LoNF-95102.57--

UCRL-JC-122361
PREPRINT

*

Optimizing Bandwidth Utilization in
Packet Based Telemetry Systems

RECEIVED
NGV 17 1995

O8I

Jeffrey R. Kalibjian

This paper was prepared for submittal to the
1995 International Telemetry Conference
: Las Vegas, Nevada
October 30-November 2, 1995

October 17, 1995

Thisisa preprintofapaperintended forpublication inajournal orproceedings. Since
changes may be made befare publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.)

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the

+,* 1. University of California nor any of their employees, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commerdial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Optimizing Bandwidth Utilization
in
Packet Based Telemetry Systems

Jeffrey R. Kalibjian
Lawrence Livermore National Laboratory

Keywords
bandwidth utilization, intelligent telemetry processing

Abstract

A consistent theme in spacecraft telemetry system design is the desire to obtain
maximum bandwidth utilization given a fixed transmission capability (usually due
to cost/weight criteria). Extensions to basic packetization telemetry architectures are
discussed which can facilitate a reduction in the amount of actual data telemetered,
without loss of data quality. Central to the extensions are the establishment of an
"intelligent” telemetry process, which can evaluate pending data to be telemetered,
and act to cbmpress, discard, or re-formulate data before actual transmission to

ground stations. ‘

Introduction

In its Brilliant Pebbles Flight Experiment series, Lawrence Livermore National
Laboratory found packet based telemetry architectures to be an adequate match for
the transmitter hardware utilized in those missions [1], [2]. However, as with any
spacecraft experiment in which phenomenology is a primary objective, there is
always a desire to telemeter more image data. An analysis of our architecture, and
packet based telemetry systems in general, revealed that they may be extended to
more efficiently process data to be telemetered. The primary enhancement involves
establishing a telemetry "monitor” process which can evaluate data queued and
packetized for telemetry. The "monitor", with knowledge concerning specific
mission goals, can act to manipulate data in any fashion (e.g. compression, re-
formulation); thereby, reducing bandwidth utilization and perhaps allowing for yet
more significant data to be telemetered. It is proposed the modified architecture be
utilized on spacecraft engaged in real time data collection with bandwidth

limitations.

After briefly reviewing packet based telemetry architectures, this paper discusses the’
extension of such architectures to include a monitor, the definition of an interface to
communicate mission goals to the monitor, and data manipulation tools the

monitor can utilize.

wENT 18 UNLIMITED
MASTER MBTRIBUTION OF THIS DOCUMENT | D

Packet Based Telemetry Software Architectures

A typical packet based flight telemetry software system will consist of two processes.
The first process acts as the interface through which the flight software may request
telemetry services. This first process validates the request and creates internal
structures that conveniently package the request for the second process, the
packetizer. The interface process and the packetizer may communicate in a number
of ways; for instance, by a queue, by message, etc. The packetizer breaks telemetry
data into packets. While this is being done, the data is placed at a memory location
which is accessible to the hardware that accomplishes the encoding of the digital
data on the transponder carrier (this can be considered done in the transmitter). See

Figure 1.

All Telemetry Requests

Y

Telemetry
Request Queued Telemetry Telemetry Telemetry
Handler Requests Packetizer Packets Transmitter

V

RF signal .
with Data

Figure 1. Software architecture for packet based telemetry system.

The telemetered packets will contain a packet header and a packet trailer. The
packet is of variable length up to some maximum size. In order for the telemetry
decoder to successfully extract data from the packets, an input file (sometimes
known as the decoder types file) defines the structures telemetered in each packet

type.

Intelligent Telemetry Processing

Intelligent Telemetry Processing (ITP), carried out by a Telemetry Monitor (TM),
may not be appropriate for every mission application. ITP is oriented toward
missions in which real time data acquisition is a priority, but 1) telemetry bandwidth
is limited and 2) on board data storage (beyond CPU RAM) does not exist.

Figure 1 depicted a typical software architecture implementing packetization.
Intelligent Telemetry Processing could intervene after requests for telemetry of data
are queued (A), or after initial packetization has been accomplished (B), see Figure 2.
At first, it might appear that the choice for ITP interfacing would be after request

queuing. This would be because of the overhead associated with decoding the
packets in flight, then re-packetizing. However, the one advantage of choosing B

All Telemetry Requests

'

Telemetry

Request Queued Telemetry Telemetry Telemetry
Handler Requests Packetizer Packets Transmitter
RF signal
with Data

Figure 2. ITP access points in typical packetization architecture.

as the access point is that the interface specification already exists, i.e. the telemetry
format. The Telemetry Monitor could be given access to a telemetry decoder and
appropriate decoder types file; thusly, enabling it to gain access to the data it has
been requested to filter.

The telemetry format could also be used to aid in the establishment of a
communication protocol between the Mission Sequencer and the TM. Since the
Mission Sequencer needs to communicate the telemetry items that are candidates
for filtering to the TM, what better way then through the packet definitions.
Consider Figure 3a. Here an example packet for gyroscope data is defined, along
with a corresponding C language type definition the decoder might use to extract
such data from a packet.

Nominally one expects to find a single value for each datum at a time t. However,
to communicate expectations to the TM, each datum must have a minimum and
maximum value associated with a relative time into an event, Figure 3b. In
addition a TM control structure is introduced for communication of such items as
filtering algorithm, constraints codes, etc. to the Telemetry Monitor.

Observe that the TM can use a slightly modified telemetry decoder types file, along
with the same telemetry decoder to read the expectation information. Once read by
the TM, the expectation data for each packet can be placed in an Action Linked List
(see Figure 4), where it may be referenced by the Telemetry Monitor.

Telemetry Monitor Operation

The elements which comprise the Telemetry Monitor are depicted in Figure 5. A
Sniffer process monitors packets being produced by the telemetry packetization
software. The Sniffer process has access to the Action Linked List, which describes

Time <time data>
Gyro x <rate data>
Gyro v <rate data>
Gyro z <rate dataz>

typedef struct rate {

float Time, Gyro_x,Gyro vy, Gyro_z;

} Rate;

Figure 3a. Example gyroscope packet definition.

Time min <time datz>

Time max <time data>
Gyro x mir <rate dataz>
Gyro x maj <rate data>
Gyro y mig <rate data>
Gyro y maj <rate data>
Gyro z mir <rate dsta>

Gyro z may

<rate data>

TM Func 1

<TM control data:

™ Att 1

<TM control data:

TM Func 2

<TM control data:

T™ Att 2

<TM control data:

typedef struct filterRate {

float Time
int TM([4];

(2], Gyro_x[2], Gyro_y[2], Gyro z[2];

} FilterRate;

Figure 3b. The definition needed to conve

Monitor.

y expected gyroscope data to a Telemetry

the packets to be filtered. When a packet of interest is detected, it is not pérmitted to
proceed to the transmitter; instead, it is placed on a filtering queue (one queue exists

per type of packet being processed).

Queuing will always occur except when the

packet encountered is an image packet. If the first packet of an image is detected;
while another image is currently being operated on, it will be allowed to pass to the
transmitter. This helps balance the computational load. Depending on processor

speed, it may be possible for the TM to operate on more than one image; however,
computational evaluations must be made before enabling this mode of operation (to

\

Head ——w—p= |RATE PACKET ey |IMAGE_PACKEY] — TEMP_PACKET | et i1
Time_min Stime data> Time min <time_data> Time min <time_data>
Time_max <time darad> Time max <time_data> Time max <time_data>

Gyro_x_min <ra£g:data> TM Func 1 |<TM control_data> Temp A min{ <temp data>
Gyro_x_max <m,.j:da,.a> TM Att 1 |<TM control_data> Temp A max| <temp_data>
Gyro_y_min <,.;,,-,,—,am-a> IM_Func_2 |<TM control data> Temp B min| <temp data>
Gyro_y max <"aLe:data> TM Att 2 [<TM control data> Temp B max <temp__data>
Gyro_z_min <ratg-dara> Temp_C minj <temp_data>
GYro z max| ., rj;d FTISS Temp C max| <temp data>
TM Func_1 |<TM_control_data> TM Func 1 |<TM control data>
TM_Att_1 |<TM_control_data> T™ Att 1 <TM-control' data>
TM_Func 2 |<TM control data> TM_Func_2 <TM-cont:rol_dat:a>
TM_Att_2 |<TM_control_data> TM_Att 2 <TM:cont:rol_dat:a>

Figure 4. An example of a TM Action Linked List. In this case, operations for three
packet types have been specified.

insure CPU hogging will not occur).

A filtering engine will perform the appropriate operations on the queued data.
Packets will be read off the queue, decoded, data operated on, and intermediate
result sets placed on an output queue (one output queue per packet type being
processed). When processing has been completed on a packet type (signaled by
either end of event time, or a milestone completed), the re-formulated data is posted

to the Telemetry Request Handler.

Monitor Application Functions

Data filtering/removal is only one application the TM might exercise. Another is
data compaction. The compaction algorithm may operate on any type of data,
although it will most often be applied to images Many compaction algorithms can
be employed e.g. run length encoding, etc. The selection of the appropriate
algorithm usually depends on the data type (e.g. image vs. measured/predicted data)

and available CPU.

Data aggregation is another possible TM function. In this application, packet data is
not only filtered but aggregated over a specified interval. The results of the
aggregation are telemetered on every interval boundary. Note that special
aggregation data types might need to be utilized to telemeter the results of the

aggregation. These are usually the union of the base data type and a statistical data .
structure.

Expectation Failure

When the TM detects an anomalous scenario (i.e. the Mission Sequencer specified
expectations are not met during an event), emergency actions must be taken to
insure all necessary data is transmitted to ground stations for evaluation. As
previously mentioned, when a packet is selected for filtering, the TM establishes a
queue of processed packets for that packet type. The queue size may vary depending
on the packet supported. When an expectation is not met on the packet, the TM
disables packet filtering and immediately sends the queued packets (containing the
original data over the specified interval) to the transmitter for transmission.

Telemetry
Packets

l Telemetry
Packets

(to transmitter)
Sniffer ———

Filtering /

Requests
i Action List \
/ Filtering
™ Queues
Interface

Regular
Types File

Modified
Types File

Telemetry

Filtering

Decoder - Engine —_—
Fragment New Telemetry
Request

Figure 5. Elements of a Telemetry Monitor.

Example Scenario Using ITP

A sample scenario is now illustrated. A spacecraft with ITP software will
photograph a thrusting satellite. In order to maximize image throughput the
Mission Sequencer instructs the Telemetry Monitor to compress as many
telemetered images as possible during the event. First, the Mission Sequencer will
pass a structure to the Telemetry Monitor indicating that an attempt should be made
to compress image data over a specified interval. The Monitor will use a modified
portion of the telemetry decoder software to process the request and place the
request on the Action Linked List. When the interval for compression arrives, the
Sniffer begins searching for image packets. When the first image packet is found,
the Sniffer places the packet on the appropriate Filtering Queue. Next, the Filtering
Engine will invoke the decoder to gain access to the image data and place the
intermediate results onto the appropriate Output Queue. As subsequent packets
(making up the image) are encountered they are also stored on the Filtering Queue,
decoded and integrated with the image being stored on the Output Queue. If a new
image is detected by the Sniffer, it will allow the packets to pass to the transmitter,
since the current image it is working on has not been completed. After the last
packet of the image that is being filtered is encountered, the Filter Engine will
operate on the now complete image. The Filter Engine determines the algorithm to
be used by examining the appropriate entry in the Action Linked List. Once
processing is complete, the modified image will be posted to the Telemetry Request

Handler for re-packetization.

Conclusions

A Telemetry Monitor application can substantially increase throughput of key
telemetry data during important spacecraft events. While the TM concept is not
applicable to all missions; it is particularly useful for satellite systems engaged in real
time data acquisition with limited bandwidth and data storage capabilities.

Acknowledgments

The author gratefully acknowledges Tim J. Voss for his review of this paper.

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

" References

[1] I.R. Kalibjian, A Packet Based, Data Driven Telemet

ry System for Autonomous Experimental Sub-
Orbital Spacecraft, 1993 Internatio

nal Telemetering Conference (ITC) Proceedings.

21 J.E. Hoag, J.R. Kalibjian, D. Shih, EJ. Toy, R

ecovery of Telemetered Data by Vertical Merging
Algorithms, 1994 International Telemetering Confere

nce (ITC) Proceedings.

Technical Information Department - Lawrence Livermore National Laboratory
University of California - Livermore, California 94551

Recycled
Recyclable

