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ABSTRACT

The eddy current approximation to Maxwell's equation often omits terms associated with
magnetization, removing permanent magnets from the domain of validity of the approximation.
We show that adding these terms back into the eddy current approximation is relatively
straightforward, and demonstrate this on using a simple material constitutive model.
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NOTATION

Electromagnetic Quantities

Reference
Static

Frame
Moving Units Description

E E V/m Electric field
J J A/m2 Current density
H 7-1 A/m Magnetic field strength
B — T Magnetic flux density
M M A/m Magnetization
D — C/m2x Electric displacement field
P — C/m2 Polarization density

q — C/m3 Charge density

Kinematic Quantities

Symbol Units Description

p
P
7C
v

kg/m3
Pa
Pa
m/s

Density
Pressure
Pressure in absence of magnetic field
Velocity

Material Parameters

Material Constants

Symbol Units Description

a

P
XB

S/m
H/m
-

Electrical conductivity
Magnetic permeability
Magnetic susceptibility

Symbol Units Description

Po
Eo

H/m
F/m

Permeability of free space
Permittivity of free space



1. INTRODUCTION

Following (54.13)—(54.18) in Kovetz [2, p. 218], we begin with Maxwell's equations,

V • D q, (1)

V x 9-t j+D, (2)

V • B 0, (3)

V x E —B, (4)

D ecIE P (5)

,uo 1B — v x coE — (6)

where, following (54.19) in Kovetz [2, p. 90],

ac+vvr•c-vx(vxc), (7)

for any vector field C.

We note that the moving (script) and static (bold) frame fields are related via Galilean
transformations following (6.9), (9.9) and (20.5) in Kovetz [2, pp. 25,37,77],

M = M-kvxP, (8)

E = E+v xB, (9)

= H—v x D. (10)

We then make the two assumptions critical to the eddy current approximation, while retaining
magnetization.

Assumption 1. Polarization, P is zero.

Assumption 2. The permittivity of free space, co, is zero.

The first assumption simply states that we do not consider polarizable materials. The second
assumption alters the fundamental physics of Maxwell's equations. Combined, these two
assumptions imply that free charge, q, and the electric displacement, D are also both zero (thus
satisfying Gauss' law). This yields the reduced set of equations

With (12), we can restate (13) as

V x = j, (11)

V•B = 0, (12)

V x E = —B, (13)

W1113--1". (14)

aB
VxE,--a —Vx(vxB).
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Substituting in (9) yields the more familiar form of Faraday's Law, namely,

V x E = —
a

a
s

t . (16)

We also note that (8) holds, so in the absence of polarization, M = M. Likewise, in the absence
of displacement currents, 7-1 = H. We now add a third assumption, a constitutive relation for J,

Assumption 3. Ohm's law holds, namely,

= 6E. (17)

Then, we can apply (17) to (11) to yield the moving-frame versions of Ampere's law, which
results in the governing equations,

V'X iticT1B—VXM = 6(E—FvxB).

V x E = 
aB
at .

2. MATHEMATICAL IDENTITIES AND MATERIAL MODELS

(18)

(19)

2.1. Frequently Used Vector Calculus Identities

We will use certain vector calculus identities enough to note them specifically.

V(A • C) = (A • V)C + (C • V)A +A x (V x C) + C x (V x A), (20)

2
—
1
V (A • A) = A x (V x A) + (A • V)A (21)

We also note that the Kronecker product of vectors is simply an outer product,

x0y=xyT. (22)

2.2. Constitutive Model for a Linearly Magnetized Material

For the case of diamagnetic or paramagnetic materials, we can use the constitutive relation

ADM = XBB, 7 (23)

where x13 is the magnetic susceptibility, cf. equation (4.32) in Kovetz [2, p. 154]. We call these
materials linear, as the magnetization M is a linear function of the B-field. Following equation
(43.4) in Kovetz [2, p. 154], we can then use the magnetic susceptibility to define the permeability
as

= 
1 — XB
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or 2u3 = 1 — PT°. Griffiths [1] defines magnetic susceptibility differently,M = XHI11. This is

equivalent to 2cH = kJ° — 1. These two versions of magnetic susceptibility are related by

(1 — XB)(1 +XH) = 1.

Using Kovetz's definition, we can write the overall magnetization in terms of p as,

M = (110 1 —11-1)B- (25)

For linear magnetic materials, we can use (25) to rewrite (18) as

V x p-1B = cr(E + v x B). (26)

In subsequent sections, especially Chapter 3, we will use the color blue to designate terms
associated with linear magnetization.

2.3. Constitutive Model for a Permanently and Linearly Magnetized (PLM) Material

In exercise 70.3, Kovetz [2, p. 262] offers another constitutive model which allows for the
addition of a permanently magnetized term, Mo, which does not vary in time. We can then state
this permanent and linear magnet (PLM) constitutive model as

Ai mo 4_ (pc, 1 p-1)B, (27)

With this constitutive model, we can rewrite (18) as

V x p-1B — V x Mo = a(E+ v x B). (28)

In subsequent sections, especially Chapter 3, we will use the color red to designate terms
associated with permanent magnetization and blue for those associated with linear magnetization.
Thus terms associated with this model will have both terms.

3. MAGNETIZATION AND CONSERVATION OF MOMENTUM

Unlike the previous discussion, where our concerns are limited to purely electromagnetic
phenomena, magnetic materials effect the magnetohydrodynamics equations through the
momentum equations as well. We begin from the assumption of a perfect electromangetic fluid,
(56.17) in Kovetz [2, p. 225],

av
p . = —Vp-FqE+ (J -FP) xB + (P • V)E+ (..A4 • V)B+M xVxB+ pb, (29)

where b is an arbitrary body force. Removing polarization (P) and free charge (q) yields,

pat 

ay 
=—Vp+JxB-k(M•V)B+MxVxB-hpb.

1Griffiths calls this kw, but we use vi here instead.
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Kovetz does note that when M 0 or the pressure term p can be a function of E and B,
which means that the pressure term is as "electromagnetic" as the other terms.

We should also consider the magnetic stress tensor, since the divergence of the magnetic stress
tensor is how magnetic forces are actually computed in may codes. Again following the perfect
electromagnetic fluid assumption, (56.15) in Kovetz [2, p. 223], we have,

T 
1

= [P + 2 -EdEM2 + 2 -1 II-1 IIBM2 ,A413]/
°

+60E0E+po BOB+EOP-M®B+60ExBxv. (31)

The version of (31) with pressure, polarization, magnetization and velocity removed is often
referred to as the "Maxwell stress tensor." Neglecting polarization (P) and permittivity (e0), we
have

= [ + 1 1113112 -M•B]I -FRVB ®B -MOB.P -2P0
(32)

When Kovetz notes that the pressure is "electromagnetic," he means something rather specific for
a permeable fluid at rest, namely,

p=n-F-
1

2 
•B, (33)

where IC is the pressure in the absence of a magnetic field [2, p. 260]. This means that the stress
tensor can be rewritten as

T = +2 111311
1 
°

1 2 M•B /-kiq1B0B-M0B.

3.1. Momentum and Non-magnetized Materials

For non-magnetic materials, we can simplify (30) to

and (34) to

or

av
p—at =-V7E+JxB+pb,

1 - 1To = - [Th+iPo 
D 112 BI+po ,

Bx2 - -11B11 BxBy BxBz

To = µo
1 BxBy By2 -1111311 ByBz

BxBz ByBz Bz2 11311
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3.2. Momentum and Linearly Magnetizable Materials

For a linearly magnetic material, (30) can be written as

av
p=-Vp+JxB+((p(T, 1-p-1)B•V)B+(p(T1 -p-1)BxVxB-Hpb, (38)

or by (21),

p—
av 
= -Vp+J x B+ 

2 
-1

°
(µ-1 -µ-1)V(B•B)+ pb. (39)at 

This yields the standard (hydrodynamic) version of Euler's first law (excepting the
electromagnetic part of the pressure term), plus the Lorentz force and the additional term shown
in blue. We can do the same for the magnetic stress tensor (34)

1
Tim = - [n+ 

2 
-93112 - 2-(//0-1 

- µ-1)B • 13] I + po lBOB - (p0-1 -p-1)B 0 B, (40)

with the new terms again appearing in blue. We can also consider new entries of this tensor,

Bx2 - 2 111311 BxBy BxBz

TL 
(po-1 p-1)

M - TO = BxBy By2 - -11 B 11 ByBz . (41)

BxBz ByBz Bz2 - 2111311

Note that every entry in the tensor is changed by the addition of linear magnetization. This has the
effect of making Tim effectively To with po replaced by p.

3.3. Momentum and PLM Materials

For a PLM constitutive model, (30) can be written as

av
p at = Vp + J x B + ((Mo + (po 1 -p-1)B) - V) B + (M0 + (po 1 p-1)B)

or by (21),

av 1 

°

,
p—
Dt 
= -Vp+JxB-F-

2
(µ-1 -µ'

,
)V(B • B) + (Mo • V)B-FMoxVxB-F pb. (43)

Here we have a blue term very much like the linear case, but we also have two red terms
associated with the permanent magnetization term Mo.

We also note that if we assume Mo is constant within each element, then by (20) we have

V(Mo • B) = (Mo • V)B +Mo x V x B, (44)

so the momentum equation can be rewritten in terms of the so-called "magnetic loop force,"
V(Mo • B), which the force on a permanent magnetic exerted by a non-uniform magnetic field,

p 
av 
= -V p-p j x B -F 2(pc7 1 1 -µ- )V(B • B) +V (Mo • B) + pb. (45)

11

xVxB+pb,

(42)



We can also consider the magnetic stress tensor (34) in this case we get

T = —[1c+
1
—
2NV143112— —2 

(m0+ (ticTi tri) .B]I+iicT1B0B (m0+ (tql ti—i) 0B,

(46)
or

T = —[7c+-2/10-111B112— —2 
Mo • B — 

2 
—1 (p

°
1 — ,u 1)B • B1 /

+p0-1BOB—Mo0B— (µ0-1 —p-1)BOB, (47)

with the color coding as above. We can then consider the change in the magnetic stress tensor
entry-wise,

TPLM — TO =
1M0 • B — MOxBx —BxMOy —BxMOz

—ByMOx 21‘110 • B — MOyBy —ByMOz
—BzMOx —BzMOy 1M0 • B — BzMOz

[

Bx2 — 1111311 BxBy BxBz
+(p(7, 1 — p— 1) BxBy By2— 1111311 ByBz , (48)

ByBz Bz2 — 111311BxBz 

Where the second term is TLM — To. We note that this stress tensor is not symmetric.

4. CONCLUSIONS

We have derived an extension to the eddy current equations which allows for magnetization. We
have shown how linearly and permanently magnetizable materials can be integrated into this
framework. Moreover, we have shown how magnetization modifies the Maxwell stress tensor and
have calculated the resulting magnetic forces.
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