Sandia
National
Laboratories

SAND2020-3813
Printed March 2020

SANDIA REPORT @

Adding Magnetization to the Eddy Current
Approximation of Maxwell’s Equations

Christopher M. Siefert

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550




Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering:  http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order:  https://classic.ntis.gov/help/order-methods

NS

MNational Nyclear Security Admrinisiration




ABSTRACT

The eddy current approximation to Maxwell’s equation often omits terms associated with
magnetization, removing permanent magnets from the domain of validity of the approximation.
We show that adding these terms back into the eddy current approximation is relatively
straightforward, and demonstrate this on using a simple material constitutive model.
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NOTATION

Electromagnetic Quantities

Reference Frame
Static | Moving | Units | Description
E & V/m | Electric field
J J A/m? | Current density
H H A/m Magnetic field strength
B — T Magnetic flux density
M M A/m Magnetization
D — C/m?x | Electric displacement field
P — C/m?* | Polarization density
q — C/m? | Charge density
Kinematic Quantities
Symbol | Units | Description
p kg/m> | Density
p Pa Pressure
T Pa Pressure in absence of magnetic field
v m/s Velocity
Material Parameters
Symbol | Units | Description
c S/m | Electrical conductivity
u H/m | Magnetic permeability
XB — Magnetic susceptibility
Material Constants
Symbol | Units | Description
Ho H/m | Permeability of free space
() F/m | Permittivity of free space




1. INTRODUCTION

Following (54.13)—(54.18) in Kovetz [2, p. 218], we begin with Maxwell’s equations,

V-D = g, (D
VxH = J+D, @)
V.-B = 0, 3)
VxE — —-B, )
D = gE+P 5
H = py'B—vxgE—M, (6)
where, following (54.19) in Kovetz [2, p. 90],
* 9
C:a—(tj—FvV-C—Vx(vxC), (7)

for any vector field C.

We note that the moving (script) and static (bold) frame fields are related via Galilean
transformations following (6.9), (9.9) and (20.5) in Kovetz [2, pp. 25,37,77],

M = M+vxP, (8)
& = E+vxB, )
H = H—-vxD. (10)

We then make the two assumptions critical to the eddy current approximation, while retaining
magnetization.

Assumption 1. Polarization, P is zero.

Assumption 2. The permittivity of free space, €, is zero.

The first assumption simply states that we do not consider polarizable materials. The second
assumption alters the fundamental physics of Maxwell’s equations. Combined, these two

assumptions imply that free charge, g, and the electric displacement, D are also both zero (thus
satisfying Gauss’ law). This yields the reduced set of equations

VxH = J, (11)
V.-B = 0, (12)
VxE = -B, (13)
H = py'B-M. (14)
With (12), we can restate (13) as
ngz—%—]:—Vx(va). (15)
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Substituting in (9) yields the more familiar form of Faraday’s Law, namely,

oB
VXE=—=". (16)

We also note that (8) holds, so in the absence of polarization, M = M. Likewise, in the absence
of displacement currents, H = H. We now add a third assumption, a constitutive relation for 7,

Assumption 3. Ohm’s law holds, namely,

J =oE€. (17)

Then, we can apply (17) to (11) to yield the moving-frame versions of Ampere’s law, which
results in the governing equations,

Vxuy'B-VxM = o(E+vxB), (18)
VXE = —aa—]:. (19)
2. MATHEMATICAL IDENTITIES AND MATERIAL MODELS
2.1. Frequently Used Vector Calculus Identities

We will use certain vector calculus identities enough to note them specifically.

VA-C) = (A-V)C+(C-V)A+Ax (VxC)+Cx(VxA), (20)
%V(A-A) — Ax(VXA)+(A-V)A @1)

We also note that the Kronecker product of vectors is simply an outer product,

XQy=xy’. (22)

2.2 Constitutive Model for a Linearly Magnetized Material

For the case of diamagnetic or paramagnetic materials, we can use the constitutive relation
lu()M = XBBa ) (23)

where X is the magnetic susceptibility, cf. equation (4.32) in Kovetz [2, p. 154]. We call these
materials linear, as the magnetization M is a linear function of the B-field. Following equation
(43.4) in Kovetz [2, p. 154], we can then use the magnetic susceptibility to define the permeability

as Mo
= ; (24)
A = XB
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oryp=1-— % Griffiths [1] defines magnetic susceptibility differently, M = yzH'. This is
equivalent to Yy = ,Uﬂo — 1. These two versions of magnetic susceptibility are related by
(I—=x8)(1+xn) = 1.

Using Kovetz’s definition, we can write the overall magnetization in terms of u as,
M= (uy' —u")B. (25)
For linear magnetic materials, we can use (25) to rewrite (18) as
Vxu 'B=c(E+vxB). (26)

In subsequent sections, especially Chapter 3, we will use the color blue to designate terms
associated with linear magnetization.

2.3. Constitutive Model for a Permanently and Linearly Magnetized (PLM) Material

In exercise 70.3, Kovetz [2, p. 262] offers another constitutive model which allows for the
addition of a permanently magnetized term, My, which does not vary in time. We can then state
this permanent and linear magnet (PLM) constitutive model as

M =M+ (' —u~")B, 27)
With this constitutive model, we can rewrite (18) as
Vxu 'B—VxMy=0(E+vxB). (28)

In subsequent sections, especially Chapter 3, we will use the color red to designate terms
associated with permanent magnetization and blue for those associated with linear magnetization.
Thus terms associated with this model will have both terms.

3. MAGNETIZATION AND CONSERVATION OF MOMENTUM

Unlike the previous discussion, where our concerns are limited to purely electromagnetic
phenomena, magnetic materials effect the magnetohydrodynamics equations through the

momentum equations as well. We begin from the assumption of a perfect electromangetic fluid,
(56.17) in Kovetz [2, p. 225],

0 *
pa—: = Vp+gE+(T+P)xB+ (P-V)E+(M-V)B+MxVxB+pb,  (29)

where b is an arbitrary body force. Removing polarization (P) and free charge (¢q) yields,

pg—::—Vp+ij+(M~V)B+M><V><B+pb. (30)

! Griffiths calls this %3, but we use )z here instead.



Kovetz does note that when M # 0 or P # 0, the pressure term p can be a function of £ and B,
which means that the pressure term is as “electromagnetic” as the other terms.

We should also consider the magnetic stress tensor, since the divergence of the magnetic stress
tensor is how magnetic forces are actually computed in may codes. Again following the perfect
electromagnetic fluid assumption, (56.15) in Kovetz [2, p. 223], we have,

1 I _
T = = | gl g B - 0B 1
+eEQE+1; ' BEB+ER@P - M@B+&ExBXx V. (31)
The version of (31) with pressure, polarization, magnetization and velocity removed is often

referred to as the “Maxwell stress tensor.” Neglecting polarization (P) and permittivity (€g), we
have

1
T=—[p+§u51\|BH2—M-Bl1+MEIB®B—M®B- (2]

When Kovetz notes that the pressure is “electromagnetic,” he means something rather specific for
a permeable fluid at rest, namely,

1
pZTC—FEM'B, (33)

where T is the pressure in the absence of a magnetic field [2, p. 260]. This means that the stress
tensor can be rewritten as

1 1
T=— n+§,u51||B||2—§M-B I+y,'B®B-M®B. (34)
3.1. Momentum and Non-magnetized Materials

For non-magnetic materials, we can simplify (30) to

ov
pE:—Vn—l—ijerb, (35)
and (34) to
1 _
o= w3 1BIR| 144 B (36)
or
Bx>—1||B|| BxBy BxBz
To=up' BxBy  By’—1|B|  ByBz —nl. (37)
BxBz ByBz B2 —1|B||
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3.2. Momentum and Linearly Magnetizable Materials

For a linearly magnetic material, (30) can be written as

d
pa_;’ — Vp+JIxB+ ((uo—l _,,-I)B.v> B+(uy' —u HBxVxB+pb, (38
or by (21),
d 1
pa_::_vp+j><B+§(y51—y—l)V(B-B)+pb. (39)

This yields the standard (hydrodynamic) version of Euler’s first law (excepting the
electromagnetic part of the pressure term), plus the Lorentz force and the additional term shown
in blue. We can do the same for the magnetic stress tensor (34)

1 Lz = = _ - -
Tim == |m+ S [BI* = (g —u)B-B| I+4 BOB— (' —p)BOB,  (40)

with the new terms again appearing in blue. We can also consider new entries of this tensor,

Bx? — %HBH BxBy BxBz
Tim—To= (' —p™") BxBy  By’—%|B|  ByBz : (41)
BxBz ByBz B2 - 1|B|

Note that every entry in the tensor is changed by the addition of linear magnetization. This has the
effect of making 77, effectively Ty with ug replaced by u.

3.3. Momentum and PLM Materials

For a PLM constitutive model, (30) can be written as

5
psr = —Vp+J xB+ ((Mo+ (' —u")B)-V) B+ Mo+ (5" —u~')B) x V x B+pb,
(42)
or by (21),

0 1
pa—: :—Vp—{—ij—FE(‘ual —‘Lfl)V(B-B)—I—(MO-V)B—I—MO XV x B+ pb. (43)

Here we have a blue term very much like the linear case, but we also have two red terms
associated with the permanent magnetization term My.

We also note that if we assume My is constant within each element, then by (20) we have
V(Mp-B)=(My-V)B+Mjy x V xB, (44)

so the momentum equation can be rewritten in terms of the so-called “magnetic loop force,”
V(My - B), which the force on a permanent magnetic exerted by a non-uniform magnetic field,

J 1
pa—: ==Vp+J xB+ (45" —u~")V(B-B)+V (Mo -B) +pb. (45)
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We can also consider the magnetic stress tensor (34) in this case we get

1 _ 1 _ _ _ = _
T=-— 7‘+§#OII|B||2—§<MO+(,MOI—,L1 1)‘B}I+:“01B®B_(M0+(.Uol—,u 1>®B,

(46)
or
T = —|n+ iy B2 = iMo-B— L' —u "B -B|1
970 2 51
+1ty ' BOB-My@B— (15" —p)B®B, (47)

with the color coding as above. We can then consider the change in the magnetic stress tensor
entry-wise,

%Mo -B — MOxBx —BxMOQy —BxMOz
Tpin—Ty) = —ByMOx iMy - B — MOyBy —ByMOz
—BzMOx —BzMOy iMy - B — BzM0z
Bx*—1||B|| BxBy BxBz
' ) | BaBy B -S[B| ByBr |, (48)
BxBz ByBz  Bz*—3|B||

Where the second term is 77, — Tp. We note that this stress tensor is not symmetric.

4. CONCLUSIONS

We have derived an extension to the eddy current equations which allows for magnetization. We
have shown how linearly and permanently magnetizable materials can be integrated into this
framework. Moreover, we have shown how magnetization modifies the Maxwell stress tensor and
have calculated the resulting magnetic forces.
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