

Proceedings of the 28th International Meshing Roundtable

IMR28
14–17 Oct. Buffalo, New York

**Proceedings of the 28th International Meshing
Roundtable**

Joaquim Peiró

Ryan Viertel

28th International Meshing Roundtable
Buffalo, NY, USA, October 14-17, 2019

Editors:

Joaquim Peiró, Imperial College London
Ryan VierTEL, Sandia National Laboratories*

<http://imr.sandia.gov>

Cover art adapted from the winning meshing contest entry by Siemens AG. Boat model from <https://grabcad.com/library/007-qboat-1>

*Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Copyright ©2019 held by the authors of the individual papers.

Distribution of the material in this volume is permitted under the Creative Commons Attribution 4.0 International License.

SAND 000-0000

ISBN: 978-1-7334890-0-3

DOI: 00000.00000

Contents

Reviving the search for Optimal Tetrahedralizations <i>Célestin Marot, Kilian Verhetsel, and Jean-François Remacle</i>	1
A Parallel Variational Mesh Quality Improvement Method for Tetrahedral Meshes <i>Suzanne M. Shontz, Maurin A. Lopez Varilla, and Weizhang Huang</i>	12
Multi-Block Decomposition and Meshing of 2D Domain Using Ginzburg-Landau PDE <i>Jovana Jezdimirović, Alexandre Chemin, and Jean François Remacle</i>	25
Guaranteed Quality-Driven Hexahedral Overlay Grid Method <i>Nicolas Le Goff, Franck Ledoux, Jean-Christophe Janodet, and Steven J. Owen</i>	42
Anisotropic Goal-Oriented Mesh Adaptation in Firedrake <i>Joseph G. Wallwork, Nicolas Barral, David A. Ham, and Matthew D. Piggott</i>	60
Subdivided Linear and Curved Meshes Preserving Features of a Linear Mesh Model <i>Albert Jiménez-Ramos, Abel Gargallo-Peiró, and Xevi Roca</i>	78
Topography Adapted Mesh Generation for Atmospheric Boundary Layer Flow Simulation <i>Abel Gargallo-Peiró, Matias Avila, and Arnau Folch</i>	96
Anisotropic Error Estimate for High-Order Parametric Surface Mesh Generation <i>Rémi Feuillet, Olivier Coulaud, and Adrien Loseille</i>	114
Feature-Aligned Poly-Square Mapping of Large-Scale 2D Geometries for Semi-Structured Quad Mesh Generation <i>Celong Liu, Kelin Hu, Qin Chen, and Xin Li</i>	129
Accelerating the Exact Evaluation of Geometric Predicates with GPUs <i>Marcelo de Matos Menezes, Salles Viana Gomes de Magalhães, Matheus Aguilar de Oliveira, W. Randolph Franklin, and Rodrigo Eduardo de Oliveira Bauer Chichorro</i>	129
Dual-Based User-Guided Hexahedral Block Generation Using Frame Fields <i>Simon Calderan, Guillaume Hutzler, and Franck Ledoux</i>	145

Pre-Conditioning and Continuation for Parallel Distributed Mesh Curving <i>Eloi Ruiz-Gironés and Xevi Roca</i>	177
Naturally Curved Quadrilateral Mesh Generation Using an Adaptive Spectral Element Solver <i>Julian Marcon, David A. Kopriva, Spencer J. Sherwin, and Joaquim Peiró</i>	195
Certified Functions for Mesh Generation <i>Andrey N. Chernikov</i>	208
Untangling High-Order Meshes Based on Signed Angles <i>Mike Stees, Myra Dotzel, and Suzanne M. Shontz</i>	220
CAD Defeaturing Using Machine Learning <i>Steven Owen, Timothy M. Shead, and Shawn Martin</i>	236
Bicameral Mesh Anisotropy <i>Nilanjan Mukherjee, Jonathan Makem, and Jean Cabello</i>	254
Building Direction Fields on the Medial Object to Generate 3D Domain Decompositions for Hexahedral Meshing <i>Dimitrios Papadimitrakis, Cecil G. Armstrong, Trevor T. Robinson, Alan Le Moigne, and Shahrokh Shahpar</i>	268
Discrete Mesh Optimization on Surface and Volume Meshes <i>Daniel Zint, Roberto Grossi, and Florian Lunz</i>	285
A Regularization Approach for Automatic Quad Mesh Generation <i>Julia Docampo-Sánchez and Robert Haimes</i>	301
Updating and Re-Meshing Virtually Decomposed Models <i>Benoit Lecallard, Christopher M. Tierney, Trevor T. Robinson, Cecil G. Armstrong, Declan C. Nolan, and Alexander E. Sansom</i>	313
GMSHs Approach to Robust Mesh Generation of Surfaces with Irregular Parametrizations <i>Jean-François Remacle and Christophe Geuzaine</i>	331
Application of Tensor Factorisation to Analyse Similarities in CAD Assembly Models <i>Flavien Boussuge, Christopher M. Tierney, Trevor T. Robinson, and Cecil G. Armstrong</i>	343
Higher-Order Accurate Meshing of Non-Smooth Implicitly Defined Manifolds <i>Jakob W. Stanford and Thomas-Peter Fries</i>	361
Multiple Approaches to Frame Field Correction for CAD Models <i>Maxence Reberol, Alexandre Chemin, and Jean-François Remacle</i>	375
Automatic 2D Abstraction and Hexahedral Meshing by Sorting a Delaunay Mesh <i>Reza Taghavi</i>	388

Coarse Quad Layouts Through Robust Simplification of Cross Field Separatrix
Partitions

Ryan VierTEL, Braxton Osting, and Matthew Staten 402

Preface

The papers in this volume were peer-reviewed and selected for presentation at the 28th International Meshing Roundtable (IMR), held October 14-17, 2019 in Buffalo, New York, USA. The International Meshing Roundtable was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 28 consecutive years, it has become clear that the International Meshing Roundtable has become the recognized international focal point for state-of-the-art meshing research collaboration spanning research and development from universities, commercial companies and government laboratories.

The 28th International Meshing Roundtable consisted of presentations of peer-reviewed technical papers, research abstracts, keynote and invited talks, short course presentations, a poster session and competition, a meshing contest, and an open space session. This year we have made the proceedings openly accessible by hosting them on Zenodo under a creative commons license. The Program Committee would like to express our appreciation to all who participate in making the International Meshing Roundtable a successful and enriching experience.

The papers in these proceedings present novel contributions that range from the theoretical to practical. The committee selected papers based on the input from peer reviewers, based on the perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. This year the committee accepted twenty-seven papers out of thirty-seven submissions. We would like to thank all who submitted papers. We also extend our appreciation to the colleagues who provided reviews of the submitted papers. Their efforts were essential to the process of selecting papers for the International Meshing Roundtable. The names of the reviewers are acknowledged in the following pages.

The conference received travel support from the National Science Foundation (NSF) for student and postdoctoral attendees from the U.S. institutions and additional travel support from Pointwise, csimsoft, and Sandia National Laboratories. We deeply acknowledge their support. We extend special thanks to Kathy Loeppky of Sandia National Laboratories for her time and effort to make the 28th International Meshing Roundtable a success.

October 2019,

28th IMR Program Committee

List of Reviewers

Cecil Armstrong	Avary Kolasinski
Romain Aubry	David Kopriva
Ken Blake	Jean-François Lagüe
David Bommes	Franck Ledoux
Flavien Boussuge	Vijay Mahadevan
Jean Cabello	Ahmed Mahmoud
Marcel Campen	Jonathan Makem
Philip Caplan	Loïc Maréchal
Brian Carnes	Julian Marcon
Andrey Chernikov	Carianne Martinez
Brett Clark	David McLaurin
Thierry Coupez	Scott Mitchell
Emily Donahue	Ketan Mittal
Jan Eichstaedt	David Moxey
José Escobar	Walter Nissen
Nicola Ferro	Steven Owen
Harry Fogg	David Palmer
Vincent François	Stefano Paoletti
Mark Gammon	Michael Park
Shuming Gao	Joaquim Peiró
Xifeng Gao	Per-Olof Persson
Rao Garimella	Stefano Pippa
Oubay Hassan	William Quadros
Nancy Hitschfeld	Alex Rand
Xiangmin Jiao	Navamita Ray
Steve Karman	Jean-François Remacle

Xevi Roca
Mael Rouxel-Labbé
Eloi Ruiz-Gironés
Josep Sarrate
Shankar Sastry
Ruben Sevilla
Suzanne Shontz
Hang Si
Dmitry Sokolov
Matthew Staten
Thomas Toulorge
Chaman Singh Verma
Nicholas Vining
Kenneth Weiss
Shoudong Xu
Jessica Zhang
Paul Zhang
Daniel Zint

Committee Members

Suzanne Shontz - Committee Chair

Joaquim Peiró - Papers Chair

Scott Canann

John Verdicchio

Trevor Robinson

Nilanjan Mukherjee

Angela Herring

Vladimir Tomov

Daniele Panozzo

Ryan Viertel