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Executive Summary

In 2010, the U.S. Department of Energy created its first Energy Innovation Hub, which is focused on devel-
oping high-fidelity and high-resolution Modeling and Simulation (Mé&S) tools for modeling of Light Water
Reactors (LWRs). This hub, Consortium for Advanced Simulation of LWRs (CASL), has developed an LWR
simulation tool called Virtual Environment for Reactor Applications (VERA). The multi-physics capability
of VERA is achieved through the coupling of single-physics codes, including BISON, CTF, MPACT, and
MAMBA.

BISON is a fuel performance code which models the thermo-mechanical behavior of nuclear fuel using
high performance M&S. It is capable of modeling traditional LWR fuel rods, fuel plates, and TRi-structural
ISOtropic (TRISO) fuel particles. It can employ three-dimensional Cartesian, two-dimensional axisymmetric
cylindrical, or one-dimensional radial spherical geometry. It includes empirical models for a large variety of
fuel physics: temperature- and burnup-dependent thermal properties, fuel swelling and densification, fission
gas production, cladding creep, fracture, cladding plasticity, and gap/plenum models.

This document details a series of code verification test problems that are used to test BISON. These
problems add confidence that the BISON code is a faithful representation of its underlying mathematical
model. The suite of verification tests are mapped to the underlying conservation equations solved by the
code: heat conduction, mechanics, and species conservation. Twenty-two problems are added for the heat
conduction solution, two for the mechanics solution, and none for species conservation. Method of Manufac-
tured Solutions (MMS) capability is demonstrated with three problems, and temperature drops across the

fuel gap are tested.
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1. Introduction

The invention of the computer in the early nineteenth century has revolutionized the scientific process.
The relatively quick evolution of computers and Modeling and Simulation (M&S) methods has enabled a
detailed understanding of complex coupled physical phenomena. In the nuclear industry, M&S became a
primary focus in the 1970’s. During that century, many of the well-known nuclear simulation codes and
methods were developed. As computational methods have continued to improve, the underlying numeri-
cal and computational methods of many of these “legacy codes” have become outdated, necessitating the
development of modern computational tools.

The development of Multiphysics Object-Oriented Simulation Environment (MOOSE) at Idaho National
Laboratory (INL) has been one project which attempts to fulfill the role of modern M&S software. It is a
high-performance, open source, C++ finite element (FE) toolkit! [1]. This software package has generalized
the conservation process into a finite-element formulation which can be applied to a variety of problems.
It allows scientists and engineers to focus on the empirical models relevant to their particular field, while
avoiding the details of computational science. One of the most prolific applications of the MOOSE framework
is BISON |2, 3], which focuses on the simulation of nuclear fuel.

BISON is a fuel performance code which models the thermo-mechanical behavior of nuclear fuel using
high performance M&S. BISON solves the fully-coupled equations of energy conservation, mechanics, and
species conservation to account for a majority of possible fuel behaviors. It is capable of modeling traditional
Light Water Reactor (LWR) fuel rods, fuel plates, and TRi-structural ISOtropic (TRISO) fuel particles.
It can employ three-dimensional Cartesian, two-dimensional axisymmetric cylindrical, or one-dimensional
radial spherical geometry. It includes empirical models for a large variety of fuel physics: temperature- and
burnup-dependent thermal properties, fuel swelling and densification, fission gas production, cladding creep,
fracture, cladding plasticity, and gap/plenum models.

In 2010, the U.S. Department of Energy created its first Energy Innovation Hub, which is focused on
developing high-fidelity and high-resolution M&S tools for modeling of LWRs. This hub, the Consortium
for Advanced Simulation of LWRs (CASL)?, has developed an LWR simulation tool called the Virtual Envi-
ronment for Reactor Applications (VERA). BISON is the high-fidelity and high-resolution fuel performance
tool used in VERA.

1

www.github.com/idaholab/moose
2yww.casl. gov



Accurate simulation of nuclear fuels is an integral part of reactor analysis. In normal operating conditions,
the fuel melting temperature limits the total power output of a reactor. A full characterization of the
temperature distribution within the fuel requires an understanding of the thermo—mechanical behavior of
crud deposits, cladding, gap, and fuel. Fuel behavior is also consequential to the modeling of severe accident
scenarios, as the cladding serves as the first barrier which prevents releases of nuclear material. As such,
cladding temperature, creep, swelling, and rupture are included as modeling requirements for testing of
an LWR Emergency Core Cooling System (ECCS) [4]. As fuel modeling is important, consequential, and
difficult to validate, it is necessary to ensure predictive capability by providing BISON with a thorough
pedigree.

A variety of processes have been developed to quantify the reliability and predictive capability of M&S
tools. Here, we provide a general overview of these processes; more detail can be found in [5, 6, 7]. In
general, these processes include verification and validation.

1. Verification is used to ensure that the code functions correctly.

(a) Software Quality Assurance (SQA) is the process of detecting unintentional coding mistakes in
software. This is done through defect analyses (unit, component, and system tests), regression
tests, and code comparisons.

(b) Code verification ensures that the code is a faithful representation of the underlying mathematical
model.

(c) Solution verification is the assessment of all sources of numerical uncertainty: round-off, statistical
variation, iterative tolerances, and truncation error.

2. Validation is the process of assessing a code’s capability to accurately model physical problems. Com-

parisons between code results and experiments quantify this capability.

The application of these software development procedures is crucial to the development of computational
tools that are free of coding mistakes and that accurately represent reality. A concise application of these
procedures and a complete template for the necessary code development steps have been outlined and
demonstrated for some models in a thermal-hydraulics subchannel code [8, 9, 10]. Existing verification and
validation work in BISON can be found in [11, 12].

This study focuses on expanding the formal verification of BISON, with a primary focus on its conduction
solution and secondary focus on mechanical behavior. The methodologies used in this work, verification
procedure, and design of the test matrix are outlined in Chapter 2. Results for heat conduction are reported
in Chapter 3. Appendix B details a few mechanics verification problems. The document concludes with a

discussion of the results and future work in Chapter 4.



2. Methods

In this chapter, the BISON verification methodology is described. The first discussion is an outline of the
BISON conservation equations and available solution options in Section 2.1. Verification is defined in detail
in Section 2.2. The two code verification methodologies: Method of Exact Solutions (MES) and Method
of Manufactured Solutions (MMS) are discussed in Section 2.3. The formal order of accuracy in BISON is
derived in Section 2.4. Section 2.5 defines the verification procedure. In Section 2.6, the test matrix creation

process is briefly described.

2.1 BISON Governing Equations

The BISON governing equations consist of three coupled partial differential equations (PDEs) for energy,

species, and momentum conservation [3].

o .
pcpa—;‘ — V- (kVu)— e;F =0 (2.1)
— conduction fission

transient

oC
5 V. (DVO)+2C - S
tr;si/ent diffusion decay  source

=0 (2.2)

V.o + \pL =0 (2.3)

Cauchy stress body force
tensor

Here, all quantities are defined in the List of Symbols. For the momentum conservation equation, note
that a constitutive relation is used to relate the primary solution variable—the displacement field u—to the

stress field via the strain.

These governing differential equations can each be separated into two parts: a balance equation or
conservation principle and a constitutive equation or physical law. For example, for a one-dimensional

steady state boundary value problem [13]



balance equation: 7 + B(z)U(x) = f(z), and (2.4)
2
d
constitutive model: 7(z) = —a(x) [{iix) (2.5)

Here, d7(z)/dx represents loss of the conserved quantity from the system due to flow across boundaries,
B(x)U(z) represents interior losses, and f(x) represents external sources. The proportionality constant, 5(z)
is a physical or material property and f(x) is generally known. The flux 7(x) represents the flow of some
quantity, a force, or a stress. The flux is described as the derivative of the quantity of interest (Qol) U(z)
multiplied by some prescribed physical or material property «a(z).

As an example, consider the heat conduction equation. In this case, the Qol U(x) is temperature u(z).
The physical property S(x) is the convection loss coefficient hL/A and the eternal source is composed of
convection from ambient hLus, /A and an external heat source ¢”'. The constitutive equation which relates

the flux to temperature is Fourier’s law. Therefore, the one dimensional steady state heat conduction

d du(z) hL o, BL
‘@(‘“ P )*7“<$>—q iy

equation is

(T (2.6)

Division of conservation equations into these underlying components is important during the code ver-
ification process. The numerical convergence of the governing equation can be tested, but the underlying
physical properties, material properties, and external sources (i.e., 8, a, and f) must be tested separately.
This is usually achieved by ensuring that (1) the models are coded correctly and return the expected values
and (2) they do not degrade the order of accuracy when the models are enabled. This can be achieved
through a combination of SQA and verification activities.

The BISON conservation equations are arranged into balance equations and constitutive models in Ta-

ble 2.1. Note that only the elastic region is considered for solid mechanics.

Table 2.1: Definition of BISON conservation equations as one-dimensional boundary value problems

Application | Unknown | Physical/material Exterior Flux Balance Constitutive Governing
properties | load source equation equation equation

General U « B f T g—;—}—ﬂu:f T:—afl—z —% (ag—g)—‘f—b’u:f

Heat cond. u k % q" + %uo@ q % -+ }fTLu q= —ki—; —% (ki—;) -+ %u

— q/// g %Uoo — q/// 4 %uoo
Elasticity u E ¥ o —do _ ¢ o= Ed - (Eg_;) =f
. . . di .
Species diff. c D A S j d4xc=s5 | j=-DL | -£ (DL)+rc=5

To solve the prescribed conservation equations, BISON uses an FE method [14, 15, 13, 16, 17] as imple-
mented in the INL tool MOOSE. BISON is capable of generating simple meshes using the MOOSE input




GeneratedMeshGenerator!. For more complex geometries, BISON can import meshes generated using other
tools, such as CUBIT, which is a mesh generation tool developed at Sandia National Laboratories (SNL) [18].

The FE framework used in MOOSE is typically libMesh, which is a FE library developed at the University
of Texas at Austin. The FE types defined in libMesh and used in BISON are defined in Table 2.2.

Table 2.2: FE types used in the BISON/MOOSE solution algorithm

Dim. Description Pictorial representation

1D elem_type EDGE

type line
shape o0—o
2D elem_type TRI QUAD
type triangular quadrilateral
- A O
3D elem_type HEX TET PRISM PYRAMID
type hexahedron tetrahedron  prism pyramid

LA BA

Though BISON is based upon libMesh and MOOSE and both of those codes have been individually
verified, it is also important to verify BISON. This ensures that there are no errors in the incorporation
of libMesh or MOOSE into the BISON framework. For example, it would be possible that BISON passes
an incorrect index to MOOSE. Even though MOOSE would solve the problem correctly, this coding error

would disrupt the BISON order of accuracy. Therefore, individual verification of BISON is an important
step to establishing its credibility.

2.2 Verification

In the context of large simulation codes solving nonlinear PDEs, verification involves quantifying numerical
errors between known and discrete solutions [5]. Verification is composed of three components: SQA, code
verification, and solution verification.

1. SQA is used to eliminate coding errors and is comprised primarily of software engineering practices:
version control, regression testing, defect testing, quantification of code coverage, and code-to-code
comparisons.

2. Code verification ensures that the computer code is a faithful representation of the underlying mathe-

matical model. This is achieved through the comparison of code solutions to a known solution as its

Thttps://mooseframework.org/source/mesh/GeneratedMesh.html



mesh is refined. Through comparison to the expected behavior of the discretization error, it can be
ensured that the numerical algorithm is behaving correctly.

3. Solution verification focuses on the estimation of numerical errors that occur when a mathematical
model is discretized and solved on a digital computer. Though solution verification and code verification
have some similar methodology, solution verification uses problems which do not have a known solution.
Therefore, numerical errors must be estimated and not simply evaluated. This includes all sources of
numerical error: round-off, statistical sampling, iterative error, and discretization errors.

Note that some literature includes SQA as a part of code verification (e.g., [5, 19]). Here, the two
activities are distinguished to clearly separate testing of the numerical algorithm from other testing activities.
Verification is concerned only with computer science and mathematics. Validation activities, which are
concerned with the actual behavior of real-world systems and comparisons to experimental data, are out of

the scope of this work. Existing validation results for BISON are outlined in [11].

2.3 MES and MMS

In general, the code verification process ensures that the coded numerical algorithm is a faithful repre-
sentation of the underlying mathematical model. Here, we notate the the intended mathematical model as

some nonlinear system operator L.

LIf(@ )] =0 (2.7)

The solution f(Z,t) is a function of space & and time ¢. The first option for finding a known solution
is to use the Method of Exact Solutions (MES) [19], which involves calculating an exact analytic solution
to Eq. 2.7. However, finding a nontrivial analytic solution to a complex nonlinear differential equation is
difficult. The solution of these equations often requires significant simplifying assumptions. For example,
many analytic solutions require that one or more of the terms in the PDE are trivial and eliminated from
the solution. This process becomes even more difficult when a system of nonlinear equations is considered.
Often, only approximate solutions are possible. for example, the well-known Navier-Stokes equations only
have analytic solutions for the most trivial boundary and initial conditions.

A complete set of code verification analyses would require that all features of a code are tested. At
its best, application of MES to the verification of all code options is a laborious process; at its worst, it
can preclude sufficient testing of one or more relevant code options. For example, many analytic solutions
involve only a single equation of state, varying property, or nonlinear source, and no solution is possible with
multiple combinations of these complex physics. However, many codes default setting is to use a variety of
equations of states, many varying properties, and nonlinear sources.

To address thorough code verification, analysts can employ the Method of Manufactured Solutions
(MMS) [5, 7, 19, 20]. In this method, a particular problem is worked backwards. The analyst deter-
mines a particular form of the solution M (Z,¢). Then one seeks the necessary space- and time-dependent



source Q(Z,t) that would result in the manufactured solution:

LIM(F,)] = Q(&.1). (2.8)

The source Q(Z,t) is implemented in the simulation tool, then the verification process is performed.
This methodology requires that the manufactured solution is formulated using continuous and smooth func-
tions. These functions must be sufficiently complex to reveal nonlinearity in the governing equations. The
chosen manufactured solution can be physically unrealistic, as it is intended only to test the underlying
numerical algorithms. MMS is particularly powerful when combined with symbolic computation tools (e.g.,
Mathematica), as calculation of the source term can be automated.

Any necessary boundary conditions or initial conditions can be derived directly from the manufactured
solution M (#,t). Any equations of state, varying properties, or nonlinear sources can be incorporated into
the MMS process by implementing them in the nonlinear operator £. This allows all relevant code options
to be tested in different combinations. In addition, MMS does not require the complex analytic solutions
formed for MES, which greatly reduces the labor required for the verification process.

In this work, a series of traditional MES problems are solved for BISON to establish a pedigree. For the
conduction solution, these include steady state problems solved on one- and two-dimensional domains with
a variety of properties and external sources. Once this baseline pedigree is established, the MMS capability
in BISON is demonstrated using three manufactured problems. For the mechanics solution, these problems

include two preliminary MES problems (see Appendix B), which is not enough to construct a full test matrix.

2.4 Order of Accuracy

In this section, the formal order of accuracy is established for spatial and temporal discretization in BISON.

Spatial Order To establish the spatial formal order of accuracy of the BISON solution algorithm, we
provide a heuristic derivation [13, 17] and point the reader to more mathematically rigorous analyses with
the same result [14, 15, 16, 21]. In this work, the convergence of the computed solution to the analytic
solution is analyzed as the size of the FEs approaches zero, e.g., h-convergence. No effort is made to quantify
p-convergence, during which convergence is analyzed as the order of the basis functions is increased [22].
For problems in this work, there are no singularities in mesh, properties, or external sources. All an-
alytic solutions are continuous, smooth, and infinitely differentiable. The mesh has constant spacing and
is uniformly refined. Under these conditions, the analysis of the discretization error is relatively simple.
Here, we will analyze the error behavior of the Qol U at some specified point in the domain z*, and use the
results to generalize about the entire domain. First, note that the exact solution to a specific problem can

be represented by a Taylor series about some point & in the FE that contains x*:

U@ =3 1 d"U

nl dan |,
n=0 L

(z — 3)". (2.9)
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This expansion assumes that U(z) is infinitely differentiable, which is true for all solutions in this work.
Here, we have used a Taylor series approximation, which corresponds to a polynomial basis function of
degree p. Note that this procedure is equally applicable to other basis functions. The approximate solution

calculated by the simulation tool U using the chosen basis function of degree p is

Ulx) = Z an(z — )", (2.10)
n=0

The Taylor series coeflicients have been collapsed into the arbitrary constant a,,. We define the length of
an element as h and note that |z — &| < h because & is a point inside the element. As the mesh is uniformly
refined, h — 0, the approximate solution U approaches arbitrarily close to the terms of Eq. 2.9 which are
degree p or lower. In addition, the domain point z* approaches the FE point & as the mesh is refined.

Therefore, the remaining terms of p 4+ 1 and greater will form the error at point z*.

U)—U(*) = > calz—4)", ash—0. (2.11)
n=p+1
Note that ¢, is a constant which includes the coefficient and derivative term from Eq. 2.9. For a sufficiently

small h, higher order terms become negligible and the p + 1 term will dominate.

U(z*) = U(z*) = cpp 1 APT (2.12)

Now we generalize the error at a single point (Eq. 2.12) to all of space using a norm:

U (@)||,0) = ChP*, (2.13)

where C is an arbitrary constant that is problem-dependent, and the MOOSE function ElementL2Error? is

used to compute the L2 norm over the domain €:

UL, = /Q(U —U)%d0 = Z(U -U)% (2.14)
Q

As Eq. 2.13 is an exponential function, the slope of error on a log-log plot is the observed order of
accuracy po = p + 1. Note that the finite element degree p is sometimes referred to as the finite element
order; however, it is not equivalent to the order of accuracy for a particular numerical method, which we

notate as p + 1. Using two different meshes, the observed order of accuracy can be approximated as

_ log (|[U]2n/11U1]n)
log (2) '

All of the above arguments can also be applied to the flux. Since the flux is the first derivative of the

(2.15)

Qol, its asymptotic rate should be one order lower than that of the function, that is its formal order is the

same as the degree of the chosen FE.

?https://mooseframework.org/docs/doxygen/moose/ElementL2Error_8C_source.html



WU @)ty emi) = ChP, (2.16)

where C is an arbitrary constant that is problem-dependent, and the MOOSE function ElementHiSemiError®

is used to calculate the norm.

[T A— /Q v - opde =Y |v(v-0)[ (2.17)
Q

Eq. 2.15 can also be used to estimate the observed order of accuracy po for the flux.

Temporal Order The MOOSE framework provides eight time discretization options which can be used
to solve the transient BISON conservation equations:
1. Implicit/backward Euler (default),
Explicit/forward Euler,
Crank-Nicolson,
Two-step backward differentiation formula (BDF),
Explicit midpoint,
Diagonally implicit Runge-Kutta (DIRK),
Explicit total variation diminishing (TVD) two-stage Runge-Kutta, and

© NS o W

Newmark-beta.

Here, we derive the formal order of accuracy for the implicit Euler method, which is the default option in
BISON. Similar exercises can be completed for all methods. We notate the transient conservation equation
for some Qol U as

ou -
here, M is some function of space &, time ¢, and the Qol U which includes the finite element treatment of

U. The implicit Euler scheme discretizes this equation as

Un+1 _ Un
At

The Qol at n + 1 is expanded about n to approximate the numerical error in time:

=M (Z,t,U") (2.19)

[ee] n n n
1 okU ou 1 9°U
Ut =) — —| AtF U™+ —| At+ - —| AF 2.20
21 o T Ya e (2.20)
This is substituted into Eq. 2.19 and simplified, yielding:
oul™ 1 9*Ul”
— = ——| At=M(Z,t, U 2.21
5 5 g | At=MIE LU (2.21)

Shttps://mooseframework.org/docs/doxygen/moose/classElementHiSemiError.html
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The second term scales with At, so the implicit Euler method is first order in time. Note that additional
numerical error is introduced by the remaining U"*! terms, but these errors will be first order or greater.
Similar analyses performed on the other time integration schemes indicate that three of the methods (implicit

Euler, explicit Euler, and explicit midpoint) are first order and the rest are second order.

2.5 Code Verification Procedure

The purpose of code verification is to ensure that discretized equations solved on a computation system
faithfully represent the underlying continuous equations. This is achieved by comparing the formal and

observed orders of accuracy. For each problem, a practical prescribed process is followed.

1. Define and solve the mathematical model. For MES problems, this involves selecting the conser-
vation terms to be tested, setting boundary conditions and/or initial conditions, and mathematically
solving the analytic problem. For MMS, a manufactured solution is chosen and the corresponding
source term is derived.

2. Choose the numerical algorithm and establish formal order of accuracy. In BISON, a variety
of FE types and temporal discretization schemes are available; one or more methods must be selected
before solving the numerical problem. The corresponding formal order of accuracy for each method
was established in Section 2.4.

3. Obtain numerical solutions. After formulating the required mesh and input deck, a numerical
representation of the mathematical model is solved on at least four meshes. In this work, many meshes
are evaluated to examine the behavior outside the asymptotic region. For steady state problems, only
the spatial mesh is refined; however, the spatial and temporal mesh can be refined simultaneously for
transient problems. Such combined order analysis methodology has been analyzed in [23]. Given the
spatial and temporal formal order of accuracy, refinement factors can be selected from Table 2.3, which
gives the corresponding expected reduction in error.

4. Examine convergence behavior. The expected convergence behavior is shown in Fig. 2.1. When
the mesh is coarse, higher order terms degrade the order of accuracy (region I). The region analyzed in
the code verification process is the asymptotic region (region IT), where the higher order terms are small
enough that the observed order approximates the formal order. Finally, the numerical solution cannot
converge to a tolerance finer than external sources of numerical error; therefore, as the mesh is refined
further, there is a leveling-off of error and a slight increase as numerical error accumulates (region IIT).
In this work, the source of numerical error is primarily due to the iterative tolerance for the matrix
solve. Finally, note that some problems will display hyper-convergent behavior. This is expected for
problems where the FE order is high enough to exactly fit the analytic solution. For example, a first
order method exactly approximates a linear solution and a second order method exactly approximates
a quadratic solution. In these cases, the error plot starts in region ITI, as it immediately approximates

the analytic solution to within numerical error.
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Table 2.3: Temporal refinement factors required to conduct combined spatial and temporal order verification
(from [5]). Temporal verification can be conducted by choosing a temporal refinement factor—for more
complicated cases with p # ¢—according to [24] as r; = (r,)P/9.

Spatial Temporal Expected error
Spatial Temporal refinement refinement reduction ratio
order, p  order, ¢ factor, r,  factor, ry (coarse/fine)

1

—_
[\
[\

LW W W WD NN N ==
W N R W R W
NN NN NDNDNDDNDDNN DN
EFE b FSE FETCT
CoO 00 0O CO|H > i RN N N

I § II I

log [[U]]

L 4

1Og Nelem

Figure 2.1: A pictorial representation of expected convergence behavior. Region I represents coarse meshes,
region II is the asymptotic region, and region III is caused by numerical error.
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5. Debug and correct errors if necessary. If the convergence behavior is significantly different than
Fig. 2.1, it indicates an error in the analytic solution, numerical model, or post-processing of the
simulation results. Debugging and correcting these errors is an integral part of the verification process.

6. Document results. The numerical and analytic solutions will be plotted using different FEs and
meshes, then the convergence plot is created. These are included in this document, and also added to
existing BISON documentation. In addition, code mistakes that are fixed as a result of the debugging
process are also documented in Chapter 4.

Once this process is complete and the observed order of accuracy matches the formal order of accuracy,

the particular code verification problem is successful. The problem is added as evidence that the particular
combination of physics, discretization, geometry, boundary conditions, and initial conditions is numerically

free of coding mistakes.

2.6 Test Matrix Construction

The selection of MES and MMS problems is an important part of the verification process. An analyst is
tasked with providing enough evidence that the numerical algorithm is correct without performing redundant
or unnecessary work. In this report, we approach this issue by first incorporating each option for physics,
geometry, boundary condition, and FE into at least one verification problem. Once each option has been
tested, we expand on the verification matrix by employing different combinations of these options. This
ensures that the coupling between different options does not reveal coding mistakes that are otherwise
hidden.

Chapter 3 presents the verification matrix for heat condition and corresponding numerical results. For the
mechanics solution, there are not enough completed examples to fully define a verification matrix. However,
a few preliminary examples are included in Appendix B. In the future, these will be expanded upon and a

matrix will be formulated.
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3. Thermal

In this chapter, the first conservation equation solved in BISON is considered: heat conduction. For all
types of fuel—fuel plate, fuel rod, and TRISO particle—the transport of heat through the fuel is of utmost
importance when determining the cladding and fuel temperatures, which are enforced as safety limits. In
Section 3.1, the heat conduction equation itself is verified using a series of sixteen MES and three MMS
problems. Section 3.2 expands these analyses to include an important consideration for nuclear reactors: the
temperature jump across a gap in the fuel. This is verified for all three coordinate system options in BISON:

Cartesian, cylindrical, and spherical.

3.1 Basic Heat Conduction

As provided in Chapter 2, the heat conduction equation solved in BISON is

)
pcpait‘ — V- (kVu) + ¢ =0. (3.1)

The vector identities provided in Appendix A can be used to transform this vector equation into all three
coordinate systems solved in BISON: Cartesian, cylindrical, and spherical coordinates.

This equation requires testing of both the temporal and spatial order of accuracy. In addition, the
implementation of the thermal conductivity and external heat source can be verified. In many classic
solutions for the conduction equation, the thermal conductivity is treated as constant. When this assumption
is relaxed, the conduction equation becomes nonlinear and difficult to solve. Usually, numerical methods
are required to solve these problems, though analytical methods can be applied to some simple cases. These
simple cases are used to verify BISON for these types of problems.

For transient problems, a suitable time step must be selected such that the numerical solution is stable.
The limiting choice of temporal discretization scheme which requires the smallest time step is explicit Euler.
The limit for numerical stability of this method is established using von Neumann stability analysis [25].
The criterion for the stability requirement in three dimensions (where the spatial coordinates are defined in

the general form & = {x1, 29, 23}) is given by

At At At 1
e ((Ax1)2 i (Axy)? T (Am3)2> =3 (3.2)

13 of 87



where « is the thermal diffusivity (oo = k/(pcp), At is the time step size, and Az; is the spatial mesh size in
i-th direction for ¢ = 1,2, 3. This limit is sometimes referred to as the Fourier limit. Because the denominator
is squared, combined spatial and temporal mesh refinement studies can be computationally expensive.

A verification matrix is constructed following the methodology discussed in Section 2.6 and considering
available resources. It includes all considerations discussed so far: treatment of the temporal term, coor-
dinate system, dimensions, property and source term treatment, and boundary conditions. The matrix is
shown in Table 3.1 and includes sixteen MES and three MMS problems. Literature sources for the MES
problems are listed. The MMS problems are included to demonstrate BISON capability, rather than to
fill gaps in the verification matrix. All options in the matrix have at least one corresponding test except
for three-dimensional conduction, temperature-dependent specific heat, and temperature-dependent thermal
diffusivity. Different combinations of options are tested, though not all combinations are tested.

For each problem in Table 3.1, this chapter includes a problem description, BISON results compared to
the analytic solution, and a convergence plot for both temperature and heat flux. The observed order of
accuracy for most problems match with the formal order derived in Section 2.4. Therefore, these results can
be added as evidence that the conduction equation is implemented correctly in BISON and is free of coding

mistakes.
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Table 3.1: Verification matrix for BISON conduction equation

T sl Coordinate Disnsion Properties and Boundary
" System External Sources Conditions
]
8 s & |8 & = . o8 2
® RS > | @ B8 = 2 & 3
& 2 2T |E& & B — D < B =
Q’i@ f g % = a — ™ o) 3 5 N EJ 8 = 5 g
= »n O O ;s &8 8 | = SIS T A Z O
Method of Exact Solutions
3.1 [26] v v v v v v
3.2 [26] v v v v v
3.3 [27] v v v v v v
3.4 [28] v v v v v v
3.5 [26] v v v v v
3.6 [26] v v v v v
3.7 [28] v v v v v
3.8 [29] v v v v v v v
3.9 [29] v v v v v v v
3.10 [28] v v v v |V v
3.11 | [29, 30] v v |V v v v
3.12 [26] v v |V v v
3.13 [26] v v | Vv v v
3.14 | [29, 31] v b 7 v v
3.15 | [29, 32] v v |V v v v
3.16 [29] v v | v v v v v
Method of Manufactured Solutions
3.17 v v v v v v
3.18 v v v v v v
3.19 1] v v v v v v
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Problem 3.1: Plate with internal heating

An infinite plate has constant thermal conductivity & and internal heat

generation ¢"’. Tt is exposed on each face to a constant temperature, u(0) =

uo and u(¢) = wuy, and reaches thermal equilibrium. The analytic solution k. q"
for the temperature distribution in the plate is the quadratic function [26, 4o e
p.169] B ‘

u(z) = up — (up — ug) (%) +%@ (3.3) —(—

The problem is run in BISON on the domain X € [0, 1] using the dirichlet boundary conditions u(0) =
up = 100K and u(l) = up = 0K. Steady state heat conduction is considered with constant thermal
conductivity ¥ = 12W/m/K and volumetric heat generation ¢’ = 1200 W/m3. The exact and computed
solutions are shown in Fig. 3.1 for four different meshes and two finite element types (linear: EDGE2; quadratic:
EDGES3).

Netem=2 Netem=4 Nelem=8

—Exact, u |
-e-EDGE2, d
~»-EDGE3, 4 |H

Ore . T — . o e L S — A e e e X ex o 0 | [ 0 X8 XB X O KB NP KO A XD
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X X X

Figure 3.1: Temperature distribution and residuals for Prob. 3.1. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., r, = 2). The computed norms
for each element type are plotted and tabulated in Fig. 3.2. In the asymptotic region, the linear FE solution
converges to the exact solution second order, which matches with the formal order of accuracy. The quadratic

solution instantly converges to the exact solution within numerical error due to the quadratic shape of Eq. 3.3.
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—e—EDGE2
- é _2 - -
El
=
o
- 9 _4 - -
_6 - . _6 - -
-8 Il 1 | i -8 Il | i} I
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 0.0 -0.5 -1.0 -1.5 -2.0 —-2.5
logio(h) logio(h)
L 1 1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of elements, Nejem Number of elements, Neem
No. Linear (p=1) Quadratic (p = 2)
Elems h [lul| L, |lvl| a2, |lul| . ],
elem_type=EDGE2 elem_type=EDGE3

1.000000 8.333 x 10° 2.887 x 10! 4.341 x 10714 1.271 x 10713
0.500000 2.083 x 10° 1.443 x 10! 5.674 x 10714 2.452 x 10713
0.250000 5.208 x 10—t 7.217 x 10° 2.464 x 10711 1.613 x 10~19
8 0.125000 1.302 x 10~*  3.608 x 10° 6.850 x 10719 6.277 x 10~?
16 0.062500 3.255 x 1072 1.804 x 10° 3.332x 10712 5952 x 10711
32 0.031250 8.138 x 103 9.021 x 10~!  2.105x 10~7  7.165 x 10~7
64 0.015625 2.035x 102 4511 x 107! 1.032x107% 4.393 x 10~6
128  0.007812 5.086 x 10~* 2255 x 10~'  9.953 x 1079  3.128 x 10~
256 0.003906 1.272x 10~ 1.128 x 10! 1.212x 1077 3.808 x 107

=~ N —

Figure 3.2: Spatial refinement analysis for Prob. 3.1. Results are computed using 1D elements and a spatial
refinement factor r, = 2. The formal order of accuracy is shown for each plot. Results for EDGE3 are super—
convergent and excluded from the plot. Left plot: the Lo norm quantifies convergence of the temperature
distribution. Right plot: the H; norm quantifies convergence of heat flux. Table: numerical values used to
construct the plots.
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Problem 3.2: Plate with temperature dependent thermal conductivity

The thermal conductivity of an infinite plate varies linearly with temper-

ature: k = kg + B(u — ug). It is exposed on each side to a constant tem-

perature: u(0) = ug and u(f) = u,. The plate is allowed to reach thermal (u)
equilibrium and the analytic solution for the temperature distribution is [26, 4o e
pp.138] .
k ko + ke) (4 ¢
_|_ —
u(x) = ug + é\/H-ﬁi( = ) f)(uo—ug)—l : (3.4)
1

The problem is run in BISON on the domain
X € [0,1]. Dirichlet boundary conditions are ap-
plied: u(0) = uwgp = 300K and u(l) = uy =
0 K. Steady state heat conduction is considered us-
ing a nonlinear thermal conductivity, where k, =
5 W /m/K. The nonlinearity of the problem is quan-
tified by the variable (3; the analytic solution as a
function of A is shown in Fig. 3.3. Two cases are ex-
amined in this study: (I) 8 = 0.001 and (II) 8 = 0.1.

Case I (8 = 0.001): The exact and computed
solutions are shown in Fig. 3.4a for four different
meshes and two FE types (linear: EDGE2; quadratic:
EDGE3). A convergence study is conducted with a
refinement factor of two (i.e., r, = 2). The com-

puted norms for each element type are plotted and

200

S 150

100 -

50 H

0 H

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: The exact solution of Prob. 3.2 as a func-
tion of space and

tabulated in Fig. 3.5. The formal order of accuracy is two for linear FEs and three for quadratic FEs. In

the asymptotic region, the linear and quadratic FE solutions converge to the exact solution with the correct

order of accuracy.

Case IT (3 =0.1): The exact and computed solutions are shown in Fig. 3.4b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., 7, = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.6. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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Nelem=1 Nejem=2
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(b) Case II, 8 =0.1

Figure 3.4: Temperature distribution and residuals for Prob

L L L L L
1.0 0.0 0.2 0.4 0.6 0.8
X

1.0

. 3.2. Results are shown for the first four

meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and

computed solutions.

19 of 87



—e—EDGE2 —e—EDGE2
—»—EDGE3 —»—EDGE3
. o 1 ]
\
1 F-2f—2 _
s \
] éa _al j
< _6 - -
—8 1 1 1 1 —8 1 1 1 1
0.0 -0.5 -1.0 =15 -2.0 -2.5 0.0 -0.5 -1.0 =15 -2.0 -2.5
L 1 IogIIO(h) 1 1 1 1 IoglO(h) 1 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of elements, Neiem Number of elements, Neem
No. Linear (p =1) Quadratic (p = 2)
Elems h [[ullL, Il |, ]|, ||l |2,
elem_type=EDGE2 elem_type=EDGE3
1 1.000000 1.457 x 109 5.042 x 109 1.470 x 1072 1.137 x 107!
2 0.500000 3.647 x 10~'  2.526 x 10° 1.846 x 1072 2.859 x 102
4 0.250000 9.120 x 102 1.264 x 10° 2.310 x 107%  7.156 x 1073
8 0.125000 2.280 x 1072 6.319 x 10~' 2.888 x 10~®  1.790 x 103
16 0.062500 5.701 x 103 3.160 x 10~!  3.610 x 10~%  4.470 x 10~*
32 0.031250 1.425x 103 1580 x 107!  5.097 x 107  1.120 x 1074
64 0.015625 3.560 x 10~*  7.899 x 102  6.827 x 10~%6  3.500 x 10~
128  0.007812 8.881 x 107® 3.950x 1072 1.896 x 10~°  6.000 x 10~°
256 0.003906 2.200 x 1075  1.975x 1072  5.694 x 1075  1.810 x 10—*

Figure 3.5: Spatial refinement analysis for Prob. 3.2 (Case I, § = 0.001). Results are computed using 1D
elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot. Left
plot: the Lo norm quantifies convergence of the temperature distribution. Right plot: the Hy norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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0.0 -0.5 -1.0 -1.5 -2.0 -2.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5
logio(h) logio(h)
L 1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

Number of elements, Nejem Number of elements, Negjem

No. Linear (p=1) Quadratic (p = 2)
Elems h ||ullz, |l |, |ullL, lul| o,y
elem_type=EDGE2 elem_type=EDGE3
1 1.000000 4.179 x 10* 8.687 x 10! 1.229 x 10! 4.595 x 10!
2 0.500000 1.741 x 10! 7.983 x 10! 4.466 x 10° 3.788 x 10!
4 0.250000 6.728 x 10° 6.889 x 10! 1.426 x 10° 2.833 x 10!
8 0.125000 2.372 x 10° 5.423 x 10* 3.869 x 1071 1.802 x 10%
16 0.062500 7.541 x 10~t  3.777 x 10" 8.670 x 1072 9.197 x 10°
32 0.031250 2.171 x 10~%  2.305 x 10* 1.590 x 1072 3.674 x 10°
64 0.015625 5.790 x 1072 1.265 x 10! 2,437 x 1073 1.178 x 10°
128  0.007812 1.481 x 1072  6.541 x 10° 3.310 x 107%  3.258 x 10~!
256  0.003906 3.728 x 102 3.303 x 10° 4.300 x 1075 8.411 x 102

Figure 3.6: Spatial refinement analysis for Prob. 3.2 (Case II, 8 = 0.1). Results are computed using 1D
elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot. Left
plot: the Lo norm quantifies the convergence of the temperature distribution. Right plot: the H; norm
quantifies the convergence of heat flux. Table: numerical values used to construct the plots.
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Problem 3.3: Plate with temperature dependent thermal conductivity and internal heat-

ing

The thermal conductivity of an infinite plate varies linearly with tem-

perature: k = k¢(1+ Su). It has a constant internal heat generation and is

"
exponsed on each side to a constant temperature: u(0) = ug and u(f) = uy. ),
The plate is allowed to reach thermal equilibrium and the analytic solution 4o ue
for the temperature distribution is [27, pages 129-132] *
T ——
1 q/// N 2
=ur+ = [4/1 1-(3)) -1/ 3.5
u(z) uz-i-ﬁ\/-l—( kg)( é) } (3.5)

The problem is run in BISON on the domain
X € [0,1]. A Neumann boundary condition is
applied to the left face and Dirichlet to the right:
(du/dr),—o = 0 and u(1) = uy = 0K. Steady state
conduction is considered using a nonlinear thermal
conductivity, where k;, = 1W/m/K. The analytic
solution as a function of 3 is shown in Fig. 3.7. The
external heat source is ¢’/ = 1200 W /m3. Two cases
are examined: (I) 8 =0.001 and (II) 5 = 0.1.

Case I (8 = 0.001): The exact and computed
solutions are shown in Fig. 3.8a for four different
meshes and two FE types (linear: EDGE2; quadratic:
EDGE3). A convergence study is conducted with a
refinement factor of two (i.e., 7, = 2). The com-

puted norms for each element type are plotted and

Figure 3.7: The exact solution of Prob. 3.3 as a func-
tion of space and f3

tabulated in Fig. 3.9. The formal order of accuracy is two for linear FEs and three for quadratic FEs. In

the asymptotic region, the linear and quadratic FE solutions converge to the exact solution with the correct

order of accuracy.

Case II (8 =0.1): The exact and computed solutions are shown in Fig. 3.8b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., 7 = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.10. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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(b) Case II, 8 =0.1

Figure 3.8: Temperature distribution and residuals for Prob. 3.3. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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Figure 3.9: Spatial refinement analysis for Prob. 3.3 (Case I, § = 0.001). Results are computed using 1D
elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot. Left
plot: the Lo norm quantifies convergence of the temperature distribution. Right plot: the Hy norm quantifies

convergence of the heat flux. Table: numerical values used to construct the plots.
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Figure 3.10: Spatial refinement analysis for Prob. 3.3 (Case II, 8 = 0.1). Results are computed using 1D
elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot. Left
plot: the Lo norm quantifies convergence of the temperature distribution. Right plot: the Hy norm quantifies

convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.4: Rectangular adiabatic plate

A two-dimensional thin adiabatic plate has a thermal conductivity k =
1 and no external heat source. It is defined on the domain x € [0, L]
and y € [0,1]. Tt is exposed on each face to an arbitrary temperature:
u(, 1) = fi(), u(@,0) = fol@), u(Lyy) = g1(y), and u(0, ) = ga(y).
For this specific case, the two-dimensional steady state temperature
distribution can be solved analytically as [28, pp.128-131]

u(z,y) = uy + u2) + u) + U, (3.6)

where
=7 3 Sy () [ e <—>
=7 3 ety o () [ s
o =1 3 St (") [[ an(“;fy)d%
oy = 7 32 PR i () [t sin (2

The top and bottom surfaces are exposed to a constant temperature f;(z) =

J1

g1

(3.72)

)dl (3.7b)
(3.7c)

)dy. (3.7d)

fa(x) = 1K. The left and

right surfaces are exposed to a constant temperature g1(y) = g2(y) = 0K. With these specific choices of

boundary condition, the solution reduces to

u(w,y)

_4 lcosh (F[5-9]) i (wfx) L1
-4l)

((2i71)7r [L

T 3
(2i— 1) |

cosh (ZT Z)

This problem is solved in BISON using the diffusion module on the domain X € [0,1]?.
boundary conditions are applied to each surface: fi(z) = fa(x) = 1K and ¢1(y) = ¢2(y) = 0K.

Dirichlet
Steady

state heat conduction is considered through the homogeneous solid. For comparison to the analytic solution,

the first 100 terms of the infinite summation in Eq. 3.8 sufficiently characterize the analytic solution. This

approximate analytic solution is shown in Fig. 3.11 on the square domain.

The temperature gradually

transitions from the hotter temperature at the top and bottom surfaces to the cooler temperature at the left

and right surfaces.
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Figure 3.11: Isotherms of the approximate solution of Prob. 3.4 computed using the first 100 terms of Eq. 3.8

Fig. 3.12 shows the convergence of two FE choices as the two-dimensional mesh is refined (QUAD4 and
TRI3). The triangular FE results in a solution that more accurately approximates the analytic solution. This
is due to shape of the analytic solution, which cannot be easily fit using square elements. In Fig. 3.12, it can
also be observed that the largest source of error for both meshes is in the upper right corner. This error is not
related to the selection of FE types, but rather is due to the numerical approximation to the mathematical
problem. This particular problem is an elliptic boundary value problem (BVP), which is known to have
corner singularities in two- or three-dimensional domains [33, 34, 35]. Such singularities can be the result of
non-smoothness of the domain (corners, edges, etc.), abrupt changes of a boundary condition from one type
to another, or discontinuities in the solution or model coefficients [36]. The singularity is expected to impact
the observed order of accuracy [37]; therefore, a convergence plot isn’t included for this problem.

Fig. 3.13 shows a comparison of the two-dimensional solutions with 32x32 elements using a variety of FE
types (linear: QUAD4,TRI3; quadratic: QUAD8,QUAD9,TRI6). Regardless of the chosen FE shape, the BISON

solution has the correct shape, indicating that each two-dimensional FE option is implemented correctly.
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X
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Figure 3.12: Temperature distributions and residuals for Prob. 3.4 with different meshes (left: QUAD4; right:
TRI3). Center columns: the FE solutions using a variety of 2D meshes. Outside columns: residuals between

the approximate solution and the computed solutions, where darker colors indicate a less accurate computed
solution.

0.0 0.2 0.4 0.6 0.8 1m0 0.2 0.4 0.6 0.8 100 0.2 0.4 0.6 0.8 1m0 0.2 0.4 0.6 0.8 1m0 0.2 0.4 0.6 0.8 1.0

Figure 3.13: Temperature distributions and residuals for Prob. 3.4 with different FE types. Results are
shown for five FE types. First row: the FE solutions using 32 x 32 2D elements. Second row: residuals

between the approximate solution and the computed solutions, where darker colors indicate a less accurate
computed solution.
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Problem 3.5: Hollow cylinder with Dirichlet boundary conditions

An infinitely long hollow cylinder with inner radius r; and outer radius
r, has a constant thermal conductivity k. It is allowed to reach thermal

equilibrium while being exposed constant temperatures on its inside and

outside faces: u(r;) = w; and u(r,) = u,. The analytical solution for the By g
temperature distribution in the cylinder is [26, pp.133]
r; N
UpIn (1) —u;In(ry)  (u; — o) To
u(r) = + In (r). 3.9
() In(r;/r,) In(r;/r,) () (3:9)

The problem is solved in BISON on the domain X € [0.2, 1] using Dirichlet boundary conditions u(0.2) =
u; = 300K and u(1) = u, = 0K. Steady state heat conduction is considered through the solid with constant
thermal conductivity & = 5W/m/K. The exact and computed solutions are shown in Fig. 3.14 for four

different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).

Netem=1 Netem=2 Netem=4 Netem=8

300 [ &

——Exact, u ||
-e-EDGE2, (
-%-EDGE3, 4 |]
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1sof
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x L]
e
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—60 £t L L 1 =4 sy L L L F== = L L L M= i - L L i 1 4
02 0.4 06 0.8 10 02 0.4 06 0.8 10 02 0.4 06 0.8 10 02 0.4 06 0.8 1.0
X X X X

Figure 3.14: Temperature distribution and residuals for Prob. 3.5. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., r, = 2). The computed norms
for each element type are plotted and tabulated in Fig. 3.15. The formal order of accuracy is two for linear
FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Figure 3.15: Spatial refinement analysis for Prob. 3.5. Results are computed using 1D elements and a spatial
refinement factor (r, = 2). The formal order of accuracy is shown for each plot. Left plot: the Ly norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.6: Hollow cylinder with temperature dependent thermal conductivity

The thermal conductivity of an infinitely long hollow tube varies linearly

with temperature: k, = k, + B(u — u,). The tube inside radius is 7;

and outside radius is r,. It is exposed on the inner and outer surfaces to

constant temperatures u(r;) = u; and u(r,) = u,. In thermal equilibrium, b o
the analytic solution for the temperature distribution is [26, pp.138]
ko (ki + ko) In(r/ry) ?
el | e — i) — 1 « 3.10
u(r) = o + % \/+/3 L T = o) (310)

The problem is solved in BISON on the domain
X € [0.2,1] using Dirichlet boundary conditions
1(0.2) = u; = 300K and u(1l) = u, = 0K. Steady
state heat conduction is considered using a nonlinear
thermal conductivity where k, = 5W/m/K. The
nonlinearity of the problem is quantified by the vari-
able (3; the analytic solution as a function of 3 is
shown in Fig. 3.16. Two cases are examined in this
study: (I) 8 = 0.001 and (III) 5 = 0.1.

Case I (8 = 0.001): The exact and computed
solutions are shown in Fig. 3.17a for four different
meshes and two FE types (linear: EDGE2; quadratic:
EDGE3). A convergence study is conducted with a
refinement factor of two (i.e., r, = 2). The com-
puted norms for each element type are plotted and

tabulated in Fig. 3.18. The formal order of accuracy

> 150

100 -

50

Figure 3.16: The exact solution, u = u(r) in response
to varied S term.

is two for linear FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE

solutions converge to the exact solution with the correct order of accuracy.

Case II (8 =0.1): The exact and computed solutions are shown in Fig. 3.17b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., r,, = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.19. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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(b) Case II, 8 =0.1

Figure 3.17: Temperature distribution and residuals for Prob. 3.6. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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Figure 3.18: Spatial refinement analysis for Prob. 3.6 (Case I, 8 = 0.001). Results are computed using

1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Figure 3.19: Spatial refinement analysis for Prob. 3.6 (Case I, 8 = 0.001). Results are computed using

1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.7: Hollow cylinder with temperature dependent thermal conductivity and

internal heating

The thermal conductivity of an infinitely long hollow cylinder varies

linearly with temperature: k = ko(1 + Su). The tube inside radius is r;

and outside radius is r,. It has a constant internal heat generation ¢’

U U
and is exposed to a constant temperature on both surfaces: u(r;) = wu; ’ ¢
and u(r,) = u,. If the cylinder reaches thermal equilibrium, the analytic
solution for the temperature distribution is [28, pp.194] T 7":

o

The problem is solved in BISON on the domain
X € [0.2,1] using Dirichlet boundary conditions
©(0.2) = u; = 0K and u(1l) = u, = 0K. Steady
state heat conduction is considered using a non-
linear thermal conductivity where k, = 1 W/m/K.
The nonlinearity of the problem is quantified by the
variable ; the analytic solution as a function of 3 is
shown in Fig. 3.20. Two cases are examined in this
study: (I) 8 = 0.001 and (III) 5 = 0.1.

Case I (8 = 0.001): The exact and computed
solutions are shown in Fig. 3.21a for four different
meshes and two FE types (linear: EDGE2; quadratic:
EDGE3). A convergence study is conducted with a
refinement factor of two (i.e., r, = 2). The com-
puted norms for each element type are plotted and

tabulated in Fig. 3.22. The formal order of accuracy

= 1 q"p r2 _ p (3 =r7) 0
u(r) = 0+6 <\/1+ T [(0 ) ln(ro/ri)l

80

60

40

Figure 3.20: The exact solution of Prob. 3.7 as a
function of space and time

is two for linear FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE

solutions converge to the exact solution with the correct order of accuracy.

Case II (8 =0.1): The exact and computed solutions are shown in Fig. 3.21b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., . = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.23. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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(b) Case II, 8 =0.1

Figure 3.21: Temperature distribution and residuals for Prob. 3.7. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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Figure 3.22: Spatial refinement analysis for Prob. 3.7 (Case I, 8 = 0.001). Results are computed using

1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Number of elements, Neiem Number of elements, Neem
No. Linear (p=1) Quadratic (p = 2)
Elems h lullz, Il |, |ullL, |||,
elem_type=EDGE2 elem_type=EDGE3
1 0.800000  4.822 x 10* 1.292 x 102 7.034 x 109 3.279 x 101
2 0.400000 1.711 x 10! 9.679 x 10! 4.041 x 10° 3.979 x 10*
4 0.200000 6.511 x 10° 7.625 x 10! 1.418 x 10° 3.153 x 10*
8 0.100000 2.356 x 10° 5.965 x 10% 4.340 x 1071 2.221 x 10*
16 0.050000 7.896 x 10t 4.390 x 10* 1.148 x 107! 1.348 x 10!
32 0.025000 2.428 x 10~!  2.930 x 10! 2.567 x 1072 6.763 x 10°
64 0.012500 6.877 x 10~2 1.753 x 10! 4.795 x 1073 2.742 x 10°
128 0.006250 1.826 x 10~2 9.582 x 109 7.560 x 1074 9.077 x 107!
256 0.003125 4.670 x 103 4.958 x 10° 1.050 x 10~*  2.577 x 10~¢
Figure 3.23: Spatial refinement analysis for Prob. 3.7 (Case I, 8 = 0.001). Results are computed using

1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.8: Hollow cylinder with internal heating and outside convection boundary

An infinitely long hollow cylinder with inner radius r; and outer radius
T, has thermal conductivity k& and internal heat generation ¢’”’. The inside
surface is insulated and the outside surface is exposed to a fluid temperature
uy and heat transfer coeflicient h. If the cylinder is in thermal equilibrium,
the analytic solution for the temperature distribution is [29, p.2-33]

ri

q"ry [ 2k 2 r)? 2 r "o
u(r) =g+ = I 1-rf]+1- - +2r7In Ak (3.12)

The problem is solved in BISON on the domain X € [0.2,1]. The boundary conditions are Neumann and

convective: (du/dxz)y—g.2 = 0 and ¢ = h(uy — u,). The fluid temperature and heat transfer coefficient are
ur = 100K and h = 10 W/m?/K. The constant thermal conductivity is ¥ = 1 W/m/K and volumetric heat
generation is ¢’ = 1200 W/m?. The exact and computed solutions are shown in Fig. 3.24 for four different

meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.24: Temperature distribution and residuals for Prob. 3.8. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., . = 2). The computed norms
for each element type are plotted and tabulated in Fig. 3.25. The formal order of accuracy is two for linear
FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Number of elements, Neiem Number of elements, Neem
No. Linear (p=1) Quadratic (p = 2)
Elems h lullz, |l llullL, [|ull
elem_type=EDGE2 elem_type=EDGE3
1 0.800000  3.656 x 10* 2.511 x 102 9.894 x 1071 1.165 x 10*
2 0.400000 9.900 x 10° 1.336 x 102 2.411 x 101 5.145 x 10°
4 0.200000 2.504 x 10° 6.821 x 10! 4.453 x 1072 1.792 x 10°
8 0.100000 6.267 x 10t 3.432 x 10" 6.642 x 103 5.207 x 10~1
16 0.050000 1.567 x 10t 1.719 x 10! 8.830 x 10~ 1.372 x 107!
32 0.025000 3.918 x 1072 8.600 x 10° 1.120 x 107*  3.482 x 1072
64 0.012500 9.794 x 10—3 4.300 x 10° 1.400 x 107° 8.739 x 1073
128  0.006250 2.448 x 1073 2.150 x 10 2.000 x 1076 2.187 x 1073
256 0.003125 6.120 x 10~* 1.075 x 10° 4.000 x 10~ 5.470 x 10~4
Figure 3.25: Spatial refinement analysis for Prob. 3.8. Results are computed using 1D elements and a

spatial refinement factor r,. = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.9: Hollow cylinder with internal heating and inside convection boundary

An infinitely long hollow cylinder with inner radius r; and outer radius
r, has a thermal conductivity ¥ and internal heat generation ¢”’. The
outside surface is insulated and the inside surface is exposed to a fluid at h,ug
temperature uy and heat transfer coefficient h. If the cylinder is in thermal

equilibrium, the analytic solution for the temperature distribution is [29] _
To

B g¢"r2 [ 2k To 2 r\? T 2 r
u(r) =us + rrall | s -1 +1- - +2 = In ~ 1k (3.13)

The problem is solved in BISON on the domain X € [0.2,1]. The boundary conditions are convective

Ti

and Neumann: ¢ = h(uy —u;) and (du/dz),=1 = 0. The fluid temperature and heat transfer coefficient are
ur = 100K and h = 10 W/m?/K. The constant thermal conductivity is £ = 1 W/m/K and the volumetric
heat generation is ¢’/ = 1200 W/m?. The exact and computed solutions are shown in Fig. 3.26 for four

different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.26: Temperature distribution and residuals for Prob. 3.9. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., . = 2). The computed norms
for each element type are plotted and tabulated in Fig. 3.27. The formal order of accuracy is two for linear
FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Number of elements, Neiem Number of elements, Neem
No. Linear (p =1) Quadratic (p = 2)
Elems h |lullz, ||ulla, ||ullz, [|ulla,
elem_type=EDGE2 elem_type=EDGE3
1 0.800000  4.774 x 102 9.463 x 107 5.387 x 10! 2.912 x 10?
2 0.400000 1.690 x 102 5.780 x 102 1.046 x 10! 1.286 x 102
4 0.200000 5.106 x 10! 3.226 x 10? 1.490 x 10Y 4.479 x 10!
8 0.100000 1.379 x 10! 1.687 x 102 1.852 x 107! 1.302 x 10!
16 0.050000 3.534 x 10° 8.556 x 10! 2.278 x 1072 3.430 x 10°
32 0.025000 8.893 x 107! 4.295 x 10! 2.831 x 1073 8.705 x 101
64 0.012500 2.227 x 10~%  2.150 x 10! 3.530 x 1074 2.185 x 107!
128 0.006250 5.570 x 1072 1.075 x 10! 4.400 x 107°  5.467 x 1072
256 0.003125 1.393 x 1072 5.376 x 10° 1.000 x 107®  1.367 x 1072
Figure 3.27: Spatial refinement analysis for Prob. 3.9. Results are computed using 1D elements and a

spatial refinement factor r,. = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.10: Short solid cylinder

A two-dimensional short cylinder with length L and radius R has a i
thermal conductivity ¥ = 1 and no internal heating. It is exposed on
each surface to a constant temperature: u(R,z) = u1, u(r,0) = uy, and

u(r, L) = us. In thermal equilibrium, the analytic solution for the temper-

ature distribution is [28, pp.133-134]

u(r, z) = uy + 2(ug — u1)

where ), are the consecutive roots of the equation Jy(AR) = 0.

This problem is solved in BISON on the
domain r € [0,1] and z € [0,1]. Dirich-
let boundary conditions are applied to each
surface: w(R,z) = u(r,0) = u3 = 0K and
u(r, L) = usy = 200 K.

Fig. 3.29 shows the convergence of five FE
choices as the two-dimensional mesh is re-
fined. All five FE choices result in similar
shapes. Currently, Bessel functions are not
implemented as a function option in BISON
when computing norms between the computed
and analytic solution. For this reason, norms
are calculated between successively refined so-
lutions instead of between the computed and
analytic solution. Therefore, this problem is
a solution verification problem, rather than a
code verification problem. The local norm at
the middle of the domain is calculated for suc-
cessive refinements and is shown in Fig. 3.28.

The linear FEs QUAD4 and TRI3 display
the correct second order convergence. The
quadratic FEs QUAD8 and TRI6 have the cor-
rect third order convergence. The QUAD9 FEs

have super-convergent behavior.

U
L U1
z
sinh (A\,,/R)z T
s (An/ ) Jo (/\n—) . (3.14)  Her
= Ansinh (AnL/R)J1(An) R T
s
2
——QUAD4
—=—QUADS8
QUAD9
—&—TRI3
0r —4—TRI6 ]
=
= 2
g4 -
_6 = -
0.0 ~05 10 15 50 -25
logio(h)
2 8 32 128

Number of elements, Ngem

Figure 3.28: Spatial refinement analysis for Prob. 3.10. Re-
sults are computed using 2D elements and a spatial refine-
ment factor r. = 2. The formal order of accuracy is shown
for each plot.
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Figure 3.29: Temperature distribution for Prob. 3.10 with three different meshes and five FE types. Darker
colors indicate higher temperatures.
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Problem 3.11: Solid sphere with internal heating

A solid sphere with radius R has thermal conductivity k and internal heat
generation ¢"”’. The outside surface is exposed to a fluid at temperature u s
with heat transfer coefficient h. If the sphere is in thermal equilibrium, the

analytic solution for the temperature distribution is [29, 30]

11 2

u(r) =us+ yP {1 — (%)2 + %} . (3.15) R"

The problem is solved in BISON on the domain X € [0,1]. The center of the sphere uses a Neu-
mann boundary condition (finiteness requirement) and the surface has a convective boundary condition:
(du/dr)r—o = 0 and ¢ = h(uy — u,). The fluid temperature and heat transfer coefficient are uy = 500K
and h = 1W/m?/K. Steady state heat conduction is considered with constant thermal conductivity
k = 1W/m/K and volumetric heat generation ¢’ = 1200 W/m?. The exact and computed solutions are

shown in Fig. 3.30 for four different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).

Netem=1 Nelem=2 Netem=4 Netem=8

1r 1r —Exact,u ||
-e-EDGE2, i
= -»-EDGE3, i

1500

1400 -

1300 -

1200

1100},

20+

x x o X% % ; x L3 x L ] x I-»‘X‘X'X‘X'X'XIX'XI-
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Figure 3.30: Temperature distribution and residuals for Prob. 3.11. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., 7. = 2). The computed norms
for each element type are plotted and tabulated in Fig. 3.31. The formal order of accuracy is two for linear
FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Elems h lullz, |l llullL, [|ull
elem_type=EDGE2 elem_type=EDGE3
1 1.000000 5.117 x 10! 2.507 x 102 1.897 x 1072 6.419 x 10710
2 0.500000 1.537 x 10! 1.447 x 10? 3.843 x 107? 8.229 x 1077
4 0.250000 3.941 x 10° 7.540 x 10! 4.728 x 1078 1.028 x 10~ "
8 0.125000 9.845 x 107t 3.817 x 10° 2.322 x 1078 2.108 x 10~ 7
16 0.062500 2.454 x 107t 1.916 x 10! 3.548 x 10~8 1.151 x 10~
32 0.031250 6.126 x 1072 9.589 x 10° 1.317 x 1072 1.250 x 10~?
64 0.015625 1.531 x 10~2 4.796 x 10° 2.603 x 10~8 1.542 x 10~8
128  0.007812 3.825 x 1073 2.398 x 10 1.925 x 1077 1.218 x 1077
256 0.003906 9.560 x 10~* 1.199 x 10° 1.532 x 106 9.137 x 10~ 7
Figure 3.31: Spatial refinement analysis for Prob. 3.11. Results are computed using 1D elements and a

spatial refinement factor r,. = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.

46 of 87



Problem 3.12: Spherical shell with Dirichlet conditions

A spherical shell with inner radius r; and outer radius r, has a constant
thermal conductivity k. Both surfaces are exposed to constant temper-
atures: u(i) = u; and u(r,) = u,. If the spherical shell is in thermal

equilibrium, the analytic solution for the temperature distribution is [26,

pp.136]

1 [{u—u 22—
i o T 5.
u(r) =—-— T |t 1

To T4 T To

(3.16)

Uy Uo

T E
2 TO

The problem is solved in BISON on the domain X € [0.2, 1] using Dirichlet boundary conditions: u(r;) =

u; = 300K and u(r,) = u, = 0K. Steady state heat conduction is considered in the solid with constant

thermal conductivity & = 5W/m/K. The exact and computed solutions are shown in Fig. 3.32 for four

different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.32: Temperature distribution and residuals for Prob. 3.12. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact

solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., 7. = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.33. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Elems h lullz, Il |, |ullL, |||,
elem_type=EDGE2 elem_type=EDGE3
1 0.800000 1.268 x 102 5.171 x 102 3.728 x 101 2.369 x 102
2 0.400000 4.820 x 10! 3.110 x 10?2 8.522 x 10° 1.135 x 102
4 0.200000 1.572 x 10! 1.782 x 102 1.422 x 10° 4.334 x 10!
8 0.100000 4.467 x 10° 9.540 x 10" 1.909 x 101 1.335 x 10!
16 0.050000 1.169 x 10° 4.888 x 10* 2.401 x 10~2 3.603 x 10°
32 0.025000 2.961 x 10~!  2.461 x 10! 2.999 x 1073 9.214 x 10!
64 0.012500 7.429 x 10—2 1.233 x 10! 3.750 x 10~4 2.317 x 107!
128 0.006250 1.859 x 10~2 6.167 x 109 4.700 x 10~° 5.802 x 102
256 0.003125 4.648 x 1073 3.084 x 109 6.000 x 10~ 1.451 x 102
Figure 3.33: Spatial refinement analysis for Prob. 3.12. Results are computed using 1D elements and a

spatial refinement factor r,. = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.13: Spherical shell with temperature dependent thermal conductivity

A spherical shell with inside radius r; and outside radius r, has a thermal

conductivity that varies linearly with temperature: k = k, + B(u — u,).

The inside and outside surfaces of the shell are exposed to constant tem-

peratures: u(r;) = u; and u(r,) = u,. In thermal equilibrium, the analytic i to
solution for the temperature distribution is [26, pp.139]
g
3 (ki+k) (2- %) K
u(r) = u, + B 1+8 B2 (L - L) (ui —uo) —1 (3.17)

The problem is solved in BISON on the do-
main X € [0.2,1]. Dirichlet boundary conditions
are applied: ©(0.2) = u; = 300K and wuw(l) =
u, = 0K. Steady state heat conduction is consid-
ering using a nonlinear thermal conductivity, where
ko, = 5W/m/K. The nonlinearity of the problem is
quantified by 3; the analytic solution as a function

of 5 is shown in Fig. 3.34. Two cases are examined
in this study: (I) 8 = 0.001 and (II) 5 = 0.1.

Case I (f = 0.001): The exact and computed
solutions are shown in Fig. 3.35a for four different
meshes and two FEs types (linear: EDGE2; quadratic:
EDGE3). A convergence study is conducted with a re-
finement factor of two (i.e., 7, = 2). The computed
norms for each element type are plotted and tabu-

lated in Fig. 3.36. The formal order of accuracy is

200

S 150 -

100 -

50

Figure 3.34: The exact solution for Prob. 3.13 as a
function of space and (.

two for linear FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE

solutions converge to the exact solution with the correct order of accuracy.

Case II (5 = 0.1): The exact and computed solutions are shown in Fig. 3.35b for four different meshes

and two FEs types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement

factor of two (i.e., 7. = 2). The computed norms for

The formal order of accuracy is two for linear FEs

each element type are plotted and tabulated in Fig. 3.37.

and three for quadratic FEs. In the asymptotic region,

the linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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(b) Case II, g = 0.1

Figure 3.35: Temperature distribution and residuals for Prob. 3.13. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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elem_type=EDGE2 elem_type=EDGE3
1 0.800000 1.250 x 102 5.124 x 102 3.625 x 10* 2.315 x 102
2 0.400000 4.737 x 10 3.054 x 102 8.164 x 10° 1.090 x 102
4 0.200000 1.537 x 10* 1.733 x 102 1.343 x 10° 4.096 x 10"
8 0.100000 4.353 x 10° 9.218 x 10! 1.784 x 1071 1.248 x 10t
16 0.050000 1.137 x 10° 4.711 x 10* 2.232 x 1072 3.350 x 10°
32 0.025000 2.879 x 10~!  2.370 x 10! 2.784 x 1073 8.553 x 10!
64  0.012500 7.222x 1072  1.187 x 10! 3.480 x 10~*  2.150 x 10!
128  0.006250 1.807 x 102 5.937 x 10° 4.400 x 1075 5.382 x 102
256 0.003125 4.519 x 1073 2.969 x 10° 1.400 x 10~°  1.346 x 102

Figure 3.36: Spatial refinement analysis for Prob. 3.13 (Case I, 8 = 0.001). Results are computed using
1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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4 0.200000 1.028 x 10! 9.029 x 10" 6.955 x 10~ 2.016 x 10"
8 0.100000 2.908 x 10° 4.802 x 10" 9.144 x 1072 6.208 x 10°
16 0.050000 7.583 x 107t 2.467 x 10" 1.151 x 102 1.710 x 10°
32 0.025000 1.918 x 10~%  1.245 x 10! 1.445 x 1073 4.427 x 107!
64 0.012500 4.811 x 1072 6.238 x 109 1.810 x 10™*  1.118 x 107!
128  0.006250 1.204 x 1072  3.121 x 10° 2.300 x 1075 2.803 x 10~2
256 0.003125 3.010 x 102 1.561 x 10° 3.000 x 1079  7.011 x 1073

Figure 3.37: Spatial refinement analysis for Prob. 3.13 (Case II, 8 = 0.1). Results are computed using 1D
elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot. Left
plot: the Ly norm quantifies the convergence of the temperature distribution. Right plot: the H; norm
quantifies the convergence of heat flux. Table: numerical values used to construct the plots.
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Problem 3.14: Solid sphere with spatially dependent internal heating

A solid sphere with radius R has a constant thermal conductivity k& and
a spatially dependent internal heating ¢ = ¢’ (1 — 8r?/R?). It is ex-
posed to a constant temperature on its surface u(R) = ug. The sphere
reaches thermal equilibrium and the analytic solution for the temperature
distribution is [29, 31]

an=un+ LN (Y]-50-(5)']} e o

The problem is solved in BISON on the domain X € [0,1]. The center of the sphere uses a Neumann
boundary condition (finiteness requirement) and the surface has a Dirichlet condition: (du/dr),—g = 0
and u(1) = ug = 300K. Steady state heat conduction is considered in the sphere with constant thermal
conductivity & = 1W/m/K. The exact and computed solutions are shown in Fig. 3.38 for four different
meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.38: Temperature distribution and residuals for Prob. 3.14. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., r, = 2). The computed norms
for each element type are plotted and tabulated in Fig. 3.39. The formal order of accuracy is two for linear
FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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0.0 -2.0 -2.5 0.0 -2.0 -2.5
logio(h) logio(h)
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of elements, Neem Number of elements, Ngjem
No. Linear (p=1) Quadratic (p = 2)
Elems h llul|L, |lvl| a2, |lul| . |ul|m,
elem_type=EDGE2 elem_type=EDGE3
1 1.000000  3.125 x 10* 1.126 x 102 0.598 x 1071 2.330 x 10°
2 0.500000 1.036 x 10! 9.440 x 10! 1.265 x 1071 1.807 x 10°
4 0.250000 2.744 x 10° 5.132 x 10* 1.685 x 1072 5.122 x 107!
8 0.125000 6.942 x 107! 2.620 x 10t 2.136 x 1073 1.317 x 101
16 0.062500 1.740 x 107! 1.317 x 10! 2.680 x 10~* 3.316 x 1072
32 0.031250 4.351 x 1072 6.594 x 10° 3.400 x 1075 8.304 x 1073
64 0.015625 1.088 x 10~2 3.298 x 109 4.000 x 1076 2.077 x 1073
128  0.007812 2.719 x 1072 1.649 x 10° 1.000 x 10=¢  5.190 x 10~4
256 0.003906 6.800 x 10~* 8.246 x 101 1.300 x 107° 1.360 x 10~*
Figure 3.39: Spatial refinement analysis for Prob. 3.14. Results are computed using 1D elements and a

spatial refinement factor r,. = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.15: Solid sphere with internal heating and convective boundary condition

A solid sphere with radius R has a constant thermal conductivity k& and
internal heating ¢"’. Tt is exposed on its outside surface to a fluid with
constant temperature uy and heat transfer coefficient 4. In thermal equi-

librium, the analytic temperature distribution is [29, 32]
11 2

q(ﬂf {1 = (%)2 T %} . (3.19)

The problem is solved in BISON on the domain X € [0,1]. The center of the sphere uses a Neu-
mann boundary condition (finiteness requirement) and the surface has a convective boundary condition:

u(r) =us +

(du/dr),—o = 0 and ¢] = h(uy —u,). The fluid temperature and heat transfer coefficient are uy = 500 K and
h =1W/m?/K. Steady state heat conduction is considered in the sphere with constant thermal conductiv-
ity k = 1W/m/K and internal heating ¢ = 1200 W/m3. The exact and computed solutions are shown in
Fig. 3.40 for four different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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-e-EDGE2, i

-%-EDGE3, (i []

Netem=1 Netem=2 Netem=4 Netem=8
156678 T T T T T T T T T T T T T T T T T T

1150

1100 -

1050

1000 -

950 -

XN X8 XX XXX X B X8 X8

—60}+

—80+

-100+e 1t il 1F .
: . . . . . . . . . . . . . . . . . . . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0
X X X X

Figure 3.40: Temperature distribution and residuals for Prob. 3.15. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., . = 2). The computed norms for
each element type are plotted and tabulated in Fig. 3.41. The formal order of accuracy is two for linear FEs
and three for quadratic FEs. In the asymptotic region, the linear FE solutions converges to the exact solution
with the correct order of accuracy. The solution computed using quadratic FEs converges immediately to

within numerical error due to the quadratic shape of Eq. 3.19.
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-8 1 1 1 1 -8 1 1 1 1
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 0.0 —-0.5 -1.0 -1.5 -2.0 -2.5
|09I10(h) | | . logio(h) | .
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of elements, Neiem Number of elements, Neem
No. Linear (p =1) Quadratic (p = 2)
Elems h lullz, |l llullL, [|ull
elem_type=EDGE2 elem_type=EDGE3
1 1.000000 3.411 x 10! 1.182 x 102 2.879 x 107 9.088 x 10719
2 0.500000 1.176 x 10! 1.047 x 102 8.536 x 10710 1.056 x 10~8
4 0.250000 3.127 x 10° 5.735 x 10! 1.151 x 1077 1.494 x 1077
8 0.125000 7.919 x 10~* 2.932 x 10! 1.180 x 108 1.495 x 1077
16 0.062500 1.985 x 107!  1.474 x 10" 6.380 x 10712 6.193 x 10!
32 0.031250 4.965 x 10~2 7.382 x 109 9.288 x 10~ 7 1.036 x 10~
64 0.015625 1.241 x 10~2 3.692 x 109 7.152 x 1079 7.016 x 1079
128  0.007812 3.104 x 1073 1.846 x 10 1.020 x 10=7  7.071 x 108
256 0.003906 7.760 x 10~* 9.231 x 10~* 6.153 x 10~ 4.253 x 10~
Figure 3.41: Spatial refinement analysis for Prob. 3.15. Results are computed using 1D elements and a

spatial refinement factor r,. = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.16: Spherical shell with internal heating and inside heat flux condition

A spherical shell with inside radius r; and outside radius r, has a constant
thermal conductivity k and internal heating ¢’”’. It is exposed on its outside

surface to a constant temperature u(r,) = u, and has a constant heat P

/ U
flux ¢/ applied to its inner surface. The spherical shell reaches thermal 4
equilibrium and the analytic solution for the temperature distribution is |
(R=r/r; and R, = 1,/1;) [29, p.3-10] T r:
a'ri [¢"ri (2(R—R,) 2 2 R, — R
=g ! — —_— 2
u(r) =u, + A [ 6q” RE, + R, — R ) + RE, (3.20)

The problem is solved in BISON on the domain X € [0,1]. A Neumann boundary condition is used
for the inside surface and a Dirichlet condition for the outside surface: (du/dr),—o2 = ¢! = 100 W/m?
and u(1) = u, = 100K. Steady state heat conduction is considered in the shell with constant thermal
conductivity k = 1 W/m/K and internal heating ¢/ = 1200 W/m?. The exact and computed solutions are
shown in Fig. 3.42 for four different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.42: Temperature distribution and residuals for Prob. 3.16. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., . = 2). The computed norms
for each element type are plotted and tabulated in Fig. 3.43. The formal order of accuracy is two for linear
FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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0 . o}
El 3
_6 - _6 - <
-8 1 1 1 1 -8 1 1 1 1
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 0.0 —-0.5 -1.0 -1.5 -2.0 -2.5
L 1 IogIIO(h) 1 1 1 1 IoglO(h) 1 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of elements, Neiem Number of elements, Neem
No. Linear (p=1) Quadratic (p = 2)
Elems h lullz, |l llullL, [|ull
elem_type=EDGE2 elem_type=EDGE3
1 0.800000  2.468 x 10* 1.361 x 102 1.477 x 1071 2.249 x 10°
2 0.400000 7.314 x 10° 8.649 x 10! 4.699 x 102 1.180 x 10°
4 0.200000 1.892 x 10° 4.546 x 10' 1.065 x 1072 4.607 x 10~}
8 0.100000 4.769 x 10" 2.301 x 10° 1.771 x 1073 1.423 x 10¢
16 0.050000 1.195 x 107t 1.154 x 10! 2.460 x 10~* 3.843 x 1072
32 0.025000 2.989 x 10~2 5.773 x 109 3.200 x 10~° 9.828 x 10~3
64 0.012500 7.474 x 1073 2.887 x 109 3.986 x 10~ 2.472 x 1073
128  0.006250 1.868 x 1073  1.444 x 10 5.573 x 10~7  6.190 x 10~*
256 0.003125 4.670 x 107* 7218 x 107! 4.133 x 107%  1.550 x 104
Figure 3.43: Spatial refinement analysis for Prob. 3.16. Results are computed using 1D elements and a

spatial refinement factor r,. = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.17: MMS for one dimensional conduction

Steady state one-dimensional heat conduction is analyzed using the manufactured solution u(z) =

sin(arz). This simple function is suitable for use in an MMS problem because it is continuous and

infinitely differentiable. To find the source term ) that produces the solution u, the steady state heat

conduction operator (k = 1)—L = V - V—is applied to u. This results in the source term

Q = L(u) = a®*r?sin(arz). (3.21)

The problem is solved in BISON using the dif-
fusion module on the domain X € [0,1]. The
manufactured solution is shown in Fig. 3.44 with
a = 2, which is the value used in the BISON im-
plementation. Steady state heat conduction is con-
sidered through a homogeneous solid using the ex-
ternal source in Eq. 3.21. MMS studies allow the
same problem to be tested using a variety of dif-
ferent boundary conditions. Two cases are exam-
ined in this study: (I) Dirichlet—Dirichlet and (II)

Dirichlet—Neumann.

Case I (Dirichlet—Dirichlet): Dirichlet bound-
ary conditions are derived from the manufactured
solution with a = 2. This results in the boundary
conditions 4(0) = 0 and u(1) = 0.

U(x)

—0i25 | 4

—-0.50 b

-0.75 b

—1.00 R
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.44: The exact solution for MMS Prob. 3.17

Case II (Dirichlet—Neumann): The boundary conditions are derived from the manufactured solution
with @ = 2. This results in the boundary conditions u(0) = 0 and (du/dz),=1 = 27.

For Case I, the exact and computed solutions are shown in Fig. 3.45 for four different meshes and two

finite element types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement

factor of two (r, = 2). The computed norms for each FE type and boundary condition type are plotted in

Fig. 3.46 and shown in Table 3.2. The formal order of accuracy is two for linear FEs and three for quadratic

FEs. In the asymptotic region for both cases, the linear and quadratic FE solutions converge to the exact

solution with the correct order of accuracy.
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Figure 3.45: Temperature distribution and residuals for Prob. 3.17 (Case I). Results are shown for the first
four meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
and computed solutions.
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Figure 3.46: Spatial refinement analysis for Prob. 3.17. Results are computed using 1D elements and a
spatial refinement factor r, = 2. The formal orders of accuracy are shown. FE types with an A indicate
Case I (Dirichlet-Dirichlet) and with a B indicate Case II (Dirichlet-Neumann). Left plot: the Ls norm
quantifies convergence of the temperature. Right plot: the H; norm quantifies convergence of the heat flux.
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Table 3.2: Norms calculated for Prob. 3.17. Two norms are computed: (1) Ly norm quantifies convergence

of temperature and (2) H; norm quantifies convergence of the heat flux.

No. Linear (p=1) Quadratic (p = 2)
Elems h |ullL, l[wl] |ul|L, |l |,
elem_type=EDGE2 elem_type=EDGE3
Case I (Dirichlet—Dirichlet)
1 1.000000 9.706 x 10~!  1.512 x 109 4.848 x 1071 5.495 x 10°
2 0.500000 6.162 x 10~1  4.949 x 10° 3.743 x 1072 6.464 x 1072
4 0.250000 1.347 x 101 1.946 x 10° 1.270 x 1072 3.961 x 10!
8 0.125000 3.565 x 1072 9.987 x 107! 1.633 x 1073 1.014 x 1071
16 0.062500 9.043 x 102 5.026 x 1071 2.055 x 10~*  2.549 x 10~2
32 0.031250 2.269 x 102 2517 x 107! 2574 x 10~°  6.380 x 1073
64 0.015625 5.678 x 1074 1.259 x 10~*  3.219x 1076  1.596 x 10~3
128  0.007812 1.420x 107%* 6.296 x 1072 4.024 x 10~7  3.990 x 10~%
256 0.003906 3.550 x 107°  3.148 x 1072 5.030 x 108  1.000 x 10~*
Case II (Dirichlet—Neumann)
1 1.000000 2.424 x 10° 6.290 x 109 7.993 x 10~ 5.567 x 10°
2 0.500000 6.748 x 1071 4.953 x 10° 3770 x 1072 6.479 x 102
4 0.250000 1.371 x 101 1.946 x 10° 1.270 x 1072 3.961 x 10!
8 0.125000 3.578 x 1072  9.987 x 10~!  1.633 x 103  1.014 x 107!
16 0.062500 9.051 x 103 5.026 x 10!  2.055 x 10~*  2.549 x 102
32 0.031250 2.270 x 103 2517 x 107Y 2574 x 1075  6.380 x 10~3
64 0.015625 5.678 x 107%  1.259 x 10~%  3.219x 1076  1.596 x 10~3
128  0.007812 1.420x 107%  6.296 x 1072 4.024 x 10~7  3.990 x 10~*
256 0.003906 3.550 x 1075  3.148 x 1072  5.030 x 1078 1.000 x 10~*
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Problem 3.18: MMS for two dimensional conduction

Steady state two-dimensional heat conduction is analyzed using the manufactured solution u(x,y) =

sin(amrz) sin(bry). This simple function is suitable for use as an MMS problem because it is continuous
and infinitely differentiable. To find the source term @Q that produces the solution u, the steady state

heat conduction operator (with k = 1)—L = V - V—is applied to u. This results in the source term

Q(z,y) = L(u) = (a® + b*)7?sin (amz) sin (bry). (3.22)

The problem is solved in BISON using
the diffusion module on the domain X €
[0,1]%2. The manufactured solution is shown
in Fig. 3.47 with a = b = 2, which is the value
used in the BISON implementation. Dirich-
let boundary conditions are derived from the
manufactured solution: u(0,y) = u(l,y) =
u(z,0) = wu(z,1) = 0. Steady state heat
conduction is considered through the homo-
geneous solid using the external source in
Eq. 3.22.

Fig. 3.48 shows the convergence of two FE
choices as the two-dimensional mesh is refined
(QUAD4 and TRI3).

Fig. 3.49 shows a comparison of the two-
dimensional solutions with 32x32 elements us-
ing a variety of FE types (linear: QUAD4,
TRI3; quadratic: QUAD8, QUAD9, TRI6). Re-
gardless of the chosen FE shape, the BISON
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Figure 3.47: The exact solution for Prob. 3.18

solution has the correct shape, indicating that each two-dimensional FE option is implemented correctly.

A convergence study is conducted with a refinement factor of two (r, = r, = 2). The computed norms

for each FE type are plotted in Fig. 3.50. The formal order of accuracy is two for linear FEs and three for

quadratic FEs. In the asymptotic region for all FE types, the solutions converge to the exact solution with

the correct order of accuracy.
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Figure 3.48: Temperature distributions and residuals for Prob. 3.18 with three different meshes (left: QUAD4;
right: TRI3). Center columns: the FE solutions using a variety of 2D meshes. Outside columns: residuals

between the approximate solution and the computed solutions, where darker colors indicate a less accurate
computed solution.

Figure 3.49: Temperature distributions and residuals for Prob. 3.18 with different FE types. Results are
shown for five FE types. First row: the FE solutions using 32 x 32 2D elements. Second row: residuals

between the approximate solution and the computed solutions, where darker colors indicate a less accurate
computed solution.

63 of 87



—a—QUAD4 —a—QUAD4
—=—QUADS8 —=—QUADS8
QUAD9 QUAD9
—&—TRI3 ——TRI3
of —4+—TRI6 OF —&+—TRI6

logao(l|ullc2)
logao(|[ull#2)
N

- _6 - -
-8 Il 1 Il 1 -8 1 Il Il 1
0.0 -0.5 —-1.0 -1.5 —-2.0 -2.5 0.0 -0.5 -1.0 -1.5 —-2.0 -2.5
logio(h) logio(h)
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Number of elements, Nejem Number of elements, Nejem
No. Linear (p=1) Quadratic (p =2)
Elems Vh [lullL, [ull £y llullz, [wll £y [lull L, (1wl £y
elem_type=QUAD4 elem_type=QUAD8 elem_type=QUAD9
1 1.000000 9.421 x 101 2.075 x 100 2.350 x 10~1 3.768 x 100 2.350 x 10~1 3.768 x 109
4 0.500000 5.112 x 10~1 4.442 x 100 3.724 x 10~2 0.235 x 109
16 0.250000 1.013 x 10~ 1.966 x 10° 1.376 x 10~2 4.814 x 1071 1.181 x 10~2 4.024 x 10~1

64 0.125000 2.552 x 10~2 9.993 x 10~1 1.636 x 103 1.051 x 101 1.610 x 103 1.018 x 101
256 0.062500 6.413 x 103 5.026 x 10~1 2.056 x 10~* 2.569 x 102 2.049 x 10—* 2.552 x 10~2
1024  0.031250 1.606 x 103 2.517 x 10~1 2.574 x 1075 6.393 x 10~3 2.572 x 10~° 6.382 x 10—3
4096  0.015625 4.015 x 10~ 1.259 x 10~1 3.219 x 10—6 1.596 x 10—3 3.218 x 10—6 1.596 x 10—3
16384  0.007812 1.004 x 10~4 6.296 x 102 4.024 x 10~7 3.990 x 10~ 4 4.024 x 10~7 3.990 x 10~4

elem_type=TRI3 elem_type=TRI6
2 1.000000 6.824 x 101 4.279 x 100 4.874 x 10~1 4.594 x 100
8 0.500000 4.197 x 10~1 4.331 x 109 2.270 x 10~1 2.560 x 100
32 0.250000 2.499 x 10—t 2.983 x 10° 3.018 x 10~2 9.251 x 10~!
128 0.125000 8.136 x 102 1.674 x 109 3.796 x 10~3 2.585 x 10~ 1

512 0.062500 2.189 x 102 8.632 x 101 4.759 x 10~4 6.677 x 102
2048  0.031250 5.578 x 1073 4.350 x 10~1 5.957 x 10~° 1.684 x 102
8192  0.015625 1.401 x 10~3 2.179 x 10~1 7.451 x 106 4.219 x 10~3
32768  0.007812 3.507 x 10~*  1.090 x 10!  9.315x 107  1.055 x 10~3

Figure 3.50: Spatial refinement analysis for Prob. 3.18. Results are computed using 1D elements and a
spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot. Left plot: the Lo norm
quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.19: MMS for transient conduction

Transient one-dimensional heat conduction is analyzed using the manufactured solution u(x,t) =
axt®. This simple function is suitable for use as an MMS solution because it is continuous and infinitely
differentiable. To find the source term @ that produces the solution u, the transient heat conduction
operator (with k = 1)—L = 9/9t+ V - V—is applied to u. Note that there is no contribution from the

spatial derivative, since d?u/dx? = 0. This results in the source term

Q(z,t) = L(u) = 3axt>. (3.23)

Note that this MMS problem is inherited from T T T . . . .
MOOSE. The problem is solved in BISON using 25l
the diffusion module on the domain X € [0, 1] and
T € [0,3]. A Dirichlet boundary condition and 20
an initial condition are derived from the manufac-

tured solution: w(0,f) = 0 and u(x,0) = 0. The ils I

—

manufactured solution is shown in Fig. 3.51 with >

a = 1, which is the value used in the BISON imple- or |

mentation. Transient heat conduction is considered "l |

through the homogeneous solid using the external

source in Eq. 3.23. ol ]
A convergence study is conducted with a tempo- 0.0 0.5 1.0 15 2.0 25 3.0

ral refinement factor of two (i.e., r, = 2). Linear
finite elements are used for all cases (EDGE2) with Figure 3.51: The exact solution solution for Prob. 3.19
32 FEs. Norms are computed at the final time step;

computed norms for each choice of temporal discretization are plotted in Fig. 3.52 and shown in Table 3.3.
Since the explicit Euler method requires enforcement of the von Neumann stability limit, no simulations
are run with a time step which would result in Fo < 0.5. In the asymptotic region, all choices of temporal

discretization have the correct order of accuracy.
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Figure 3.52: Temporal refinement analysis for Prob. 3.19. Results are computed using 1D elements and a
temporal refinement factor 7, = 2. The von Naumann stability criteria (Fo = 0.5) is shown as a vertical
dashed line. The formal orders of accuracy are shown. Left plot: the L, norm quantifies the convergence of
the temperature. Right plot: the H; norm quantifies convergence of the heat flux.
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Table 3.3: Norms calculated for Prob. 3.19. Two norms are computed: (1) Ly norm quantifies convergence
of temperature and (2) H; norm quantifies convergence of the heat flux.

At Fo llullz, ||l 12 |lull ||l |,

explicit-Euler (p=1) explicit-midpoint (p = 1)
1.000000 1024 3.540 x 10~'  1.149 x 10° 3.540 x 10~'  1.149 x 10°
0.500000 512 1.885x10~' 6.119x 10" 1.885x 107!  6.119 x 107"
0.250000 256 9.710 x 1072 3.153x 107"  9.710x 1072  3.153 x 10~*
0.125000 128 4.927 x 1072  1.600 x 10"  4.927x 1072  1.600 x 10™*
0.062500 64 2482 x 1072 8.056 x 1072  2.482x 1072  8.056 x 1072
0.031250 32 1.245x 1072 4.043x 1072 1.245x 1072  4.043 x 1072
0.015625 16 6.237 x 1073  2.025 x 1072 6.237 x 107°  2.025 x 1072
0.007812 8 3121 x 1073 1.013x 1072  3.121 x 107  1.013x 1072
0.003906 4 1.561 x 107®  5.069 x 107 1.561 x 10™®  5.069 x 1073
0.001953 2 7810x 107%  2535x107%  7.810x 107* 2535 x 1073

implicit-Euler (p=1) bdf2 (p = 2)
1.000000 1024 3.540 x 10~'  1.149 x 10° 9.274 x 1072 3.004 x 10~ *
0.500000 512 1.885x10~! 6.119x 10! 2297 x 1072 7.446 x 1072
0.250000 256 9.710 x 1072 3.153x 107" 5746 x 107  1.862 x 1072
0.125000 128 4.927 x 1072 1.600 x 10! 1.436 x 1072 4.656 x 1073
0.062500 64 2482 x 1072 8.056 x 1072  3.591 x 10~*  1.164 x 1073
0.031250 32 1.245x 1072 4.043x 1072 8977 x107° 2910 x 10~*
0.015625 16  6.237 x 1073 2.025 x 1072 2244 x 10™°  7.300 x 107°
0.007812 8 3121 x 107%  1.013x 1072  5.610x 107%  1.800 x 107
0.003906 4 1.561 x 1073 5.069 x 107 1.402x 107%  5.000 x 10~°
0.001953 2 7810 x 1074 2535 x107%  3.500 x 1077 1.000 x 107°
Crank-Nicolson (p = 2) Dirk (p=2)
1.000000 1024 2.990 x 1072 9943 x 1072  1.011 x10™'  3.455 x 107!
0.500000 512 5.687 x 107 1.810x 1072  3.877 x 1072  1.403 x 10™*
0.250000 256 1.436 x 10™%  4.638 x 10%  1.237 x 1072  4.887 x 1072
0.125000 128 3.591 x 107*  1.163x 10%  3.585x 107%  1.588 x 1072
0.062500 64 8978 x107° 2910x10~* 9.837x107* 4.976 x 1072
0.031250 32 2244 x107° 7.274x107° 2614 x107*  1.526 x 1073
0.015625 16 5.611x10% 1.819x107° 6.805 x 107>  4.607 x 10~*
0.007812 8 1.401 x 107 4.542x 107  1.749 x 107°  1.371 x 107*
0.003906 4 3.505 x 1077 1.135x 10°® 4455 x 107  4.013 x 1075
0.001953 2 8.825x 1078  2.860 x 107  1.128 x 107  1.148 x 1075
newmark-beta (p = 2)
1.000000 1024 2.990 x 1072 9.943 x 1072
0.500000 512 5.687 x 107%  1.810 x 1072
0.250000 256  1.436 x 107 4.638 x 1073
0.125000 128 3.591 x 10~* 1.163x 1073
0.062500 64 8.978 x 10™°  2.910 x 1074
0.031250 32 2244 x107° 7.274x107°
0.015625 16 5.612x107% 1.819x107°
0.007812 8 1.401 x 107 4.542 x 10~¢
0.003906 4 3.508 x 1077 1.135x 107°
0.001953 2 8.891 x 10~%  2.888 x 10"
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3.2 Gap Heat Transfer

The previous section considered problems for verification of the basic heat conduction equation in BISON.
However, these problems are not representative of fuel in nuclear reactors. Particularly for LWR fuel, nuclear
fuel rods consist of column of fuel pellets surrounded by a hollow tube called the cladding. To obtain an
analytic solution, the fuel is assumed to be located at the center of the cladding and the void is filled with
an inert gas [9]. If constant solid properties are considered, temperature jumps across the gap and cladding
can be obtained using the identity of continuous heat flux. This allows the formation of an analytic solution

that is more representative of typical fuel rods.

The temperature jump across the gap in BISON is computed as a summation of heat transfers: fill gas

conductance hg, contact conductance h., and radiative conductance h, [3, 38, 39, 40, 41, 42]:

hgap = hg + he + hy, (3.24a)
where
kgas
_— plane
d -I-kg1 + 92
928 cylinder
hg = 1 (ln (%2 + gk o %) ’ (3.24b)
S sphere
(-2 +4+8)
A (W
he=C (ﬁ> , (3.24c)

O'SB(T12 + T22)(T1 + Tg)

1 1
S ()
€1 &gy

where kg4 is the fill gas thermal conductivity, d is the gap distance, g; is the temperature jump distance,

hy = (3.24d)

A is the harmonic mean of thermal conductivities of the surrounding solids, r, is the contact radius that is
defined as a function of the surface roughnesses, W is the load on the contact interface, H is the Meyer’s
hardness of the softer material, cgp is the Stefan-Boltzmann constant, T; is temperature, ¢; is the emissivity,

and r; is the radius for the solid bodies i = 1,2 (r1 < ra).

The problems in this chapter focus on testing the gap heat transfer for an open gap. To simplify the
analytic solution, radiative heat transfer is ignored by setting emissivities to zero and temperature jump
distances are set to zero through BISON input. Thus, the gap heat transfer reduces to the fill gas conductance
hg:
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hgap = hg =

5
Q
Q
»

kgas

kgas

2 (1
1|

T1ln,<£%)
r _%}

plane

cylinder

sphere

(3.25)

The validation matrix for this physics is shown in Table 3.4. The cylindrical example is taken from [9]

and the other two are derived for this report.

Table 3.4: Verification matrix for BISON gap heat transfer

Transient Coordinate Dimension Properties and Boundary
S System ¢ External Sources Conditions
z
© < = o
Q| © 2 = S | = g | .5
L | Z g 2. 88 — s < E 2
Qq:) £ 8 i%‘ '_>(\-‘ %.4 — ™ e % \E{/ N :\/ Q ‘o 3 g
= n O O m|sg &8 8|« 2 ™™ ™ d A =z O
Method of Exact Solutions
3.20 v v v v v v v
3.21 | [9] v v v v v v v
3.22 v v |V v v v v
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Problem 3.20: Cartesian gap heat transfer

An infinitely long fuel plate has constant thermal conductivity k and internal heat generation
q"". Tt is insulated on its left surface and exposed on its right surface to some constant temperature

w(Teo) = Ueo. The temperature jump across the gap and cladding is
q + ql-rf(ivco - xci)

, 3.26a
l‘fhgap kc ( )

Uf — Uco =

where uy is the fuel surface temperature, u., is the cladding outside temperature, and k. is the cladding
thermal conductivity. The gap conductance hgq, reduces to kgqs/d, where kqqs is the thermal conduc-

tivity of the fill gas. The analytic solution for the temperature distribution in the fuel is

(3.26b)

The problem is run in BISON using two
blocks: the fuel domain on in X € [0, 1.0] and
the clad domain in X € [1.1,1.2]. The domain
between the two blocks is filled with an inert
gas with a predefined gas thermal conductivity.
Neumann and Dirichlet boundary conditions
are applied: (du/dz),_, = 0 and u(xe) =
ug. Steady state heat conduction is considered
with the following constants: fuel thermal con-
ductivity ky = 10W/m/K, cladding thermal
conductivity k. = 10 W/m/K, volumetric heat
generation ¢ = 400 W/m?, gas thermal con-
ductivity kgqs = 0.1 W/m/K, and Biot number
Bi~0.1.

The exact and computed solutions are
shown in Fig. 3.53 for three meshes and two
FE types (linear: EDGE2; quadratic: EDGE3).
A convergence study is performed with a re-
finement factor of two (r, = 2). The mesh
refinements are performed uniformly in both

the fuel and cladding domains; however, the

— 800

s
2700 |
=

« 800 |

0 | @ g g g e

S700}
=

| |—Exact, u
-e-EDGE2, (i
-%~-EDGE3, d
500 b

0.0

L L L L . . 1 . L
0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 1.2
X X

0.‘2 0.4
Figure 3.53: Temperature distribution and residuals for
Prob. 3.20. Results are shown for the first three meshes.
First column: exact and FE solutions using 1D elements.
Second column: residuals are computed between the exact
and computed solutions.
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norms are computed only in the fuel domain. The computed norms are plotted and tabulated in Fig. 3.54.
The linear FE solution is second order accurate, as expected. The quadratic solution is within numerical

error of the exact solution due to its quadratic shape.

_6 - - _6 = .
-8 | 1 1 1 -8 1 1 | 1
0.0 -0.5 -1.0 -1.5 —-2.0 -2.5 0.0 -0.5 -1.0 -1.5 —-2.0 -2.5
logio(h) logio(h)
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
No. Linear (p=1) Quadratic (p = 2)
Elems h ||ullL, [l l[ullL, [wl| £y
elem_type=EDGE2 elem_type=EDGE3
2 0.550000 3.333 x 10° 1.155 x 10! 1.224 x 10~ 7.187 x 10~ ¢
4 0.275000 8.333 x 10~!  5.774 x 109 5.260 x 1078 3.482 x 10~ 7
8 0.137500 2.083 x 10~!  2.887 x 109 1.523 x 108 3.908 x 107?
16 0.068750 5.208 x 1072 1.443 x 109 2420 x 1077 2.586 x 10~
32 0.034375 1.302x 1072 7.217x 1071 3.378 x 10~®>  1.794 x 10~6
64 0.017188 3.255 x 1072 3.608 x 10~1  4.801 x 10~* 2.772 x 10~°
128  0.008594 8.130 x 10~* 1.804 x 107! 2.082x 1072 1.164 x 1073
256 0.004297 1.903 x 107*  9.021 x 1072 4.567 x 1071 2.547 x 102

Figure 3.54: Spatial refinement analysis for Prob. 3.20 (Bi ~ 0.1). Results are computed using 1D elements
and a spatial refinement factor r, = 2. The formal orders of accuracy are shown for each plot. Left plot:
the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.21: Cylindrical gap heat transfer

An infinitely long fuel rod has constant thermal conductivity k& and internal heat generation ¢”’.
It is exposed on its right surface to some constant temperature u(r.,) = 4s. The temperature jump

across the gap and cladding is

/ /
q q Tco
— U = In{— |, 3.27a

Uf = Ueo 271 phgap ® 2nk. . (rci ) ( )
where uy is the fuel surface temperature, u., is the cladding outside temperature, and k. is the cladding
thermal conductivity. For this problem, the gap conductance hyqp reduces to kgqs /(¢ In(re; /7)), where
kgqs is the thermal conductivity of the fill gas and r; is the cladding inside radius. The analytic solution

for the temperature distribution in the fuel is

The problem is run in BISON using two
blocks: the fuel domain (left block) on in
X €10,1.0] and the clad domain (right block)
in X € [1.1,1.2]. The domain between the two
blocks is the gap and is filled with an inert gas
with a predefined fill gas thermal conductivity.
Neumann and Dirichlet boundary conditions
are applied: (du/dz),_, = 0 and u(ze) =
ug. Steady state heat conduction is consid-
ered with the following properties: fuel ther-
mal conductivity ky = 10W/m/K, cladding
thermal conductivity k. = 10W/m/K, volu-
metric heat generation ¢ = 400 W/m?, gas
thermal conductivity kgqs = 0.1 W/m/K, and
Biot number Bi =~ 0.1.

The exact and computed solutions are
shown in Fig. 3.55 for three meshes and two
FE types (linear: EDGE2; quadratic: EDGE3).
A convergence study is performed with a re-

finement factor of two (r, = 2). The mesh

q/ 1"2
1-— 3.27b
urt 4k 7“]% ’ ( )

u,u u—u
4t
2t
0% x °
2t
°
=i fs
4t
2F
0F % x M x ®
.
2t
—at
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<
]
5600 0-5x‘x. o X @
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-%-EDGE3, i -4
500 [ T I L L L | 1 1 L L L L L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1,2
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Figure 3.55: Temperature distribution and residuals for
Prob. 3.21. Results are shown for the first three meshes.
First column: exact and FE solutions using 1D elements.
Second column: residuals are computed between the exact
and computed solutions.
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refinements are performed uniformly in both the fuel and cladding domains; however, the norms are com-
puted only in the fuel domain. The computed norms are plotted and tabulated in Fig. 3.56. The linear FE
solution is second order accurate, as expected. The quadratic solution is within numerical error of the exact

solution due to its quadratic shape.

2 2
of oF 1\ 1
El El
—6 F . -6} 4
-8 L 1 1 1 -8 Il 1 1 1
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5
logio(h) logio(h)
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Number of elements, Nejem Number of elements, Neem
No. Linear (p=1) Quadratic (p = 2)
Elems h lullL, |ul| |lullL, lul|
elem_type=EDGE2 elem_type=EDGE3
2 0.550000 1.707 x 10° 8.355 x 109 9.814 x 1077 2.247 x 10710
4 0.275000 5.128 x 107t 4.824 x 109 8.239 x 108 3.232 x 1077
8 0.137500 1.314 x 10~*  2.513 x 10° 5.104 x 1077 4.684 x 1076
16 0.068750 3.284 x 1072 1.272 x 10 1.188 x 10°7  1.515 x 10~
32 0.034375 8.187 x 1073 6.386 x 10~* 1.811 x 107 1.684 x 10~
64 0.017188 2.043 x 103 3.196 x 10~* 3.613 x 1074 2.387 x 10~°
128 0.008594 5.110 x 10~* 1.599 x 101 4.981 x 1073 3.682 x 10~
256 0.004297 1.106 x 10~* 7.994 x 1072 2.069 x 10~1 1.506 x 102

Figure 3.56: Spatial refinement analysis for Prob. 3.21 (Bi ~ 0.1). Results are computed using 1D elements
and a spatial refinement factor . = 2. The formal orders of accuracy are shown for each plot. Left plot:
the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.22: Spherical gap heat transfer

A fuel sphere has constant thermal conductivity k and internal heat generation ¢"’. It is exposed

on its right surface to some constant temperature u(r.,) = uc,. The temperature jump across the gap

q q 1 1
gy = o2, 3.28
wrod 4mr%hgap T drk, (rm- oo (3.282)

and cladding is

where uy is the fuel surface temperature, u., is the cladding outside temperature, and . is the cladding

thermal conductivity. For this problem, the gap conductance hy reduces to kgas/(r7 (7‘171 —r;1)), where
kgas is the thermal conductivity of the fill gas and r; is the cladding inside radius. The analytic solution

for the temperature distribution in the fuel is

u(r) =u

q/ r2
_T (1), 3.28b
+ 8rrkys < T?) ( )

where 7 is the fuel radius and ky is the fuel thermal conductivity.

The problem is run in BISON using two
blocks: the fuel domain (left block) on in
X €[0,1.0] and the clad domain (right block)
in X € [1.1,1.2]. The domain between the two
blocks is the gap and is filled with an inert gas
with a predefined fill gas thermal conductivity.
Neumann and Dirichlet boundary conditions
are applied: (du/dz),_, = 0 and u(ze) =
ug. Steady state heat conduction is consid-
ered with the following properties: fuel ther-
mal conductivity k; = 10W/m/K, cladding
thermal conductivity k. = 10W/m/K, volu-
metric heat generation ¢ = 400 W/m3, gas
thermal conductivity kgqs = 0.1 W/m/K, and
Biot number Bi ~ 0.1.

The exact and computed solutions are
shown in Fig. 3.57 for three meshes and two
FE types (linear: EDGE2; quadratic: EDGE3).
A convergence study is performed with a re-
finement factor of two (r, = 2). The mesh
refinements are performed uniformly in both

the fuel and cladding domains; however, the
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Figure 3.57: Temperature distribution and residuals for
Prob. 3.22. Results are shown for the first three meshes.
First column: exact and FE solutions using 1D elements.
Second column: residuals are computed between the exact
and computed solutions.
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norms are computed only in the fuel domain. The computed norms are plotted and tabulated in Fig. 3.58.
The linear FE solution is second order accurate, as expected. The quadratic solution is within numerical

error of the exact solution due to its quadratic shape.

2 2
—e—EDGE?2 —e—EDGE2
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3 -aft 8 -4t 1
—6 F . -6} 4
-8 L 1 1 1 -8 Il 1 1 1

0.0 -0.5 -1.0 -1.5 -2.0 —2.5 0.0 -0.5 —1.0 -1.5 -2.0 —2.5
logio(h) logio(h)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Number of elements, Neem Number of elements, Ngjem
No. Linear (p=1) Quadratic (p = 2)
Elems h ||ullL, ||| 5, |lul| L, Il H,
elem_type=EDGE2 elem_type=EDGE3

0.550000 1.140 x 10° 3.939 x 109 5.914 x 1076 3.716 x 10~1¢
0.275000 3.927 x 10~'  3.491 x 10° 3.190 x 1077 2.009 x 10~7
0.137500 1.044 x 10! 1.912 x 109 1.223 x 1077 1.974 x 1076
0.068750 2.643 x 1072 9773 x 107! 7.120x 1077  3.652 x 10~7
0.034375 6.626 x 1073 4.914 x 10! 1.719x 1075 4472 x 1077
64  0.017188 1.657 x 1073 2461 x 1071 7594 x 10~*  6.617 x 1079
128 0.008594 4.165 x 107% 1231 x 1071 1.676 x 107*  1.457 x 1075
256 0.004297 9.451 x107° 6.154x 1072  1.676 x 10~*  1.457 x 10~°

G =
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Figure 3.58: Spatial refinement analysis for Prob. 3.22 (Bi ~ 0.1). Results are computed using 1D elements
and a spatial refinement factor . = 2. The formal orders of accuracy are shown for each plot. Left plot:
the Ly norm quantifies convergence of the temperature distribution. Right plot: the H; norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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4. Concluding Remarks

In this study, the fuel performance code BISON was verified using an extensive set of verification prob-
lems. The majority of problems were designed to test BISON’s conduction solution, and two additional
problems test the mechanics capabilities. A physics-based approach was used to design a verification matrix
which included all combinations of physics and simulation options. By mapping out code capabilities in a
verification matrix, it is ensured that all capabilities are tested and gaps are clearly identified. The considered
code capabilities were: treatment of the temporal term, chosen coordinate system, dimensionality, material
property treatment, external source treatment, and boundary condition options.

Sixteen MES problems and three MMS problems were employed for the basic heat conduction solution.
Three additional MES problems tested the heat conduction solution in the presence of a gap. Two MES
problems were added to test the mechanical solution in the elastic region. These problems were selected to
fill obvious gaps in the verification matrix. Though the matrix is not fully covered, this work establishes a
baseline pedigree of the code which can be expanded upon later.

1. All one-dimensional verification problems display the proper convergence behavior for both first and

second order Lagrange polynomials using any type of FE. This includes:
e second order convergence of the temperature distribution for linear FEs,
o first order convergence of the heat flux for linear FEs,
e third order convergence of the temperature distribution for quadratic FEs,
e second order convergence of the heat flux for quadratic FEs, and
e super-convergent behavior for problems where the FEs shape matches the analytic solution.

2. The verification studies performed in this work are being incorporated into BISON documentation and
automated test suites.

3. The capability of BISON to solve MMS problems has been demonstrated for the first time. This is an
important step for future verification work, as MMS is the state-of-the-art verification method.

4. For two-dimensional problems, corner singularities arise due to non-smoothness of the domain (cor-
ners, edges, etc. on the boundary), change of the boundary conditions from one type to another, or
discontinuities of the solution or model coefficients. For most problems, these effects are mild enough

to maintain first order convergence.
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5. Bessel functions and infinite series are not yet implemented as functions in MOOSE. This limits the
multi-dimensional problems which can be incorporated into the BISON verification matrix, since their
analytic solutions are complex functions.

6. The problems in this study use simplest meshes and uniform mesh refinement. This creates a strong
base of verification, but future work may expand to more complicated refinement strategies: more
complex meshes, non-uniform mesh refinement, local mesh refinement, differing aspect ratios, and
combined temporal/spatial order analysis.

This work is the first expansive verification work performed for the BISON code. It establishes support-
ing evidence that the BISON solution is a faithful representation of the underlying mathematical model,
especially for the heat conduction solution.

In the future, this work will be expanded to include testing of species conservation and more expansive
testing of the mechanical response. Though two mechanics problems are created for this study (see Ap-
pendix B), a great number of tests is necessary to create a proper verification matrix to cover the mechanics.
Significant effort is required to expand the verification matrix to include two- and three-dimensional prob-
lems, problems with atypical behavior, and problems that couple more than one conservation equation. This

could reveal numerical bugs that are hidden when only individual equations are tested.

77 of 87



Acknowledgments

Thanks to Aaron Krueger (SNL) for his review of this document. Dylan McDowell (INL) performed prelim-
inary work on the thick wall-cylinder problem to setup input (Prob. B.2).

This research is supported by and performed in conjunction with the Consortium for Advanced Simulation
of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/
hubs) for Modeling and Simulation of Nuclear Reactors under US Department of Energy Contract No. DE-
AC05-000R22725. Any opinions, findings, conclusions, or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the US Department of Energy.

78 of 87



Bibliography

D Gaston et al. “MOOSE: A parallel computational framework for coupled systems of nonlinear equa-
tions”. In: Nuclear Engineering and Design 239.10 (2009), pp. 1768-1778. DOI: 10.1016/j .nucengdes.
2009.05.021.

R L Williamson et al. “Multidimensional multiphysics simulation of nuclear fuel behavior”. In: Journal
of Nuclear Materials 423.1-3 (2012), pp. 149-163. pOI: 10.1016/j. jnucmat.2012.01.012.

J D Hales et al. BISON Theory Manual The Equations Behind Nuclear Fuel Analysis. Idaho National
Laboratory. Idaho Falls, Idaho, Oct. 2014.

Nuclear Regulatory Commission. 10 CFR Part 50: Domestic Licensing of Production and Utilization
Fuacilities. https://wuw.nrc.gov/reading-rm/doc-collections/cfr/part050/.

W L Oberkampf and C J Roy. Verification and Validation in Scientific Computing. First. Cambridge,
UK: Cambridge University Press, Nov. 2010.

W L Oberkampf, M Pilch, and T G Trucano. Predictive Capability Maturity Model for Computational
Modeling and Simulation. Tech. rep. SAND2007-5948. Sandia National Laboratories, Oct. 2007.

P J Roache. Verification and Validation in Computational Science and Engineering. Albuquerque, NM:
Hermosa Publishing, 1998.

A Toptan et al. “Implementation and Assessment of Wall Friction Models for LWR Core Analysis”.
In: Annals of Nuclear Energy 115 (2018), pp. 565-572. DOI: 10.1016/j.anucene.2018.02.022.

A Toptan et al. “A new fuel modeling capability, CTFFuel, with a case study on the fuel thermal
conductivity degradation”. In: J Nuclear Eng Design 341 (2019), pp. 248-258. poL: 10.1016/j .
nucengdes.2018.11.010.

N W Porter. “Development of a Novel Residual Formulation of CTF and Application of Parameter
Estimation Techniques”. PhD thesis. North Carolina State University, 2018.

Bison Team. Assessment of BISON: A Nuclear Fuel Performance Analysis Code. Tech. rep. INL/MIS-
13-30314 Rev. 4. Idaho Falls, Idaho: Idaho National Laboratory, Aug. 2017.

J Hales et al. “Verification of the BISON Fuel Performance Code”. In: Annals of Nuclear Energy 71
(81-90), p. 2014. DOL: 10.1016/j.anucene.2014.03.027.

79 of 87



N N N Y
KL N9 S

[29]

[30]

D S Burnett. “Finite Element Analysis from Concepts to Applications”. In: Reading, MA: Addison-
Wesley Publishing Company, 1987. Chap. 9.

E R de Arantes e Oliveira. “Theoretical Foundations of the Finite Element Method”. In: Int J Solids
Struct 4.10 (Oct. 1968), pp. 929-952. DOL: 10.1016/0020-7683(68)90014-0.

A K Aziz. The Mathematical Foundations of The Finite Element Method with Applications to Partial
Differential Equations. New York, NY: Academic Press, 1972. Chap. 6.

J T Oden and J N Reddy. An Introduction to the Mathematical Theory of Finite Elements. New York,
NY: John Wiley & Sons, 1976. Chap. 8.4.

O C Zienkiewicz, R L Taylor, and J Z Zhu. The Finite Element Method Its Basis € Fundamentals.
New York, NY: Elsevier, 2013. Chap. 7.9. bo1: 10.1016/C2009-0-24909-9.

M Skroch et al. CUBIT: Geometry and Mesh Generation Toolkit, 15.5 User Documentation. Tech. rep.
SAND2019-3478W. SNL, 2019.

K Salari and P Knupp. Code Verification by the Method of Manufactured Solutions. Tech. rep. SAND2000-
1444. Sandia National Laboratories, June 2000. DOI: 10.2172/759450. URL: https://wuw.osti.gov/
servlets/purl/759450.

M P McHale et al. Standard for Verification and Validation in Computational Fluid Dynamics and
Heat Transfer. Standard ASME V&V 20-2009. American Society of Mechanical Engineers, 2009.

I Babuska and B Szabo. “On the Rates of Convergence of the Finite Element Method”. In: Int J for
Numerical Methods in Engineering 18.3 (Mar. 1982), pp. 323-341. DOI: 10.1002/nme . 1620180302.

I Babuska, B A Szabo, and I N Katz. “The p-version of the Finite Element Method”. In: SAM J Numer
Anal 18.3 (June 1981), pp. 515-545. DOI: 10.1137/0718033.

J Kamm, W Rider, and J Brock. “Combined Space and Time Convergence Analysis of a Compressible
Flow Algorithm”. In: ATAA Paper (2003-4041). DOI: 10.2514/6.2003-4241.

S A Richards. “Completed Richardson extrapolation in space and time”. In: Communications in Nu-
merical Methods in Engineering 13.7 (1997), pp. 573-582. pOI: 10.1002/ (SICI)1099-0887(199707)
13:7<573::AID-CNM84>3.0.C0;2-6.

E Isaacson and H B Keller. Analysis of Numerical Methods. New York, NY: Dover Publications, 1994.
M Jakob. Heat transfer. Vol. 1. New York: Wiley, 1949.
V S Arpaci. Conduction Heat Transfer. Reading, MA: Addison-Wesley Publishing Company, 1966.

P J Scheider. Conduction Heat Transfer. Cambridge 42, Mass.: Addison-Wesley Publishing Company,
Inc., 1955.

J H VanSant. Conduction Heat Transfer Solutions. Tech. rep. UCRL—52863-Rev.l; DE87 012387. CA
(USA): Lawrence Livermore National Lab., Aug. 1983. DOI: 10.2172/6224569.

S S Kutateladze and V M Borishanskii. A Concise Encyclopedia of Heat Transfer. New York, NY:
Pergamon, 1966.

80 of 87



[39]

[40]

R B Bird, W E Stewart, and E N Lightfoot. Transport Phenomena. New York, New York: John Wiley
& Sons, Inc., 1960.

H S Carslaw and J C Jaeger. Conduction of Heat in Solids. 2nd. Oxford at The Clarendon Press, 1959.

R Wait and A R Mitchell. “Corner singularities in elliptic problems by finite element methods”. In:
Journal of Computational Physics 8.1 (1971), pp. 45-52. DOI: 10.1016/0021-9991(71)90033-7.

Z Cai and S Kim. “A Finite Element Method Using Singular Functions for the Poisson Equation: Corner
Singularities”. In: STAM Journal on Numerical Analysis 39.1 (2001). DOI: 10.1137/30036142999355945.

D Givoli, L Rivkin, and J B Keller. “A finite element method for domains with corners”. In: 35.6
(1992), pp. 1329-1345. DOL: 10.1002/nme . 1620350611.

Y N Anjam. “Singularities and regularity of stationary Stokes and Navier-Stokes equations on polygonal
domains and their treatments”. In: AIMS Mathematics 5.1 (2020), pp. 440-466. DOL: 10.3934/math.
2020030.

J Pfefferer and M Winkler. “Finite element error estimates for normal derivatives on boundary concen-
trated meshes”. In: STAM Journal on Numerical Analysis 57.5 (2018), pp. 2043-2073. por1: 10.1137/
18M1181341. URL: https://arxiv.org/pdf/1804.05723.pdf.

A Toptan. “A Novel Approach to Improve Transient Fuel Performance Modeling in Multi-Physics
Calculations”. PhD thesis. North Carolina State University, Nuclear Engineering Department, 2019.
URL: https://repository.lib.ncsu.edu/handle/1840.20/36352.

A Toptan, D J Kropaczek, and M N Avramova. “On the Validity of the Dilute Gas Assumption for Gap
Conductance Calculations in Nuclear Fuel Performance Codes”. In: Nuclear Eng Design 350 (2019),
pp. 1-8. DOI: 10.1016/j.nucengdes.2019.04.042.

A Toptan, D J Kropaczek, and M N Avramova. “Gap conductance modeling I: Theoretical consider-
ations for single- and multi-component gases in curvilinear coordinates”. In: Nuclear Eng Design 353
(2019). por: 10.1016/j.nucengdes.2019.110283.

A Toptan, D J Kropaczek, and M N Avramova. “Gap conductance modeling II: Optimized model for
UO,-Zircaloy interfaces”. In: Nuclear Eng Design 355 (2019). DOI: 10.1016/ j . nucengdes . 2019.
110289.

A Toptan et al. “Modeling of gap conductance for LWR fuel rods applied in the BISON code”. In:
Journal of Nuclear Science and Technology (2020). (in PRESS). DOI: 10.1080/00223131 . 2020 .
1740808.

W C Young and R G Budynas. Roark’s Formulas for Stress and Strain. Tth. New York, NY: McGraw-
Hill, 2002.

81 of 87



A. Vector Identities

The vector u is expressed by w = 41u1 + tous + t1u3 in terms of the local unit vectors ¢; for i = 1,2, 3.

1) denotes a scalar.

e Cartesian coordinates (z,y, 2)

Gradient of v : Vi = () g—w—l— yaa%—F zgf
2 3

Py Py Py
82 922 022
8u1 6u2 (9u3

Laplacian of ) : V3 =

Divergence of u : V.u= Tm+67x2+8—m
. o . 6U3 811,2 : 8’11,1 E)ug s 8’[1,2 8u1
Curl of w : VXxu= . <6x2 8x3> + 1y (afl'g 8:01) + 1, <3xl 6:02)
e Cylindrical coordinates (.6, z)

s . _ i oY g OU 3¢
Gradient of v : Vi = "o + 90 +1i, EP
: oY 1% 9%
: 2, — e —_—
Laplacian of 9 : Ve = ; 67" < ) + 2 592 %+ 922

10(rui)  10uy  Oug
r  Or r 00 0z

. . . 1 8u3 8u2 . 8’&1 8U3 . 1 8( ) 1 6U1
Curl of u : VXxu= 1, (TW_E>+ZH(E_W>+ZZ{; 5 T B0

Divergence of u : V.u=

82 of 87



e Spherical coordinates (7,6, )

Gradient of 9 :
Laplacian of 1 :
Divergence of w :

Curl of u :

o 10y . 1 9y

Vo = lr§+29;%+z¢rsin98gp
19 [, 19 (. 0 1y
2 _ R - - g oy - ow
V= r2 Or (r 6T>+’I‘2$in969 (Sm089>+r2sin2969@2
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N r2  Or rsinf 00 rsinf dp

B i [O(ugsinf)  OQus o[ 1 Ou; O(rus)

FRU= rsin@[ 00 _%}_F?[Sinew_ or

e [Ora)

r or 00
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B. Mechanics: Method of Exact Solutions

Problem B.1: Static, 1D, an elastic rod subjected to stress

Considering a rod of length, [ in the absence of any body forces subject to an applied stress of oy.

The displacement, u is obtained by
_o(, L
u(z) = Z (x 2) (B.1)

where F is the Young’s modulus, o is the applied stress.

The governing equations for the static response of the rod are:

d
equation of equilibrium: d_o +b=0, (B.2)
iz
.o . du
strain-displacement relation: & = e (B.3)
T
constitutive relation: o = Ee. (B.4)

where E is the Young’s modulus, u is the displacement, ¢ is the strain, and b is the body force.
The problem domain is defined in X € [0,1]. Fig. B.1 shows the exact and FE solutions of the displace-

ment and strain. The solution is super-convergent for both linear and quadratic FEs due to the linearity of
Eq. B.1.
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Table B.1:
computed in two ways: (1) Ly norm and (2) H; norm.
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(a) Displacement u

L
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(b) Strain e

1.0

Displacement, strain, and residuals for Prob. B.1. Results are shown for the first two meshes.
First row: exact and FE solutions using 1D elements. Second row: residuals between the exact solution and
the FE solutions.

Norms computed for Prob. B.1 from the spatial refinement analysis (r, =

2).

No. Linear (p=1) Quadratic (p = 2)
Elems h |l L, |l |, |ul|L, |l |,
elem_type=EDGE2 elem_type=EDGE3
1 1.000000 2.276 x 10713 7.886 x 10713 2.276 x 10713  7.886 x 1013
2 0.500000 2.276 x 10~ 7.886 x 10713 3.716 x 10712 1.287 x 10~ 11
4 0.250000 2.752 x 1072 9.532 x 10712 7.520 x 1072 2.605 x 10~1¢
8 0.125000 8.527 x 10712 2.954 x 10~ 1.476 x 107° 8.534 x 10~1°
16 0.062500 2.034 x 10712 7.044 x 10712 1.372x 10717 1.186 x 10716
32 0.031250 1.004 x 10~ 3479 x 10~ 1.690 x 10~ 5.390 x 1014
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Problem B.2: Static axisymmetric 1D problem, thick-walled cylinder subjected to internal

pressure

A thick-walled cylinder is subjected to a uniform radial internal pressure, ¢ and a traction-free
external pressure [43, 17]. For the axisymmetric one-dimensional problem in which no rigid body modes
exist. No essential displacement boundary conditions are necessary. Ignored temperature and inertia
effects. The normal stresses in the longitudinal, circumferential, and radial directions are respectively

denoted as o1, 02, and o3:

B _qb2 (a2 _ 7“2)

B qb? (a2 + TQ)
LT TRz R

g9 = 07 g3 = m (B5)

where a is the outer radius and b is the inner radius (a < b), 7 is the radius, ¢ is the force per unit area.

The axisymmetric elasticity problem. Let us consider an infinitely long cylinder in which the displacement

field is given by u(r, 2) = u(r) and v(r, z) = 0 [17, pp.73-74]. The non-zero strains are & = {e,,e9} = { 9%, &

or’rJ:

The equilibrium equation simplifies to the following form

do, JT—09+b B @
or r "= P

(B.6)

For an isotropic material, stress-strain relations—including temperature effects—are given by

or \ E (1-v) v er — AT
<09>_(1+V)<1—2V)[ v (1—1/)](69—0{AT> (B-7)

0, =v(o, + 0p) — EaAT (B.8)

and

where E is Young’s modulus and v is Poisson’s ratio.

The problem domain is defined in X € [0.5,1.0]. A Dirichlet boundary conditions is applied to the
bottom boundary and the left boundary is a pressure boundary. Young’s modulus is £ = 10000 N/m? and
Poisson’s ratio is ¥ = 0.3. Fig. B.2 shows the exact solution and FE solutions of the axisymmetric problem.
The results are shown with 32x32 elements for each 2D element type.

The analytical solution exists for the stresses, however the primary variable is displacement. Therefore,
the expected convergence behavior of the displacement cannot be captured through the use of a code veri-
fication study. Instead, solution verification is performed and the results are shown in Fig. B.3. Norms are

calculated by comparing successively refined solutions at the inner surface of the cylinder.
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Figure B.3: Spatial refinement analysis for Prob. B.2. Solution verification at the inner surface for displace-
ment solution of the axisymmetric problem. Errors are quantified in terms of the Lo norm.
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