

LA-UR-20-22818

Approved for public release; distribution is unlimited.

Title: Fraction Critical Arguments in Criticality Safety

Author(s): Holmes, Nicholas Allyn

Intended for: Internal Nuclear Criticality Safety Division training presentation via

WebEx

Issued: 2020-04-09

Nuclear Criticality Safety Continual Education

Fraction Critical Arguments in Criticality Safety

Presented by: Nick Holmes

Background

- "Fraction Critical" is a term used in some hand calculations (typically for arrays)
- Defined as $f = \frac{m_i}{m_c}$
- Used in Surface Density Method and Density Analog Method to determine unit spacing based on fraction critical of individual units

Relation to k_{eff}

- F ≠ k_{eff}, but there is a relationship between the two which may be useful to determining margins
- Can be empirically approximated by k_{eff} = (F)ⁿ
 - n may be 0.25 or 0.3 depending on the system (bare/reflected metal or bare/reflected solutions)
 - Refer to ESH-6-96-092 for derivation of the exponent n
 - Fn gives a rough approximation of k_{eff}, but is not necessarily conservative
- From ESH-6-96-092:

"Perhaps the most notable result of these analyses is the extreme nonlinearity of $k_{\rm eff}$ as a function of F. In particular, for low values of F (less than 1/5 of a critical mass), $k_{\rm eff}$ rises very quickly to values of 0.5 to 0.7. Note also that a $k_{\rm eff}$ of 0.9 is obtained with less than 70% of a critical mass."

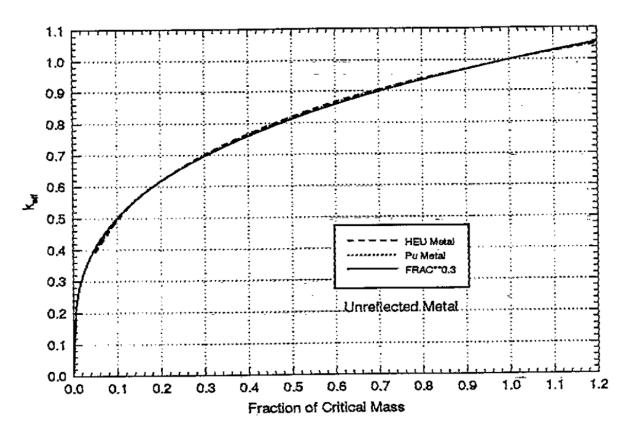


Fig. 1. keff vs Fraction of Critical Mass: Unreflected Metal

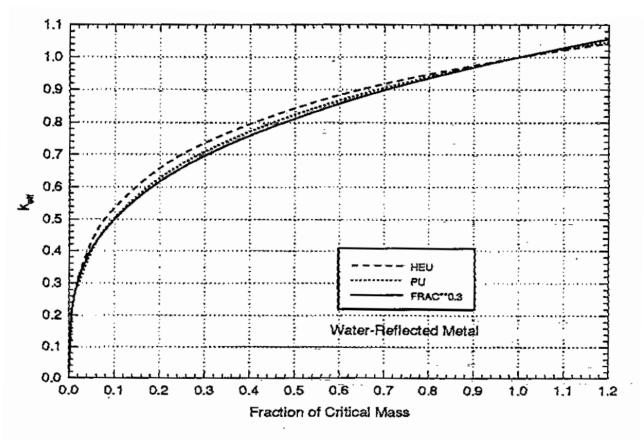


Fig. 2. keff vs Fraction of Critical Mass: Thick-Water-Reflected Metal

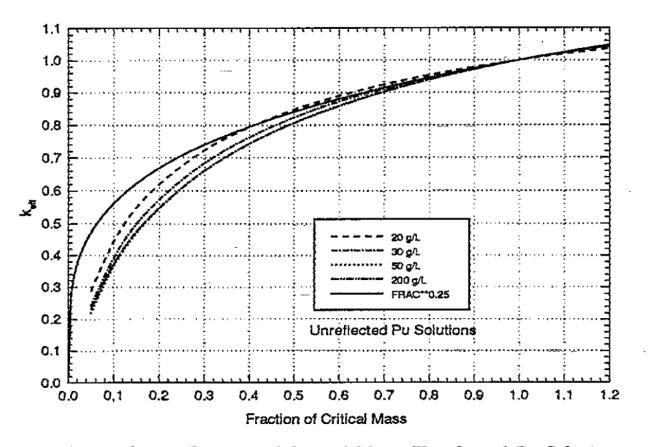


Fig. 4. keff vs Fraction of Critical Mass: Unreflected Pu Solutions

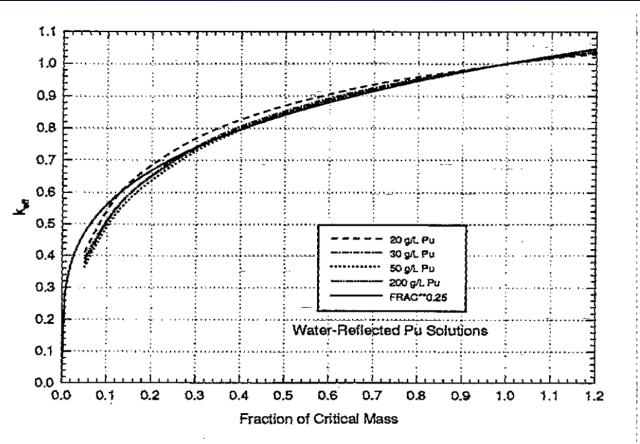
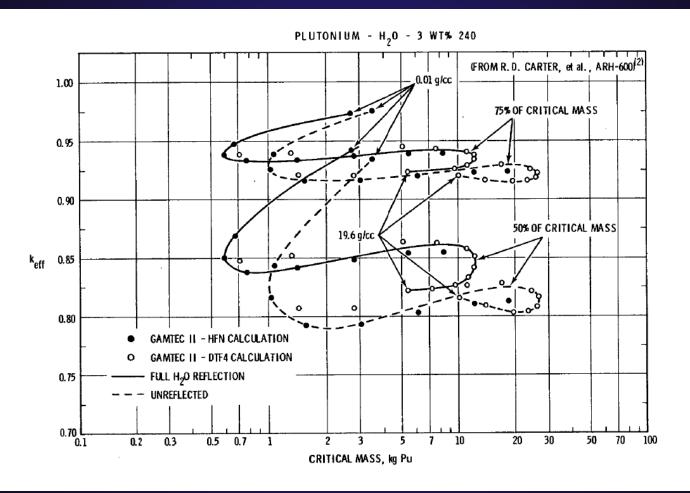



Fig. 6. keff vs Fraction of Critical Mass: Thick-Water-Reflected Pu Solutions

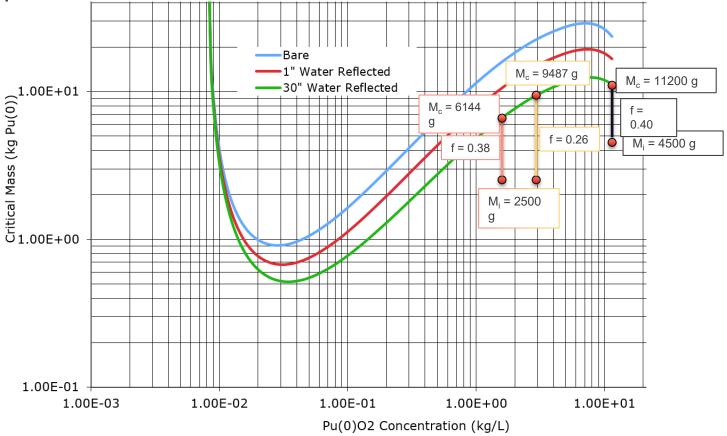
- Can fraction critical be used to estimate k_{eff}? Not Really.
- This problem is described in PNNL-19176: Anomolies of Nuclear Criticality:
 - "A problem arises because there is no general consistency between $k_{\rm eff}$ and fraction of critical mass except at the point of criticality (where $k_{\rm eff}$ = unity). Two different systems that have the same fraction of critical mass may have different values of $k_{\rm eff}$, e.g., for a specified value of $k_{\rm eff}$ on two systems (with different fuel compositions), one system may have a higher fraction of critical mass and be less safe than the other."
- However, some empirical data does exist which can be used to relate fraction critical to k_{eff} in some cases (i.e. ARH-600 contains calculated k_{eff} vs critical mass curves)

Example Uses of Fraction Critical

- From 2010 file in the Database (File 0148):
 - Fraction critical comparison of a 5288 g rod of delta plutonium metal to the posted 4500 a limit.

Doug,

Regarding the 5288g delta rod:


Fraction_{critical} =
$$\frac{4500 \text{ g}}{5300 \text{ g}}$$
 = 0.85 {for alpha phase pu metal}

Fraction_{critical} =
$$\frac{5288 \text{ g}}{5300 \text{ g} \left(\frac{19.86 \text{ g/cc}}{15.76 \text{ g/cc}}\right)^2} = 0.63 \text{ {for delta phase pu metal}}$$

So the rod can be justified based on its mass and density.

Example Uses of Fraction Critical

Comparison of moderated vs unmoderated Pu oxide:

Rule of Fractions

- Related to fraction critical
- Applies to mixtures of isotopes or elements
- Originally appeared in ANSI 8.15-1981
 - Rule is that mixture is subcritical if $\sum_i f_i < 1$
- Removed in ANSI 8.15-2014.
 - Per SRNS-TR-2016-00061, Technical Justification for NCSEs using ANSI/ANS 8.15-1981,
 "This was due to a change in philosophy and not a deficiency identified by the ANS 8.15 working group"
- However, performing calculations for some mixtures may be technically challenging, especially when it comes to validation of some elements in ANSI 8.15

Rule of Fractions (continued)

- Per WSRC-TR-91-569, Validity of the Rule-of-Fractions for Assuring Criticality Safety Margins (U):
- "...the Rule-Of-Fractions cannot be relied on to preserve an acceptable margin of safety for any arbitrary combination of fissile and fissionable nuclides. However, for certain specific conditions the Rule-Of-Fractions margin was preserved. The conditions under which it appears valid are:
- Homogeneous mixtures of fissile-fissile metals
- Homogeneous mixtures of fissionable-fissionable solutions
- Homogeneous mixtures of fissile-fissionable solutions…"
- Work by Weber (Precise Margins of the Rule of Fractions for Mixtures of U^{235/238}, Pu²³⁹ and U²³³) confirms the rule of fractions is conservative for homogenous metal mixtures of U and Pu

Example Use of the Rule of Fractions

- Rule of fractions was used in NCS-CSED-17-009
 - Was used to derive the 150 g U-233 solution mass limit for that evaluation

Table 5. Results for ²³³U fraction of critical mass

Concentration (kg/L)	1" Water-Reflected ²³³ U Subcritical Mass Limit from TID-7016 (Ref. 17) (kg)	2.2-Liter Container Mass (kg)	Fraction of Critical Mass	Sum of Pu and ²³³ U Fractions of Critical Mass
0.03	0.680	0.066	0.098	0.866
0.04	0.620	0.088	0.142	0.911
0.06	0.640	0.132	0.207	0.976
0.07	0.670	0.154	0.230	0.999

Questions?

