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Abstract—Despite their wide and successful applications, deep
learning (DL) models are prone to overfitting for small training
datasets, produce a poor predictive performance for uncertain
data, and provide point estimations without any indication of the
accuracy and credibility. These limitations of the deterministic
DL models hinder their effective application in Earth system
science where the labelled data are sparse, noisy and incomplete
with large uncertainty and where the predictive uncertainty
quantification is needed for scientific understanding and policy
decision making. Integration of Bayesian inference into DL
models adds an estimate of uncertainty and regularization
in the predictions. However, traditional Bayesian methods are
computationally unaffordable and inflexible for high-dimensional
problems, which limits their application to DL systems that typi-
cally have millions of model parameters. In this effort, we propose
an efficient and general-purpose Bayesian inference method to
advance DL model optimization and uncertainty quantification,
so as to facilitate the adoption of DL in Earth sciences. In a
demonstration, we integrate the proposed Bayesian method with
a feedforward neural network (NN) to build a fast-to-evaluate
surrogate of the complex Energy Exascale Earth System Land
Model for efficient modeling. The formulated Bayesian NN, using
a small number of training data, produces an accurate prediction
with high credibility, whereas with the same small training
size, the deterministic NN cannot yield a reasonable estimation
and does not provide confidence information. The proposed
Bayesian method is computationally efficient and flexible, capable
of integration with diverse network variants such as convolutional
NNs and recurrent NNs to advance the application of DL in Earth
sciences.

Index Terms—Deep learning, Bayesian inference, Uncertainty
quantification, Earth system science application

I. INTRODUCTION

With the advent of better sensing technologies (e.g., remote

sensing satellites and in-situ sensors in space, in the sea, and

on the land) and the improvements in computational resources

for running large-scale simulations of Earth system models,

Earth science has witnessed a major revolution in transitioning

from a data-poor field to an increasingly data-rich field. The

growing availability of Earth science data offers immense

potential for machine learning (ML)/deep learning (DL) to

tackle geoscientific problems and advance the Earth science

development and predictive capability.

ML in general and DL in particular have resulted in major

success stories in a wide range of commercial applications,

such as computer vision, speech recognition, and natural

language translation. Attributed to the space-time nature of

geoscientific data, Earth science problems share some sim-

ilarities with those in the commercial applications, which

is facilitating the adoption of DL in Earth sciences. For

example, feedforward neural networks (FNNs) have been used

in terrestrial ecosystem modeling to predict carbon fluxes at

a regional scale for a long time period [1]. Convolutional

neural networks (CNNs) have been used to recognize features

such as tornadoes, hurricanes, and atmospheric rivers from

remote sensing data. CNNs have also been applied to detect

extreme weather events from climate model simulations [2].

Recurrent neural networks (RNNs) have been explored to

investigate memory effects of climate and vegetation on net

ecosystem carbon fluxes in global forests from the combined

remote sensing, climate, and eddy-covariance flux data [3].

And RNNs have also been used in hydrological modeling to

predict streamflow discharge for a variety of catchments [4].

Despite these successful studies, numerous challenges exist

in application of deep neural networks (DNNs) in Earth

sciences [5]. First, Earth system variables have spatiotemporal

structure, are highly multivariate, follow nonlinear relation-

ships, show non-stationary characteristics, and often involve

rare but high-impact events. In addition, Earth system data are

often available from different sources, at varying spatial and

temporal resolutions, with varying degrees of noise, incom-

pleteness, and uncertainty. Last but not least, large labelled

geoscientific datasets with ground truth do not always exist

due to the difficulties and costs in labelling the data.

On the other hand, although DNNs have the capacity to

learn and model complex nonlinear relationships, they suffer

from two basic limitations [6]. First, DNNs have unsatisfacto-

rily low predictive performance when there exists uncertainty

in the data. This weakness is due to the theoretical fact that

DNNs generate averaged values of targets conditioned on

inputs and have difficulties in properly and reliably predicting

rare events. These difficulties cannot be mitigated through

changing the model structure or repeating the training process.

The data uncertainty will eventually be propagated to the

prediction and impair predictive credibility. Second, DNNs

produce frequentist inference in nature, which suggests that

DNNs require substantial amounts of data to train on and are

prone to overfitting. More importantly, DNNs only provide

point predictions without any indication of their accuracy

and credibility. These point predictions become less reliable
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and accurate if the training data are sparse, or if targets are

multivalued and affected by probabilistic events. To prevent

overfitting, various regularization techniques have been used

such as early stopping, weight decay, L1 or L2 regulariza-

tions and currently the most popular dropout. However, these

techniques do not quantify the uncertainty. To evaluate the

influence of data uncertainty on predictions and to improve the

predictive credibility and reliability, prediction uncertainties

of the DNN models should be quantified and provided. It

is important to know how well the predictions generated

by DNNs match the real targets and how large the risk of

mismatch is.

Bayesian inference, enabling explicit representation and

propagation of uncertainties, is well positioned to address

the aforementioned challenges of the traditional deterministic

DNNs. Application of the Bayesian inference to DNNs adds

an estimate of uncertainty and regularization in the predictions

making Bayesian DNNs particularly suitable to solve geosci-

entific problems with sparse and uncertain labelled data. The

resulting Bayesian neural network (BNN) allows the model to

express uncertainty via its parameters in form of probability

distributions. Meanwhile, by using a prior probability distribu-

tion to integrate out the parameters, we compute the average

across many models during training, which gives a regulariza-

tion effect to the network, thus preventing overfitting.

However, applying Bayesian inference to quantify the un-

certainties of DNNs is very challenging because of the curse

of dimensionality. For example, a typical DNN can easily

have hundreds of thousands of parameters. Classical Bayesian

approximation methods such as Markov chain Monte Carlo

sampling and Hybrid Monte Carlo are not suitable due to

their slow convergence and difficulties in scaling up to high

dimensions. Recently, variational inference (VI) approaches

have demonstrated successful applications in highly complex

learning systems [7]. VI frames the Bayesian inference into

a deterministic optimization problem that approximates the

target distribution with a simpler distribution from a predefined

parametric family by minimizing their Kullback–Leibler (KL)

divergence. This formulation makes VI efficiently solvable

by using well-developed optimization techniques and easily

scalable to high-dimensional problems. However, the accuracy

and computational costs of the VI methods critically depend on

the choice of the parametric families and they generally do not

provide consistent approximation like the sampling methods.

In this effort, we propose an efficient Bayesian inference

method to advance DNN model optimization and uncertainty

quantification (UQ), so as to facilitate the adoption of DL in

Earth sciences. The proposed Bayesian method is developed

based on the Stein variational gradient descent (SVGD) algo-

rithm [8]. In SVGD, we start with a set of initial particles

and then iteratively update the particles using adaptively

constructed deterministic variable transforms that guarantee to

push the particles closer to the target distribution, in the sense

that the KL divergence between the distribution of the particles

and the target distribution can be iteratively decreased based

on the gradient descent. The SVGD algorithm is variational in-

ference in nature, so it converges faster than sampling methods

and is more suitable to solve complex and high-dimensional

DNN optimization and UQ problems. But unlike the traditional

VI algorithms, SVGD is nonparametric and does not limit to

the specific variational distribution assumptions. This general-

purpose property makes SVGD widely applicable for different

kinds of DL models. For example, we can integrate SVGD

into FNNs to advance ML regression analysis, into CNNs

to improve image classification, and into RNNs for better

time series simulation. Additionally, SVGD does not need ML

experts to design the parametric variational distributions on a

model-by-model basis which makes it readily accessible to

domain scientists. Furthermore, SVGD leverages merits of the

Monte Carlo sampling making it produce consistent approx-

imations. In implementation, SVGD has a simple form and

can be applied whenever gradient descent can be calculated.

The performance of SVGD does not depend on the initial

distribution, although it starts with a set of initial particles.

And it can be shown that with only one particle SVGD is able

to locate the maximum a posteriori and with more particles it

automatically becomes a full Bayesian approach.

In this study, we integrate the SVGD algorithm into a

feedforward network and apply the formulated BNN to build

a fast-to-evaluate surrogate model of the Energy Exascale

Earth System Land Model (ELM) for efficient modeling. The

performance of the BNN is evaluated against the complex

ELM simulation and compared with the deterministic NNs.

In the following, we first introduce the BNN and the SVGD

algorithm, then describe the application of the BNN for

surrogate modeling, next we analyze the results and assess the

BNN performance, and last we discuss possible applications

of BNN in Earth sciences and its future development.

II. METHODOLOGY

In this section, we first describe the BNN in general, and

then introduce the SVGD algorithm to implement the BNN in

detail. After that, we discuss how to use the BNN to quantify

the model prediction uncertainty.

A. Bayesian neural network (BNN)

We describe the BNN model based on a fully connected

feedforward neural network. Given data D = {xn, yn}Nn=1,

which is made up of D-dimensional feature vectors xn ∈ R
D

and corresponding scalar target variables yn ∈ R, a determin-

istic NN can be used to learn the relationship between X and

y through y = f(X,W) with W representing all parameters

in the network including weights and biases. The BNN treats

the parameters W as random variables instead of deterministic

unknowns to account for epistemic uncertainty induced by lack

of training data. In addition, BNNs introduce an additive error

ε to model aleatoric uncertainty caused by the data noise. This

additive error also enables the probabilistic model to have an

explicit likelihood function depending on the error distribution.

Therefore, the BNN can be formulated as y = f(X,W) + ε,

where f(X,W) is the output of the network and ε is the

additive error.



We assume the data errors are Gaussian distributed with

an identical variance γ−1 for every input sample, i.e., ε ∼
N (0, γ−1I). Based on the pairs of input-output data D =
{X,y},the likelihood function for the BNN weights W and

the error precision γ, can be formulated as

p
(
y|X,W, γ

)
=

N∏
n=1

N
(
yn|f(xn,W), γ−1

)
. (1)

Given the large amount of uninterpretable parameters in the

DNN, there are not many choices of W priors due to the lim-

itation of computational costs and memory. Here we assume

a fully factorized Gaussian prior with zero mean and Gamma-

distributed precision λ on parameters W, then we have

p(W|λ) = N (W|0, λ−1I), p(λ) = Gamma(λ|a0, b0). (2)

This results in a student’s t-prior for W, which has heavy

tails and more mass close to zero. We assume the additive

error precision γ is also Gamma distributed, i.e., p(γ) =
Gamma(γ|a1, b1). And we set the hyperparameters a0 =
a1 = 1.0 and b0 = b1 = 0.1 in this study.

The posterior distribution for the parameters W, γ and λ
can then be obtained by Bayes’ rule:

p(W, γ, λ|D) = p
(
y|X,W, γ

)
p(W|λ)p(λ)p(γ)

p(y|X)
, (3)

where p(y|X) is a normalization constant. Given a new input

vector x∗, we can make a prediction for its output y∗ using

the predictive distribution given by

p(y∗|x∗,D) =
∫

p(y∗|x∗,W, γ)p(W, γ, λ|D)dγdλdW,

(4)

where p(y∗|x∗,W, γ) = N (y∗|f(x∗,W), γ−1). It can be

seen that the Bayesian prediction explicitly represent and

propagate the data and model uncertainties into the predic-

tion uncertainty. Moreover, Eq. 4 indicates that the Bayesian

prediction is a weighted sum of what the model would predict

under any possible configuration of the parameters, weighted

by the parameter posterior p(W, γ, λ|D). By accounting for

all possible explanations of the data when making predictions,

BNN avoids overfitting that occurs when the model learns a

specific configuration of parameters given training data and

does not generalize well to unseen data. However, the exact

computation of p(W, γ, λ|D) and p(y∗|x∗,D) is intractable

in most geoscientific problems and some approximation ap-

proaches need to be used practically. In this work, we adopt a

recently proposed nonparametric variational inference method

called Stein variational gradient descent (SVGD) [8] to ap-

proximate the Bayesian inference in DNN models.

B. Stein variational gradient descent (SVGD) algorithm

The SVGD algorithm leverages the optimization property

of the VI approaches and the assumption-free property of the

sampling techniques, so it is efficient, general-purpose, and

widely applicable for high-dimensional Bayesian inference

tasks.

In a general definition, we are interested in Bayesian

inference of the uncertain parameters θ, i.e., to calculate

its posterior distribution p(θ|D) dependent on the pairs of

observation (training) data D = {xn, yn}Nn=1. Hereinafter we

drop the conditioning on D and represent the posterior p(θ|D)
as p(θ) for convenience. VI approximates the target poste-

rior distribution p(θ) with a simple and tractable variational

distribution q(θ) from a restricted family by minimizing the

two distributions’ KL divergence. SVGD is a nonparametric

VI algorithm; it defines the variational distribution from a

set of particles instead of using a parametric form from a

specific family. Thus, SVGD addresses the challenges of the

traditional VI methods that simple approximation sets are too

restrictive to resemble the target posterior and more advanced

choices cast more difficulties on the subsequent optimization

tasks, making SVGD generally applicable to a wide range of

problems.

The key idea of SVGD is to start from a set of particles

{θ0
i }Si=1 generated from an initial tractable distribution (e.g.,

the prior distribution) and then use a set of sequential deter-

ministic transforms to iteratively push these particles closely

to simulate the shape of the target posterior distribution:

θt+1
i ← Tt+1(θ

t
i),where Tt+1(θ

t
i) = θt

i + δtφ(θ
t
i). (5)

The transform Tt+1 at iteration t+ 1 is constructed based on

the most recent particles {θt
i}Si=1 at iteration t being perturbed

by a velocity field φ with a magnitude controlled by a step

size δt whose value is assumed to be small. The velocity field

φ is chosen to maximally decrease the KL divergence between

the distribution of the particles and the target distribution.

The SVGD algorithm is summarized in Algorithm 1 where

the velocity field φ is derived based on Stein’s identity and

kernelized Stein discrepancy. More details refers to [8].

Algorithm 1: The SVGD algorithm

input : A target distribution p(θ); A set of initial

particles {θ0
i }Si=1; a kernel function k, and a

step-size scheme δt
output: A set of particles {θi}Si=1 that approximates the

target distribution.

for iteration t do

θt+1
i ← θt

i + δtφ(θ
t
i) where

φ(θt
i) =

1

S

S∑
j=1

[
k(θt

j ,θ
t
i)∇θt

j
logp(θt

j) +∇θt
j
k(θt

j ,θ
t
i)

(6)

end

Algorithm 1 simulates gradient dynamics at the particle

level, starting with a set of arbitrary particles, the velocity field

φ transports these particles to match the target distribution

p(θ) with user-defined step size δt. The two terms of φ
in Eq. 6 play critical roles in the transportation. The first

term drives the particles towards the high probability regions



of p(θ) by following a gradient ascent direction, which is

calculated as the weighted sum of the gradients ∇θj logp(θj)
of all the particles {j = 1, · · · , S} weighted by the kernel

function k(θj ,θi). The second term acts as a repulsive force

that prevents all the particles falling together into local modes

of p(θ). Here we consider the radial basis kernel function

k(θj ,θi) = exp
(
− 1

h ‖ θj − θi ‖2
)
. After calculating the

derivation of the kernel, the second term in Eq. 6 reduces

to
∑

j
2
h (θi − θj)k(θj ,θi), which drives θi away from its

neighboring points θj that have large ∇θj
k(θj ,θi). When

the bandwidth h→ 0, the second term of φ vanishes and the

Eq. 6 reduces to a set of independent chains of typical gradient

ascent for maximizing logp(θ) (i.e., maximum a posteriori,

MAP) and all the particles would fall into the local modes.

When only one particle (S = 1) is used, Algorithm 1 reduces

to a single chain of the gradient ascent for MAP for any

defined kernels that satisfy ∇θk(θ,θ) = 0. This suggests that

SVGD can perform well even with a very small number of

particles, since the gradient ascent for MAP has been shown

successful in practice. This property of SVGD makes it more

efficient than sampling methods that typically require many

points for convergence.

The major computational complexity in evaluating Eq. 6

lies on the calculation of the gradient ∇θlogp(θ) for all

the particles. For a large dataset {Dn}Nn=1, the likelihood

evaluation involves a multiplication of N Gaussian functions

as shown in Eq. 1. The other computational cost in assessing

Eq. 6 comes form the calculation of the kernel matrix k(θj ,θi)
whose complexity is O(S2), i.e., the larger the number of

particles S is, the higher the computing cost. In section III,

we investigate the influence of particle size on the BNN’s

prediction performance and find that the prediction accuracy

is rather insensitive to the number of particles in the problem,

and in this case a relatively small number of particles can be

used to reduce the computational cost without sacrificing the

prediction accuracy.

In application of the SVGD algorithm to the BNNs defined

in section II-A, we specify the parameter θ = {W, γ, λ}. And

based on Eq. 3, we can write logp(θ) = logp
(
y|W,X, γ

)
+

logp(W|λ) + logp(λ) + logp(γ) without consideration of the

normalization constant. We use the radial basis kernel function

with the bandwidth h = median2/logS, where the median

is defined as the median of the pairwise distance between

the current set of particles. According to [8], this setup of h
balances the contribution of each particle from its own gradient

and the influence from the other particles. We initialize the

particles using the prior distribution and use Adam algorithm

[9] for optimization with step size δ = 0.01. In learning,

we investigate the predictive performance of the training data

and testing data, and terminate the training process when

the performance has minor change or when the number of

iterations hits a given value.

C. Prediction and predictive uncertainty of the BNN

BNNs predict the quantity y∗ at a new input x∗ us-

ing the predictive distribution p(y∗|x∗,D) which is a high-

dimensional integral defined in Eq. 4. We can use sampling

methods to approximate this intractable integral based on

the samples of the NN parameters W generated in above

section II-B. In particular, we use the samples to approximate

the first and second statistical moments E
[
p(y∗|x∗,D) and

Var
[
p(y∗|x∗,D) of the predictive distribution. That is,

E
[
p(y∗|x∗,D) ≈ 1

S

S∑
i=1

f(x∗,Wi), (7)

Var
[
p(y∗|x∗,D) ≈

1

S

S∑
i=1

(
(γi)−11+ f2(x∗,Wi)

)
− 1

S

S∑
i=1

f(x∗,Wi)
)2

,

(8)

where {(γi)−1}Si=1 and {Wi}Si=1 are samples from the SVGD

calculation.

The term γ−1 in Eq. 8 measures aleatoric uncertainty

caused by the data noise. Here we consider homoscedastic

aleatoric uncertainty by assuming identical data noise for every

input sample x. The remaining terms in Eq. 8 measures the

epistemic uncertainty which captures our ignorance about the

models most suitable to explain the existing limited data. The

epistemic uncertainty represents the model uncertainty and

it can be reduced with the increase of training data and a

better choice of NN model. These data and model uncertainty

are propagated to the prediction uncertainty. Eq. 8 suggests

that BNN explicitly quantifies the prediction uncertainty and

considers the influence of uncertain data on the predictions.

Moreover, Eq. 7 indicates that BNN’s prediction is an average

across many models during training. This gives a regulariza-

tion effect to the network thus avoiding overfitting. Hence,

BNNs are particularly suitable for geoscientific problems.

III. APPLICATION

In this study, we use the BNN to build a fast-to-evaluate

surrogate model of the complex and computationally expen-

sive Energy Exascale Earth System Land Model (ELM) for

efficient modeling. We assess the surrogate accuracy by com-

paring the BNN prediction with the ELM simulation for some

testing data. Additionally, we analyze the BNN’s prediction

performance and computational efficiency and robustness in

comparison with the deterministic NN.

A. Description of the terrestrial ecosystem model

The ELM is a complex land-surface model that simulates

terrestrial water, energy, and biogeochemical processes and is

an important tool for improving our understanding of ecosys-

tem responses to climate change. The ELM simulates several

carbon states and flux variables, and here we are interested in

simulating annual sum of net ecosystem exchange of carbon

dioxide (NEE), annual average total leaf area index (TLAI),

and latent heat fluxes (LH) at the Missouri Ozark flux tower

(MOFLUX) site from 2006 to 2010. Therefore in total, there

are 15 model output variables of interest. A Python scripting

framework is used to perform site-level ensemble simulations



TABLE I
MODEL PARAMETERS AND THEIR RANGES TO GENERATE TRAINING AND

TESTING DATA.

Parameter Minimum Maximum Units
rootb par 0.5 4.0 none
slatop 0.01 0.05 m2/gC
flnr 0.1 0.4 none
frootcn 25 60 gC/gN
froot leaf 0.3 1.5 none
br mr 1.5× 10−6 4.0× 10−6 gC/m2/s/gN
crit dayl 35000 45000 seconds
crit onset gdd 600 1000 m2/gC

for all given sets of parameter values. Because accurate carbon

cycle predictions require multi-century spin-up and transient

simulations in addition to simulating the five years of interest,

one forward model simulation takes about 12 hours on a

single processor. This computational complexity limits the

application of advanced model-data integration analysis such

as the iterative global parameter optimization to improve the

model performance. To reduce the computational cost, we

use NNs to build surrogate models of the ELM based on

pairs of ELM input and output samples and then use the

cheap-to-evaluate NN model to improve the computational

efficiency in the model-data integration tasks. The ELM has a

large number of parameters. Recently, 65 ELM parameters

were analyzed in a global sensitivity analysis for 96 sites

[10], and the study indicated that at the MOFLUX site, eight

model parameters were responsible for more than 80% of the

variation in five quantities of interest including the NEE, TLAI

and LH. These eight parameters are listed in Table I with their

physically reasonable ranges. In this defined parameter space,

we randomly draw 1000 samples and run the ELM to get

corresponding samples of the 15 output variables. Based on

the 1000 pairs of model input-output samples, we use NNs to

construct the surrogate model and evaluate its performance.

B. BNN produces accurate predictions with UQ

In this section, we discuss the NN prediction performance

for a fixed network structure, i.e., a single hidden layer with 50

nodes. To make a fair comparison between the deterministic

NN and BNN, all the settings in the NN and BNN trainings

are the same and the same random seed is used to avoid

the impact of randomness. To investigate the influence of

training data size on the NN’s performance, we consider a

collection of training sets that are a subset of the 1000 samples,

i.e., [10, 30, 50, 100, 300, 500, 700, 900], and always reserve

the last 100 of these 1000 samples as the testing data. We use

the coefficient of determination, R2 score, to quantify the NN’s

performance in building a surrogate model of the ELM. The

R2 score measures how well the actual ELM simulation can

be replicated by the NN-based surrogates. The closer the R2

value is to 1.0, the more accurate the surrogate estimation. The

score value can be negative which occurs when the surrogate

simulation is even worse than the estimation based on the

training data mean. So, a negative R2 score indicates an

unreasonable surrogate prediction.

Fig. 1. R2 scores of the testing data based on the BNN and the deterministic
NN for different training sizes.

Fig. 1 compares the overall performance of the BNN and

the deterministic NN in prediction of the 15 quantities at

all the testing data. The figure indicates that BNN performs

much better than the NN especially for a small training data.

For example, when the training size is smaller than 50, the

R2 of the deterministic NN has negative values (Note: in

Fig. 1 we display the negative values as zeros for the purpose

of visualization), suggesting that the NN is incapable of a

reasonable and realistic prediction based on a small training

size. In contrast, the BNN, even with 10 training data, can

produce a fairly accurate prediction having the R2 score of

0.5. And as the training size increases, the prediction accuracy

of the BNN gradually improves and has a R2 score about

0.9 for 500 training data. When the number of training data

exceeds 500, the deterministic NN and the BNN have the

similar performance.

Fig. 2 evaluates the prediction errors of the BNN and the

deterministic NN in predicting the five years annual NEE,

TLAI, and LH at the 100 testing data. The prediction error

is calculated as the absolute difference between the network

model and the ELM simulations averaged over all the testing

data, and the error values in each heat map are standardized

because of the different magnitudes of the three output quan-

tities. The deterministic NN uses the same standardization

of the BNN for a fair comparison. The figure indicates that

for all the three quantities, the prediction errors of the BNN

are significantly smaller than those of the deterministic NN,

especially for a small training set. Also, BNN performs equally

well for the three kinds of quantities, while the deterministic

NN performs particularly poor in predicting the LH suggesting

an unstable training. The equally-good performance among

different variables is important when we are interested in

simulating a large number of quantities with various types

from different locations at different times.

Fig. 3 analyzes the prediction performance of BNN and the

deterministic NN for predicting NEE, TLAI, and LH of year

2010 at one testing sample in detail. ELM simulations of the

three quantities are listed as the reference in red lines. Once

again, the figure indicates that BNN gives a more accurate



Fig. 2. Prediction error of the BNN and the deterministic NN in predicting
NEE, TLAI, and LH at all testing points. The errors are standardized and the
deterministic NN uses the same standardization of the BNN.

prediction than the deterministic NN. More importantly, com-

pared to the point estimation of the deterministic NN, BNN

quantifies prediction uncertainty and the uncertainty bound

(calculated as two standard deviations according to Eq. 8)

encloses the reference for all the training cases. Additionally,

with the increase of training size, BNN produces a more

accurate and precise prediction with the predicted values

getting closer to the reference and the predictive uncertainty

decreasing while still enclosing the reference.

One reason for the superior prediction performance of

BNN to the deterministic NN is due to the fact that BNN

incorporates naturally effects of regularization and thus pre-

vents overfitting. This makes the well-trained BNN model

also predict the unseen testing data pretty well. As shown

in Fig. 4, while the deterministic NN without applying any

regularization techniques overfits greatly on the training data

and produces a poor prediction in the testing data, BNN

obtains the similar superior prediction performance on both

training and testing data. Moreover, with a small number of

epochs, BNN starts producing fairly good predictions. The

shorter the training process is, the lower the training costs. For

example, at the beginning of the training with a few epochs,

BNN already shows high R2 scores on both training and

testing curves, and the R2 values quickly climb up above 0.8

after 400 epochs. Whereas, the deterministic NN has negative

R2 scores before 200 epochs of the training data and before

300 epochs of the testing data. Till 2000 epochs, the NN

starts having similar training performance with the BNN, but

the prediction accuracy of the NN in the testing data is still

significantly low with the R2 score below 0.5.

In this section, we demonstrate that BNN, with a small num-

Fig. 3. Prediction performance of the BNN and the deterministic NN in
predicting NEE, TLAI, and LH at one testing sample.

Fig. 4. R2 scores in predicting the training and testing data based on the
deterministic NN and the BNN.

ber of training data, can produce an accurate prediction with

uncertainty information. Additionally, BNN naturally prevents

overfitting and makes consistent and stable estimations. These

nice properties of BNN enables it to solve various difficult

Earth science problems such as the efficient and effective

surrogate modeling of the complex Earth system models in

this work.



Fig. 5. R2 score of the testing data produced by the BNNs with different
NN structures and particle sizes.

C. BNN is computationally efficient and effective

In this section, we discuss the computational efficiency

and robustness of BNN by investigating its prediction per-

formance for a series of network structures, all having a

single hidden layer with nodes of 5, 10, 20, 50, 100, and 200,

respectively; and for a sequence of particle sizes where S ∈
[10, 20, 30, 40, 50, 100, 200, 300]. The BNN considered here is

trained using 500 samples and used to predict the 100 samples.

Fig. 5 lists the predictive R2 scores of BNN for different

network structures and particle sizes. The figure indicates that

the predictive performance of BNN is relatively sensitive to

the NN structure but insensitive to the particle size. After

finding a suitable network structure, here the number of

nodes greater than 50, the BNN using 10 particles obtains

the similar performance with the application of 300 particles.

More particles mean higher computational costs. As shown

in Fig. 6, the time of training the same BNN structure (for

example, with 50 nodes) using 300 particles is about 30

times higher than the training time using 10 particles, but the

prediction accuracy of the two trainings is about the same.

This suggests that after finding a suitable network structure,

the SVGD-based BNN can use a small number of particles for

training to save the computational cost. Note that, searching

a proper NN structure is not an issue specifically to BNN, in

fact, it affects all the NN’s performance. Thus, before using

BNN for learning and inference, it is better to perform model

selection analysis and network hyperparameter optimization to

produce a good NN to work on.

BNN explicitly quantifies the data and model uncertainties

and propagates these uncertainties to predictions to provide

the knowledge about how confident we are in the NN model

estimation. Thus, if the Bayesian inference correctly quantifies

the model uncertainty, it is expected to see a decrease in

the prediction uncertainty of BNN for a proper model that

produces an increasing prediction accuracy. This is reasonable

that the more correct labels the model predicts, the more

certain we are about the suitability of the model for the

Fig. 6. Computing time used in training the BNNs with different NN
structures and particle sizes running on a single CPU processor.

problem. Fig. 7 shows the predictive standard deviations

produced by BNN for different NN structures and particle

sizes. A clear trend along the columns in the heat map can be

observed that with an increasing complexity of NN structures,

the prediction uncertainty decreases with decreasing standard

deviation values. This trend is opposite to Fig. 5 where the

prediction accuracy increases with an increasing NN structure

complexity. The correlating pattern between Fig. 5 and Fig. 7

indicates that our BNN is able to correctly quantify the

model uncertainty by demonstrating the negative correlation

between prediction accuracy and model uncertainty, which is

observable for all the particle cases. Additionally, the figures

suggest that a good choice of NN model can improve the

prediction accuracy and reduce the model uncertainty. Thus,

in practice when the predictive uncertainty is large and more

training data is not available, we may consider finding a more

suitable ML model to explain the existing limited data so as

to improve the model prediction performance.

In this section, we demonstrate that BNN can efficiently

produce accurate and credible predictions using low computa-

tional costs. On the other hand, although it seems that BNN

requires more computational time than the deterministic NN

for training, it is not easy and fair to draw the conclusion

that BNN is more computationally expensive. First, BNN may

need a few iterations to obtain a high prediction accuracy

while the deterministic NN, after a very long iteration, may

still not get a reasonable prediction (Fig. 4). Second, even

BNN uses 10 particles to train a fairly complex network on

a single CPU, the training time is less than 2 minutes, and

we can always use parallelization and GPUs to speed up the

BNN training. More importantly, comparing to the benefits of

using BNN such as the predictive uncertainty quantification

and the required small number of labelled data for training,

the affordable computational time in training BNN is a minor

issue.



Fig. 7. Predictive standard deviation of the testing data produced by the BNNs
with different NN structures and particle sizes.

IV. DISCUSSION AND CONCLUSION

Deep learning has a great potential application in Earth

system science. For example, CNN enables automated char-

acterization of objects and detection of events; FNN infers

critical Earth system variables that are difficult to monitor

directly; RNN is capable of predicting long-term trends of

the states of the Earth system; and we can also use network

models to understand how different physical processes are

related to each other and discover cause-effect relationships

in the Earth system. However, Earth system objects and

variables are complex, multivariate, highly nonlinear, and non-

stationary; Earth system science data are noisy, incomplete,

sparsely labelled, and filled with uncertainty; and meanwhile

Earth system model predictions require not only accuracy but

also quantification of confidence and credibility. These unique

properties of geoscientific problems challenge the traditional

DL methods that usually require a large number of labelled

data for training, whose performance are sensitive to the un-

certain data, and which are unable to quantify the uncertainty.

In this study, we integrate Bayesian inference into NN

model training and prediction. The formulated BNN explicitly

represents the data and model uncertainties and propagates

these uncertainties to the prediction uncertainty in a formal

but flexible way. Additionally, the BNN naturally includes

a regularization effect thus preventing overfitting. These two

nice properties of BNN makes it particularly suitable for Earth

science problems. To solve the computational complexity and

rigidness of the traditional Bayesian methods, we adopt the

efficient and general-purpose Stein variational gradient descent

(SVGD) algorithm for Bayesian inference. In application of

BNN for a surrogate modeling in the Energy Exascale Earth

System Land Model (ELM), the BNN only requires a few

dozen training data (i.e., expensive ELM simulations) to

make an accurate prediction with high credibility, whereas the

traditional deterministic NN requires hundreds of training data

to achieve a similar estimation but without any confidence in-

formation. BNN quantifies both data and model uncertainties.

With an increase of training data, the model uncertainty (thus

the total prediction uncertainty) decreases. Moreover, with a

selection of a suitable NN model structure, the prediction

accuracy increases, and the predictive uncertainty, specifically

the model uncertainty, decreases. Thus, practically when the

predictive uncertainty is large and more training data are not

available due to resource constraints, we may consider finding

a more suitable ML model to reduce the model uncertainty

thus improve model prediction accuracy and credibility.
The SVGD algorithm is general-purpose and efficiently

scalable for high-dimensional Bayesian learning, so it can

be easily adopted by geoscientists for advancing the ML/DL

application in Earth sciences for more complex problems than

the simple demonstration in this work. On the other hand, this

study’s successful application of BNN in surrogate modeling

of the ELM promises the potential of applying the method in

building surrogates of other Earth system model components

or even the fully integrated Earth system model. Furthermore,

the SVGD algorithm can be integrated into different variants

of network models such as the FNNs, CNNs, and RNNs for

diverse geoscientific applications. For example, we may design

Bayesian CNNs to improve the automated characterization of

objects and detection of extreme events, and design Bayesian

RNNs to train on historical data and then to predict the future

system behavior with uncertainty.
BNN accounting for data and model uncertainty along with

integration of knowledge by priors and constraints is critical

for solving Earth science problems. However, traditionally

BNN priors are defined in parameter space, making it hard

to encode physical prior knowledge and constraints expressed

in function space. In the future, we will formulate a prior

that incorporates functional constraints about what the model

outputs can or cannot be in regions of the input space to further

improve the BNN performance and advance its application in

Earth sciences.

ACKNOWLEDGMENT

Primary support for this work was provided by the Scientific

Discovery through Advanced Computing (SciDAC) program,

funded by the U.S. Department of Energy (DOE), Office of

Advanced Scientific Computing Research (ASCR) and Office

of Biological and Environmental Research (BER). Additional

support was provided by BER’s Terrestrial Ecosystem Science

Scientific Focus Area (TES-SFA) project and Oak Ridge

National Laboratory (ORNL) AI initiative project. The authors

are supported by ORNL, which is supported by the DOE under

contract DE-AC05-00OR22725.

REFERENCES

[1] D. Lu, and D. Ricciuto, ”Efficient surrogate modeling methods for
large-scale Earth system models based on machine-learning techniques”,
Geosci. Model Dev., 12, 1791-1807, 2019.

[2] Y. Liu, E. Racah, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel,
M. Wehner, and W. Collins, ”Application of deep convolutional neural
networks for detecting extreme weather in climate datasets,” Int’l Conf.
on Advances in Big Data Analytics, 2016.

[3] S. Besnard et al., ”Memory effects of climate and vegetation affecting net
ecosystem CO2 fluxes in global forests”, PLoS ONE 14(2): e0211510,
2019.



[4] F. Kratzert, D. Klotz, C. Brenner, K. Schulz, and M. Herrnegger,
”Rainfall–runoff modelling using Long Short-Term Memory (LSTM)
networks,” Hydrol. Earth Syst. Sci., 22, 6005-6022, 2018.

[5] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N.
Carvalhais, and Prabhat, ”Deep learning and process understanding for
data-driven Earth system science”, Nature, 566, 195-204, 2019.

[6] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, ”Compre-
hensive review of neural network-based prediction intervals and new
advances”, IEEE transactions on neural networks, 22(9), 2011.

[7] Y. Gal, and Z. Ghahramani, ”Dropout as a Bayesian approximation:
representing model uncertainty in deep learning”, Proceedings of the 33
rd International Conference on Machine Learning, New York, NY, USA,
2016.

[8] Q. Liu, and D. Wang, ”Stein variational gradient descent: a general pur-
pose bayesian inference algorithm”, In Advances In Neural Information
Processing Systems, 2370-2378, 2016.

[9] D. P. Kingma, and J. Ba, ”Adam: A method for stochastic optimization”,
arXiv preprint arXiv:1412.6980, 2014.

[10] D. Ricciuto, K. Sargsyan, and P. Thornton, ”The impact of parametric
uncertainties on biogeochemistry in the E3SM land model”. Journal of
Advances in Modeling Earth Systems, 10, 297-319, 2018.


