. Calculated chemical 

shielding values were converted to chemical shifts through a chemical shielding to chemical shift 

calibration plot constructed from previously reported compounds with known crystal structures 

and measured chemical shifts (Figure S12 and Table S4). The calculated 11B CQ and h were 

corrected to better match that observed experimental through a calibration plot (Figure S12 and 

Table S4).  

Supporting Information:  

The Supporting Information is available free of charge. 

Additional TEM images, additional solid-state NMR spectra, solid-state NMR 

experimental parameters, DFT calibration plots, DFT calculated NMR parameters, and 

CIF files containing the atomic coordinates of the structural models. 
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