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SUMMARY/OVERVIEW OF SHALE PROJECTS FOR DOE-FE-30

Science-informed Machine Learning to Increase Recovery Efficiency in Unconventional Reservoirs
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Research Team

Fast Physics for Fractured Systems—Jeffrey Hyman, Qinjun Kang, Satish Karra, Rajesh Pawar, Shriram
Srinivasan, Matt Sweeney, Hari Viswanathan

Science-informed Machine Learning—Dan O’Malley, Maruti Mudunuru, Monty Vesselinov

Geology and Geomaterials—Gilles Bussod, Bill Carey, Luke Frash, Michael Gross, George Guthrie, Chelsea
Neil, Nathan Welch, Hongwu Xu

Summary

Production of hydrocarbons from fractured, unconventional reservoirs is inherently inefficient. But machine
learning offers a pathway both to increasing recovery efficiency at a site and to improving forecasts of
production, thereby improving the economics of operations in unconventional reservoirs.

Los Alamos—in partnership with DOE, NETL, and WVU—has been developing a science-informed workflow
and platform for optimizing pressure-drawdown at a site, which will allow an operator to make reservoir-
management decisions that optimize recovery in consideration of future production. This work relies on a
hybridization of physics-based prediction and machine learning, whereby accurate synthetic data (in
combination with available site data) can enable the application of machine learning methods for rapid
forecasting and optimization. The physics-based prediction is built upon experimental and theoretical work to
determine transport characteristics in shale at various scales, with an emphasis on materials from MSEEL-I; this
fundamental shale R&D was conducted in partnership with DOE, NETL, and several other national labs.

This work has resulted from a coordinated leveraging of developments across several projects within DOE FE-
30, along with internal investments from Los Alamos via LDRD.

The development has utilized data from the MSEEL-I site for calibration and demonstration; however, the
workflow and platform are readily extendable to operations at other sites, plays, and basins. This machine-
learning method can aid operators to improve both recovery efficiency and competitiveness; to this end, future
work would quantify processes for other plays/basins and integrate production details with economics.

Rationale

Unconventional reservoirs are governed by a set of

. . -
phyS}cal processes that dlffer. ﬁom those that Crossover S\O\ND(a\NdO

dominate conventional reservoirs: whereas the

latter are dominated by porous flow that can be W

described adequately by Darcy’s law, the former are
dominated by flow in fractures and in tight matrix.
Consequently, the strategies and tools honed over
decades for conventional reservoirs do not transfer
readily to unconventional reservoirs, inhibiting the
ability to optimize reservoir management and, ) Time )

hence, to maximize recovery. This is compounded Figure 1. Simulated production for different drawdown

by a neral a tan that unconventional scenarios at the same site. Operational decisions can shift
Yy gene ceeptance unconventio between higher early returns or higher cumulative

reservoirs have poor recovery efficiencies. recovery. Machine-learning can help to optimize site
decisions in light of projected gas future prices.

Gas production simulated for
pressure-dependent fracture apertures.

Approach can capture the uncertainty
due to variable/unknown site parameters.

- Forecasted time

to crossover

Cumulative Production

Nevertheless, it is also generally recognized that
unconventional reservoirs exhibit a range in

recovery characteristics and that this variability reservoir management as strategy to increase both
relates in part to operational decisions during both recovery and recovery efficiency, which is
stimulation and, importantly, production.  This particularly important for the competitiveness of
latter highlights the potential for optimized operations in unconventional reservoirs (Fig. 1).
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Science-informed Machine-learning for Shale

Recent developments in machine learning have
transformed the efficiency of many types of
processes, but they have lagged behind in
impacting subsurface operations, particularly for
unconventional reservoirs. This lag ties largely to
limitations in appropriate and sufficient subsurface
data on these systems. Fracture networks impart a
higher degree of site-specificity in reservoir
properties relative to conventional reservoirs, and
the properties are often less well defined.

Machine learning requires a large volume of
data with well-defined characteristics (termed
“features”).  Yet, site specificity limits the
transferability of data from one site to another, and
many of the datasets are not broadly available (i.e.,
proprietary).  Hence, application of machine
learning with site data only is limited.

Machine Learning at MSEEL (FE-1130-Viswanathan)

Optimized
Machine Decisions

Learning for
Reservoir
Management

Physically Realistic Synthetic Data

Figure 2. Schematic of the strategy to use synthetic
data in combination with available site data to enable
machine learning algorithms for optimizing production
decisions at a site. Los Alamos has been developing a
prototype platform focused on optimizing pressure
drawdown in wells at a site to maximize recovery.

Synthetic data have the potential to enable
machine learning at a site, provided the synthetic
data are accurate. Specifically, the synthetic data
must embody the physical processes that control the
system, and they must represent physically realistic
characteristics that could exist in the subsurface at
the site (Fig. 2).

Recent advances—by Los Alamos and other
research  organizations—have significantly
evolved our understanding of what controls the
transport of hydrocarbons at the pore/matrix
scale and in fractures. Figure 3 shows the
comprehensive research effort within FE-30 that
has elucidated key factors controlling transport of
hydrocarbons in shale from pore- to reservoir-scale.
Los Alamos has developed an open-source,

LANL Efforts within FE-30 Fundamental Shale Portfolio (FE-954-18-FY18-R1)
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Figure 3. Overview of the FE-30 research effort on
hydrocarbon production in shale.  Various factors
dominate at different times during the production cycle.
This work has developed the fundamental understanding
needed to predict transport from matrix to well.

physics-based reservoir simulator (dfinWorks) that
incorporates these processes in a mathematically
accurate grid for discrete fracture-networks (DFNs).

We can now confidently (& accurately) simulate
many of the physical processes that determine
hydrocarbon transport in shales. dfinlWorks treats
the production from a reservoir as resulting from a
combination of fracture flow at multiple scales and
matrix flow into the fractures (Fig. 4).

Simulations must incorporate relevant site
characteristics to ensure the synthetic data
reflect physically realistic conditions. Recent
advances by the FE-30 multi-Lab consortium have
elucidated transport mechanisms in fractures and
matrix (Fig. 3). In addition, Los Alamos has used
samples from MSEEL-I to determine appropriate
site-specific transport parameters for MSEEL-I, and
West Virginia University has collected extensive
data at MSEEL-I to characterize site conditions
such as fracture density and orientation.

LANL Fundamental Shale Work (FE-954-18-FY18-R1)

Physically Realistic Synthetic Data

Fast, Accurate
Reservoir
Modeling

(dfnWorks)

Site-Specific Site-Specific
Matrix Fracture
Processes Processes

Figure 4. Schematic of the strategy to use synthetic data
in combination with available site data to enable machine
learning algorithms for optimizing production decisions
at a site. Los Alamos has been developing a prototype
platform focused on optimizing pressure drawdown in
wells at a site to maximize recovery.
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Beyond being accurate, the synthetic data
must also be generated rapidly. Why?
Machine learning algorithms need data that span
all combinations of site characteristics and
operational decisions that could exist at the site.
Although the processes can be simulated, they
depend on the specific properties of the reservoir.
Even in data-rich cases (like MSEEL-I), many
properties (parameters) remain poorly known or
poorly constrained—therefore, they must be
treated stochastically.  The combination of
stochastic site characteristics results in a wide
range of discrete scenarios that must be simulated
accurately (and quickly!) to generate sufficient
data to train the machine-learning algorithm.

LANL LDRD Efforts on DFNs and Graphs (LDRD)
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Figure 5. Comparison of computational speed for full-
physics dfnWorks and the graph-based models trained
from a suite of runs produced by dfnWorks. For large
numbers of fractures, the graph-based models can be
~30,000x faster.

Los Alamos has integrated dfnWorks with
graph-based models to achieve both accuracy
and speed. This combination allows accurate
simulation of transport of hydrocarbons at speeds
>10%x over conventional, full-physics methods
(Fig. 5). The speed of simulations makes it
practical to simulate large number of parameter-
combinations for a site, thereby creating a library
of physically realistic scenarios that can be used
to train a machine learning algorithm.

Los Alamos is developing science-informed
machine-learning to predict production
details for different drawdown options. By
using graph-based models, a comprehensive set
of synthetic data can be generated for
combinations of possible site characteristics and
for different drawdown strategies in each well,

thereby creating a physically realistic library that
can be used to train a machine-learning algorithm
(Fig. 6). Once trained, the algorithm can rapidly
forecast future production details, such as
cumulative production, distribution of remaining
hydrocarbon in place, etc. The approach is being
developed/tested at the MSEEL-I field test site, in
partnership with West Virginia University.
Using the approach, an operator can optimize
site decisions to increase recovery efficiency or
to improve the economics of the operation.

Machine Learning at MSEEL (FE-1130-Viswanathan,
Workflow for Real-time Forecasting

Site Behavior Training Forward Modeling Fast Forecast
(Data Generation)  (Large Dataset) (of Potential Decisions) (Optimization)

Site Behavior Physics-informed Futurt?
e q q Production
Library Machine Learning .
Details

Potential Operational
Decisions
(User Defined)

Fast &
Accurate
Physics

Ranges of Possible
Site Characteristics

Figure 6. ML-based forecasting of pressure-drawdown
effects will allow an operator to evaluate different
drawdown strategies in real-time, thereby optimizing
reservoir management at the site. The workflow is being
developed/tested at the MSEEL-I field test site.

Extending to Other Plays & Basins

The science-informed machine learning
approach above can be readily extended to
various unconventional operations. The
computational platforms embody the relevant
physical processes that control the production
behavior in fractured shales; hence, by
incorporating parameters for specific plays and
basins, they can be used to generate the behavior-
libraries needed to train the ML-based algorithm.
Parameters necessary for specific plays/basins
could be determined by extending the matrix- and
fracture-scale characterization methods
developed in FE-30’s Fundamental Shale
Portfolio to samples from prototypical sites.

By coupling the forecasts of future production
details with economic data—such as forecasts
of hydrocarbon markets—site operations in
unconventional reservoirs can be optimized
for both recovery efficiency and economic
competitiveness.
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Building Science-informed Machine Learning across Multiple Projects/Sponsors

LANL-LDRD; Fundamental Collaborative; SMART/MSEEL; TCF
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Figure 7. Schematic diagram showing R&D pieces needed to develop the science base and toolsets for science-
informed machine learning to support hydrocarbon recovery operation in a fractured shale. Completed work is
show by black lettering; work yet-to-be-done is shown as gray. Box outlines are colored by the projects for
which the work was done (table below). Each row maps to a triangle in Figs. 2 & 3. The matrix and fracture
rows show R&D needed to develop accurate descriptions of hydrocarbon transport; matrix is represented by a
pressure-dependent diffusion model, whereas fractures are represented by a derivative of the Barton-Bandis
relationship for aperture—stress responses. Third row shows R&D needed for a reservoir-scale platform for fast,
accurate simulations, incorporating matrix and fracture flow. Fourth row shows R&D needed to develop and
test a science-informed machine learning platform for optimizing pressure-drawdown decisions (MSEEL-I).

Project Box Color Sponsor Purpose
(Fig. 7)
FE-954-18-FY18_R1—Mechanistic Red FE-30 Predictive models for transport in matrix & fractures
Approach to Analyzing and Incorporate matrix/fracture models into dfnWorks
Improving Unconventional simulation platform
Hydrocarbon Production Proof-of-concept on pressure-drawdown and
production
LDRD Dark Blue LANL Simulation suite for discrete fracture networks
(dfnWorks)
Hydrid DFN and graph models
FE-1130-Viswanathan—Real-Time Purple FE-30 Machine learning platform for pressure-
Forecasting & Data-to-Knowledge in
. management at MSEEL-I
a Fractured Reservoir
FracMan—Translating Geological T )
. e Magenta TCF Commercialization of dfnWorks as part of Golder’s
Fracture Characterizations for ... .
(FE-30) FracMan suite
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