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Summary 
Production of hydrocarbons from fractured, unconventional reservoirs is inherently inefficient.  But machine 
learning offers a pathway both to increasing recovery efficiency at a site and to improving forecasts of 
production, thereby improving the economics of operations in unconventional reservoirs. 

Los Alamos—in partnership with DOE, NETL, and WVU—has been developing a science-informed workflow 
and platform for optimizing pressure-drawdown at a site, which will allow an operator to make reservoir-
management decisions that optimize recovery in consideration of future production.  This work relies on a 
hybridization of physics-based prediction and machine learning, whereby accurate synthetic data (in 
combination with available site data) can enable the application of machine learning methods for rapid 
forecasting and optimization.  The physics-based prediction is built upon experimental and theoretical work to 
determine transport characteristics in shale at various scales, with an emphasis on materials from MSEEL-I; this 
fundamental shale R&D was conducted in partnership with DOE, NETL, and several other national labs. 

This work has resulted from a coordinated leveraging of developments across several projects within DOE FE-
30, along with internal investments from Los Alamos via LDRD. 

The development has utilized data from the MSEEL–I site for calibration and demonstration; however, the 
workflow and platform are readily extendable to operations at other sites, plays, and basins.  This machine-
learning method can aid operators to improve both recovery efficiency and competitiveness; to this end, future 
work would quantify processes for other plays/basins and integrate production details with economics. 

 
Rationale 
Unconventional reservoirs are governed by a set of 
physical processes that differ from those that 
dominate conventional reservoirs:  whereas the 
latter are dominated by porous flow that can be 
described adequately by Darcy’s law, the former are 
dominated by flow in fractures and in tight matrix.  
Consequently, the strategies and tools honed over 
decades for conventional reservoirs do not transfer 
readily to unconventional reservoirs, inhibiting the 
ability to optimize reservoir management and, 
hence, to maximize recovery.  This is compounded 
by a general acceptance that unconventional 
reservoirs have poor recovery efficiencies. 
Nevertheless, it is also generally recognized that 
unconventional reservoirs exhibit a range in 
recovery characteristics and that this variability 
relates in part to operational decisions during both 
stimulation and, importantly, production.  This 
latter highlights the potential for optimized 

reservoir management as strategy to increase both 
recovery and recovery efficiency, which is 
particularly important for the competitiveness of 
operations in unconventional reservoirs (Fig. 1).  

 
Figure 1.  Simulated production for different drawdown 
scenarios at the same site. Operational decisions can shift 
between higher early returns or higher cumulative 
recovery.  Machine-learning can help to optimize site 
decisions in light of projected gas future prices. 
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Science-informed Machine-learning for Shale 
Recent developments in machine learning have 
transformed the efficiency of many types of 
processes, but they have lagged behind in 
impacting subsurface operations, particularly for 
unconventional reservoirs.  This lag ties largely to 
limitations in appropriate and sufficient subsurface 
data on these systems.  Fracture networks impart a 
higher degree of site-specificity in reservoir 
properties relative to conventional reservoirs, and 
the properties are often less well defined. 

Machine learning requires a large volume of 
data with well-defined characteristics (termed 
“features”).  Yet, site specificity limits the 
transferability of data from one site to another, and 
many of the datasets are not broadly available (i.e., 
proprietary).  Hence, application of machine 
learning with site data only is limited. 

Synthetic data have the potential to enable 
machine learning at a site, provided the synthetic 
data are accurate.  Specifically, the synthetic data 
must embody the physical processes that control the 
system, and they must represent physically realistic 
characteristics that could exist in the subsurface at 
the site (Fig. 2). 

Recent advances—by Los Alamos and other 
research organizations—have significantly 
evolved our understanding of what controls the 
transport of hydrocarbons at the pore/matrix 
scale and in fractures.  Figure 3 shows the 
comprehensive research effort within FE-30 that 
has elucidated key factors controlling transport of 
hydrocarbons in shale from pore- to reservoir-scale.  
Los Alamos has developed an open-source, 

physics-based reservoir simulator (dfnWorks) that 
incorporates these processes in a mathematically 
accurate grid for discrete fracture-networks (DFNs). 

We can now confidently (& accurately) simulate 
many of the physical processes that determine 
hydrocarbon transport in shales.  dfnWorks treats 
the production from a reservoir as resulting from a 
combination of fracture flow at multiple scales and 
matrix flow into the fractures (Fig. 4). 

Simulations must incorporate relevant site 
characteristics to ensure the synthetic data 
reflect physically realistic conditions.  Recent 
advances by the FE-30 multi-Lab consortium have 
elucidated transport mechanisms in fractures and 
matrix (Fig. 3).  In addition, Los Alamos has used 
samples from MSEEL-I to determine appropriate 
site-specific transport parameters for MSEEL-I, and 
West Virginia University has collected extensive 
data at MSEEL-I to characterize site conditions 
such as fracture density and orientation. 

 
Figure 2.  Schematic of the strategy to use synthetic 
data in combination with available site data to enable 
machine learning algorithms for optimizing production 
decisions at a site.  Los Alamos has been developing a 
prototype platform focused on optimizing pressure 
drawdown in wells at a site to maximize recovery. 
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Figure 4.  Schematic of the strategy to use synthetic data 
in combination with available site data to enable machine 
learning algorithms for optimizing production decisions 
at a site.  Los Alamos has been developing a prototype 
platform focused on optimizing pressure drawdown in 
wells at a site to maximize recovery. 

Fast, Accurate 
Reservoir 
Modeling

(dfnWorks)

Site-Specific 
Matrix

Processes

Site-Specific
Fracture

Processes

Physically Realistic Synthetic Data
LANL Fundamental Shale Work (FE-954-18-FY18-R1)

 
Figure 3.  Overview of the FE-30 research effort on 
hydrocarbon production in shale.  Various factors 
dominate at different times during the production cycle.  
This work has developed the fundamental understanding 
needed to predict transport from matrix to well. 
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Beyond being accurate, the synthetic data 
must also be generated rapidly.  Why?  
Machine learning algorithms need data that span 
all combinations of site characteristics and 
operational decisions that could exist at the site.  
Although the processes can be simulated, they 
depend on the specific properties of the reservoir.  
Even in data-rich cases (like MSEEL-I), many 
properties (parameters) remain poorly known or 
poorly constrained—therefore, they must be 
treated stochastically.  The combination of 
stochastic site characteristics results in a wide 
range of discrete scenarios that must be simulated 
accurately (and quickly!) to generate sufficient 
data to train the machine-learning algorithm. 

Los Alamos has integrated dfnWorks with 
graph-based models to achieve both accuracy 
and speed.  This combination allows accurate 
simulation of transport of hydrocarbons at speeds 
>104´ over conventional, full-physics methods 
(Fig. 5).  The speed of simulations makes it 
practical to simulate large number of parameter-
combinations for a site, thereby creating a library 
of physically realistic scenarios that can be used 
to train a machine learning algorithm. 

Los Alamos is developing science-informed 
machine-learning to predict production 
details for different drawdown options.  By 
using graph-based models, a comprehensive set 
of synthetic data can be generated for 
combinations of possible site characteristics and 
for different drawdown strategies in each well, 

thereby creating a physically realistic library that 
can be used to train a machine-learning algorithm 
(Fig. 6).  Once trained, the algorithm can rapidly 
forecast future production details, such as 
cumulative production, distribution of remaining 
hydrocarbon in place, etc.  The approach is being 
developed/tested at the MSEEL-I field test site, in 
partnership with West Virginia University.  
Using the approach, an operator can optimize 
site decisions to increase recovery efficiency or 
to improve the economics of the operation. 

Extending to Other Plays & Basins 

The science-informed machine learning 
approach above can be readily extended to 
various unconventional operations.  The 
computational platforms embody the relevant 
physical processes that control the production 
behavior in fractured shales; hence, by 
incorporating parameters for specific plays and 
basins, they can be used to generate the behavior-
libraries needed to train the ML-based algorithm.  
Parameters necessary for specific plays/basins 
could be determined by extending the matrix- and 
fracture-scale characterization methods 
developed in FE-30’s Fundamental Shale 
Portfolio to samples from prototypical sites. 

By coupling the forecasts of future production 
details with economic data—such as forecasts 
of hydrocarbon markets—site operations in 
unconventional reservoirs can be optimized 
for both recovery efficiency and economic 
competitiveness. 

 

 
Figure 5.  Comparison of computational speed for full-
physics dfnWorks and the graph-based models trained 
from a suite of runs produced by dfnWorks.  For large 
numbers of fractures, the graph-based models can be 
~30,000´ faster. 

 
Figure 6.  ML-based forecasting of pressure-drawdown 
effects will allow an operator to evaluate different 
drawdown strategies in real-time, thereby optimizing 
reservoir management at the site.  The workflow is being 
developed/tested at the MSEEL-I field test site. 
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Building Science-informed Machine Learning across Multiple Projects/Sponsors 

 
Figure 7.  Schematic diagram showing R&D pieces needed to develop the science base and toolsets for science-
informed machine learning to support hydrocarbon recovery operation in a fractured shale.  Completed work is 
show by black lettering; work yet-to-be-done is shown as gray.  Box outlines are colored by the projects for 
which the work was done (table below).  Each row maps to a triangle in Figs. 2 & 3.  The matrix and fracture 
rows show R&D needed to develop accurate descriptions of hydrocarbon transport; matrix is represented by a 
pressure-dependent diffusion model, whereas fractures are represented by a derivative of the Barton-Bandis 
relationship for aperture–stress responses.  Third row shows R&D needed for a reservoir-scale platform for fast, 
accurate simulations, incorporating matrix and fracture flow.  Fourth row shows R&D needed to develop and 
test a science-informed machine learning platform for optimizing pressure-drawdown decisions (MSEEL-I). 

Project Box Color 
(Fig. 7) 

Sponsor Purpose 

FE-954-18-FY18_R1—Mechanistic 
Approach to Analyzing and 
Improving Unconventional 
Hydrocarbon Production 

Red FE-30 • Predictive models for transport in matrix & fractures 
• Incorporate matrix/fracture models into dfnWorks 

simulation platform 
• Proof-of-concept on pressure-drawdown and 

production 

LDRD Dark Blue LANL • Simulation suite for discrete fracture networks 
(dfnWorks) 

• Hydrid DFN and graph models 

FE-1130-Viswanathan—Real-Time 
Forecasting & Data-to-Knowledge in 
a Fractured Reservoir 

Purple FE-30 • Machine learning platform for pressure-
management at MSEEL-I 

FracMan—Translating Geological 
Fracture Characterizations for … Magenta TCF 

(FE-30) 
• Commercialization of dfnWorks as part of Golder’s 
FracMan suite 

Goals

Accurate, Site- (Basin-) 
Specific Predictive Model 

for Matrix Transport
Rate = C • D • DP
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Specific Predictive Model 

for Fracture Transport
b = b0 • exp[a • sn

’]

Calibrated Platform for 
Fast Generation of Site-
Specific Synthetic Data
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method (SANS) to 
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nanopores; measured 
open/closed ratio (C) 

in MSEEL core

Probing pressure-
dependent effects 

of transport in 
MSEEL core

Validated LBM 
method to quantify 
gas transport (D) in 

matrix using real 
nanostructures;

up to 100x DP effect
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scalable, pressure 
dependent model 
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against experiments 
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theoretical basis 

for pressure-
dependent 
recovery 
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Identified potential 
critical drawdown 

conditions that can 
close fractures; found 
MSEEL core may be 
near critical stress

Identified 
damage in 

matrix at can 
occur at high DP

Probing 
geochemical 
impacts to 
nanoscale 

matrix transport

Progression to Goals
LANL-LDRD; Fundamental Collaborative; SMART/MSEEL; TCF

Developed dfnWorks—
an open source PC-to-

HPC platform for 
accurate meshing and 
simulation on discrete 

fracture networks

Incorporated  
detailed 

mechanisms for 
fracture & matrix 

into dfnWorks

Integrated graph-
based models with 
full physics model 

in dfnWorks to 
increase speed by 

a factor of 104

Coupling dfnWorks & 
graph-based models 
to Golder’s FracMan
platform as path to 
commercialization

Field Validated Platform 
for Rapid Optimization of 

Pressure-Management

M
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R
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M
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t Demonstrated proof-of-

concept that pressure 
dependent effects (e.g., 

drawdown rates) can 
have significant impacts 
on recovery efficiency

Developing libraries-
based platform for 

integrating synthetic and 
real data for rapid history 
matching & forecasting

Developing & calibrating 
a site model for MSEEL–
I for using in predicting 
the pressure dependent 

behavior relative to 
recovery efficiency

Probing 
multiphase flow 

effects on 
fracture 
transport

Probing 
sensitivity of 

production across 
parameter space 
for matrix/fracture




