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Executive Summary

Subcooled Boiling Validation

In 2010, the U.S. Department of Energy created its first Energy Innovation Hub, which is fo-
cused on developing high-fidelity and high-resolution modeling and simulation (M&S) tools for
modeling of light water reactors (LWRs). This hub, the Consortium for Advanced Simulation of
LWRs (CASL), has developed an LWR simulation tool called the Virtual Environment for Reactor
Applications (VERA). The multi-physics capability of VERA is achieved through the coupling
of single-physics codes, including CTF (the CASL version of Coolant Boiling in Rod Arrays—
Three Field (COBRA-TF)), Michigan Parallel Characteristics Transport (MPACT), BISON, and
Materials Performance and Optimization (MPO) Advanced Model for Boron Analysis (MAMBA).

As part of its M&S efforts, CASL has identified various challenge problems, including Crud Induced
Power Shift (CIPS), Crud-Induced Localized Corrosion (CILC), Pellet-Cladding Interaction (PCI),
and Departure from Nucleate Boiling (DNB). This work addresses CASL milestone L2:VVI.P19.03,
which focuses on uncertainty quantification of crud, which is relevant to both CIPS and CILC. This
is achieved through an analysis and separate effects validation of the thermal hydraulic phenomenon
known as subcooled boiling.

As part of this work, various sources of experimental data are examined and compared to different
options for empirical modeling of subcooled boiling. Through this analysis, a complete under-
standing of the underlying models and their implementation details are understood. A subset of
these data are incorporated into a separate effects validation study of CTF. The Westinghouse
Advanced Loop Tester (WALT) and Rohsenow experiments are modeled, and it is shown that
the newly-implemented Gorenflo correlation is more accurate than the existing Chen and Thom
correlations.
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1. Introduction

Subcooled Boiling Validation

In light water reactors (LWRs), the steam generator and structural materials are gradually corroded
over time. These corrosion products—mostly iron, nickle, and chromium oxides—are transported
by the reactor coolant and preferentially deposit on the outer surface of nuclear fuel rods. These
deposits were identified in LWRs as early as 1944 and were colloquially called "crucr . In 1959,
this colloquial term was formed into the backronym Chalk River Unidentified Deposits (CRUD) by
Commander E. E. Kinter, who oversaw the analysis of crud deposits at the Chalk River site [1].

Crud deposition has important effects on reactor operation that motivate the development of high-
fidelity and high-resolution modeling and simulation (M&S) tools. As a result, the Consortium
for Advanced Simulation of LWRs (CASL) has focused development on two crud-specific challenge
problems: Crud-Induced Localized Corrosion (CILC) and Crud Induced Power Shift (CIPS). This
work focuses on preliminary qualification and validation of CIPS.

CIPS—previously known as Axial Offset Anomaly (AOA)—is a process whereby boron deposits in
the crud affect the reactor power distribution. Crud accumulation is exacerbated in areas affected
by subcooled boiling, since impurities are left behind when bubbles form [2]. In pressurized water
reactors (PWRs), crud deposits are concentrated in the upper core region, since the bulk fluid
temperature is sufficiently high that subcooled boiling is possible. As crud grows on the surface
of nuclear fuel rods, this porous material can accumulate lithium borate. Therefore, the boron
deposits suppress the neutron flux towards the top of the reactor core as neutrons are absorbed;
the power shape is shifted towards the bottom of the core.

Nuclear power plants affected by CIPS must run at reduced power or shut down. For example,
the Callaway plant in Missouri experienced significant CIPS in 1997. The accumulation of lithium
borate in the crud caused a -15% axial offset, which led the operators to reduce reactor power to
70%. This significantly reduced the power output of the reactor, which reduces the economic benefit
of the plant. This demonstrates the large impact of CIPS on reactor operation: it degrades the
shutdown margin and decreases operational flexibility, particularly during reactor transients. Due
to the effects of the large axial offset at the Callaway plant which was the largest ever observed
the Nuclear Regulatory Commission (NRC) released an information notice [3] and industry leaders
released operational guidelines to avoid crud buildup [4].

1 CASL-U-2020-1946-000
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Figure 1.1: Nonlinear Feedback

Subcooled Boiling Validation

The deposition of crud is a complex multi-physics phenomena. Accurate modeling activities require
a thorough understanding of corrosion, corrosion product transport and deposition, coolant boiling
and chemistry, neutronics, and heat transfer characteristics of the crud. In addition, it is important
to model the nonlinear coupling between each of these physics, which are shown in Figure 1.1. Each
separate physical process impacts the others in complex nonlinear ways. Therefore, the modeling
of crud has been a common research topic in the M&S community [5, 6, 7, 8].

Crud buildup is extremely sensitive to boiling [2]. As steam is formed, solid particles are left
behind; therefore, corrosion products preferentially deposit during the boiling process. The flow
boiling curve before dryout is shown in Figure 1.2. Before the onset of boiling, the flow is in the
single phase forced convection regime. Boiling can take place at the surface of fuel rods when the
bulk fluid temperature has not yet reached the saturation temperature, which is called subcooled
boiling. Once the bulk fluid temperature has reached the saturation temperature, bubbles do not
immediately condense after they are formed. This saturated boiling region is characterized by the
bubbly, slug, and churn flow regimes. Traditionally, this process is modeled by defining a heat
transfer correlation for the forced convection and saturated boiling regimes. The subcooled boiling
regime is defined as an interpolation between the two correlations [9].

In PWRs, only subcooled boiling takes place at normal operating conditions. In fact, CASL
Phenomena Identification Ranking Tables (PIRTs) have consistently ranked subcooled boiling as
one of the most important phenomena determining crud buildup in PWRs [10, 11]. Therefore,
this work focuses on analysis and validation of subcooled boiling models in the CASL version
of Coolant Boiling in Rod Arrays—Three Field (COBRA-TF), which is called CTF. CTF is the
thermal hydraulic tool in Virtual Environment for Reactor Applications (VERA).

Chapter 2 outlines the general process of subcooled boiling, correlations used to calculate the heat

2 CASL-U-2020-1946-000
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Figure 1.2: Pre-dryout flow boiling curve

transfer correlation, and compares these correlations to a variety of experimental data. Chap-
ter 3 performs a separate effects validation study of subcooled boiling for CTF. A conclusion and
discussion of future work are in Chapter 4.

3 CASL-U-2020-1946-000
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2. Subcooled boiling

Subcooled Boiling Validation

Subcooled boiling is chararacterized by the formation of small vapor bubbles at nucleation sites of
a heated surface [12]. The water near the heated surface may be locally saturated, even though
the bulk fluid is not. "Partial subcooled boiline occurs before fully developed subcooled boiling,
which has comparatively fewer nucleation sites and is characterized by a bubble vapor layer along
the heated surface. These bubbles will generally collapse very soon after forming as the bulk fluid
temperature is lower than the saturation temperature.

The bubble vapor layer will grow as the bulk fluid temperature increases. The bubbles in this
vapor layer coalesce and collapse until eventually bubbles begin to detach from the heated surface
wall [13]. As the bulk fluid temperature is too low to support the existence of the bubble, the
detached bubbles will collapse downstream from their detachment point. In this region of fully
developed subcooled boiling, there may be significant void in the flow, even though the bulk fluid
is below the saturation temperature. The governing temperature difference in fully developed
subcooled nucleate boiling is wall superheat (Tu, — Tsat) rather than total temperature difference
(Tw — TO [12].

Some of the models developed to approximate heat transfer in the subcooled boiling regime are
described in Section 2.1.

2.1 Models

Four models for boiling heat transfer are described in this section: Chen [14], Thom [15], Goren-
flo [16], and Gungor & Winterton [17]. In the case where CTF-specific modifications have been
made to the model, these changes are summarized after the subheading "as implemented in CTF."

4 CASL-U-2020-1946-000
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2.1.1 Chen

Subcooled Boiling Validation

The Chen correlation covers the entire range of saturated boiling and expresses the two-phase
heat transfer coefficient as the sum of the contributions due to forced convection and nucleate
boiling [14]. It has since been modified to be applicable to subcooled boiling. See list below for
nomenclature and units for the Chen correlation.

c =specific heat [btu/lbm/°F] AP =difference in vapor pressure

D =diameter [ft] corresponding to AT [lbf/ft2]

F =Reynolds number factor [—] A =latent heat of vaporization [btu/lbm]

G =mass flux [lbm/hr/ft2] p =viscosity [lbm/ft/hr]

g, =gravitational constant [11bf to lbmft/hr2] v =1/p = specific volume [ft3/lbm]

h =heat transfer coefficient [btu/ft2/hr/°F] p =density [lbm/ft3]

k =thermal conductivity [btu/ft/hr/°F] a =vapor-liquid surface tension [lbf/ft]

P =pressure [lbf/ft2] Subscripts

Pr =Prandtl number [—] f =value for liquid

q =heat flux [btu/ft2/hr] fc =forced convection

Re =Reynolds number [—] L =value for bulk

S =suppression factor [—] nb =nucleate boiling

T =temperature [°F] sat =value at saturation

x =weight fraction of vapor [—] tp =two phase

Xtt =Martinelli parameter [—] v =value for vapor

AT =Tu, — Tsat = wall superheat [°F] w =value at wall

As Implemented by Chen The Chen correlation, as implemented originally in [14], was for-
mulated using saturated boiling data at relatively low pressures (i.e. 6.9 MPa). It expresses the
two-phase heat transfer coefficient, htp, as the sum of the heat transfer coefficients due to forced
convection, hfc, and nucleate boiling hnb:

htp = hf, hat,. (2.1)

The forced convection term, hfc, was written by Chen as a modified Dittus-Boelter [18] equation:

hf, = 0.023RerPr9:4(kL/D)F (2.2)

where F is related to the ratio of the two-phase Reynolds number, Re, and the liquid Reynolds
number, ReL:

DG(1 — x)
ReL =   (2.3)

AL

5 CASL-U-2020-1946-000
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Re = ReLF1.25 (2.4)

F was assumed by Chen to be a function of the Martinelli parameter, Xtt, and was presented
graphically by Chen based on experimental data [14]. Todreas and Kazimi [19] use the following
approximation of F as a function of the Martinelli parameter, based on the graph in [14]:

(2.5)
1 if xtt < 0.1

F = {

11736
2.35(0.213+

- -tt )
if 

Xtt 
> 0.1 

,

where the Martinelli parameter is defined as:

(1 - 

X 

X 0.9 (

) 

 0.5 /If 0.1

p f pv

Chen used the Forster-Zuber [20] equation as a basis for the formulation of the heat transfer
coefficient due to nucleate boiling. The Forster-Zuber [20] equation was determined for pool boiling
and used a mean effective superheat quantity since for pool boiling, the difference between this
term and the wall superheat is small. However, Chen [14] noted that during convective boiling, the
difference between these terms were not negligible and formulated the Forster-Zuber equation for

hnb as

Xtt =

0.790.45 p0f.49g(c).25

hnb = 0.00122 1 (AT) 0.24 (AP)0.75 S..0-0.5 it.i.f29 A0.24 pv0.24 (2.7)

where AP = P(77,0)- P(Tsat) and AT = T„, - Tsat. The pressure at the wall temperature is P(Tw)
and the saturation pressure is P(Tsat). The constant 9, is a conversion factor necessary for British
units (lbf to lbm • ft/hr2).

The suppression factor, S, takes into account the difference between the mean effective superheat
and the wall superheat. It approaches unity at high Reynolds numbers and zero at low Reynolds
numbers. Chen presented S graphically as a function of Re in [14]. Todreas and Kazimi [19] use
the following approximation of S as a function of the Re, based on the graph in [14]:

S=
1

1 + 2.53 x 10-6Re1•17

Chen then expresses htp as the sum of hfc and hrib, which can be used to find the heat flux, qtp:

(2.6)

htp = hfc+ hnb,

4, = htp(Tw - Tsat)•

(2.8)

(2.9)

(2.10)

Modifications for Subcooled Boiling Collier [12] discussed a modification to the Chen corre-
lation for the subcooled boiling region. The modification assumes the total heat flux is the sum of
the contributions due to single-phase forced convection and nucleate boiling.

ep = h MT", - TO + hnb(TW - Tsat) (2.11)

This modification sets F to unity, and S is calculated with quality x = 0.

6 CASL-U-2020-1946-000
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As Implemented in CTF The Chen correlation, as implemented in CTF, has a few key differ-
ences from the Chen formulation [14].

The Reynolds number factor, F, is based off the graphical representation of F(Xtt) in [14] and is
expressed in CTF as:

F = 
{1

2.34

CTF uses Equation 2.7 from [14],
of suppression factor, S, from the

hnb = 0.00122

N 0.736
(0.213 + ,-tt )

however the CTF implementation
graph in [14].

0.790.45 o0.49 (70.25
f Pf rf '

if 1 < 0.1xtt
. (2.12)

 if 1 > 0.1xtt

uses a different approximation

AT 0.24 A D \

(-- ) 
(L-i/ CTF)°•75S (2.7)

0-0.5/10.29 A0.24 n0 24
( 

f r• .

The suppression factor in CTF was approximated from [14] as

[1 + 0.12Re1.14]-1 if Re < 32.5

S = [1+ 0.42Re°•78]-1 if 32.5 < Re < 50.9 . (2.13){

0.1 if Re > 50.9

where Re in Equation 2.4 is scaled by 10-4.

Re = ReL x 10-4F1.25 (2.14)

In CTF, AP = P(TO - P(Tsat) is approximated by

A PC T F =
1 5.4042A

Tsat)A(Tw — (2.15)
I_ v fv(Tsat + 460) 

]

where
A  1.0306 0.0020632

(Tw - Tsat - 5.0)], (2.16)
1.087 

max[0.0,(log10P)0.017 + (log10P)

1 1
Vfv = — — — • (2.17)

pv io f
The origin of this approximation is unclear. The two-phase heat transfer coefficient and heat flux
are calculated according to Equation 2.9 and Equation 2.10:

For subcooled boiling, CTF uses the modifications expressed by Collier [12] in Equation 2.11. The
modification also sets F to unity, and S is calculated with quality x = 0.

2.1.2 Thom

The Thom correlation was formulated for conventional heat transfer without boiling and for sub-
cooled nucleate boiling [15]. In the formulation used by Thom, the correlation is insensitive to flow
rate or flow quality but is highly sensitive to pressure. See list below for nomenclature and units
for the Thom correlation.

7 CASL-U-2020-1946-000
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cp =specific heat [btu/lbm/°F]

D =diameter [ft]

G =mass flux [lbm/hr/ft2]

h =heat transfer coefficient

[btu/ft2/hr/°F]

k =thermal conductivity [btu/ft/hr/°F]

P =pressure [psi]

Pr =Prandtl number [—]

q" =heat flux [btu/ft2/hr]

Re =Reynolds number [—]

Subcooled Boiling Validation

T =temperature [°F]

AT„t =Tv — Tsat = wall superheat [°F]

p, =viscosity [lbm/ft/hr]

Subscripts

fc =forced convection

L =value for bulk

rib =nucleate boiling

sat =value at saturation

tp =two phase

w =value at wall

As Implemented by Thom The Thom correlation was written for non-boiling and subcooled
boiling regions. Because the experimental data was in steady state, the correlation was written
with the assumption that heat flux was known. However, quantities such as heat transfer coefficient
and the wall superheat are unknown in CTF. The Thom correlation was fitted against data with
the following approximate operating conditions ranges: pressure 5.2 MPa to 13.8 MPa, mass flux
1040 kg/s/m2 to 3800 kg/s/m2, and heat flux 0 kW/m2 to 1600 kW/m2.

The Thom correlation [15] uses a modified Dittus-Boelter equation to determine the non-boiling
heat transfer coefficient. This change was made to better match the data used by Thom at lower
mass flow rates.

h = 0.134R0.65pro.4 
k

0.134 
(  cpLG°65

(2.18)
D (D/pL)0.35Pr7:6)

In the subcooled boiling region, Thom [15] observed that values of q/(Tw — TL) were strongly
dependent on the heat flux, but insensitive to flow rate and he used the following formulation to
approximate qn/h:

—
h
 = Tsat 

A rr 
.sat (2.19)

The ATsat term was formulated as a modified Jens-Lottes [21] equation. ATsat is dependent on
only heat flux and system pressure:

ATsat = e(P11260) •

Equation 2.19 can then be rewritten in terms of 42,

0.072VI°•5

/Iqtp = h(Tsat + ATsat —

(2.20)

(2.21)

8 CASL-U-2020-1946-000
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As Implemented in CTF The CTF formulation of the Thom correlation uses an unmodified
Dittus-Boelter equation to determine the forced convection heat transfer coefficient:

hfc = 0.023RePPrV(kLID). (2.22)

In CTF, the Thom correlation was formulated to determine qnllb from a known wall superheat. This
is different from Thom [15], who assumed that wall superheat was an unknown quantity. Therefore,
solving Equation 2.20 for heat flux determines the implementation in CTF:

e21,11260”
qnb 

0.0722 (Tw 
Tsat) 2 (2.23)

The CTF formulation from the Thom correlation notably differs in how the qtp is determined.
Whereas the Thom correlation uses Equation 2.21 to determine the two-phase heat flux, CTF uses
an additive approach of contributions due to forced convection and boiling.

qtp = h f c(Tw TL) qnb

2.1.3 Gungor and Winterton

(2.24)

Gungor Sz Winterton [17] proposed a correlation to give an overall heat transfer coefficient that
accounts for both nucleate boiling and forced convection heat transfer components. This approach
is similar to the Chen correlation, but with a dependence on the boiling number. The Gungor
Winterton correlation was tested against both subcooled and saturated boiling data for vertical and
horizontal flow. See list below for nomenclature and units for the Gungor & Winterton correlation.

Bo =boiling number [—]

cp =specific heat [J/kg/°C]

D =diameter [m]

E =enchancement factor [—]

Fr =Froude number[—]

G =mass flux [kg/s/m2]

h =heat transfer coefficient [W/m2/°C]

k =thermal conductivity [W/m/°C]

M =molecular weight [g/mol]

P =pressure [N/m2]

Pr =P Pcrit = reduced pressure [—]

Pr =Prandtl number [—]

qn =heat flux [W/m2]

Re =Reynolds number [—]

S =suppression factor [—]

T =temperature [°C]

x =weight fraction of vapor [—]

Xtt =Martinelli parameter [—]

A =latent heat of vaporization [J/kg]

it =viscosity [Ns/m2]

p =density [kg/m3]

a =vapor-liquid surface tension [N/m]

Subscripts

fc =forced convection

L =value for bulk

pool =pool boiling

9 CASL-U-2020-1946-000
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sat =value at saturation w =value at wall

tp =two phase

The Gungor & Winterton correlation uses the same approach as Chen which accounts for two
contributions to the heat transfer coefficient: nucleate boiling and forced convection. Like other
correlations noted, the forced convection heat transfer coefficient, h1 is given by the Dittus-Boelter
equation.

htp = Eh fc + Shp„1 (2.25)

h fc = 0.023RerPrT4(4/D) (2.26)

The enhancement factor, E, takes into account the higher velocities and forced convection heat
transfer in two-phase flow compared to single-phase flow. The Gungor-Winterton enhancement
factor is a function of the Martinelli parameter and the boiling number, Bo. The boiling number
is a dimensionless parameter quantifying the disturbance of the boundary layer next to the heat
transfer surface due to the generation of vapor.

E = 1 + 24000Bo1.16 + 1.37 v.86

Bo = 
AG

(2.27)

(2.28)

The pool boiling term, hp„1 is multiplied by a suppression factor, S. The suppression factor takes
into account that the boundary layer will be thinner due to forced convection and it is a function
of the two-phase Reynolds number. In this equation, Pr is the reduced pressure.

551370.12 ( Pr ) —0.55 -0.5 "0.67
hpool = (2.29)

1
S =   (2.30)

1 + 1.15 x 10-6E2ReP7

Pr = P Pcrtt (2.31)

It should be noted that in this correlation, it is assumed that the heat flux qll is a known quantity
since the data is in steady state.

Modifications for Subcooled Boiling In the case of subcooled boiling, the enhancement factor
is equal to unity as there is little net vapor generation. The equation for subcooled boiling is

qtp = h f c(Tw TL) Shpool(Tw Tsat) • (2.32)

10 CASL-U-2020-1946-000
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2.1.4 Gorenflo
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Gorenflo implemented a method of determining the pool boiling heat transfer coefficient based off a
reference heat transfer coefficient at various operating conditions [16]. This model was implemented
in The TRAC/RELAP Advanced Computational Engine (TRACE) for subcooled pool boiling and
was incorporated into CTF for subcooled flow boiling. See list below for nomenclature and units
for the Gorenflo correlation.

FPF =pressure correction factor [—]

h =heat transfer coefficient [W/m2/°C]

h, =reference heat transfer

coefficient [W/m2/°C]

Pr —PIPerit = reduced pressure

q" =heat flux [W/m2]

q," =reference heat flux [20 000 W/m2]

Rp =surface roughness [pm]

Rp, =reference surface roughness [pm]

T =temperature [°C]

Subscripts

bi =value at onset of nucleate boiling

fc =forced convection

L =value for bulk

pb =pool boiling

sat =value at saturation

tp =two phase

w =value at wall

As Implemented by Gorenflo Gorenflo [16] formulated an equation for the nucleate pool
boiling heat transfer coefficient, h, based off a reference heat transfer coefficient, Ito. The value of
h, varies per fluid, but for water is equal to 5600 W/m2/°C.

h = hoFPF(q" I go")Th(Rpl Rpo)0.133 (2.33)

In Equation 2.33, Voi is 20 000 W/m2 and Rpo is a reference surface roughness Rpo = 0.4 pm. Rp is
the surface roughness of the actual surface, which has a default value of 0.4 pm. FIDE, and n are
both functions of the reduced pressure, P- r = P Pcrzt • For water, Pcrit is equal to 220.64 bar. The
equations for FIDE, and n are:

0.68FPF = 1.73e.27 (6.1 +  pi Pr2, and

n = 0.9 — 0.3p9.15.
(2.34)

(2.35)

It should be noted that these equations are for water, and other equations for FPF and n are used
for other fluids.
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As Implemented in CTF The Gorenflo model, as implemented in CTF, uses the previous
equations for FPF (Equation 2.34) and n (Equation 2.35). The pool boiling heat transfer is defined
as the following explicit expression:

qpb 
(hoFpF(Twqr— T„t)) 1/(1-n)tt

CTF uses a superposition of the forced convection heat flux and the pool boiling heat flux to obtain
the two-phase boiling heat flux:

ggi9 = (glIc3 
(g119/b qb/z)3) ("3)

(2.36)

(2.37)

where qbi is the pool boiling heat flux from Equation 2.36 calculated using the wall temperature at
the onset of nucleate boiling for T.

2.2 Experimental Data

Several data sources were used to compare the different correlations. These data sources are
summarized briefly below.

Sani Chen [14] used boiling data from several sources to create his correlation. The data from
the Chen paper used for data comparisons in this report was collected by Sani (1960) [22]. Sani
measured local heat transfer coefficients for nonboiling and boiling flow conditions in an electri-
cally heated 304 stainless tube with an inner diameter of 18.27 mm. A summary of the boundary
conditions employed by Sani are in Table 2.1.

Table 2.1: Sani (1960) [22] data summary

Parameter, Unit Minimum Maximum

Pressure, MPa 0.1099 0.2057
Mass Flux, kg/s/m2 249.5 1036
Heat Flux, kW/m2 42.9 157

Quality, % 0.77 14.3
Diameter, mm 18.27 18.27

Rohsenow A technical report with heat transfer and pressure drop data for a series of high heat
flux experiments in water during non-boiling and subcooled boiling conditions [23]. Local heat
transfer coefficients were measured for water flowing through a nickel tube with an inner diameter

12 CASL-U-2020-1946-000



CASL Subcooled Boiling Validation

of 4.57 mm. This set of data is explained in more detail in Chapter 3. A summary of the boundary
conditions employed by Rohsenow are in Table 2.2.

Table 2.2: Rohsenow (1951) [23] data summary

Parameter, Unit Minimum Maximum

Pressure, MPa 10.3 13.8
Mass Flux, kg/s/m2 2641 8046
Heat Flux, kW/m2 2830 11000

Quality, % 0.0 0.0 (subcooled)
Diameter, mm 4.57 4.57

Rohsenow Book In his book, Rohsenow published two figures (9.5 and 9.6) showing the results
of subcooled boiling [24, 9]. Both of these experiments were performed at atmospheric pressure and
used a 2.39 mm diameter tube. These experiments varied mass velocity and pressure and recorded
heat flux and wall superheat. A summary of the operating conditions employed by Rohsenow in
these book figures is in Table 2.3.

Table 2.3: Rohsenow book (1961) [24, 9] data summary

Parameter, Unit Minimum Maximum

Pressure, MPa 0.101 0.101
Mass Flux, kg/s/m2 16.4 64.7
Heat Flux, kW/m2 2775 21200

Quality, % 0.0 0.0 (subcooled)
Diameter, mm 2.39 2.39

Stone Data was taken at the NASA Lewis Research Center and measured inner wall temperature
distributions for numerous non-boiling and subcooled boiling flow conditions at low pressures [25].
The experiments used 5.84 mm and 12.19 mm inner diameter tubes with vertical flow of water and
a uniform heat flux applied. Tables I, II, V, and VII from Stone were used for comparison. A
summary of the operating conditions employed by Stone are in Table 2.4.

2.3 Analysis of Data

The data summarized in Section 2.2 was used to evaluate all correlations introduced in Section 2.1
to predict heat flux with a stand-alone Python script. The predicted values were then compared
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Table 2.4: Stone (1971) [25] data summary

Parameter, Unit Minimum Maximum

Pressure, MPa 0.025 0.703
Mass Flux, kg/s/m2 0.67 141.2
Heat Flux, kW/m2 44.0 11400

Quality, % 0.0 70.0
Diameter, mm 5.84 12.19

to the experimental values. The results of this exercise are summarized in this section.

Figures 2.1, 2.2, 2.3, 2.4, and 2.5 show the measured heat flux versus the calculated heat flux per
data set. The colors indicate which dataset the point belongs to and the marker type indicates the
model used (see figure legend). Where CTF specific modifications were made to the model, that is
indicated by a "(CTF)" in the figure legend next to the marker type.

Figures 2.6, 2.7, 2.8, 2.9, 2.10, and 2.11 show the calculated heat flux versus measured heat flux
per correlation, using all data sets. In these figures, the colors indicate which dataset the point
belongs to. This data is the same as shown in Figures 2.1, 2.2, 2.3, 2.4, and 2.5 in an easier to view
format.

In general, most correlations tended to underpredict the heat flux, which is shown in the plots of
calculated heat flux versus measured heat flux. Most correlations also more accurately predict the
heat flux for the high heat flux datasets, specifically all Rohsenow data. However, the Stone data
includes higher heat flux experiments and do not follow the same trend. Therefore, the observed
accuracy at higher heat fluxes might be related to the experimental uncertainty or some other bias
rather than an inherent characteristic of the correlations themselves. The notable exception to this
is the Gorenflo correlation, which overpredicted some of the higher heat flux datapoints, sometimes
by an entire order of magnitude. This can be seen in Figure 2.11. Figure 2.12 shows the Gorenflo
correlation residual heat flux, qmodel — qexp, plotted against experiment superheat. As superheat
increases, Gorenflo is less accurate. This is likely due to the CTF implimentation of Gorenflo which
uses Equation 2.36 to calculate the pool boiling heat flux and raises superheat to an exponential
power.

Tables 2.5 and 2.6 show tabulated validation metrics per correlation and data set. The validation
metrics used were the mean of the residuals and root mean square error (RMSE). The equations
for these two metrics can be found in the introduction of Chapter 3. The mean residual table shows
that the overall residuals (row "All Date) of heat flux per correlation is negative for all correlations
except Gorenflo. This confirms what was seen through visual inspection of the calculated heat flux
versus measured heat flux plots; the correlations usually underpredicted the heat flux.

Table 2.6 shows that for the datasets used, the CTF implementation of the Chen correlation is
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slightly less accurate than the Chen correlation as implemented by Chen. However, the modifica-
tions made in CTF for the Thom correlation do significantly improve the correlation accuracy over
the Thom correlation as implemented by Thom and overall has the lowest RMSE value. Thom,
as originally implemented, uses a modified Dittus-Boelter equation and does not express the to-
tal heat flux as the sum of the forced convection and nucleate boiling components. The Gungor
and Winterton correlation has about the same accuracy as the unmodified Thom correlation. The
Gorenflo correlation performs the worst overall out of all correlations. The worst RMSEs in the
table are mostly attributed to the higher superheat value datapoints which resulted in extremely
large residuals; other datasets have much lower residuals and RMSE values.

15 CASL-U-2020-1946-000



CASL

101

't

4S
AA.
TA.
4s,

101 102
Measured q [kW/m2]

Subcooled Boiling Validation

A Chen

Chen (CTF)

El Thom

0 Thom (CTF)
o Gungor and Winterton

* Gorenflo (CTF)
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Table 2.5: Mean residuals of qmodel - qexp summary [kW/m2]

Year Author Section
Chen

[14] CTF

Thom

[15] CTF
Gungor Sz
Winterton

Gorenflo
CTF

1951 Rohsenow -1260.6 -1254.6 -1282.0 -361.5 -1329.8 -1113.8

1960 Sani -4.8 -5.0 -51.8 -24.7 -3.2 -69.2
1961 Rohsenow Fig. 9.5 -2098.4 -3206.9 -2106.7 1191.8 -2106.6 77155.0

Fig. 9.6 -3024.8 -3472.5 -1417.0 -1517.2 -1778.0 12556.8

1971 Stone Tab. I -176.3 -185.1 -271.0 -70.7 92.5 -180.5
Tab. II -129.3 -135.2 -197.7 -4.5 92.0 -168.0
Tab. V -2194.5 -2429.3 -3554.6 -1857.5 -3616.7 3626.0
Tab. VII -3179.2 -3557.9 -4823.6 -2323.9 -4892.9 6683.7

ALL DATA -1214.3 -1351.3 -1678.2 -767.6 -1659.0 3256.4

Table 2.6: RMSE of %node/ - qexp summary [kW/m2]

Year Author Section
Chen

[14] CTF
Thom

[15] CTF
Gungor &
Winterton

Gorenflo

CTF

1951 Rohsenow 1652.6 1647.8 1617.6 1159.5 1716.5 1496.4
1960 Sani 12.5 12.5 59.1 47.7 14.2 75.0
1961 Rohsenow Fig. 9.5 2976.0 3592.6 3233.9 4176.8 2607.2 153001.2

Fig. 9.6 3552.8 4057.0 2798.5 2248.6 2663.5 39105.0

1971 Stone Tab. I 241.4 248.5 339.6 202.3 362.3 291.1

Tab. II 145.5 150.5 211.8 128.3 284.2 181.8
Tab. V 2423.2 2668.6 3892.9 2237.4 3957.5 6975.3

Tab. VII 3585.7 3910.6 5107.8 2946.8 5183.4 10444.7

ALL DATA 1952.6 2146.5 2689.5 1688.1 2713 23129.1
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3. Separate Effects Validation

Subcooled Boiling Validation

CTF has been validated using two integral effects facilities that include subcooled boiling [26]:
the Combustion Engineering (CE) facility at Columbia University [27], and the New Experimental
Studies of Thermal-hydraulics of Rod bundles (NESTOR) facility in France [28]. Both of these
facilities model prototypical PWR geometry and operating conditions. Therefore, these facilities
include various physics effects besides subcooled boiling, including spacer grid effects and geometry
changes. Therefore, this chapter focuses on separate effects validation of the CTF subcooled boiling
model. Separate effects validation is an important part of the validation process because it ensures
that compensating errors between physics models are minimized [29].

Both of the experimental facilities in this work consist of steady state flow through a short tube.
For this case, the validation process is relatively simple. Convective heat transfer is essentially
governed by the equation q" = hA(T f — TO. Assuming that external energy losses are negligible,
the temperature rise in the fluid can be found via an energy balance, since it is in steady state
and the heat generation in the solid is fixed. Therefore, the heat flux q" , surface area A, and
fluid temperature Tf are essentially fixed. So the interaction between the wall temperature Tw and
the heat transfer coefficient h is of primary interest. Since the heat transfer coefficient cannot be
directly measured, the wall temperature becomes the quantity of interest for the validation process.

Separated effects validation is performed for the Rohsenow experiments in Section 3.1 and for
the WALT facility in Section 3.2. To quantify the results, three validation metrics are defined
to measure the overall bias, data spread, and total distance: the mean of the residuals, standard
deviation of the residuals, and RMSE:

mean

standard deviation

RMSE
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3.1 Rohsenow

Subcooled Boiling Validation

In 1951, Rohsenow published the results of a subcooled boiling experiment [23]. He executed his
tests using a 0.1805 in diameter nickel tube with a length of 9.4 in. A copper shield surrounded the
tube and was used to heat it. Thermocouples measured the temperature at seven axial locations
on the outside of the shield, though the first and last axial locations are not reported due to
entrance and exit effects. Rohsenow estimated the inside tube temperature from the thermocouple
measurements using a Taylor series, resulting in an estimated error bound of ±3°F.

Distilled and degassed water was passed through the heated tube. Inlet and outlet coolant tem-
peratures were measured and pressure was measured at the inlet. Steady state measurements were
taken at two pressures, three mass fluxes, and a variety of heat fluxes. Therefore, each experiment
measured four axial locations in the tube which all had similar conditions but different liquid sub-
cooling. Rohsenow used these results to create a variety of plots and conclusions, which were later
incorporated into textbooks [9, 30].

This facility is modeled in CTF using a single rod-centered channel with twenty axial nodes. The
flow area, wetted perimeter, and rod surface area are set consistent with the tube geometry of the
Rohsenow experiment. Rohsenow did not report actual pressure measurements, so the reported ap-
proximate pressure is set to the outlet pressure boundary condition. The inlet boundary conditions
are determined from the experimentally reported inlet temperature and mass flux. For each run,
the exit fluid temperature is extracted from the CTF output and compared to the experimentally
measured value (to ensure a consistent energy balance). In addition, the entire wall temperature
distribution is extracted from the output. Linear interpolation is used to approximate the wall
temperature at each thermocouple location, which are compared to the experimentally reported
values. Initial analysis was performed to show that the interpolation results in a maximum error
±0.05°C, which is well within experimental uncertainty.

The difference between CTF and experimentally reported wall temperatures are shown in Figure 3.1.
The colors indicate which experiment is being represented (see Appendix A for the experimental
conditions, measurements, and results for each individual experiment). Three different options—
indicated by marker shape in the figure—are analyzed: Chen, Thom, and Gorenflo. Note that the
Gorenflo model also uses the new CTF model for the onset of nucleate boiling. In general, the
Chen correlation leads to large over-predictions of the wall superheat. Thom predictions are closer,
and the Gorenflo correlation is the most accurate; however, some experiments do not converge
when using the Gorenflo correlation. In addition, all correlations are less accurate at higher axial
locations, which indicates that the accuracy decreases with decreased fluid subcooling.

Each of the three validation metrics are shown in Table 3.1 for each choice of correlation: Chen,
Thom, and Gorenflo. As observed in Figure 3.1, the Chen correlation is significantly less accurate
than the other models and Gorenflo is slightly more accurate than Thom. The three metrics are
shown in Table 3.2 as a function of the axial location at which the measurement was taken. The
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Figure 3.1: Rohsenow validation results as a function of spatial location

norm is taken over all three correlation options, since all three follow the same trend with respect
to axial location. This supports the conclusion that all correlations are less accurate as the fluid
temperature becomes closer to saturation.

Table 3.1: Rohsenow validation metrics as a function of correlation choice

Correlation IHTC mean [°C] stdev [°C] RMSE [°C]

Chen 1 9.5 7.1 11.9
Thom 2 0.9 3.0 3.1

Gorenflo 3 1.1 2.0 2.3

3.2 WALT

In 2005, a single rod thermal hydraulic facility was constructed at the Westinghouse Science and
Technology Center in Pennsylvania. This loop has been named Westinghouse Advanced Loop
Tester (WALT) and was designed to simulate PWR crud buildup [31]. Water flows through an
18.3 in long annulus with an approximate flow area of 0.6 m2. A ZIRLO heated tube is equipped
with four thermocouples located at different azimuthal angles at the same axial location. The
thermocouples measure the inside tube temperature, and a simple heat conduction solution is used
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Table 3.2: Rohsenow validation metrics as a function of thermocouple location

Thermocouple location [m] mean [°C] stdev [°C] RMSE [°C]

2 0.048 5.4 5.9 8.0
3 0.084 7.3 6.0 9.5
4 0.119 8.6 7.0 11.1
5 0.155 11.5 6.5 13.2
6 0.191 14.4 6.2 15.7

to approximate the outside tube temperature.

Though most of the WALT tests were used to create simulated crud and measure its thermal
conductivity, a series of clean rod tests were initially performed. In this work, a separate effects
validation study is conducted using these tests. In these tests, the heat flux was sequentially raised
and temperature measurements were taken after the system was run for an extended period of time.
Here, we assume that this time was sufficient to achieve steady state. This allows the construction
of a so-called boiling curve, which can be compared to theory. This provided initial confidence in
the experimental setup before including the more complex crud cases.

The WALT report [31] does not provide the tube outside temperatures that are calculated by CTF,
so they must be approximated. Since the facility (and the code input) is completely symmetric,
the thermocouple results are expected to be approximately the same. Therefore, the average of the
four thermocouple measurements is used to calculate the surface temperature. This temperature
is approximated as [31, Equation A-7]

ai
2

Tout = Tin — [2r1 ln  ,
' in ' out)] •4k rout

(3.4)

The thermal conductivity of ZIRLO is approximated using a linear function of temperature [31,
Equation 5-11] (note that this equation is in british units, temperature is in °F and thermal con-
ductivity in btu/hr/ft/°F)

k = 8.1802 + 0.0026T (3.5)

This facility is modeled in CTF using a single rod-centered channel with twenty axial nodes. The
flow area, wetted perimeter, and rod diameter are set consistent with the geometry of the facility.
The measured pressure is used as the outlet pressure boundary condition, the inlet boundary
conditions are determined by the experimentally reported inlet temperature and mass flux. For
each run, the wall temperature distribution is extracted from the code output. Linear interpolation
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is used to approximate the wall temperature at the thermocouple location, which is then compared
to the experimental value.

The difference between CTF and experimentally calculated wall temperatures are shown in Fig-
ure 3.2. The colors indicate which experiment is being represented (see Appendix B for the ex-
perimental conditions, measurements, and individual results for each individual experiment). The
different correlations are tested: Chen, Thom, and Gorenflo. In general, the Chen correlation over
estimates the wall superheat. The Gorenflo correlation is slightly more accurate than the Thom
correlation. It also appears that all correlations are less accurate as the heat flux increases.

A few cases have very large over-predictions of wall temperature, even when using the Thom or
Gorenflo correlations. These cases correspond to case 110a and 111b, which are the only two cases
with lower inlet temperatures than other cases. This is demonstrated in Figure 3.3 by arranging
the residuals with respect to inlet temperature.
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Figure 3.2: WALT validation results as a function of heat flux

The previously made observations are quantified using validation metrics. Table 3.3 shows the
mean, standard deviation, and RMSE for each choice of correlation. Again, it is quantitatively
demonstrated that the correlations can be ranked in order of accuracy: Gorenflo, Thom, then
Chen. Table 3.4 shows the validation metrics for each individual experiment. All three correlation
options are included in these norms, since they all follow the same trend with respect to experiment.
Note that the 110a and llla experiments have much larger mean and RMSE than all other cases.
This demonstrates the large inaccuracy for the low temperature cases.
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Figure 3.3: WALT validation results as a function of inlet temperature

Table 3.3: WALT validation metrics as a function of correlation choice

Correlation IHTC mean [°C] stdev [°C] RMSE [°C]

Chen 1 25.7 8.3 27.1
Thom 2 8.4 10.4 13.3

Gorenflo 3 3.8 9.0 9.7

Table 3.4: WALT validation metrics for each experiment

Experiment mean [°C] stdev [°C] RMSE [°C]

80 9.7 9.6 84.6
86 9.7 10.7 95.8
87 10.1 10.4 88.1
88 9.8 10.5 92.1

94 8.5 7.5 71.7
110a 36.2 10.2 176.2

110b 11.2 9.6 89.6
llla 33.5 11.4 170.0
111b 11.1 10.3 83.2
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In this work, subcooled boiling heat transfer was examined as a first step towards qualifying VERA
crud modeling. Since crud formation is very sensitive to boiling, a correct understanding of the
underlying physics in an important step towards understanding this complex multi-physics phe-
nomenon. To achieve this, two separate studies were performed: a comparison of various subcooled
boiling models to a variety of experimental data, and a separate effects validation of the subcooled
boiling models available in CTF.

The comparison of subcooled boiling models to experimental data sets showed that all correla-
tions generally underpredict the boiling heat flux. In the nuclear industry, the underprediction
of surface heat flux will result in an overprediction of fuel temperatures, which is conservative.
Differences between the predicted and measured heat fluxes are relatively large, ranging up to an
order of magnitude. This is likely due to the large uncertainties in the boiling process, experimental
uncertainties, and relatively small ranges of applicability for each model.

The CTF separate effects validation of the Rohsenow [23] and WALT [31] data was completed.
For these two datasets, the correlations ranked from most to least accurate are: Gorenflo, Thom,
and Chen. Chen was anticipated to be the least accurate, as it was originally formulated using low
pressure experiments. Therefore, conventional wisdom dictates that the Chen correlation should
be used for low pressure cases and Thom correlation for high pressure cases [32]. In general, CTF
overpredicted wall temperatures in the subcooled region. Additionally, the CTF wall temperatures
were less accurate as heat flux increased and fluid temperature increased. For both datasets, some
CTF simulations failed to converge to steady state as determined by CTF steady state indicators.
For the Rohsenow data, the Gorenflo correlation failed to converge for several of the cases. For
the WALT data, all three correlations failed to converge for different cases. It is unclear if these
convergence failures are due to numerical issues in the code, or represent some physical oscillation
that is not represented in the steady state experimental data.

The results in both chapters agree in that an underestimation in heat flux will correspond to an
overestimation of wall temperature. The validation results for the Rohsenow data were slightly
different between Chapter 2 and Chapter 3. This difference may be due to subtle differences in
correlation implementation between the Python script in Chapter 2 and CTF results in Chapter 3.
Additionally, Chapter 2 calculated validation metrics with respect to heat flux, whereas Chapter 3
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used wall temperature as the quantity of interest. These quantities are related, but not through a
purely linear relationship. Therefore, it is possible that this difference causes the inconsistencies in
RMSE results.

Future work will include the incorporation of additional correlations into the analyses, including
adding them as simulation options in CTF. In addition, more datasets can be harvested from
the literature and incorporated into the analyses in this report, e.g., Brown [33] and Bergles [34,
35]. Finally, future work will require the validation of additional modeling considerations of crud
formation and heat transfer, including the prediction of void creation in CTF, actual accumulation
of the crud, and the boiling processes in the porous crud in Materials Performance and Optimization
(MPO) Advanced Model for Boron Analysis (MAMBA).
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Table A.1: Boundary condition and measured data for Rohsenow experiments. Units and preci-
sion are consistent with the original report [23]. Missing thermocouple measurements were excluded
from the original report for an unknown reason.

Experiment
P
psi

Tin,
°F Mlbm/hr/ft2 Mbtu/hr/ft2

T2
°F

T3
°F

T4
°F

T5
°F

T6
°F

To u t
°F

33-11 2000 386 1618 2.53 - - 643.5 643.5 642.5 470
33-12 2000 398 1610 2.76 642.0 643.5 644.0 643.0 641.5 491
33-13 2000 403 1602 3.00 644.5 644.5 644.5 643.5 642.5 503
30-3 2000 436 1051 1.78 642.5 643.5 644.5 644.5 643.5 523
30-4 2000 440 1052 2.03 643.0 643.5 645.0 645.0 644.0 539
30-5 2000 428 1059 2.23 644.5 645.0 646.5 646.0 645.0 537
30-6 2000 424 1059 2.20 643.0 644.0 644.0 644.0 643.0 523
31-5 2000 431 1063 1.54 643.0 643.0 643.0 504
31-6 2000 435 1060 1.74 642.5 643.5 644.5 644.5 643.5 519
31-7 2000 421 1057 1.92 643.5 644.5 644.5 644.5 643.5 514
31-8 2000 420 1057 2.10 644.5 645.5 645.5 644.5 643.5 520
31-9 2000 340 1130 2.34 - 645.0 647.0 646.0 645.0 454
31-10 2000 340 1118 2.54 643.5 645.5 646.5 644.5 643.5 464
34-5 2000 387 541 1.47 641.5 643.0 644.5 643.5 642.2 527
34-6 2000 376 545 1.62 642.5 643.5 645.0 643.5 642.0 531
34-7 2000 309 550 1.82 643.0 644.0 645.0 643.5 642.5 487
32-6 1500 439 1552 1.84 604.0 607.0 610.0 609.0 608.5 500
32-7 1500 431 1552 2.10 608.5 610.0 611.0 609.5 609.0 501
32-8 1500 390 1618 2.29 600.5 607.0 609.5 609.0 608.5 468
32-9 1500 397 1610 2.42 607.0 609.5 610.0 609.0 608.5 478
32-10 1500 397 1610 2.59 610.0 610.5 610.5 610.5 610.0 484
32-11 1500 396 1593 2.75 611.0 611.0 611.0 610.5 609.5 489
33-4 1500 430 1051 1.42 606.0 608.5 610.0 609.5 609.0 499
33-5 1500 425 1059 1.62 609.5 610.5 610.5 610.0 609.5 504
33-6 1500 426 1051 1.81 610.5 611.5 611.0 610.5 609.5 515
33-7 1500 422 1051 1.91 611.5 612.0 611.5 610.5 609.5 517
33-8 1500 426 1050 2.05 613.0 612.5 611.5 610.5 609.5 527
33-9 1500 427 1051 2.31 612.0 612.0 611.0 610.5 609.5 539
33-10 1500 413 1057 2.59 611.5 611.5 610.5 610.0 609.5 534
35-5 1500 376 543 1.14 605.0 606.0 608.0 607.5 607.5 487
35-6 1500 396 541 1.39 604.0 604.0 605.0 604.5 604.0 528
35-7 1500 385 541 1.56 604.5 604.5 604.5 604.5 603.0 534
35-8 1500 309 559 1.81 606.5 606.5 606.5 605.5 604.5 485
35-9 1500 319 556 1.84 607.0 606.5 606.5 604.5 603.5 499
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Figure A.1: CTF and experimental results for Rohsenow experiment 33-11
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Figure A.4: CTF and experimental results for Rohsenow experiment 30-3
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Figure A.11: CTF and experimental results for Rohsenow experiment 31-8
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Figure A.12: CTF and experimental results for Rohsenow experiment 31-9
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Figure A.14: CTF and experimental results for Rohsenow experiment 34-5
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Figure A.15: CTF and experimental results for Rohsenow experiment 34-6
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Figure A.16: CTF and experimental results for Rohsenow experiment 34-7
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Figure A.17: CTF and experimental results for Rohsenow experiment 32-6
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Figure A.18: CTF and experimental results for Rohsenow experiment 32-7
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Figure A.19: CTF and experimental results for Rohsenow experiment 32-8
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Figure A.20: CTF and experimental results for Rohsenow experiment 32-9
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Figure A.21: CTF and experimental results for Rohsenow experiment 32-10
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Figure A.22: CTF and experimental results for Rohsenow experiment 32-11
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Figure A.23: CTF and experimental results for Rohsenow experiment 33-4

1 i
• Texp  

O TChen

O TThom ) 

0 TGorenflo

ii 1 

O
O ,

o
o

o

4
o i i

0.06 0.08 0.10 0.12 0.14 0.16 0.18

x [m]

z

m

Texp Tel. Tthom Tgor

°C °C °C °C

0.048 Tw
0.084 Tw
0.119 T,
0.155 Tw
0.191 Tw
0.239 T f

320.8
321.4
321.4
321.1
320.8
262.2

322.0
324.9
327.4
329.8
332.0
262.0

318.0
319.1
320.1
320.9
321.7
262.0

321.1
321.6
321.9
322.1
322.2
262.1

Figure A.24: CTF and experimental results for Rohsenow experiment 33-5
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Figure A.25: CTF and experimental results for Rohsenow experiment 33-6
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Figure A.26: CTF and experimental results for Rohsenow experiment 33-7
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Figure A.27: CTF and experimental results for Rohsenow experiment 33-8
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Figure A.28: CTF and experimental results for Rohsenow experiment 33-9
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Figure A.29: CTF and experimental results for Rohsenow experiment 33-10
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Figure A.30: CTF and experimental results for Rohsenow experiment 35-5
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Figure A.31: CTF and experimental results for Rohsenow experiment 35-6
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Figure A.32: CTF and experimental results for Rohsenow experiment 35-7

42 CASL-U-2020-1946-000



CASL

335

(7 330

1... 325

320

335

(7 330

1.... 325

320

1 1
0 Texp

o

o
o

0 Tchen )

0 TThom

0 TGorenflo

0 I

o
o o o

•• • • •

0.06 0.08 0.10 0.12

x [m]

0.14 0.16 0.18

Subcooled Boiling Validation

z
m

Texp
°C

Tchen

°C
Tthom Tgor
°C °C

0.048 T,,, 319.2 329.1 322.1
0.084 Tu, 319.2 330.8 322.8
0.119 Tu, 319.2 332.6 323.6
0.155 T„, 318.6 334.5 324.3
0.191 Tu, 318.1 336.4 325.1
0.239 Tf 251.7 250.5 251.0

Figure A.33: CTF and experimental results for Rohsenow experiment 35-8
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Figure A.34: CTF and experimental results for Rohsenow experiment 35-9
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B. WALT Data and Results

Subcooled Boiling Validation

Table B.1: Geometric information for WALT experiments. Units and precision are consistent
with the original report [31].

Experiment
Do Di
in in in in in

80 0.374 0.329 0.36187 3.60969 18.322
86 0.374 0.329 0.57236 4.10292 18.322
87 0.374 0.329 0.57236 4.10292 18.322
88 0.374 0.329 0.57236 4.10292 18.322
94 0.374 0.329 0.57236 4.10292 18.322
110a 0.374 0.329 0.57236 4.10292 18.322
110b 0.374 0.329 0.57236 4.10292 18.322
llla 0.374 0.329 0.57236 4.10292 18.322
111b 0.374 0.329 0.57236 4.10292 18.322

Table B.2: Boundary condition and measured data for WALT experiments. Units and precision
are consistent with the original report [31]. Thermocouple measurements that are inconsistent with
surrounding measurements are colored red and excluded from the validation study.

Experiment
psi °F Mlbm/hr/ft2

qtr

Mbtu/hr/ft2 °F °F
T3
°F

T4
°F

80 2244.7 638.3 1.8944 0.1385 669.9 670.3 670.2 670.5
2266.2 638.6 1.8917 0.1767 674.7 675.1 675.1 675.4
2264.5 638.0 1.8957 0.2269 680.1 680.5 680.6 680.9
2266.5 636.2 1.9043 0.2489 682.4 682.8 682.9 683.1
2258.8 636.1 1.9029 0.2774 685.2 685.6 685.6 686.0
2265.1 634.9 1.9171 0.3163 689.0 689.5 689.7 689.9
2264.8 636.1 1.9066 0.3586 693.0 693.3 693.5 693.9
2265.2 636.8 1.9022 0.3803 695.3 695.6 695.9 696.2
2264.5 635.6 1.9078 0.4030 697.3 697.5 698.1 698.3
2264.8 637.6 1.8963 0.4206 700.0 699.9 700.5 701.4
2264.7 636.9 1.9031 0.4444 701.5 701.9 702.2 702.6
2234.8 635.9 1.8964 0.4798 702.7 703.3 703.6 704.1
2264.7 639.3 1.8856 0.5056 707.1 707.6 708.0 708.4
2265.2 634.0 1.9222 0.5252 708.5 709.2 709.4 709.7

86 2263.6 635.4 1.3013 0.1390 674.1 674.6 673.6 659.2
2265.1 635.1 1.3042 0.1756 678.5 679.2 678.5 662.7
2265.6 638.4 1.2914 0.2256 684.8 685.5 684.5 668.1
2268.3 635.8 1.2954 0.2484 686.1 686.8 685.8 668.0
2265.4 633.6 1.3051 0.2775 687.7 688.5 687.9 684.9
2270.1 634.9 1.2999 0.3171 693.6 694.2 693.2 690.5
2270.5 635.4 1.2988 0.3591 697.8 698.5 697.3 694.4
2270.6 636.0 1.2960 0.3819 700.1 700.7 699.7 696.7
2264.6 633.2 1.3048 0.4050 702.3 702.8 701.7 698.7
2264.1 639.8 1.2836 0.4204 703.0 703.6 702.6 699.8
2267.4 636.3 1.2902 0.4441 705.7 706.1 705.1 702.4
2265.6 635.8 1.2902 0.4632 706.1 707.0 706.1 706.2
2268.8 636.1 1.2932 0.4817 709.4 709.8 708.7 705.9
2267.7 638.8 1.2803 0.4825 709.3 709.6 708.7 706.0
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Experiment

87

88

94

110a

110b

llla

Subcooled Boiling Validation

Table B.2 continued

psi °F Mlbm/hr/ft2

qtr

Mbtu/hr/ft2 °F
T2
°F oF

T4
°F

2272.7 634.5 1.2968 0.5259 714.1 714.4 713.4 710.6
2264.9 633.5 1.3100 0.1388 672.3 673.3 673.1 671.0
2264.6 630.0 1.3187 0.1762 676.3 677.3 677.0 675.0
2268.1 634.1 1.3021 0.2265 682.4 683.5 683.2 681.2
2263.6 634.9 1.3028 0.2486 684.0 685.0 684.8 683.0
2265.8 636.0 1.2916 0.2780 688.0 689.1 688.8 687.0
2264.8 634.6 1.3000 0.3160 691.0 692.1 691.9 690.1
2265.1 634.3 1.2996 0.3590 695.6 696.7 696.5 694.6
2272.2 637.1 1.2899 0.3805 698.0 699.2 698.9 697.1
2268.1 636.8 1.2877 0.4031 699.6 700.8 700.6 698.8
2265.1 635.6 1.2967 0.4209 701.5 702.7 702.5 700.7
2268.2 636.1 1.2954 0.4433 703.6 704.8 704.6 702.8
2270.9 635.5 1.2909 0.4813 708.2 709.9 709.9 707.3
2264.9 635.3 1.2923 0.5256 712.2 714.4 713.2 711.3
2264.9 636.2 1.3020 0.1387 671.7 671.6 672.3 671.9
2270.0 635.8 1.3059 0.1762 676.5 676.4 677.1 676.7
2265.0 635.6 1.3036 0.2265 681.9 681.8 682.5 682.2
2265.8 638.0 1.2905 0.2487 684.5 684.4 685.0 684.8
2265.4 636.1 1.3005 0.2772 687.5 687.5 688.1 687.8
2265.7 635.6 1.2998 0.3166 691.8 691.9 692.6 692.2
2265.5 633.0 1.3125 0.3575 696.0 696.1 696.8 696.4
2274.2 636.3 1.3004 0.3811 699.0 699.1 699.6 699.2
2289.1 635.5 1.3052 0.4049 702.2 702.3 703.0 702.6
2290.2 635.4 1.3021 0.4192 704.0 704.1 704.7 704.3
2282.5 633.9 1.3100 0.4456 706.0 706.1 706.7 706.3
2282.9 637.1 1.2965 0.4831 709.7 709.8 710.4 710.0
2290.9 633.9 1.3100 0.5254 713.8 713.8 714.4 714.0
2281.5 633.4 1.3104 0.5258 713.8 713.8 714.4 714.0
2264.7 624.2 0.7833 0.1048 668.8 668.0 659.4 667.9
2264.8 626.0 0.7793 0.1390 672.7 672.3 670.8 671.8
2265.2 625.9 0.7800 0.1766 676.7 676.3 680.7 675.9
2264.6 623.6 0.7832 0.2265 681.7 681.3 694.6 681.0
2264.3 626.6 0.7775 0.2487 683.9 683.6 704.7 683.3
2263.8 626.9 0.7756 0.2792 686.9 686.6 755.8 686.4
2261.9 625.6 0.7763 0.3196 690.7 690.4 780.2 690.2
2261.8 625.8 0.7773 0.3626 694.7 694.5 808.3 694.4
2262.1 620.9 0.7890 0.3852 697.1 696.8 826.6 696.7
2261.5 628.9 0.7704 0.4087 699.3 699.1 837.7 699.0
2261.1 624.2 0.7815 0.4269 701.0 700.8 845.8 700.8
2261.7 625.4 0.7766 0.4503 703.2 703.0 857.7 702.9
2261.9 626.1 0.7744 0.4894 706.8 706.4 876.0 706.4
2261.8 625.8 0.7748 0.5090 709.1 708.7 784.6 708.9
2260.8 626.4 0.7725 0.5281 711.1 710.6 764.8 710.8
2265.0 515.1 1.4317 0.0988 547.2 507.6 545.2 545.2
2260.9 552.0 1.3671 0.1017 584.5 583.9 584.5 584.6
2265.4 552.2 1.3668 0.1344 596.0 595.3 595.9 596.4
2264.9 553.7 1.3641 0.1717 611.1 609.8 610.6 611.2
2264.4 553.2 1.3649 0.2219 627.9 626.7 628.2 629.0
2259.0 550.0 1.3709 0.2438 633.3 631.7 632.9 633.6
2265.2 550.5 1.3701 0.2725 644.2 642.0 643.3 644.0
2259.4 553.0 1.3652 0.3128 660.2 658.3 660.3 661.1
2263.6 553.6 1.3642 0.3559 676.5 673.5 675.0 676.2
2264.4 551.6 1.3680 0.3785 680.6 679.6 682.8 684.1
2264.6 550.9 1.3693 0.4024 689.3 685.8 687.8 688.6
2263.0 550.7 1.3696 0.4200 693.6 691.7 693.7 694.4
2258.3 552.2 1.3668 0.4441 699.4 698.1 699.3 699.5
2262.2 551.6 1.3679 0.4618 702.6 701.7 702.2 702.3
2262.2 550.2 1.3705 0.4809 705.0 704.3 704.5 704.6
2257.9 617.8 1.2231 0.1048 653.6 653.2 653.8 654.5
2262.8 619.0 1.2198 0.1383 666.2 666.0 666.9 667.9
2263.7 620.3 1.2158 0.1761 675.2 674.9 674.5 674.4
2258.1 623.4 1.2062 0.2265 680.1 679.9 679.5 679.5
2260.5 624.8 1.2020 0.2485 682.6 682.3 681.9 681.8
2264.6 623.1 1.2074 0.2766 685.4 685.2 684.9 684.8
2264.1 622.0 1.2107 0.3162 689.6 689.3 688.9 688.8
2258.8 621.1 1.2132 0.3807 696.1 695.7 695.4 695.3
2261.6 623.2 1.2071 0.4035 698.3 697.9 697.5 697.5
2261.8 621.1 1.2134 0.4211 699.9 699.6 699.3 699.3
2255.0 621.3 1.2124 0.4436 702.2 701.9 701.5 701.4
2259.0 621.7 1.2114 0.4624 704.0 703.7 703.3 703.2
2257.2 621.8 1.2111 0.4819 705.7 705.5 705.1 705.0
2259.1 628.4 1.1901 0.5245 710.0 709.7 709.2 709.2
2264.3 548.1 1.3802 0.1011 579.5 581.6 580.2 582.3
2265.6 547.6 1.3811 0.1343 590.6 592.7 591.1 593.4
2265.7 549.7 1.3772 0.1719 605.2 608.7 606.5 609.8
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Table B.2 continued

Experiment
P
psi °F Mlbm/hr/ft2 Mbtu/hr/ft2

T7.
°F

T2
°F

T3
°F

T4
°F

2269.9 554.1 1.3690 0.2216 629.2 633.9 631.0 634.9
2261.2 550.8 1.3751 0.2435 633.8 637.3 634.7 639.6
2263.7 547.9 1.3805 0.2721 641.7 647.6 643.3 649.0
2264.7 547.2 1.3820 0.3129 654.9 661.3 657.1 664.2
2265.4 549.1 1.3784 0.3553 671.3 675.6 673.0 677.7
2264.8 550.3 1.3761 0.3788 680.0 685.1 681.9 687.6
2265.9 552.0 1.3728 0.4016 688.7 691.8 689.2 693.9
2265.6 551.6 1.3737 0.4194 693.7 696.2 694.5 697.6
2264.3 550.4 1.3758 0.4439 699.4 699.5 698.2 700.6
2265.9 550.4 1.3758 0.4627 702.3 701.5 700.6 702.5
2264.0 552.0 1.3729 0.4812 704.7 703.6 702.8 704.5
2263.5 552.3 1.3722 0.5251 709.1 707.8 707.0 708.9

111b 2263.7 625.5 1.2071 0.1048 665.7 666.1 665.6 666.6
2256.9 626.0 1.2053 0.1756 674.8 674.0 673.8 674.6
2258.7 621.1 1.2209 0.3165 690.0 689.0 688.5 690.4
2266.4 618.5 1.2291 0.3589 693.8 692.9 692.1 694.0
2228.1 620.1 1.2226 0.3798 694.3 693.2 692.5 694.9
2228.7 621.3 1.2187 0.4032 696.2 695.2 694.5 696.8
2264.5 617.1 1.2329 0.4209 700.1 699.1 698.2 700.7
2262.7 620.6 1.2224 0.4446 702.6 701.5 700.6 703.2
2224.0 622.1 1.2162 0.4623 702.6 701.5 700.5 703.5
2260.5 619.7 1.2250 0.4804 704.6 703.4 702.4 704.7
2260.1 623.7 1.2129 0.5250 710.3 709.3 708.1 711.5
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437 347.2 359.1 349.3
557 347.8 362.4 350.7
716 348.2 365.4 351.5 349.7
785 348.3 366.5 351.9 349.9
875 348.3 367.8 352.1 349.9
998 348.4 369.8 352.8 350.3
1131 348.4 371.8 353.3 350.6
1200 348.5 372.7 353.5 350.8
1271 348.5 373.6 353.8 350.9
1327 349.0 354.0 351.0
1402 348.7 375.1 354.2 351.1
1514 347.5 375.8 353.7 350.3
1595 348.6 377.4 354.8 351.4
1657 348.4 377.9 355.0 351.5

Figure B.1: CTF and experimental results for WALT rod 80
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q"
kW/m2

Tw ,exp
°C

Tw ,chen
°C

Tw,thom

°C

Tw,gor

°C

438 349.3 362.2 350.5
554 349.9 364.9 351.3 349.5
712 350.7 368.2 352.2 350.1
784 350.2 369.4 352.7 350.3
875 349.2 370.9 353.0 350.4
1000 350.3 373.0 353.7 350.9
1133 350.4 374.7 354.2 351.2
1205 350.4 375.7 354.5 351.3
1278 350.4 376.4 354.6 351.2
1326 350.0 377.2 354.7 351.3
1401 350.2 378.0 355.1 351.5
1461 350.1 378.6 355.2 351.6
1520 350.3 379.4 355.5 351.8
1522 350.2 379.4 355.4 351.7
1659 350.6 380.9 356.0 352.1

Figure B.2: CTF and experimental results for WALT rod 86
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1200 349.9 375.7 354.5 351.3
1272 349.7 376.5 354.6 351.3
1328 349.8 377.1 354.8 351.3
1398 349.8 378.0 355.1 351.6
1518 350.5 379.4 355.6 351.8
1658 350.4 380.8 355.8 351.9

Figure B.3: CTF and experimental results for WALT rod 87
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1657 351.1 381.3 356.6 352.7
1659 351.1 381.2 356.3 352.4

Figure B.4: CTF and experimental results for WALT rod 88
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Figure B.5: CTF and experimental results for WALT rod 94
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Figure B.6: CTF and experimental results for WALT rod 110a
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Figure B.7: CTF and experimental results for WALT rod 110b
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Figure B.8: CTF and experimental results for WALT rod 111a
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Figure B.9: CTF and experimental results for WALT rod 111b
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