

SANDIA REPORT

SAND2020-3813
Printed March 2020

Sandia
National
Laboratories

Adding Magnetization to the Eddy Current Approximation of Maxwell's Equations

Christopher M. Siefert

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: <http://www.osti.gov/scitech>

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: <https://classic.ntis.gov/help/order-methods>

ABSTRACT

The eddy current approximation to Maxwell's equation often omits terms associated with magnetization, removing permanent magnets from the domain of validity of the approximation. We show that adding these terms back into the eddy current approximation is relatively straightforward, and demonstrate this on using a simple material constitutive model.

ACKNOWLEDGMENT

The author would like to thank John Niederhaus and Misha Grinfeld (ARL) for requesting that this report be written. John also offered valuable feedback as part of the review process. The author would also like to thank Allen Robinson advocating Kovetz's text as a systematic guide to electromagnetism. This work was supported by the CCDC Army Research Laboratory.

CONTENTS

Notation	6
1. Introduction	7
2. Mathematical Identities and Material Models	8
2.1. Frequently Used Vector Calculus Identities	8
2.2. Constitutive Model for a Linearly Magnetized Material	8
2.3. Constitutive Model for a Permanently and Linearly Magnetized (PLM) Material	9
3. Magnetization and Conservation of Momentum	9
3.1. Momentum and Non-magnetized Materials	10
3.2. Momentum and Linearly Magnetizable Materials	11
3.3. Momentum and PLM Materials	11
4. Conclusions	12
References	12

NOTATION

Electromagnetic Quantities

Reference Frame			
Static	Moving	Units	Description
E	\mathcal{E}	V/m	Electric field
J	\mathcal{J}	A/m^2	Current density
H	\mathcal{H}	A/m	Magnetic field strength
B	—	T	Magnetic flux density
M	\mathcal{M}	A/m	Magnetization
D	—	C/m^2	Electric displacement field
P	—	C/m^2	Polarization density
q	—	C/m^3	Charge density

Kinematic Quantities

Symbol	Units	Description
ρ	kg/m^3	Density
p	Pa	Pressure
π	Pa	Pressure in absence of magnetic field
v	m/s	Velocity

Material Parameters

Symbol	Units	Description
σ	S/m	Electrical conductivity
μ	H/m	Magnetic permeability
χ_B	—	Magnetic susceptibility

Material Constants

Symbol	Units	Description
μ_0	H/m	Permeability of free space
ϵ_0	F/m	Permittivity of free space

1. INTRODUCTION

Following (54.13)–(54.18) in Kovetz [2, p. 218], we begin with Maxwell's equations,

$$\nabla \cdot \mathbf{D} = q, \quad (1)$$

$$\nabla \times \mathcal{H} = \mathcal{J} + \overset{*}{D}, \quad (2)$$

$$\nabla \cdot \mathbf{B} = 0, \quad (3)$$

$$\nabla \times \mathcal{E} = -\overset{*}{B}, \quad (4)$$

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \quad (5)$$

$$\mathcal{H} = \mu_0^{-1} \mathbf{B} - \mathbf{v} \times \epsilon_0 \mathbf{E} - \mathcal{M}, \quad (6)$$

where, following (54.19) in Kovetz [2, p. 90],

$$\overset{*}{\mathbf{C}} = \frac{\partial \mathbf{C}}{\partial t} + \mathbf{v} \nabla \cdot \mathbf{C} - \nabla \times (\mathbf{v} \times \mathbf{C}), \quad (7)$$

for any vector field \mathbf{C} .

We note that the moving (script) and static (bold) frame fields are related via Galilean transformations following (6.9), (9.9) and (20.5) in Kovetz [2, pp. 25,37,77],

$$\mathcal{M} = \mathbf{M} + \mathbf{v} \times \mathbf{P}, \quad (8)$$

$$\mathcal{E} = \mathbf{E} + \mathbf{v} \times \mathbf{B}, \quad (9)$$

$$\mathcal{H} = \mathbf{H} - \mathbf{v} \times \mathbf{D}. \quad (10)$$

We then make the two assumptions critical to the eddy current approximation, while retaining magnetization.

Assumption 1. *Polarization, P is zero.*

Assumption 2. *The permittivity of free space, ϵ_0 , is zero.*

The first assumption simply states that we do not consider polarizable materials. The second assumption alters the fundamental physics of Maxwell's equations. Combined, these two assumptions imply that free charge, q , and the electric displacement, \mathbf{D} are also both zero (thus satisfying Gauss' law). This yields the reduced set of equations

$$\nabla \times \mathcal{H} = \mathcal{J}, \quad (11)$$

$$\nabla \cdot \mathbf{B} = 0, \quad (12)$$

$$\nabla \times \mathcal{E} = -\overset{*}{B}, \quad (13)$$

$$\mathcal{H} = \mu_0^{-1} \mathbf{B} - \mathcal{M}. \quad (14)$$

With (12), we can restate (13) as

$$\nabla \times \mathcal{E} = -\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}). \quad (15)$$

Substituting in (9) yields the more familiar form of Faraday's Law, namely,

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}. \quad (16)$$

We also note that (8) holds, so in the absence of polarization, $\mathcal{M} = \mathbf{M}$. Likewise, in the absence of displacement currents, $\mathcal{H} = \mathbf{H}$. We now add a third assumption, a constitutive relation for \mathcal{J} ,

Assumption 3. *Ohm's law holds, namely,*

$$\mathcal{J} = \sigma \mathcal{E}. \quad (17)$$

Then, we can apply (17) to (11) to yield the moving-frame versions of Ampere's law, which results in the governing equations,

$$\nabla \times \mu_0^{-1} \mathbf{B} - \nabla \times \mathbf{M} = \sigma(\mathbf{E} + \mathbf{v} \times \mathbf{B}), \quad (18)$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}. \quad (19)$$

2. MATHEMATICAL IDENTITIES AND MATERIAL MODELS

2.1. Frequently Used Vector Calculus Identities

We will use certain vector calculus identities enough to note them specifically.

$$\nabla(\mathbf{A} \cdot \mathbf{C}) = (\mathbf{A} \cdot \nabla)\mathbf{C} + (\mathbf{C} \cdot \nabla)\mathbf{A} + \mathbf{A} \times (\nabla \times \mathbf{C}) + \mathbf{C} \times (\nabla \times \mathbf{A}), \quad (20)$$

$$\frac{1}{2} \nabla(\mathbf{A} \cdot \mathbf{A}) = \mathbf{A} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{A} \quad (21)$$

We also note that the Kronecker product of vectors is simply an outer product,

$$\mathbf{x} \otimes \mathbf{y} = \mathbf{x}\mathbf{y}^T. \quad (22)$$

2.2. Constitutive Model for a Linearly Magnetized Material

For the case of diamagnetic or paramagnetic materials, we can use the constitutive relation

$$\mu_0 \mathbf{M} = \chi_B \mathbf{B},, \quad (23)$$

where χ_B is the magnetic susceptibility, cf. equation (4.32) in Kovetz [2, p. 154]. We call these materials linear, as the magnetization \mathbf{M} is a linear function of the \mathbf{B} -field. Following equation (43.4) in Kovetz [2, p. 154], we can then use the magnetic susceptibility to define the permeability as

$$\mu = \frac{\mu_0}{1 - \chi_B}, \quad (24)$$

or $\chi_B = 1 - \frac{\mu_0}{\mu}$. Griffiths [1] defines magnetic susceptibility differently, $\mathbf{M} = \chi_H \mathbf{H}^1$. This is equivalent to $\chi_H = \frac{\mu}{\mu_0} - 1$. These two versions of magnetic susceptibility are related by $(1 - \chi_B)(1 + \chi_H) = 1$.

Using Kovetz's definition, we can write the overall magnetization in terms of μ as,

$$\mathbf{M} = (\mu_0^{-1} - \mu^{-1})\mathbf{B}. \quad (25)$$

For linear magnetic materials, we can use (25) to rewrite (18) as

$$\nabla \times \mu^{-1} \mathbf{B} = \sigma(\mathbf{E} + \mathbf{v} \times \mathbf{B}). \quad (26)$$

In subsequent sections, especially Chapter 3, we will use the color **blue** to designate terms associated with linear magnetization.

2.3. Constitutive Model for a Permanently and Linearly Magnetized (PLM) Material

In exercise 70.3, Kovetz [2, p. 262] offers another constitutive model which allows for the addition of a permanently magnetized term, \mathbf{M}_0 , which does not vary in time. We can then state this *permanent and linear magnet* (PLM) constitutive model as

$$\mathbf{M} = \mathbf{M}_0 + (\mu_0^{-1} - \mu^{-1})\mathbf{B}, \quad (27)$$

With this constitutive model, we can rewrite (18) as

$$\nabla \times \mu^{-1} \mathbf{B} - \nabla \times \mathbf{M}_0 = \sigma(\mathbf{E} + \mathbf{v} \times \mathbf{B}). \quad (28)$$

In subsequent sections, especially Chapter 3, we will use the color **red** to designate terms associated with permanent magnetization and **blue** for those associated with linear magnetization. Thus terms associated with this model will have both terms.

3. MAGNETIZATION AND CONSERVATION OF MOMENTUM

Unlike the previous discussion, where our concerns are limited to purely electromagnetic phenomena, magnetic materials effect the magnetohydrodynamics equations through the momentum equations as well. We begin from the assumption of a perfect electromagnetic fluid, (56.17) in Kovetz [2, p. 225],

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + q\mathcal{E} + (\mathcal{J} + \mathbf{P}) \times \mathbf{B} + (\mathbf{P} \cdot \nabla) \mathcal{E} + (\mathcal{M} \cdot \nabla) \mathbf{B} + \mathcal{M} \times \nabla \times \mathbf{B} + \rho \mathbf{b}, \quad (29)$$

where \mathbf{b} is an arbitrary body force. Removing polarization (\mathbf{P}) and free charge (q) yields,

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \mathcal{J} \times \mathbf{B} + (\mathbf{M} \cdot \nabla) \mathbf{B} + \mathbf{M} \times \nabla \times \mathbf{B} + \rho \mathbf{b}. \quad (30)$$

¹Griffiths calls this χ_M , but we use χ_H here instead.

Kovetz does note that when $\mathcal{M} \neq 0$ or $\mathbf{P} \neq 0$, the pressure term p can be a function of \mathcal{E} and \mathbf{B} , which means that the pressure term is as “electromagnetic” as the other terms.

We should also consider the magnetic stress tensor, since the divergence of the magnetic stress tensor is how magnetic forces are actually computed in many codes. Again following the perfect electromagnetic fluid assumption, (56.15) in Kovetz [2, p. 223], we have,

$$\begin{aligned} T = & - \left[p + \frac{1}{2} \epsilon_0 \|\mathbf{E}\|^2 + \frac{1}{2} \mu_0^{-1} \|\mathbf{B}\|^2 - \mathcal{M} \cdot \mathbf{B} \right] I \\ & + \epsilon_0 \mathbf{E} \otimes \mathbf{E} + \mu_0^{-1} \mathbf{B} \otimes \mathbf{B} + \mathcal{E} \otimes \mathbf{P} - \mathcal{M} \otimes \mathbf{B} + \epsilon_0 \mathbf{E} \times \mathbf{B} \times \mathbf{v}. \end{aligned} \quad (31)$$

The version of (31) with pressure, polarization, magnetization and velocity removed is often referred to as the “Maxwell stress tensor.” Neglecting polarization (\mathbf{P}) and permittivity (ϵ_0), we have

$$T = - \left[p + \frac{1}{2} \mu_0^{-1} \|\mathbf{B}\|^2 - \mathbf{M} \cdot \mathbf{B} \right] I + \mu_0^{-1} \mathbf{B} \otimes \mathbf{B} - \mathbf{M} \otimes \mathbf{B}. \quad (32)$$

When Kovetz notes that the pressure is “electromagnetic,” he means something rather specific for a permeable fluid at rest, namely,

$$p = \pi + \frac{1}{2} \mathcal{M} \cdot \mathbf{B}, \quad (33)$$

where π is the pressure in the *absence* of a magnetic field [2, p. 260]. This means that the stress tensor can be rewritten as

$$T = - \left[\pi + \frac{1}{2} \mu_0^{-1} \|\mathbf{B}\|^2 - \frac{1}{2} \mathbf{M} \cdot \mathbf{B} \right] I + \mu_0^{-1} \mathbf{B} \otimes \mathbf{B} - \mathbf{M} \otimes \mathbf{B}. \quad (34)$$

3.1. Momentum and Non-magnetized Materials

For non-magnetic materials, we can simplify (30) to

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla \pi + \mathcal{J} \times \mathbf{B} + \rho \mathbf{b}, \quad (35)$$

and (34) to

$$T_0 = - \left[\pi + \frac{1}{2} \mu_0^{-1} \|\mathbf{B}\|^2 \right] I + \mu_0^{-1} \mathbf{B} \otimes \mathbf{B}, \quad (36)$$

or

$$T_0 = \mu_0^{-1} \begin{bmatrix} Bx^2 - \frac{1}{2} \|\mathbf{B}\|^2 & BxBy & BxBz \\ BxBy & By^2 - \frac{1}{2} \|\mathbf{B}\|^2 & ByBz \\ BxBz & ByBz & Bz^2 - \frac{1}{2} \|\mathbf{B}\|^2 \end{bmatrix} - \pi I. \quad (37)$$

3.2. Momentum and Linearly Magnetizable Materials

For a linearly magnetic material, (30) can be written as

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \mathcal{J} \times \mathbf{B} + \left((\mu_0^{-1} - \mu^{-1}) \mathbf{B} \cdot \nabla \right) \mathbf{B} + (\mu_0^{-1} - \mu^{-1}) \mathbf{B} \times \nabla \times \mathbf{B} + \rho \mathbf{b}, \quad (38)$$

or by (21),

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \mathcal{J} \times \mathbf{B} + \frac{1}{2} (\mu_0^{-1} - \mu^{-1}) \nabla (\mathbf{B} \cdot \mathbf{B}) + \rho \mathbf{b}. \quad (39)$$

This yields the standard (hydrodynamic) version of Euler's first law (excepting the electromagnetic part of the pressure term), plus the Lorentz force and the additional term shown in blue. We can do the same for the magnetic stress tensor (34)

$$T_{LM} = - \left[\pi + \frac{1}{2} \|\mathbf{B}\|^2 - \frac{1}{2} (\mu_0^{-1} - \mu^{-1}) \mathbf{B} \cdot \mathbf{B} \right] I + \mu_0^{-1} \mathbf{B} \otimes \mathbf{B} - (\mu_0^{-1} - \mu^{-1}) \mathbf{B} \otimes \mathbf{B}, \quad (40)$$

with the new terms again appearing in blue. We can also consider new entries of this tensor,

$$T_{LM} - T_0 = (\mu_0^{-1} - \mu^{-1}) \begin{bmatrix} Bx^2 - \frac{1}{2} \|\mathbf{B}\|^2 & BxBy & BxBz \\ BxBy & By^2 - \frac{1}{2} \|\mathbf{B}\|^2 & ByBz \\ BxBz & ByBz & Bz^2 - \frac{1}{2} \|\mathbf{B}\|^2 \end{bmatrix}. \quad (41)$$

Note that every entry in the tensor is changed by the addition of linear magnetization. This has the effect of making T_{LM} effectively T_0 with μ_0 replaced by μ .

3.3. Momentum and PLM Materials

For a PLM constitutive model, (30) can be written as

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \mathcal{J} \times \mathbf{B} + \left((\mathbf{M}_0 + (\mu_0^{-1} - \mu^{-1}) \mathbf{B}) \cdot \nabla \right) \mathbf{B} + (\mathbf{M}_0 + (\mu_0^{-1} - \mu^{-1}) \mathbf{B}) \times \nabla \times \mathbf{B} + \rho \mathbf{b}, \quad (42)$$

or by (21),

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \mathcal{J} \times \mathbf{B} + \frac{1}{2} (\mu_0^{-1} - \mu^{-1}) \nabla (\mathbf{B} \cdot \mathbf{B}) + (\mathbf{M}_0 \cdot \nabla) \mathbf{B} + \mathbf{M}_0 \times \nabla \times \mathbf{B} + \rho \mathbf{b}. \quad (43)$$

Here we have a blue term very much like the linear case, but we also have two red terms associated with the permanent magnetization term \mathbf{M}_0 .

We also note that if we assume \mathbf{M}_0 is constant within each element, then by (20) we have

$$\nabla (\mathbf{M}_0 \cdot \mathbf{B}) = (\mathbf{M}_0 \cdot \nabla) \mathbf{B} + \mathbf{M}_0 \times \nabla \times \mathbf{B}, \quad (44)$$

so the momentum equation can be rewritten in terms of the so-called "magnetic loop force," $\nabla (\mathbf{M}_0 \cdot \mathbf{B})$, which is the force on a permanent magnet exerted by a non-uniform magnetic field,

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \mathcal{J} \times \mathbf{B} + \frac{1}{2} (\mu_0^{-1} - \mu^{-1}) \nabla (\mathbf{B} \cdot \mathbf{B}) + \nabla (\mathbf{M}_0 \cdot \mathbf{B}) + \rho \mathbf{b}. \quad (45)$$

We can also consider the magnetic stress tensor (34) in this case we get

$$T = - \left[\pi + \frac{1}{2} \mu_0^{-1} \|\mathbf{B}\|^2 - \frac{1}{2} (\mathbf{M}_0 + (\mu_0^{-1} - \mu^{-1}) \cdot \mathbf{B}) \cdot \mathbf{B} \right] I + \mu_0^{-1} \mathbf{B} \otimes \mathbf{B} - (\mathbf{M}_0 + (\mu_0^{-1} - \mu^{-1}) \otimes \mathbf{B}), \quad (46)$$

or

$$\begin{aligned} T = & - \left[\pi + \frac{1}{2} \mu_0^{-1} \|\mathbf{B}\|^2 - \frac{1}{2} \mathbf{M}_0 \cdot \mathbf{B} - \frac{1}{2} (\mu_0^{-1} - \mu^{-1}) \mathbf{B} \cdot \mathbf{B} \right] I \\ & + \mu_0^{-1} \mathbf{B} \otimes \mathbf{B} - \mathbf{M}_0 \otimes \mathbf{B} - (\mu_0^{-1} - \mu^{-1}) \mathbf{B} \otimes \mathbf{B}, \end{aligned} \quad (47)$$

with the color coding as above. We can then consider the change in the magnetic stress tensor entry-wise,

$$\begin{aligned} T_{PLM} - T_0 = & \begin{bmatrix} \frac{1}{2} \mathbf{M}_0 \cdot \mathbf{B} - M_0 x B_x & -B_x M_0 y & -B_x M_0 z \\ -B_y M_0 x & \frac{1}{2} \mathbf{M}_0 \cdot \mathbf{B} - M_0 y B_y & -B_y M_0 z \\ -B_z M_0 x & -B_z M_0 y & \frac{1}{2} \mathbf{M}_0 \cdot \mathbf{B} - B_z M_0 z \end{bmatrix} \\ & + (\mu_0^{-1} - \mu^{-1}) \begin{bmatrix} B_x^2 - \frac{1}{2} \|\mathbf{B}\|^2 & B_x B_y & B_x B_z \\ B_x B_y & B_y^2 - \frac{1}{2} \|\mathbf{B}\|^2 & B_y B_z \\ B_x B_z & B_y B_z & B_z^2 - \frac{1}{2} \|\mathbf{B}\|^2 \end{bmatrix}, \end{aligned} \quad (48)$$

Where the second term is $T_{LM} - T_0$. We note that this stress tensor is *not symmetric*.

4. CONCLUSIONS

We have derived an extension to the eddy current equations which allows for magnetization. We have shown how linearly and permanently magnetizable materials can be integrated into this framework. Moreover, we have shown how magnetization modifies the Maxwell stress tensor and have calculated the resulting magnetic forces.

REFERENCES

- [1] D. Griffiths. *Introduction to electrodynamics; 3rd ed.* Prentice-Hall, Upper Saddle River, NJ, 1999.
- [2] A. Kovetz. *Electromagnetic Theory*. Oxford University Press, 2000.

DISTRIBUTION

Email—External (encrypt for OUO)

Name	Company Email Address	Company Name
Michael Grinfeld	michael.greenfield4.civ@mail.mil	Army Research Laboratory

Email—Internal (encrypt for OUO)

Name	Org.	Sandia Email Address
John Niederhaus	1443	jhniede@sandia.gov
Technical Library	01177	libref@sandia.gov

**Sandia
National
Laboratories**

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.