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Executive Summary

BISON Verification

In 2010, the U.S. Department of Energy created its first Energy Innovation Hub, which is focused on devel-

oping high-fidelity and high-resolution Modeling and Simulation (M&S) tools for modeling of Light Water

Reactors (LWRs). This hub, Consortium for Advanced Simulation of LWRs (CASL), has developed an LWR

simulation tool called Virtual Environment for Reactor Applications (VERA). The multi-physics capability

of VERA is achieved through the coupling of single-physics codes, including BISON, CTF, MPACT, and

MAMBA.

BISON is a fuel performance code which models the thermo-mechanical behavior of nuclear fuel using

high performance M&S. It is capable of modeling traditional LWR fuel rods, fuel plates, and TRi-structural

ISOtropic (TRISO) fuel particles. It can employ three-dimensional Cartesian, two-dimensional axisymmetric

cylindrical, or one-dimensional radial spherical geometry. It includes empirical models for a large variety of

fuel physics: temperature- and burnup-dependent thermal properties, fuel swelling and densification, fission

gas production, cladding creep, fracture, cladding plasticity, and gap/plenum models.

This document details a series of code verification test problems that are used to test BISON. These

problems add confidence that the BISON code is a faithful representation of its underlying mathematical

model. The suite of verification tests are mapped to the underlying conservation equations solved by the

code: heat conduction, mechanics, and species conservation. Twenty-two problems are added for the heat

conduction solution, two for the mechanics solution, and none for species conservation. Method of Manufac-

tured Solutions (MMS) capability is demonstrated with three problems, and temperature drops across the

fuel gap are tested.
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1. Introduction

The invention of the computer in the early nineteenth century has revolutionized the scientific process.

The relatively quick evolution of computers and Modeling and Simulation (M&S) methods has enabled a

detailed understanding of complex coupled physical phenomena. In the nuclear industry, M&S became a

primary focus in the 1970's. During that century, many of the well-known nuclear simulation codes and

methods were developed. As computational methods have continued to improve, the underlying numeri-

cal and computational methods of many of these "legacy codee have become outdated, necessitating the

development of modern computational tools.

The development of Multiphysics Object-Oriented Simulation Environment (MOOSE) at Idaho National

Laboratory (INL) has been one project which attempts to fulfill the role of modern M&S software. It is a

high-performance, open source, C++ finite element (FE) toolkit1 [1]. This software package has generalized

the conservation process into a finite-element formulation which can be applied to a variety of problems.

It allows scientists and engineers to focus on the empirical models relevant to their particular field, while

avoiding the details of computational science. One of the most prolific applications of the MOOSE framework

is BISON [2, 3], which focuses on the simulation of nuclear fuel.

BISON is a fuel performance code which models the thermo-mechanical behavior of nuclear fuel using

high performance M&S. BISON solves the fully-coupled equations of energy conservation, mechanics, and

species conservation to account for a majority of possible fuel behaviors. It is capable of modeling traditional

Light Water Reactor (LWR) fuel rods, fuel plates, and TRi-structural ISOtropic (TRISO) fuel particles.

It can employ three-dimensional Cartesian, two-dimensional axisymmetric cylindrical, or one-dimensional

radial spherical geometry. It includes empirical models for a large variety of fuel physics: temperature- and

burnup-dependent thermal properties, fuel swelling and densification, fission gas production, cladding creep,

fracture, cladding plasticity, and gap/plenum models.

In 2010, the U.S. Department of Energy created its first Energy Innovation Hub, which is focused on

developing high-fidelity and high-resolution M&S tools for modeling of LWRs. This hub, the Consortium

for Advanced Simulation of LWRs (CASL)2, has developed an LWR simulation tool called the Virtual Envi-

ronment for Reactor Applications (VERA). BISON is the high-fidelity and high-resolution fuel performance

tool used in VERA.

1www.github.com/idaholab/moose

2www.casl.gov
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Accurate simulation of nuclear fuels is an integral part of reactor analysis. In normal operating conditions,

the fuel melting temperature limits the total power output of a reactor. A full characterization of the

temperature distribution within the fuel requires an understanding of the thermo—mechanical behavior of

crud deposits, cladding, gap, and fuel. Fuel behavior is also consequential to the modeling of severe accident

scenarios, as the cladding serves as the first barrier which prevents releases of nuclear material. As such,

cladding temperature, creep, swelling, and rupture are included as modeling requirements for testing of

an LWR Emergency Core Cooling System (ECCS) [4]. As fuel modeling is important, consequential, and

difficult to validate, it is necessary to ensure predictive capability by providing BISON with a thorough

pedigree.

A variety of processes have been developed to quantify the reliability and predictive capability of M&S

tools. Here, we provide a general overview of these processes; more detail can be found in [5, 6, 7]. In

general, these processes include verification and validation.

1. Verification is used to ensure that the code functions correctly.

(a) Software Quality Assurance (SQA) is the process of detecting unintentional coding mistakes in

software. This is done through defect analyses (unit, component, and system tests), regression

tests, and code comparisons.

(b) Code verification ensures that the code is a faithful representation of the underlying mathematical

model.

(c) Solution verification is the assessment of all sources of numerical uncertainty: round-off, statistical

variation, iterative tolerances, and truncation error.

2. Validation is the process of assessing a code's capability to accurately model physical problems. Com-

parisons between code results and experiments quantify this capability.

The application of these software development procedures is crucial to the development of computational

tools that are free of coding mistakes and that accurately represent reality. A concise application of these

procedures and a complete template for the necessary code development steps have been outlined and

demonstrated for some models in a thermal-hydraulics subchannel code [8, 9, 10]. Existing verification and

validation work in BISON can be found in [11, 12].

This study focuses on expanding the formal verification of BISON, with a primary focus on its conduction

solution and secondary focus on mechanical behavior. The methodologies used in this work, verification

procedure, and design of the test matrix are outlined in Chapter 2. Results for heat conduction are reported

in Chapter 3. Appendix B details a few mechanics verification problems. The document concludes with a

discussion of the results and future work in Chapter 4.
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transient

2. Methods

In this chapter, the BISON verification methodology is described. The first discussion is an outline of the

BISON conservation equations and available solution options in Section 2.1. Verification is defined in detail

in Section 2.2. The two code verification methodologies: Method of Exact Solutions (MES) and Method

of Manufactured Solutions (MMS) are discussed in Section 2.3. The formal order of accuracy in BISON is

derived in Section 2.4. Section 2.5 defines the verification procedure. In Section 2.6, the test matrix creation

process is briefly described.

2.1 BISON Governing Equations

The BISON governing equations consist of three coupled partial differential equations (PDEs) for energy,

species, and momentum conservation [3].

au
pcp— V • (kVu) — efF = 0at , ...„
s"—Ne—"

—

 
transient 

conduction fission

OC
— V • (DVC) + AC — S = 0

at ..._____. -....-- •-.....-,-...,-- decay sourcediffusion

v • cy + pf =0......, --,..—,
Cauchy stress body force

tensor

Here, all quantities are defined in the List of Symbols. For the momentum conservation equation, note

that a constitutive relation is used to relate the primary solution variable—the displacement field u—to the

stress field via the strain.

These governing differential equations can each be separated into two parts: a balance equation or

conservation principle and a constitutive equation or physical law. For example, for a one-dimensional

steady state boundary value problem [13]
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r(x )
balance equation: 

d 
+ I3(x)U(x) = f (x), and (2.4)

dx

constitutive model: 
(x) = —a(x) 

dU( 

d

x)

x •
(2.5)

Here, dr(x) 1 dx represents loss of the conserved quantity from the system due to flow across boundaries,

/3(x)U(x) represents interior losses, and f (x) represents external sources. The proportionality constant, 0(x)

is a physical or material property and f (x) is generally known. The flux r(x) represents the flow of some

quantity, a force, or a stress. The flux is described as the derivative of the quantity of interest (QoI) U(x)

multiplied by some prescribed physical or material property a(x).

As an example, consider the heat conduction equation. In this case, the QoI U (x) is temperature u(x).

The physical property 0(x) is the convection loss coefficient hL/A and the eternal source is composed of

convection from ambient hLuc„, 1 A and an external heat source qm . The constitutive equation which relates

the flux to temperature is Fourier's law. Therefore, the one dimensional steady state heat conduction

equation is

—
d 

k 
du(x)) 

+ —
hL

u(x) = + —
hL

dx dx A A
(2.6)

Division of conservation equations into these underlying components is important during the code ver-

ification process. The numerical convergence of the governing equation can be tested, but the underlying

physical properties, material properties, and external sources (i.e., /3, a, and f) must be tested separately.

This is usually achieved by ensuring that (1) the models are coded correctly and return the expected values

and (2) they do not degrade the order of accuracy when the models are enabled. This can be achieved

through a combination of SQA and verification activities.

The BISON conservation equations are arranged into balance equations and constitutive models in Ta-

ble 2.1. Note that only the elastic region is considered for solid mechanics.

Table 2.1: Definition of BISON conservation equations as one-dimensional boundary value problems

Application Unknown Physical/material Exterior Flux

source

Balance

equation

Constitutive

equation

Governing

equationproperties load

General

Heat cond.

Elasticity

Species diff.

U

u

u

C

a

k

E

D

/3

hL
,.

A

f

q + A 
m fiL, u

°°

f

S

T

q

a

j

t + '611 = f

dq _L hL u
dx ' A

= qM + h.jt, u0.0

do. = f
dx J

A + AC = Sdx

r = —at

q = —k2

a = Edu
dx

j = —.130 dx

— I (at) + lau = f

— 
d (kd) _L hL u
dx dx ' A
= q m ± 11,.i uoo

—I (Et) = f

— ̀ ± (DdC) + AC = Sdx dx

To solve the prescribed conservation equations, BISON uses an FE method [14, 15, 13, 16, 17] as imple-

mented in the INL tool MOOSE. BISON is capable of generating simple meshes using the MOOSE input

4 of 87



GeneratedMeshGenerator1. For more complex geometries, BISON can import meshes generated using other

tools, such as CUBIT, which is a mesh generation tool developed at Sandia National Laboratories (SNL) [18].

The FE framework used in MOOSE is typically libMesh, which is a FE library developed at the University

of Texas at Austin. The FE types defined in libMesh and used in BISON are defined in Table 2.2.

Table 2.2: FE types used in the BISON/MOOSE solution algorithm

Dim. Description Pictorial representation

1D elem_type EDGE
type line
shape

2D elem_type TRI QUAD
type triangular quadrilateral

shape A 1 1
3D elem_type HEX TET

type

shape

PRISM PYRAMID
hexahedron tetrahedron prism pyramid

Though BISON is based upon libMesh and MOOSE and both of those codes have been individually

verified, it is also important to verify BISON. This ensures that there are no errors in the incorporation

of libMesh or MOOSE into the BISON framework. For example, it would be possible that BISON passes

an incorrect index to MOOSE. Even though MOOSE would solve the problem correctly, this coding error

would disrupt the BISON order of accuracy. Therefore, individual verification of BISON is an important

step to establishing its credibility.

2.2 Verification

In the context of large simulation codes solving nonlinear PDEs, verification involves quantifying numerical

errors between known and discrete solutions [5]. Verification is composed of three components: SQA, code

verification, and solution verification.

1. SQA is used to eliminate coding errors and is comprised primarily of software engineering practices:

version control, regression testing, defect testing, quantification of code coverage, and code-to-code

comparisons.

2. Code verification ensures that the computer code is a faithful representation of the underlying mathe-

matical model. This is achieved through the comparison of code solutions to a known solution as its

lhttps://mooseframework.org/source/mesh/GeneratedMesh.html

5 of 87



mesh is refined. Through comparison to the expected behavior of the discretization error, it can be

ensured that the numerical algorithm is behaving correctly.

3. Solution verification focuses on the estimation of numerical errors that occur when a mathematical

model is discretized and solved on a digital computer. Though solution verification and code verification

have some similar methodology, solution verification uses problems which do not have a known solution.

Therefore, numerical errors must be estimated and not simply evaluated. This includes all sources of

numerical error: round-off, statistical sampling, iterative error, and discretization errors.

Note that some literature includes SQA as a part of code verification (e.g., [5, 19]). Here, the two

activities are distinguished to clearly separate testing of the numerical algorithm from other testing activities.

Verification is concerned only with computer science and mathematics. Validation activities, which are

concerned with the actual behavior of real-world systems and comparisons to experimental data, are out of

the scope of this work. Existing validation results for BISON are outlined in [11].

2.3 MES and MMS

In general, the code verification process ensures that the coded numerical algorithm is a faithful repre-

sentation of the underlying mathematical model. Here, we notate the the intended mathematical model as

some nonlinear system operator L.

r[f (i, t)] = 0 (2.7)

The solution f(Y, t) is a function of space i and time t. The first option for finding a known solution

is to use the Method of Exact Solutions (MES) [19], which involves calculating an exact analytic solution

to Eq. 2.7. However, finding a nontrivial analytic solution to a complex nonlinear differential equation is

difficult. The solution of these equations often requires significant simplifying assumptions. For example,

many analytic solutions require that one or more of the terms in the PDE are trivial and eliminated from

the solution. This process becomes even more difficult when a system of nonlinear equations is considered.

Often, only approximate solutions are possible. for example, the well-known Navier-Stokes equations only

have analytic solutions for the most trivial boundary and initial conditions.

A complete set of code verification analyses would require that all features of a code are tested. At

its best, application of MES to the verification of all code options is a laborious process; at its worst, it

can preclude sufficient testing of one or more relevant code options. For example, many analytic solutions

involve only a single equation of state, varying property, or nonlinear source, and no solution is possible with

multiple combinations of these complex physics. However, many codes default setting is to use a variety of

equations of states, many varying properties, and nonlinear sources.

To address thorough code verification, analysts can employ the Method of Manufactured Solutions

(MMS) [5, 7, 19, 20]. In this method, a particular problem is worked backwards. The analyst deter-

mines a particular form of the solution M (Y , t). Then one seeks the necessary space- and time-dependent
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source Q (Y , t) that would result in the manufactured solution:

G [M (Y , 0] = Q (i , t) . (2.8)

The source Q(x, t) is implemented in the simulation tool, then the verification process is performed.

This methodology requires that the manufactured solution is formulated using continuous and smooth func-

tions. These functions must be sufficiently complex to reveal nonlinearity in the governing equations. The

chosen manufactured solution can be physically unrealistic, as it is intended only to test the underlying

numerical algorithms. MMS is particularly powerful when combined with symbolic computation tools (e.g.,

Mathematica), as calculation of the source term can be automated.

Any necessary boundary conditions or initial conditions can be derived directly from the manufactured

solution M(Y, t). Any equations of state, varying properties, or nonlinear sources can be incorporated into

the MMS process by implementing them in the nonlinear operator L . This allows all relevant code options

to be tested in different combinations. In addition, MMS does not require the complex analytic solutions

formed for MES, which greatly reduces the labor required for the verification process.

In this work, a series of traditional MES problems are solved for BISON to establish a pedigree. For the

conduction solution, these include steady state problems solved on one- and two-dimensional domains with

a variety of properties and external sources. Once this baseline pedigree is established, the MMS capability

in BISON is demonstrated using three manufactured problems. For the mechanics solution, these problems

include two preliminary MES problems (see Appendix B), which is not enough to construct a full test matrix.

2.4 Order of Accuracy

In this section, the formal order of accuracy is established for spatial and temporal discretization in BISON.

Spatial Order To establish the spatial formal order of accuracy of the BISON solution algorithm, we

provide a heuristic derivation [13, 17] and point the reader to more mathematically rigorous analyses with

the same result [14, 15, 16, 21]. In this work, the convergence of the computed solution to the analytic

solution is analyzed as the size of the FEs approaches zero, e.g., h-convergence. No effort is made to quantify

p-convergence, during which convergence is analyzed as the order of the basis functions is increased [22].

For problems in this work, there are no singularities in mesh, properties, or external sources. All an-

alytic solutions are continuous, smooth, and infinitely differentiable. The mesh has constant spacing and

is uniformly refined. Under these conditions, the analysis of the discretization error is relatively simple.

Here, we will analyze the error behavior of the QoI U at some specified point in the domain x*, and use the

results to generalize about the entire domain. First, note that the exact solution to a specific problem can

be represented by a Taylor series about some point X in the FE that contains x* :

Do 
1 dn U

U (x) = Y
L—' n! dxn
n=0
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This expansion assumes that U(x) is infinitely differentiable, which is true for all solutions in this work.

Here, we have used a Taylor series approximation, which corresponds to a polynomial basis function of

degree p. Note that this procedure is equally applicable to other basis functions. The approximate solution

calculated by the simulation tool U using the chosen basis function of degree p is

= E an (x — X)n (2.10)
n=0

The Taylor series coefficients have been collapsed into the arbitrary constant an. We define the length of

an element as h and note that Ix — XI < h because X is a point inside the element. As the mesh is uniformly

refined, h 0, the approximate solution U approaches arbitrarily close to the terms of Eq. 2.9 which are

degree p or lower. In addition, the domain point x* approaches the FE point X as the mesh is refined.

Therefore, the remaining terms of p+ 1 and greater will form the error at point x*.

00

(/(x.)_o(x.), E cn(x __I)n, as h 0. (2.11)
n=p+1

Note that cn is a constant which includes the coefficient and derivative term from Eq. 2.9. For a sufficiently

small h, higher order terms become negligible and the p 1 term will dominate.

U(x*) — 0(x*) = cp+ihP+1 (2.12)

Now we generalize the error at a single point (Eq. 2.12) to all of space using a norm:

I U (x) I L2 (rn 
= ChP+1, (2.13)

where C is an arbitrary constant that is problem-dependent, and the MOOSE function ElementL2Error2 is

used to compute the L2 norm over the domain 11:

1.L2(si) = fo(U (1)2c1S2 = (U — (1)2. (2.14)

As Eq. 2.13 is an exponential function, the slope of error on a log-log plot is the observed order of

accuracy po = p 1. Note that the finite element degree p is sometimes referred to as the finite element

order; however, it is not equivalent to the order of accuracy for a particular numerical method, which we

notate as p + 1. Using two different meshes, the observed order of accuracy can be approximated as

log(H(J1121111R4h) 
Po = (2.15)

log (2) •

All of the above arguments can also be applied to the flux. Since the flux is the first derivative of the

QoI, its asymptotic rate should be one order lower than that of the function, that is its formal order is the

same as the degree of the chosen FE.

2https://mooseframework.org/docs/doxygen/moose/ElementL2Error_8C_source.html
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I 1U (x)Il 1. ,semi(0) = C hP, (2.16)

where C is an arbitrary constant that is problem-dependent, and the MOOSE function ElementHlSemiError3

is used to calculate the norm.

11012Hi,semi(0) = 1V(U 0)12a2 = E (1) 

2

Eq. 2.15 can also be used to estimate the observed order of accuracy po for the flux.

(2.17)

Temporal Order The MOOSE framework provides eight time discretization options which can be used

to solve the transient BISON conservation equations:

1. Implicit/backward Euler (default),

2. Explicit/forward Euler,

3. Crank-Nicolson,

4. Two-step backward differentiation formula (BDF),

5. Explicit midpoint,

6. Diagonally implicit Runge-Kutta (DIRK),

7. Explicit total variation diminishing (TVD) two-stage Runge-Kutta, and

8. Newmark-beta.

Here, we derive the formal order of accuracy for the implicit Euler method, which is the default option in

BISON. Similar exercises can be completed for all methods. We notate the transient conservation equation

for some QoI U as

OU

at M(x,t,U) (2.18)

here, M is some function of space g, time t, and the QoI U which includes the finite element treatment of

U. The implicit Euler scheme discretizes this equation as

Un+1 - Un
At

= .A4 (g,t,un±')

The QoI at n 1 is expanded about n to approximate the numerical error in time:

un+' = 
co aku E —
k=0 

k! Otk

n auAtk (In + at

This is substituted into Eq. 2.19 and simplified, yielding:

OU

at
n 1 (92U
-F 
2 2

n

n 
At ± 

1 a2u
2 Ot2

At = .A4(g, t,unn

3https://mooseframework.org/docs/doxygen/moose/classElementHisemiError.html
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The second term scales with At, so the implicit Euler method is first order in time. Note that additional

numerical error is introduced by the remaining UTh+1 terms, but these errors will be first order or greater.

Similar analyses performed on the other time integration schemes indicate that three of the methods (implicit

Euler, explicit Euler, and explicit midpoint) are first order and the rest are second order.

2.5 Code Verification Procedure

The purpose of code verification is to ensure that discretized equations solved on a computation system

faithfully represent the underlying continuous equations. This is achieved by comparing the formal and

observed orders of accuracy. For each problem, a practical prescribed process is followed.

1. Define and solve the mathematical model. For MES problems, this involves selecting the conser-

vation terms to be tested, setting boundary conditions and/or initial conditions, and mathematically

solving the analytic problem. For MMS, a manufactured solution is chosen and the corresponding

source term is derived.

2. Choose the numerical algorithm and establish formal order of accuracy. In BISON, a variety

of FE types and temporal discretization schemes are available; one or more methods must be selected

before solving the numerical problem. The corresponding formal order of accuracy for each method

was established in Section 2.4.

3. Obtain numerical solutions. After formulating the required mesh and input deck, a numerical

representation of the mathematical model is solved on at least four meshes. In this work, many meshes

are evaluated to examine the behavior outside the asymptotic region. For steady state problems, only

the spatial mesh is refined; however, the spatial and temporal mesh can be refined simultaneously for

transient problems. Such combined order analysis methodology has been analyzed in [23]. Given the

spatial and temporal formal order of accuracy, refinement factors can be selected from Table 2.3, which

gives the corresponding expected reduction in error.

4. Examine convergence behavior. The expected convergence behavior is shown in Fig. 2.1. When

the mesh is coarse, higher order terms degrade the order of accuracy (region I). The region analyzed in

the code verification process is the asymptotic region (region II), where the higher order terms are small

enough that the observed order approximates the formal order. Finally, the numerical solution cannot

converge to a tolerance finer than external sources of numerical error; therefore, as the mesh is refined

further, there is a leveling-off of error and a slight increase as numerical error accumulates (region III).

In this work, the source of numerical error is primarily due to the iterative tolerance for the matrix

solve. Finally, note that some problems will display hyper-convergent behavior. This is expected for

problems where the FE order is high enough to exactly fit the analytic solution. For example, a first

order method exactly approximates a linear solution and a second order method exactly approximates

a quadratic solution. In these cases, the error plot starts in region III, as it immediately approximates

the analytic solution to within numerical error.

10 of 87



Table 2.3: Temporal refinement factors required to conduct combined spatial and temporal order verification
(from [5]). Temporal verification can be conducted by choosing a temporal refinement factor for more
complicated cases with p q—according to [24] as rt = (rx)p/q.

=

=
tO
o

Spatial
order, p

Temporal
order, q

Spatial
refinement
factor, rx

Temporal
refinement
factor, rt

Expected error
reduction ratio
(coarse/fine)

1 1 2 2 2
1 2 2 \/2 2
1 3 2 3 2 2
1 4 2 ... 2
2 1 2 4 4
2 2 2 A/71 4
2 3 2 N 4
2 4 2 44 4
3 1 2 8 8
3 2 2 ji 8
3 3 2 ... /g 8
3 4 2 4/g 8

I II III

log Noe,

Figure 2.1: A pictorial representation of expected convergence behavior. Region I represents coarse meshes,
region II is the asymptotic region, and region III is caused by numerical error.
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5. Debug and correct errors if necessary. If the convergence behavior is significantly different than

Fig. 2.1, it indicates an error in the analytic solution, numerical model, or post-processing of the

simulation results. Debugging and correcting these errors is an integral part of the verification process.

6. Document results. The numerical and analytic solutions will be plotted using different FEs and

meshes, then the convergence plot is created. These are included in this document, and also added to

existing BISON documentation. In addition, code mistakes that are fixed as a result of the debugging

process are also documented in Chapter 4.

Once this process is complete and the observed order of accuracy matches the formal order of accuracy,

the particular code verification problem is successful. The problem is added as evidence that the particular

combination of physics, discretization, geometry, boundary conditions, and initial conditions is numerically

free of coding mistakes.

2.6 Test Matrix Construction

The selection of MES and MMS problems is an important part of the verification process. An analyst is

tasked with providing enough evidence that the numerical algorithm is correct without performing redundant

or unnecessary work. In this report, we approach this issue by first incorporating each option for physics,

geometry, boundary condition, and FE into at least one verification problem. Once each option has been

tested, we expand on the verification matrix by employing different combinations of these options. This

ensures that the coupling between different options does not reveal coding mistakes that are otherwise

hidden.

Chapter 3 presents the verification matrix for heat condition and corresponding numerical results. For the

mechanics solution, there are not enough completed examples to fully define a verification matrix. However,

a few preliminary examples are included in Appendix B. In the future, these will be expanded upon and a

matrix will be formulated.
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3. Thermal

In this chapter, the first conservation equation solved in BISON is considered: heat conduction. For all

types of fuel—fuel plate, fuel rod, and TRISO particle the transport of heat through the fuel is of utmost

importance when determining the cladding and fuel temperatures, which are enforced as safety limits. In

Section 3.1, the heat conduction equation itself is verified using a series of sixteen MES and three MMS

problems. Section 3.2 expands these analyses to include an important consideration for nuclear reactors: the

temperature jump across a gap in the fuel. This is verified for all three coordinate system options in BISON:

Cartesian, cylindrical, and spherical.

3.1 Basic Heat Conduction

As provided in Chapter 2, the heat conduction equation solved in BISON is

Ou
pcp — V • (kVu) + 4 = O. (3.1)

The vector identities provided in Appendix A can be used to transform this vector equation into all three

coordinate systems solved in BISON: Cartesian, cylindrical, and spherical coordinates.

This equation requires testing of both the temporal and spatial order of accuracy. In addition, the

implementation of the thermal conductivity and external heat source can be verified. In many classic

solutions for the conduction equation, the thermal conductivity is treated as constant. When this assumption

is relaxed, the conduction equation becomes nonlinear and difficult to solve. Usually, numerical methods

are required to solve these problems, though analytical methods can be applied to some simple cases. These

simple cases are used to verify BISON for these types of problems.

For transient problems, a suitable time step must be selected such that the numerical solution is stable.

The limiting choice of temporal discretization scheme which requires the smallest time step is explicit Euler.

The limit for numerical stability of this method is established using von Neumann stability analysis [25].

The criterion for the stability requirement in three dimensions (where the spatial coordinates are defined in

the general form Y = {x1, x2, x3}) is given by

r = a
(  At At At 1) < 

(Axi)2 + (Ax2)2 + (Ax3)2)  2'
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where a is the thermal diffusivity (a = k 1 (pcp), At is the time step size, and Axi is the spatial mesh size in

i-th direction for i = 1, 2, 3. This limit is sometimes referred to as the Fourier limit. Because the denominator

is squared, combined spatial and temporal mesh refinement studies can be computationally expensive.

A verification matrix is constructed following the methodology discussed in Section 2.6 and considering

available resources. It includes all considerations discussed so far: treatment of the temporal term, coor-

dinate system, dimensions, property and source term treatment, and boundary conditions. The matrix is

shown in Table 3.1 and includes sixteen MES and three MMS problems. Literature sources for the MES

problems are listed. The MMS problems are included to demonstrate BISON capability, rather than to

fill gaps in the verification matrix. All options in the matrix have at least one corresponding test except

for three-dimensional conduction, temperature-dependent specific heat, and temperature-dependent thermal

diffusivity. Different combinations of options are tested, though not all combinations are tested.

For each problem in Table 3.1, this chapter includes a problem description, BISON results compared to

the analytic solution, and a convergence plot for both temperature and heat flux. The observed order of

accuracy for most problems match with the formal order derived in Section 2.4. Therefore, these results can

be added as evidence that the conduction equation is implemented correctly in BISON and is free of coding

mistakes.
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Table 3.1: Verification matrix for BISON conduction equation

Transient
Coordinate
System

Dimension
Properties and
External Sources

Boundary
Conditions

Tr
an
si
en
t 

St
ea

dy
 S
ta
te
 

Ca
rt
es
ia
n -8

c.), ,a

k
(
T
)
 -'ei 4 le

l 

l
a
l
 

TN

'7'- ;-1

C.) C1' q' Eciq ET ,-.) Zr, tzr, t t

Method of Exact Solutions

3.1 [26]
3.2 [26]
3.3 [27]
3.4 [28]
3.5 [26]
3.6 [26]
3.7 [28]
3.8 [29]
3.9 [29]
3.10 [28]
3.11 [29, 30]
3.12 [26]
3.13 [26]
3.14 [29, 31]
3.15 [29, 32]

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓
✓ „(

✓ 

✓

✓

✓

✓

✓

3.16 [29] ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

 ✓

✓

✓

✓

✓

✓

✓ .7
✓

Method of Manufactured Solutions

3.17
3.18
3.19 [1] ✓

J ✓

J ✓

✓

✓ ✓

✓

✓ ✓

.7 ✓

✓
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Problem 3.1: Plate with internal heating

An infinite plate has constant thermal conductivity k and internal heat

generation qm . It is exposed on each face to a constant temperature, u(0) =

u0 and u(f) = u.e, and reaches thermal equilibrium. The analytic solution

for the temperature distribution in the plate is the quadratic function [26,

p.169]
x x(f - x)

u(x) = uo - (uo - ut) + k  2 •
(3.3)

k,(//1

X

/1.MA

1.1.e

The problem is run in BISON on the domain X E [0, 1] using the dirichlet boundary conditions u(0) =

u0 = 100 K and u(1) = = 0 K. Steady state heat conduction is considered with constant thermal

conductivity k = 12 W/m/K and volumetric heat generation qm = 1200 W/m3. The exact and computed

solutions are shown in Fig. 3.1 for four different meshes and two finite element types (linear: EDGE2; quadratic:

EDGE3).

100

80

60

40

20

12
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8

I 6

4

2

Nelem=1 Nelem=2 Nelem=4 Nelem=8
, . 

-Exact, u -
-o-EDGE2, ti
-N-EDGE3, 0 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X X X

Figure 3.1: Temperature distribution and residuals for Prob. 3.1. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., rx = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.2. In the asymptotic region, the linear FE solution

converges to the exact solution second order, which matches with the formal order of accuracy. The quadratic

solution instantly converges to the exact solution within numerical error due to the quadratic shape of Eq. 3.3.
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log10(h)
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=

1

-0.5 -1.0 -1.5

1og10(h)

4 8 16 32

-2.0 -2.5

64 128 256

Number of elements, Nelem Number of elements, Neiem

No.
Elems h

Linear (p = 1)

iluilL2 liull111

Quadratic (p = 2)

Iluhl llullill

elem_type=EDGE2 elem_type=EDGE3
1 1.000000 8.333 x 10° 2.887 x 101 4.341 x 10-14 1.271 x 10-13
2 0.500000 2.083 x 10° 1.443 x 101 5.674 x 10-14 2.452 x 10-13
4 0.250000 5.208 x 10-1 7.217 x 10° 2.464 x 10-11 1.613 x 10-10
8 0.125000 1.302 x 10-1 3.608 x 10° 6.850 x 10-10 6.277 x 10-9
16 0.062500 3.255 x 10-2 1.804 x 10° 3.332 x 10-12 5.952 x 10-11
32 0.031250 8.138 x 10-3 9.021 x 10-1 2.105 x 10-7 7.165 x 10-7
64 0.015625 2.035 x 10-3 4.511 x 10-1 1.032 x 10-6 4.393 x 10-6
128 0.007812 5.086 x 10-4 2.255 x 10-1 9.953 x 10-9 3.128 x 10-8
256 0.003906 1.272 x 10-4 1.128 x 10-1 1.212 x 10-7 3.808 x 10-7

Figure 3.2: Spatial refinement analysis for Prob. 3.1. Results are computed using 1D elements and a spatial
refinement factor rx = 2. The formal order of accuracy is shown for each plot. Results for EDGE3 are super-
convergent and excluded from the plot. Left plot: the L2 norm quantifies convergence of the temperature
distribution. Right plot: the H1 norm quantifies convergence of heat flux. Table: numerical values used to
construct the plots.
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Problem 3.2: Plate with temperature dependent thermal conductivity

The thermal conductivity of an infinite plate varies linearly with temper-

ature: k = ke+ 0(u— ut). It is exposed on each side to a constant tem-

perature: u(0) = u0 and u(t) = ut. The plate is allowed to reach thermal

equilibrium and the analytic solution for the temperature distribution is [26,

pp.138]

u(x) = ut + 
k
[ e 1+ 0

(k0+kt) (t x) 

k2 
(u0 —14) —11. (3.4)

e

The problem is run in BISON on the domain

X E [0, 1]. Dirichlet boundary conditions are ap-

plied: u(0) = u0 = 300 K and u(1) = ut =

0 K. Steady state heat conduction is considered us-

ing a nonlinear thermal conductivity, where kt =

5 W/m/K. The nonlinearity of the problem is quan-

tified by the variable /3; the analytic solution as a

function of /3 is shown in Fig. 3.3. Two cases are ex-

amined in this study: (I) = 0.001 and (II) = 0.1. —13 0
—13 = 0.01
—13= o.1

Case I (/3 = 0.001): The exact and computed —13=1.o

solutions are shown in Fig. 3.4a for four different

meshes and two FE types (linear: EDGE2; quadratic:

EDGE3). A convergence study is conducted with a Figure 3.3: The exact solution of Prob. 3.2 as a func-
refinement factor of two (i.e., rx = 2). The com- tion of space and /3

puted norms for each element type are plotted and

tabulated in Fig. 3.5. The formal order of accuracy is two for linear FEs and three for quadratic FEs. In

the asymptotic region, the linear and quadratic FE solutions converge to the exact solution with the correct

order of accuracy.

300
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0.0 0.2 0.4 0.6
X

0.8 1.0

Case II (0 = 0.1): The exact and computed solutions are shown in Fig. 3.4b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., rx = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.6. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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(a) Case I, 0 = 0.001
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(b) Case II, 0 = 0.1

Figure 3.4: Temperature distribution and residuals for Prob. 3.2. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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Number of elements, Neiem

No.
Elems h

1 1.000000
2 0.500000
4 0.250000
8 0.125000
16 0.062500
32 0.031250
64 0.015625
128 0.007812
256 0.003906

Linear (p = 1) Quadratic (p = 2)

IIuIILz IIuIIHI IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
1.457 x 10° 5.042 x 10° 1.470 x 10-2 1.137 x 10-1
3.647 x 10-1 2.526 x 10° 1.846 x 10-3 2.859 x 10-2
9.120 x 10-2 1.264 x 10° 2.310 x 10-4 7.156 x 10-3
2.280 x 10-2 6.319 x 10-1 2.888 x 10-5 1.790 x 10-3
5.701 x 10-3 3.160 x 10-1 3.610 x 10-6 4.470 x 10-4
1.425 x 10-3 1.580 x 10-1 5.097 x 10-7 1.120 x 10-4
3.560 x 10-4 7.899 x 10-2 6.827 x 10-6 3.500 x 10-6
8.881 x 10-5 3.950 x 10-2 1.896 x 10-5 6.000 x 10-5
2.200 x 10-5 1.975 x 10-2 5.694 x 10-5 1.810 x 10-4

Figure 3.5: Spatial refinement analysis for Prob. 3.2 (Case I, = 0.001). Results are computed using 1D
elements and a spatial refinement factor rx = 2. The formal order of accuracy is shown for each plot. Left
plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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elem_type=EDGE2 elem_type=EDGE3
1 1.000000 4.179 x 101 8.687 x 101 1.229 x 101 4.595 x 101
2 0.500000 1.741 x 101 7.983 x 101 4.466 x 10° 3.788 x 101
4 0.250000 6.728 x 10° 6.889 x 101 1.426 x 10° 2.833 x 101
8 0.125000 2.372 x 10° 5.423 x 101 3.869 x 10-1 1.802 x 101
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Figure 3.6: Spatial refinement analysis for Prob. 3.2 (Case II, = 0.1). Results are computed using 1D
elements and a spatial refinement factor rx = 2. The formal order of accuracy is shown for each plot. Left
plot: the L2 norm quantifies the convergence of the temperature distribution. Right plot: the H1 norm
quantifies the convergence of heat flux. Table: numerical values used to construct the plots.

21 of 87



Problem 3.3: Plate with temperature dependent thermal conductivity and internal heat-

ing

The thermal conductivity of an infinite plate varies linearly with tem-

perature: k = ke(1+ ,tht). It has a constant internal heat generation and is

exponsed on each side to a constant temperature: u(0) = u0 and u(e) =

The plate is allowed to reach thermal equilibrium and the analytic solution

for the temperature distribution is [27, pages 129-132]

u(x) = Ike + —1 Yi Cqint2 X 2kt 1— (i)) —1]. (3.5)

The problem is run in BISON on the domain

X E [0, 1]. A Neumann boundary condition is

applied to the left face and Dirichlet to the right:

(du/dx)x=0 = 0 and u(1) = ut = 0 K. Steady state

conduction is considered using a nonlinear thermal

conductivity, where ki = 1 W/m/K. The analytic

solution as a function of 0 is shown in Fig. 3.7. The

external heat source is q'll = 1200 W/m3. Two cases

are examined: (I) = 0.001 and (II) = 0.1.

Case I (0 = 0.001): The exact and computed

solutions are shown in Fig. 3.8a for four different

meshes and two FE types (linear: EDGE2; quadratic:

EDGE3). A convergence study is conducted with a Figure 3.7: The exact solution of Prob. 3.3 as
refinement factor of two (i.e., rx = 2). The com- tion of space and 0

puted norms for each element type are plotted and

tabulated in Fig. 3.9. The formal order of accuracy is two for linear FEs and three for quadratic FEs. In

the asymptotic region, the linear and quadratic FE solutions converge to the exact solution with the correct

order of accuracy.
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Case II (0 = 0.1): The exact and computed solutions are shown in Fig. 3.8b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., rx = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.10. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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Figure 3.8: Temperature distribution and residuals for Prob. 3.3. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.

23 of 87



o

1

-0.5 -1.0 -1.5

log10(h)

4 8 16 32

-2.0 -2.5

64 128 256 1 2 4 8

-1.0 -1.5

logio(h)

16 32 64

-2.0 -2.5

128 256

Number of elements, Neiem Number of elements, Neiem

No.
Elems
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1 1.000000 9.425 x 101 3.060 x 102 6.495 x 10° 4.257 x 101
2 0.500000 2.537 x 101 1.711 x 102 1.233 x 10° 1.787 x 101
4 0.250000 6.570 x 10° 9.023 x 101 1.885 x 10-1 5.707 x 10°
8 0.125000 1.663 x 10° 4.597 x 101 2.548 x 10-2 1.568 x 10°
16 0.062500 4.172 x 10-1 2.311 x 101 3.263 x 10-3 4.037 x 10-1
32 0.031250 1.044 x 10-1 1.157 x 101 4.106 x 10-4 1.017 x 10-1
64 0.015625 2.611 x 10-2 5.788 x 10° 5.141 x 10-5 2.548 x 10-2
128 0.007812 6.527 x 10-3 2.894 x 10° 6.429 x 10-6 6.374 x 10-3
256 0.003906 1.632 x 10-3 1.447 x 10° 8.037 x 10-7 1.594 x 10-3

Figure 3.9: Spatial refinement analysis for Prob. 3.3 (Case I, = 0.001). Results are computed using 1D
elements and a spatial refinement factor rx = 2. The formal order of accuracy is shown for each plot. Left
plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the Hl norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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4 0.250000
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256 0.003906

Linear (p = 1) Quadratic (p = 2)

IIuIILz IIuIIHI IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
2.928 x 101 6.067 x 101 8.514 x 10° 2.864 x 101
1.229 x 101 5.067 x 101 3.706 x 10° 2.558 x 101
5.220 x 10° 4.432 x 101 1.511 x 10° 2.212 x 101
2.158 x 10° 3.914 x 101 5.659 x 10-1 1.843 x 101
8.444 x 10-1 3.365 x 101 1.888 x 10-1 1.425 x 101
3.050 x 10-1 2.705 x 101 5.410 x 10-2 9.597 x 10°
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2.962 x 10-2 1.240 x 101 2.525 x 10-3 2.283 x 10°
8.062 x 10-3 7.001 x 10° 4.080 x 10-4 7.809 x 10-1

Figure 3.10: Spatial refinement analysis for Prob. 3.3 (Case II, = 0.1). Results are computed using 1D
elements and a spatial refinement factor rx = 2. The formal order of accuracy is shown for each plot. Left
plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.4: Rectangular adiabatic plate

A two-dimensional thin adiabatic plate has a thermal conductivity k =

1 and no external heat source. It is defined on the domain x E [0, L]

and y /1. It is exposed on each face to an arbitrary temperature:

u(x,l) = fi(x), u(x, 0) = f2(x), u(L,y) = 9i(y), and u(0,y) = gz(y)•

For this specific case, the two-dimensional steady state temperature

distribution can be solved analytically as [28, pp.128-131]

where

u(x, y) = U(i) + U(2) + U(3) + U(4)) (3.6)

92

= 
2

u(l) s nh n7r L 
sin ( (x) sin (717rx) fsi

i

nh (

(

miry/II L

)

) L0
)dx,

n=1 

n
7Lr
x

y

 > X

f2

L --->

(3.7a)

= 2 z_av.cc sinh (n7r(/ - y)/L) ( —
L
) n7x f 

0 
f2(x) sin ( 

L 
7) dx, (3.7b)

u(2)

n=1 
sinh (rorl 1 L) 

sin 

2 sinh (7t7ry/l) sin (mry f 1 (y) sin (nlry)dy,gi (3.7c)
u(3) / sinh (n7rLIl) 0

2 °° sinh (n7r(L - x)/l) sin (wry) fl g 2 (y) sin rri Y)dy. (3.7d)
u(4) \ /sinh (71,7rL1l)

n=1

The top and bottom surfaces are exposed to a constant temperature fi(x) = f2(x) = 1 K. The left and

right surfaces are exposed to a constant temperature gi (y) = 92 (y) = O K. With these specific choices of

boundary condition, the solution reduces to

4 cosh ( i,` - y1) 
sin 

crx) 1 cosh (3±r - y])
u(x, y) =

L 3 cosh ) 
sin (371 ...1

7r cosh Cif)

4 L-• .1 N Cosh ((2i-i)ir y] ) 
sin ( (2i - 1)7rx)

7r (2z - 1) cosh ( (2/-1)'i=i 2 L

(3.8)

This problem is solved in BISON using the diffusion module on the domain X c [0, 1]2. Dirichlet

boundary conditions are applied to each surface: fi(x) = f2 (x) = 1 K and gi (y) = g2(y) = O K. Steady

state heat conduction is considered through the homogeneous solid. For comparison to the analytic solution,

the first 100 terms of the infinite summation in Eq. 3.8 sufficiently characterize the analytic solution. This

approximate analytic solution is shown in Fig. 3.11 on the square domain. The temperature gradually

transitions from the hotter temperature at the top and bottom surfaces to the cooler temperature at the left

and right surfaces.
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x

Figure 3.11: Isotherms of the approximate solution of Prob. 3.4 computed using the first 100 terms of Eq. 3.8

Fig. 3.12 shows the convergence of two FE choices as the two-dimensional mesh is refined (QUAD4 and

TRI3). The triangular FE results in a solution that more accurately approximates the analytic solution. This

is due to shape of the analytic solution, which cannot be easily fit using square elements. In Fig. 3.12, it can

also be observed that the largest source of error for both meshes is in the upper right corner. This error is not

related to the selection of FE types, but rather is due to the numerical approximation to the mathematical

problem. This particular problem is an elliptic boundary value problem (BVP), which is known to have

corner singularities in two- or three-dimensional domains [33, 34, 35]. Such singularities can be the result of

non-smoothness of the domain (corners, edges, etc.), abrupt changes of a boundary condition from one type

to another, or discontinuities in the solution or model coefficients [36]. The singularity is expected to impact

the observed order of accuracy [37]; therefore, a convergence plot isn't included for this problem.

Fig. 3.13 shows a comparison of the two-dimensional solutions with 32 x 32 elements using a variety of FE

types (linear: QUAD4 , TRI3; quadratic: QUAD8 , QUAD9 , TRIO. Regardless of the chosen FE shape, the BISON

solution has the correct shape, indicating that each two-dimensional FE option is implemented correctly.
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Figure 3.12: Temperature distributions and residuals for Prob. 3.4 with different meshes (left: QUAD4; right:
TRI3). Center columns: the FE solutions using a variety of 2D meshes. Outside columns: residuals between
the approximate solution and the computed solutions, where darker colors indicate a less accurate computed
solution.
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Figure 3.13: Temperature distributions and residuals for Prob. 3.4 with different FE types. Results are
shown for five FE types. First row: the FE solutions using 32 x 32 2D elements. Second row: residuals
between the approximate solution and the computed solutions, where darker colors indicate a less accurate
computed solution.
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Problem 3.5: Hollow cylinder with Dirichlet boundary conditions

An infinitely long hollow cylinder with inner radius ri and outer radius

r, has a constant thermal conductivity k. It is allowed to reach thermal

equilibrium while being exposed constant temperatures on its inside and

outside faces: u(ri) = u„, and u(ro) = u„. The analytical solution for the

temperature distribution in the cylinder is [26, pp.133]

u, ln (ri) — ln (r0) (ui — It())
u(r) =    ln (r). (3.9)

In (r2/r0) ▪ ln (r2/r0)

ri

h,

The problem is solved in BISON on the domain X E [0.2, 1] using Dirichlet boundary conditions u(0.2) =

ui = 300 K and u(1) = u, = O K. Steady state heat conduction is considered through the solid with constant

thermal conductivity k = 5 W/m/K. The exact and computed solutions are shown in Fig. 3.14 for four

different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.14: Temperature distribution and residuals for Prob. 3.5. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., rr = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.15. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Number of elements, Neiem Number of elements, Neiem

No.
Elems

Linear (p = 1) Quadratic (p = 2)

elem_type=EDGE2 elem_type=EDGE3
1 0.800000 6.430 x 101 2.512 x 102 1.212 x 101 9.195 x 101
2 0.400000 2.252 x 101 1.546 x 102 2.386 x 101 4.007 x 101
4 0.200000 6.787 x 10° 8.703 x 101 3.820 x 10-1 1.392 x 101
8 0.100000 1.835 x 10° 4.572 x 101 5.325 x 10-2 4.045 x 10°
16 0.050000 4.705 x 10-1 2.323 x 101 6.915 x 10-3 1.066 x 10°
32 0.025000 1.184 x 10-1 1.166 x 101 8.740 x 10-4 2.704 x 10-1
64 0.012500 2.966 x 10-2 5.838 x 10° 1.100 x 10-4 6.788 x 10-2
128 0.006250 7.419 x 10-3 2.920 x 10° 1.400 x 10-5 1.699 x 10-2
256 0.003125 1.855 x 10-3 1.460 x 10° 2.000 x 10-6 4.247 x 10-3

Figure 3.15: Spatial refinement analysis for Prob. 3.5. Results are computed using 1D elements and a spatial
refinement factor (r, = 2). The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.6: Hollow cylinder with temperature dependent thermal conductivity

The thermal conductivity of an infinitely long hollow tube varies linearly

with temperature: k, = k, + 0(u — u0). The tube inside radius is r,

and outside radius is T.,. It is exposed on the inner and outer surfaces to

constant temperatures u(ri) = u, and u(r0) = uo. In thermal equilibrium,

the analytic solution for the temperature distribution is [26, pp.138]

u(r) = uo i3(k, + ko) ln (r/r0)

,3 kg ln (rar0) 
(u, uo) — 11 . (3.10)

The problem is solved in BISON on the domain

X E [0.2, 1] using Dirichlet boundary conditions

u(0.2) = ui = 300 K and u(1) = u, = 0 K. Steady

state heat conduction is considered using a nonlinear

thermal conductivity where k, = 5 W/m/K. The

nonlinearity of the problem is quantified by the vari-

able /3; the analytic solution as a function of /3 is

shown in Fig. 3.16. Two cases are examined in this

study: (I) = 0.001 and (III) = 0.1.

Case I = 0.001): The exact and computed

solutions are shown in Fig. 3.17a for four different

meshes and two FE types (linear: EDGE2; quadratic:
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EDGE3). A convergence study is conducted with a Figure 3.16: The exact solution, u = u(r) in response
refinement factor of two (i.e., T.,. = 2). The com- to varied term.

puted norms for each element type are plotted and

tabulated in Fig. 3.18. The formal order of accuracy

is two for linear FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE

solutions converge to the exact solution with the correct order of accuracy.

Case II (0 = 0.1): The exact and computed solutions are shown in Fig. 3.17b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., rr = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.19. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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Figure 3.17: Temperature distribution and residuals for Prob. 3.6. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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1.777 x 10-3 1.390 x 10° 3.600 x 10-5 3.956 x 10-3

Figure 3.18: Spatial refinement analysis for Prob. 3.6 (Case I, = 0.001). Results are computed using
1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the Hl norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.

33 of 87



=

o

0

-J

-o-EDGE2
-x-EDGE3

-8  
0 0

1

-0.5 -1.0 -1.5 -2.0

loglo(h)

4 8 16 32 64 128 256 2 4 8

-1.0 -1.5

logn(h)

16 32 64

-2.0 -2.5

128 256

Number of elements, Neiem Number of elements, Neiem

No.
Elems h

Linear (p = 1)

IIuIILz IIuIIHI

Quadratic (p = 2)

IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
1 0.800000 2.258 x 101 3.570 x 101 1.592 x 101 9.123 x 101
2 0.400000 1.615 x 101 9.836 x 101 4.283 x 10° 5.276 x 101
4 0.200000 6.337 x 10° 8.935 x 101 1.137 x 10° 3.275 x 101
8 0.100000 2.087 x 10° 6.556 x 101 2.547 x 10-1 1.682 x 101
16 0.050000 6.088 x 10-1 4.086 x 101 4.671 x 10-2 6.743 x 10°
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Figure 3.19: Spatial refinement analysis for Prob. 3.6 (Case I, = 0.001). Results are computed using
1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the Hl norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.7: Hollow cylinder with temperature dependent thermal conductivity and

internal heating

The thermal conductivity of an infinitely long hollow cylinder varies

linearly with temperature: k = ko(1 + Ou). The tube inside radius is ri

and outside radius is ro. It has a constant internal heat generation ql"

and is exposed to a constant temperature on both surfaces: u(rz) = u,

and u(ro) = uo. If the cylinder reaches thermal equilibrium, the analytic

solution for the temperature distribution is [28, pp.194]

u(r) = uo+4
i)

(7-2 - T1) 1, ()] — 1) . (3.11)1 + q;k130 r2) ln (ro/ri) j 
) 

The problem is solved in BISON on the domain

X E [0.2, 1] using Dirichlet boundary conditions

u(0.2) = 7.4 = 0 K and u(1) = uo = OK. Steady

state heat conduction is considered using a non-

linear thermal conductivity where k, = 1 W/m/K.

The nonlinearity of the problem is quantified by the

variable ,3; the analytic solution as a function of )3 is

shown in Fig. 3.20. Two cases are examined in this

study: (I) = 0.001 and (III) = 0.1.

Case I (i3 = 0.001): The exact and computed

solutions are shown in Fig. 3.21a for four different 0.2 0.3 0:4 0:5 0.6 0:7 0:8 0:9
X

meshes and two FE types (linear: EDGE2; quadratic:

EDGE3). A convergence study is conducted with a Figure 3.20: The exact solution of Prob. 3.7 as a
refinement factor of two (i.e., r, = 2). The com- function of space and time

puted norms for each element type are plotted and

tabulated in Fig. 3.22. The formal order of accuracy

is two for linear FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE

solutions converge to the exact solution with the correct order of accuracy.
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Case II (0 = 0.1): The exact and computed solutions are shown in Fig. 3.21b for four different meshes and

two FE types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement factor

of two (i.e., rr = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.23. The

formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region, the

linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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Figure 3.21: Temperature distribution and residuals for Prob. 3.7. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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Figure 3.22: Spatial refinement analysis for Prob. 3.7 (Case I, = 0.001). Results are computed using
1D elements and a spatial refinement factor rT = 2. The formal order of accuracy is shown for each plot.
Left plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the Hl norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Figure 3.23: Spatial refinement analysis for Prob. 3.7 (Case I, = 0.001). Results are computed using
1D elements and a spatial refinement factor r, = 2. The formal order of accuracy is shown for each plot.
Left plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the Hl norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.8: Hollow cylinder with internal heating and outside convection boundary

An infinitely long hollow cylinder with inner radius ri and outer radius

ro has thermal conductivity k and internal heat generation qm. The inside

surface is insulated and the outside surface is exposed to a fluid temperature

uf and heat transfer coefficient h. If the cylinder is in thermal equilibrium,

the analytic solution for the temperature distribution is [29, p.2-33]

u(r) 
I 

qm

4k hro 

r02 2k 
[ 

r ro ro 
] +1- ( r ) 

2 

+ ln () . (3.12)

ri

The problem is solved in BISON on the domain X E [0.2, 1]. The boundary conditions are Neumann and

convective: (du/dx).,-0.2 = 0 and q0" = h(uf — uo). The fluid temperature and heat transfer coefficient are

uf = 100 K and h = 10 W/m2/K. The constant thermal conductivity is k = 1 W/m/K and volumetric heat

generation is qm = 1200 W/m3. The exact and computed solutions are shown in Fig. 3.24 for four different

meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.24: Temperature distribution and residuals for Prob. 3.8. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., rr = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.25. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Figure 3.25: Spatial refinement analysis for Prob. 3.8. Results are computed using 1D elements and a
spatial refinement factor rr = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.9: Hollow cylinder with internal heating and inside convection boundary

An infinitely long hollow cylinder with inner radius ri and outer radius

r, has a thermal conductivity k and internal heat generation V". The

outside surface is insulated and the inside surface is exposed to a fluid at

temperature u f and heat transfer coefficient h. If the cylinder is in thermal

equilibrium, the analytic solution for the temperature distribution is [29]

h, f

ri

u(r) = + qu'r?
(k

 II
2 + 1 + 1 + r 2 + 2 ro 2 ln r

4k hri L ri J J ri ri ri

7'0

(3.13)

The problem is solved in BISON on the domain X E [0.2,1]. The boundary conditions are convective

and Neumann: q0" = h(uf —74) and (duldx),,-1 = 0. The fluid temperature and heat transfer coefficient are

tif = 100K and h = 10 W/m2/K. The constant thermal conductivity is k = 1 W/m/K and the volumetric

heat generation is qm = 1200W/m3. The exact and computed solutions are shown in Fig. 3.26 for four

different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.26: Temperature distribution and residuals for Prob. 3.9. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., T.,. = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.27. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Figure 3.27: Spatial refinement analysis for Prob. 3.9. Results are computed using 1D elements and a
spatial refinement factor rr = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.10: Short solid cylinder

A two-dimensional short cylinder with length L and radius R has a

thermal conductivity k = 1 and no internal heating. It is exposed on

each surface to a constant temperature: u(R, z) = u1, u(r, 0) = ul, and

u(r, L) = u2. In thermal equilibrium, the analytic solution for the temper-

ature distribution is [28, pp.133-134]

sinh (An /R)z
u(r, z) = ui 2(u2 - ui) E An sinh (AnLIR)J1(Art) Je (A R (3.14)

n=1

where Ari are the consecutive roots of the equation Jo (AR) = 0.

This problem is solved in BISON on the

domain r E [0, 1] and z E [0, 1]. Dirich-

let boundary conditions are applied to each

surface: u(R, z) = u(r, 0) = u1 = 0 K and

u(r, L) = u2 = 200 K.

Fig. 3.29 shows the convergence of five FE

choices as the two-dimensional mesh is re-

fined. All five FE choices result in similar

shapes. Currently, Bessel functions are not

implemented as a function option in BISON

when computing norms between the computed

and analytic solution. For this reason, norms

are calculated between successively refined so-

lutions instead of between the computed and

analytic solution. Therefore, this problem is

a solution verification problem, rather than a

code verification problem. The local norm at

the middle of the domain is calculated for suc-

cessive refinements and is shown in Fig. 3.28.

The linear FEs QUAD4 and TRI3 display

the correct second order convergence. The

quadratic FEs QUAD8 and TRI6 have the cor-

rect third order convergence. The QUAD9 FEs

have super-convergent behavior.
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Figure 3.28: Spatial refinement analysis for Prob. 3.10. Re-
sults are computed using 2D elements and a spatial refine-
ment factor rr = 2. The formal order of accuracy is shown
for each plot.
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Figure 3.29: Temperature distribution for Prob. 3.10 with three different meshes and five FE types. Darker
colors indicate higher temperatures.
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Problem 3.11: Solid sphere with internal heating

A solid sphere with radius R has thermal conductivity k and internal heat

generation gm. The outside surface is exposed to a fluid at temperature uf

with heat transfer coefficient h. If the sphere is in thermal equilibrium, the

analytic solution for the temperature distribution is [29, 30]

u(r) = uf qmR
4k

2 
- 

r 2 2k

R ▪ hR] •
(3.15)

h,

The problem is solved in BISON on the domain X E [0, 1]. The center of the sphere uses a Neu-

mann boundary condition (finiteness requirement) and the surface has a convective boundary condition:

(duldr),=0 = 0 and q'o' = h(uf - '110). The fluid temperature and heat transfer coefficient are it f = 500 K

and h = 1 W/m2/K. Steady state heat conduction is considered with constant thermal conductivity

k = 1 W/m/K and volumetric heat generation qm = 1200 W/m3. The exact and computed solutions are

shown in Fig. 3.30 for four different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.30: Temperature distribution and residuals for Prob. 3.11. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., rr = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.31. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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8 0.125000 9.845 x 10-1 3.817 x 101 2.322 x 10-8 2.108 x 10-7
16 0.062500 2.454 x 10-1 1.916 x 101 3.548 x 10-8 1.151 x 10-6
32 0.031250 6.126 x 10-2 9.589 x 10° 1.317 x 10-9 1.250 x 10-9
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Figure 3.31: Spatial refinement analysis for Prob. 3.11. Results are computed using 1D elements and a
spatial refinement factor rr = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.12: Spherical shell with Dirichlet conditions

A spherical shell with inner radius ri and outer radius ro has a constant

thermal conductivity k. Both surfaces are exposed to constant temper-

atures: u(i) = ui and u(ro) = uo. If the spherical shell is in thermal

equilibrium, the analytic solution for the temperature distribution is [26,

pp.136]
uo ui

1 ui up r- T u(r) = r 1 1 -1- •
To r, ri To

(3.16) vo

The problem is solved in BISON on the domain X E [0.2, 1] using Dirichlet boundary conditions: u(ri) =

ui = 300 K and u(ro) = u, = 0 K. Steady state heat conduction is considered in the solid with constant

thermal conductivity k = 5 W/m/K. The exact and computed solutions are shown in Fig. 3.32 for four

different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.32: Temperature distribution and residuals for Prob. 3.12. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., r, = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.33. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Figure 3.33: Spatial refinement analysis for Prob. 3.12. Results are computed using 1D elements and a
spatial refinement factor rr = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.13: Spherical shell with temperature dependent thermal conductivity

A spherical shell with inside radius r, and outside radius ro has a thermal

conductivity that varies linearly with temperature: k = ko + )3(u — u0).

The inside and outside surfaces of the shell are exposed to constant tem-

peratures: u(ri) = u, and u(r,,) = uo. In thermal equilibrium, the analytic

solution for the temperature distribution is [26, pp.139]

u(r) = uo + —k°
),(3 [\

1 + )3
(ki + ko) r-o)
 (14 uo) — 1 .

k2 (1 1)0 — T7,

The problem is solved in BISON on the do-

main X E [0.2, 1]. Dirichlet boundary conditions

are applied: u(0.2) = uZ = 300 K and u(1) =

74, = 0 K. Steady state heat conduction is consid-

ering using a nonlinear thermal conductivity, where

ko = 5 W/m/K. The nonlinearity of the problem is

quantified by 0; the analytic solution as a function

of /3 is shown in Fig. 3.34. Two cases are examined

in this study: (I) a= 0.001 and (II) = 0.1.

Case I = 0.001): The exact and computed

solutions are shown in Fig. 3.35a for four different

meshes and two FEs types (linear: EDGE2; quadratic:
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EDGE3). A convergence study is conducted with a re- Figure 3.34: The exact solution for Prob. 3.13 as a
finement factor of two (i.e., = 2). The computed function of space and (3.

norms for each element type are plotted and tabu-

lated in Fig. 3.36. The formal order of accuracy is

two for linear FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE

solutions converge to the exact solution with the correct order of accuracy.

Case II (0 = 0.1): The exact and computed solutions are shown in Fig. 3.35b for four different meshes

and two FEs types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement

factor of two (i.e., T., = 2). The computed norms for each element type are plotted and tabulated in Fig. 3.37.

The formal order of accuracy is two for linear FEs and three for quadratic FEs. In the asymptotic region,

the linear and quadratic FE solutions converge to the exact solution with the correct order of accuracy.
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Figure 3.35: Temperature distribution and residuals for Prob. 3.13. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact and
computed solutions.
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64 0.012500
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256 0.003125

Linear (p = 1) Quadratic (p = 2)

IIuIILz IIuIIHI IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
1.250 x 102 5.124 x 102
4.737 x 101 3.054 x 102
1.537 x 101 1.733 x 102

4.353 x 10° 9.218 x 101
1.137 x 10° 4.711 x 101
2.879 x 10-1 2.370 x 101
7.222 x 10-2 1.187 x 101
1.807 x 10-2 5.937 x 10°
4.519 x 10-3 2.969 x 10°
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8.164 x 10° 1.090 x 102
1.343 x 10° 4.096 x 101
1.784 x 10-1 1.248 x 101
2.232 x 10-2 3.350 x 10°
2.784 x 10-3 8.553 x 10-1
3.480 x 10-4 2.150 x 10-1
4.400 x 10-5 5.382 x 10-2
1.400 x 10-5 1.346 x 10-2

Figure 3.36: Spatial refinement analysis for Prob. 3.13 (Case I, = 0.001). Results are computed using
1D elements and a spatial refinement factor rx = 2. The formal order of accuracy is shown for each plot.
Left plot: the L2 norm quantifies convergence of the temperature distribution. Right plot: the Hl norm
quantifies convergence of the heat flux. Table: numerical values used to construct the plots.
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Elems h

Linear (p = 1)

IIuIILz IIuIIHI

Quadratic (p = 2)

IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
1 0.800000 5.938 x 101 2.750 x 102 2.187 x 101 1.396 x 102
2 0.400000 3.084 x 101 1.626 x 102 4.363 x 10° 5.658 x 101
4 0.200000 1.028 x 101 9.029 x 101 6.955 x 10-1 2.016 x 101
8 0.100000 2.908 x 10° 4.802 x 101 9.144 x 10-2 6.208 x 10°
16 0.050000 7.583 x 10-1 2.467 x 101 1.151 x 10-2 1.710 x 10°
32 0.025000 1.918 x 10-1 1.245 x 101 1.445 x 10-3 4.427 x 10-1
64 0.012500 4.811 x 10-2 6.238 x 10° 1.810 x 10-4 1.118 x 10-1
128 0.006250 1.204 x 10-2 3.121 x 10° 2.300 x 10-5 2.803 x 10-2
256 0.003125 3.010 x 10-3 1.561 x 10° 3.000 x 10-6 7.011 x 10-3

Figure 3.37: Spatial refinement analysis for Prob. 3.13 (Case II, = 0.1). Results are computed using 1D
elements and a spatial refinement factor rx = 2. The formal order of accuracy is shown for each plot. Left
plot: the L2 norm quantifies the convergence of the temperature distribution. Right plot: the I/1 norm
quantifies the convergence of heat flux. Table: numerical values used to construct the plots.
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Problem 3.14: Solid sphere with spatially dependent internal heating

A solid sphere with radius R has a constant thermal conductivity k and

a spatially dependent internal heating qm = (IT (1 _ /37.2/R2) . It is ex-

posed to a constant temperature on its surface u(R) = uR. The sphere

reaches thermal equilibrium and the analytic solution for the temperature

distribution is [29, 31]

fuR

u(r)= uR + 

q 

61c 

2

 { [1. — (R)2] — t [1. — (fill *
(3.18)

The problem is solved in BISON on the domain X E [0,1]. The center of the sphere uses a Neumann

boundary condition (finiteness requirement) and the surface has a Dirichlet condition: (duldr),=0 = 0

and u(1) = uR = 300K. Steady state heat conduction is considered in the sphere with constant thermal

conductivity k = 1 W/m/K. The exact and computed solutions are shown in Fig. 3.38 for four different

meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.38: Temperature distribution and residuals for Prob. 3.14. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., 7-7, = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.39. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Elems h
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2 0.500000
4 0.250000
8 0.125000
16 0.062500
32 0.031250
64 0.015625
128 0.007812
256 0.003906

Linear (p = 1) Quadratic (p = 2)

IIuIILz IIuIIHI IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
3.125 x 101 1.126 x 102 0.598 x 10-1 2.330 x 10°
1.036 x 101 9.440 x 101 1.265 x 10-1 1.807 x 10°
2.744 x 10° 5.132 x 101 1.685 x 10-2 5.122 x 10-1
6.942 x 10-1 2.620 x 101 2.136 x 10-3 1.317 x 10-1
1.740 x 10-1 1.317 x 101 2.680 x 10-4 3.316 x 10-2
4.351 x 10-2 6.594 x 10° 3.400 x 10-5 8.304 x 10-3
1.088 x 10-2 3.298 x 10° 4.000 x 10-6 2.077 x 10-3
2.719 x 10-3 1.649 x 10° 1.000 x 10-6 5.190 x 10-4
6.800 x 10-4 8.246 x 10-1 1.300 x 10-5 1.360 x 10-4

Figure 3.39: Spatial refinement analysis for Prob. 3.14. Results are computed using 1D elements and a
spatial refinement factor rr = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.15: Solid sphere with internal heating and convective boundary condition

A solid sphere with radius R has a constant thermal conductivity k and

internal heating qm. It is exposed on its outside surface to a fluid with

constant temperature u f and heat transfer coefficient h. In thermal equi-

librium, the analytic temperature distribution is [29, 32]

u(r) %If q'll R2 

[

1 r 2 2k

6k hR] •
(3.19)

h u.f

The problem is solved in BISON on the domain X E [OA . The center of the sphere uses a Neu-

mann boundary condition (finiteness requirement) and the surface has a convective boundary condition:

(duldr)r=0 = 0 and V," = h(uf —110). The fluid temperature and heat transfer coefficient are uf = 500K and

h =1 W/m2/K. Steady state heat conduction is considered in the sphere with constant thermal conductiv-

ity k = 1 W/m/K and internal heating qm = 1200 W/m3. The exact and computed solutions are shown in

Fig. 3.40 for four different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.40: Temperature distribution and residuals for Prob. 3.15. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., rr = 2). The computed norms for

each element type are plotted and tabulated in Fig. 3.41. The formal order of accuracy is two for linear FEs

and three for quadratic FEs. In the asymptotic region, the linear FE solutions converges to the exact solution

with the correct order of accuracy. The solution computed using quadratic FEs converges immediately to

within numerical error due to the quadratic shape of Eq. 3.19.
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Linear (p = 1)

IIuIILz IIuIIHI

Quadratic (p = 2)

IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
1 1.000000 3.411 x 101 1.182 x 102 2.879 x 10-9 9.088 x 10-10
2 0.500000 1.176 x 101 1.047 x 102 8.536 x 10-10 1.056 x 10-8
4 0.250000 3.127 x 10° 5.735 x 101 1.151 x 10-7 1.494 x 10-7
8 0.125000 7.919 x 10-1 2.932 x 101 1.180 x 10-8 1.495 x 10-7
16 0.062500 1.985 x 10-1 1.474 x 101 6.380 x 10-12 6.193 x 10-11
32 0.031250 4.965 x 10-2 7.382 x 10° 9.288 x 10-7 1.036 x 10-6
64 0.015625 1.241 x 10-2 3.692 x 10° 7.152 x 10-9 7.016 x 10-9
128 0.007812 3.104 x 10-3 1.846 x 10° 1.020 x 10-7 7.071 x 10-8
256 0.003906 7.760 x 10-4 9.231 x 10-1 6.153 x 10-6 4.253 x 10-6

Figure 3.41: Spatial refinement analysis for Prob. 3.15. Results are computed using 1D elements and a
spatial refinement factor rr = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.16: Spherical shell with internal heating and inside heat flux condition

A spherical shell with inside radius r, and outside radius r, has a constant

thermal conductivity k and internal heating Vil. It is exposed on its outside

surface to a constant temperature u(r0) = u, and has a constant heat

flux (I' applied to its inner surface. The spherical shell reaches thermal

equilibrium and the analytic solution for the temperature distribution is

(R=r1r, and Ro =r0lri) [29, p.3-10]

u(r) = uo
q2~rz re 

-110 
ri (2(R — Ro) .„2 Ro — 111

k [ RR0 ) RR0
(3.20)

1-10

The problem is solved in BISON on the domain X E [0, 1]. A Neumann boundary condition is used

for the inside surface and a Dirichlet condition for the outside surface: (du/dr),-0.2 = C = 100 W/m2

and u(1) = uo = 100K. Steady state heat conduction is considered in the shell with constant thermal

conductivity k = 1 W/m/K and internal heating V" = 1200 W/m3. The exact and computed solutions are

shown in Fig. 3.42 for four different meshes and two finite element types (linear: EDGE2; quadratic: EDGE3).
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Figure 3.42: Temperature distribution and residuals for Prob. 3.16. Results are shown for the first four
meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
solution and computed solutions.

A convergence study is conducted with a refinement factor of two (i.e., r„. = 2). The computed norms

for each element type are plotted and tabulated in Fig. 3.43. The formal order of accuracy is two for linear

FEs and three for quadratic FEs. In the asymptotic region, the linear and quadratic FE solutions converge

to the exact solution with the correct order of accuracy.
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Linear (p = 1)

IIuIILz IIuIIHI

Quadratic (p = 2)

IIuIILz 1k-till/I

elem_type=EDGE2 elem_type=EDGE3
1 0.800000 2.468 x 101 1.361 x 102 1.477 x 10-1 2.249 x 10°
2 0.400000 7.314 x 10° 8.649 x 101 4.699 x 10-2 1.180 x 10°
4 0.200000 1.892 x 10° 4.546 x 101 1.065 x 10-2 4.607 x 10-1
8 0.100000 4.769 x 10-1 2.301 x 101 1.771 x 10-3 1.423 x 10-1
16 0.050000 1.195 x 10-1 1.154 x 101 2.460 x 10-4 3.843 x 10-2
32 0.025000 2.989 x 10-2 5.773 x 10° 3.200 x 10-5 9.828 x 10-3
64 0.012500 7.474 x 10-3 2.887 x 10° 3.986 x 10-6 2.472 x 10-3
128 0.006250 1.868 x 10-3 1.444 x 10° 5.573 x 10-7 6.190 x 10-4
256 0.003125 4.670 x 10-4 7.218 x 10-1 4.133 x 10-6 1.550 x 10-4

Figure 3.43: Spatial refinement analysis for Prob. 3.16. Results are computed using 1D elements and a
spatial refinement factor rr = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.
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Problem 3.17: MMS for one dimensional conduction

Steady state one-dimensional heat conduction is analyzed using the manufactured solution u(x) =

sin(a7rx). This simple function is suitable for use in an MMS problem because it is continuous and

infinitely differentiable. To find the source term Q that produces the solution u, the steady state heat

conduction operator (k = 1)—G = V • V—is applied to u. This results in the source term

Q = G(u) = a27r2 sin(a7rx). (3.21)

The problem is solved in BISON using the dif-

fusion module on the domain X E [0, 1]. The

manufactured solution is shown in Fig. 3.44 with

a = 2, which is the value used in the BISON im-

plementation. Steady state heat conduction is con-

sidered through a homogeneous solid using the ex-

ternal source in Eq. 3.21. MMS studies allow the

same problem to be tested using a variety of dif-

ferent boundary conditions. Two cases are exam-

ined in this study: (I) Dirichlet—Dirichlet and (II)

Dirichlet—Neumann.

Case I (Dirichlet—Dirichlet): Dirichlet bound-

ary conditions are derived from the manufactured

solution with a = 2. This results in the boundary

conditions u(0) = 0 and u(1) = O.
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Figure 3.44: The exact solution for MMS Prob. 3.17

Case II (Dirichlet—Neumann): The boundary conditions are derived from the manufactured solution

with a = 2. This results in the boundary conditions u(0) = 0 and (du 1 dx)x=i = 27r.

For Case I, the exact and computed solutions are shown in Fig. 3.45 for four different meshes and two

finite element types (linear: EDGE2; quadratic: EDGE3). A convergence study is conducted with a refinement

factor of two (rx = 2). The computed norms for each FE type and boundary condition type are plotted in

Fig. 3.46 and shown in Table 3.2. The formal order of accuracy is two for linear FEs and three for quadratic

FEs. In the asymptotic region for both cases, the linear and quadratic FE solutions converge to the exact

solution with the correct order of accuracy.
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Figure 3.45: Temperature distribution and residuals for Prob. 3.17 (Case I). Results are shown for the first
four meshes. First row: exact and FE solutions using 1D elements. Second row: residuals between the exact
and computed solutions.
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Figure 3.46: Spatial refinement analysis for Prob. 3.17. Results are computed using 1D elements and a
spatial refinement factor rx = 2. The formal orders of accuracy are shown. FE types with an A indicate
Case I (Dirichlet-Dirichlet) and with a B indicate Case II (Dirichlet-Neumann). Left plot: the L2 norm
quantifies convergence of the temperature. Right plot: the H1 norm quantifies convergence of the heat flux.

60 of 87



Table 3.2: Norms calculated for Prob. 3.17. Two norms are computed: (1) L2 norm quantifies convergence
of temperature and (2) H1 norm quantifies convergence of the heat flux.

No.
Elems h

Linear (p = 1)

iluilL2 Ilu111-11

Quadratic (p = 2)

IluIlL2 Ilubil

elem_type=EDGE2 elem_type=EDGE3

Case I (Dirichlet-Dirichlet)

1 1.000000 9.706 x 10-1 1.512 x 10° 4.848 x 10-1 5.495 x 10°
2 0.500000 6.162 x 10-1 4.949 x 10° 3.743 x 10-2 6.464 x 10-2
4 0.250000 1.347 x 10-1 1.946 x 10° 1.270 x 10-2 3.961 x 10-1
8 0.125000 3.565 x 10-2 9.987 x 10-1 1.633 x 10-3 1.014 x 10-1
16 0.062500 9.043 x 10-3 5.026 x 10-1 2.055 x 10-4 2.549 x 10-2
32 0.031250 2.269 x 10-3 2.517 x 10-1 2.574 x 10-5 6.380 x 10-3
64 0.015625 5.678 x 10-4 1.259 x 10-1 3.219 x 10-6 1.596 x 10-3
128 0.007812 1.420 x 10-4 6.296 x 10-2 4.024 x 10-7 3.990 x 10-4
256 0.003906 3.550 x 10-5 3.148 x 10-2 5.030 x 10-8 1.000 x 10-4

Case II (Dirichlet-Neumann)

1 1.000000 2.424 x 10° 6.290 x 10° 7.993 x 10-1 5.567 x 10°
2 0.500000 6.748 x 10-1 4.953 x 10° 3.770 x 10-2 6.479 x 10-2
4 0.250000 1.371 x 10-1 1.946 x 10° 1.270 x 10-2 3.961 x 10-1
8 0.125000 3.578 x 10-2 9.987 x 10-1 1.633 x 10-3 1.014 x 10-1
16 0.062500 9.051 x 10-3 5.026 x 10-1 2.055 x 10-4 2.549 x 10-2
32 0.031250 2.270 x 10-3 2.517 x 10-1 2.574 x 10-5 6.380 x 10-3
64 0.015625 5.678 x 10-4 1.259 x 10-1 3.219 x 10-6 1.596 x 10-3
128 0.007812 1.420 x 10-4 6.296 x 10-2 4.024 x 10-7 3.990 x 10-4
256 0.003906 3.550 x 10-5 3.148 x 10-2 5.030 x 10-8 1.000 x 10-4
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Problem 3.18: MMS for two dimensional conduction

Steady state two-dimensional heat conduction is analyzed using the manufactured solution u(x, y) =

sin(a7x) sin(biry). This simple function is suitable for use as an MMS problem because it is continuous

and infinitely differentiable. To find the source term Q that produces the solution u, the steady state

heat conduction operator (with k =1)—L = V • V—is applied to u. This results in the source term

Q(x,y) = L(u) = (a2 b2)72 sin (airx) sin (b7y).

The problem is solved in BISON using

the diffusion module on the domain X E 1.0

[0, 1]2. The manufactured solution is shown

in Fig. 3.47 with a = b = 2, which is the value
0.8 -

used in the BISON implementation. Dirich-

let boundary conditions are derived from the , \

manufactured solution: u(0, y) = u(1, y) = 0.6 _________

u(x, 0) = u(x, 1) = O. Steady state heat >,  
---------------- 0.20

conduction is considered through the homo-
0.4

geneous solid using the external source in

Eq. 3.22.

Fig. 3.48 shows the convergence of two FE 0.2

choices as the two-dimensional mesh is refined

(QUAD4 and TRI3).
0Fig. 3.49 shows a comparison of the two- 0. 
0 0 0.2 0.4 0.6 0.8 1 0

dimensional solutions with 32 x 32 elements us- X

ing a variety of FE types (linear: QUAD4,
Figure 3.47: The exact solution for Prob. 3.18

TRI3; quadratic: QUAD8, QUAD9, TRI6). Re-

gardless of the chosen FE shape, the BISON

solution has the correct shape, indicating that each two-dimensional FE option is implemented correctly.

A convergence study is conducted with a refinement factor of two (rs = ry = 2). The computed norms

for each FE type are plotted in Fig. 3.50. The formal order of accuracy is two for linear FEs and three for

quadratic FEs. In the asymptotic region for all FE types, the solutions converge to the exact solution with

the correct order of accuracy.

(3.22)
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Figure 3.48: Temperature distributions and residuals for Prob. 3.18 with three different meshes (left: QUAD4;
right: TRI3). Center columns: the FE solutions using a variety of 2D meshes. Outside columns: residuals
between the approximate solution and the computed solutions, where darker colors indicate a less accurate
computed solution.
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Figure 3.49: Temperature distributions and residuals for Prob. 3.18 with different FE types. Results are
shown for five FE types. First row: the FE solutions using 32 x 32 2D elements. Second row: residuals
between the approximate solution and the computed solutions, where darker colors indicate a less accurate
computed solution.
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Elems 07/ 117/11L2 IlullHi IlttIlL2 IlullH1
elem_type=QUAD4 elem_type=QUAD8 elern_type=QUAD9

1 1.000000 9.421 x 10-1 2.075 x 100 2.350 x 10-1 3.768 x 100 2.350 x 10-1 3.768 x 100
4 0.500000 5.112 x 10-1 4.442 x 10° 3.724 x 10-2 0.235 x 10°
16 0.250000 1.013 x 10-1 1.966 x 100 1.376 x 10-2 4.814 x 10-1 1.181 x 10-2 4.024 x 10-1
64 0.125000 2.552 x 10-2 9.993 x 10-1 1.636 x 10-3 1.051 x 10-1 1.610 x 10-3 1.018 x 10-1
256 0.062500 6.413 x 10-3 5.026 x 10-1 2.056 x 10-4 2.569 x 10-2 2.049 x 10-4 2.552 x 10-2
1024 0.031250 1.606 x 10-3 2.517 x 10-1 2.574 x 10-5 6.393 x 10-3 2.572 x 10-5 6.382 x 10-3
4096 0.015625 4.015 x 10-4 1.259 x 10-1 3.219 x 10-6 1.596 x 10-3 3.218 x 10-6 1.596 x 10-3
16384 0.007812 1.004 x 10-4 6.296 x 10-2 4.024 x 10-7 3.990 x 10-4 4.024 x 10-7 3.990 x 10-4

elem_type=TRI3 elem_type=TRI6
2 1.000000 6.824 x 10-1 4.279 x 100 4.874 x 10-1 4.594 x 100
8 0.500000 4.197 x 10-1 4.331 x 100 2.270 x 10-1 2.560 x 100
32 0.250000 2.499 x 10-1 2.983 x 100 3.018 x 10-2 9.251 x 10-1
128 0.125000 8.136 x 10-2 1.674 x 100 3.796 x 10-3 2.585 x 10-1
512 0.062500 2.189 x 10-2 8.632 x 10-1 4.759 x 10-4 6.677 x 10-2
2048 0.031250 5.578 x 10-3 4.350 x 10-1 5.957 x 10-5 1.684 x 10-2
8192 0.015625 1.401 x 10-3 2.179 x 10-1 7.451 x 10-6 4.219 x 10-3
32768 0.007812 3.507 x 10-4 1.090 x 10-1 9.315 x 10-7 1.055 x 10-3

Figure 3.50: Spatial refinement analysis for Prob. 3.18. Results are computed using 1D elements and a
spatial refinement factor rx = 2. The formal order of accuracy is shown for each plot. Left plot: the L2 norm
quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies convergence of
the heat flux. Table: numerical values used to construct the plots.

64 of 87



Problem 3.19: MMS for transient conduction

Transient one-dimensional heat conduction is analyzed using the manufactured solution u(x, t) =

axt3. This simple function is suitable for use as an MMS solution because it is continuous and infinitely

differentiable. To find the source term Q that produces the solution u, the transient heat conduction

operator (with k = 1)—G = a/at + V • V—is applied to u. Note that there is no contribution from the
spatial derivative, since d2u/dx2 = 0. This results in the source term

Q(x,t) = G(u) = 3axt2.

Note that this MMS problem is inherited from

MOOSE. The problem is solved in BISON using 25

the diffusion module on the domain X E [0, 1] and

T c [0, 3]. A Dirichlet boundary condition and 20

an initial condition are derived from the manufac-

tured solution: u(0, t) = 0 and u(x, 0) = O. The 15

manufactured solution is shown in Fig. 3.51 with

a = 1, which is the value used in the BISON imple- 
10

mentation. Transient heat conduction is considered
5

through the homogeneous solid using the external

source in Eq. 3.23.

(3.23)

-x = L
-•-x = LI2
---x = LI4
 x = 0

A convergence study is conducted with a tempo-

ral refinement factor of two (i.e., rx = 2). Linear

finite elements are used for all cases (EDGE2) with Figure 3.51: The exact solution solution for Prob. 3.19
32 FEs. Norms are computed at the final time step;

computed norms for each choice of temporal discretization are plotted in Fig. 3.52 and shown in Table 3.3.

0.0 0.5 1.0 2.0 2.5 3.01.5

t

Since the explicit Euler method requires enforcement of the von Neumann stability limit, no simulations

are run with a time step which would result in Fo < 0.5. In the asymptotic region, all choices of temporal

discretization have the correct order of accuracy.
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Figure 3.52: Temporal refinement analysis for Prob. 3.19. Results are computed using 1D elements and a
temporal refinement factor rt = 2. The von Naumann stability criteria (Fo = 0.5) is shown as a vertical
dashed line. The formal orders of accuracy are shown. Left plot: the L2 norm quantifies the convergence of
the temperature. Right plot: the H1 norm quantifies convergence of the heat flux.
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Table 3.3: Norms calculated for Prob. 3.19. Two norms are computed: (1) L2 norm quantifies convergence

of temperature and (2) H1 norm quantifies convergence of the heat flux.

At Fo llullL2 Mu11111 llullL2 llullili

explicit-Euler (p = 1) explicit-midpoint (p = 1)

1.000000 1024 3.540 x 10-1 1.149 x 10° 3.540 x 10-1 1.149 x 10°

0.500000 512 1.885 x 10-1 6.119 x 10-1 1.885 x 10-1 6.119 x 10-1

0.250000 256 9.710 x 10-2 3.153 x 10-1 9.710 x 10-2 3.153 x 10-1

0.125000 128 4.927 x 10-2 1.600 x 10-1 4.927 x 10-2 1.600 x 10-1

0.062500 64 2.482 x 10-2 8.056 x 10-2 2.482 x 10-2 8.056 x 10-2

0.031250 32 1.245 x 10-2 4.043 x 10-2 1.245 x 10-2 4.043 x 10-2

0.015625 16 6.237 x 10-3 2.025 x 10-2 6.237 x 10-3 2.025 x 10-2

0.007812 8 3.121 x 10-3 1.013 x 10-2 3.121 x 10-3 1.013 x 10-2

0.003906 4 1.561 x 10-3 5.069 x 10-3 1.561 x 10-3 5.069 x 10-3

0.001953 2 7.810 x 10-4 2.535 x 10-3 7.810 x 10-4 2.535 x 10-3

implicit-Euler (p = 1) bdf2 (p = 2)

1.000000 1024 3.540 x 10-1 1.149 x 10° 9.274 x 10-2 3.004 x 10-1

0.500000 512 1.885 x 10-1 6.119 x 10-1 2.297 x 10-2 7.446 x 10-2

0.250000 256 9.710 x 10-2 3.153 x 10-1 5.746 x 10-3 1.862 x 10-2

0.125000 128 4.927 x 10-2 1.600 x 10-1 1.436 x 10-3 4.656 x 10-3

0.062500 64 2.482 x 10-2 8.056 x 10-2 3.591 x 10-4 1.164 x 10-3

0.031250 32 1.245 x 10-2 4.043 x 10-2 8.977 x 10-5 2.910 x 10-4

0.015625 16 6.237 x 10-3 2.025 x 10-2 2.244 x 10-5 7.300 x 10-5

0.007812 8 3.121 x 10-3 1.013 x 10-2 5.610 x 10-6 1.800 x 10-5

0.003906 4 1.561 x 10-3 5.069 x 10-3 1.402 x 10-6 5.000 x 10-6

0.001953 2 7.810 x 10-4 2.535 x 10-3 3.500 x 10-7 1.000 x 10-6

Crank-Nicolson (p = 2) Dirk (p = 2)

1.000000 1024 2.990 x 10-2 9.943 x 10-2 1.011 x 10-1 3.455 x 10-1

0.500000 512 5.687 x 10-3 1.810 x 10-2 3.877 x 10-2 1.403 x 10-1

0.250000 256 1.436 x 10-3 4.638 x 10-3 1.237 x 10-2 4.887 x 10-2

0.125000 128 3.591 x 10-4 1.163 x 10-3 3.585 x 10-3 1.588 x 10-2

0.062500 64 8.978 x 10-5 2.910 x 10-4 9.837 x 10-4 4.976 x 10-3

0.031250 32 2.244 x 10-5 7.274 x 10-5 2.614 x 10-4 1.526 x 10-3

0.015625 16 5.611 x 10-6 1.819 x 10-5 6.805 x 10-5 4.607 x 10-4

0.007812 8 1.401 x 10-6 4.542 x 10-6 1.749 x 10-5 1.371 x 10-4

0.003906 4 3.505 x 10-7 1.135 x 10-6 4.455 x 10-6 4.013 x 10-5

0.001953 2 8.825 x 10-8 2.860 x 10-7 1.128 x 10-6 1.148 x 10-5

newmark-beta (p = 2)

1.000000 1024 2.990 x 10-2 9.943 x 10-2

0.500000 512 5.687 x 10-3 1.810 x 10-2

0.250000 256 1.436 x 10-3 4.638 x 10-3

0.125000 128 3.591 x 10-4 1.163 x 10-3

0.062500 64 8.978 x 10-5 2.910 x 10-4

0.031250 32 2.244 x 10-5 7.274 x 10-5

0.015625 16 5.612 x 10-6 1.819 x 10-5

0.007812 8 1.401 x 10-6 4.542 x 10-6

0.003906 4 3.508 x 10-7 1.135 x 10-6

0.001953 2 8.891 x 10-8 2.888 x 10-7
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3.2 Gap Heat Transfer

The previous section considered problems for verification of the basic heat conduction equation in BISON.

However, these problems are not representative of fuel in nuclear reactors. Particularly for LWR fuel, nuclear

fuel rods consist of column of fuel pellets surrounded by a hollow tube called the cladding. To obtain an

analytic solution, the fuel is assumed to be located at the center of the cladding and the void is filled with

an inert gas [9]. If constant solid properties are considered, temperature jumps across the gap and cladding

can be obtained using the identity of continuous heat flux. This allows the formation of an analytic solution

that is more representative of typical fuel rods.

The temperature jump across the gap in BISON is computed as a summation of heat transfers: fill gas

conductance hg, contact conductance hc, and radiative conductance hr [3, 38, 39, 40, 41, 42]:

where

hgap = hg + he+ hr.,

kgas
plane

d + 1+ 92
gas

cylinder
rl 

(1il
r2

gas 

± 92 )hg =

sphere

([ + 4 + ft)

hr =

ha = A (Inra H,
USB(T? Th(T, +T2).± ( i

6, E.2
) 

(3.24a)

(3.24b)

(3.24c)

(3.24d)

where kgas is the fill gas thermal conductivity, d is the gap distance, gi is the temperature jump distance,

A is the harmonic mean of thermal conductivities of the surrounding solids, ra is the contact radius that is

defined as a function of the surface roughnesses, W is the load on the contact interface, H is the Meyer's

hardness of the softer material, ask; is the Stefan-Boltzmann constant, T., is temperature, E., is the emissivity,

and ri is the radius for the solid bodies i = 1, 2 (ri < r2).

The problems in this chapter focus on testing the gap heat transfer for an open gap. To simplify the

analytic solution, radiative heat transfer is ignored by setting emissivities to zero and temperature jump

distances are set to zero through BISON input. Thus, the gap heat transfer reduces to the fill gas conductance

hg:
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hggp = h9 =

plane

cylinder

sphere

(3.25)

The validation matrix for this physics is shown in Table 3.4. The cylindrical example is taken from [9]

and the other two are derived for this report.

Table 3.4: Verification matrix for BISON gap heat transfer

Transient
Coordinate
System

Dimension
Properties and
External Sources

Boundary
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Problem 3.20: Cartesian gap heat transfer

An infinitely long fuel plate has constant thermal conductivity k and internal heat generation

q"'. It is insulated on its left surface and exposed on its right surface to some constant temperature

u(r„) = u„. The temperature jump across the gap and cladding is

qf 
q/X f (X — X Ci) 

U U„ = 
X f hgap k,

(3.26a)

where uf is the fuel surface temperature, uc„ is the cladding outside temperature, and k, is the cladding

thermal conductivity. The gap conductance hgap reduces to kgas 1 d, where kgas is the thermal conduc-

tivity of the fill gas. The analytic solution for the temperature distribution in the fuel is

+ 4 ( - x:u(x) = U f 
2k f 

1 
X f

where X f is the fuel surface and k f is the fuel thermal conductivity.

The problem is run in BISON using two

blocks: the fuel domain on in X E [0, 1.0] and

the clad domain in X E [1.1,1.2]. The domain

between the two blocks is filled with an inert

gas with a predefined gas thermal conductivity.

Neumann and Dirichlet boundary conditions

are applied: (duldx)„=0 = 0 and u(xcu) =

uo. Steady state heat conduction is considered

with the following constants: fuel thermal con-

ductivity k f = 10 W/m/K, cladding thermal

conductivity k, = 10 W/m/K, volumetric heat

generation = 400 W/m3, gas thermal con-
ductivity kgas = 0.1 W/m/K, and Biot number

Bi 0.1.

The exact and computed solutions are

shown in Fig. 3.53 for three meshes and two

FE types (linear: EDGE2; quadratic: EDGE3).

A convergence study is performed with a re-

finement factor of two (7'. = 2). The mesh

refinements are performed uniformly in both

the fuel and cladding domains; however, the
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Figure 3.53: Temperature distribution and residuals for
Prob. 3.20. Results are shown for the first three meshes.
First column: exact and FE solutions using 1D elements.
Second column: residuals are computed between the exact
and computed solutions.
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norms are computed only in the fuel domain. The computed norms are plotted and tabulated in Fig. 3.54.

The linear FE solution is second order accurate, as expected. The quadratic solution is within numerical

error of the exact solution due to its quadratic shape.

-0.5 -1.0 -1.5

loglo(h)

-2.0 -2.5

2 4 8 16 32 64 128 256

2
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o
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8
0 0 -0.5 -1.0 -1.5

log20(h)

-2.0 -2.5

2 4 8 16 32 64 128 256

No.
Elems h

Linear (p = 1)

iluilL2 Hulk

Quadratic (p = 2)

IluilL2 Hub

elern_type=EDGE2 elem_type=EDGE3
2 0.550000 3.333 x 10° 1.155 x 101 1.224 x 10-11 7.187 x 10-11
4 0.275000 8.333 x 10-1 5.774 x 10° 5.260 x 10-8 3.482 x 10-7
8 0.137500 2.083 x 10-1 2.887 x 10° 1.523 x 10-8 3.908 x 10-9
16 0.068750 5.208 x 10-2 1.443 x 10° 2.420 x 10-7 2.586 x 10-6
32 0.034375 1.302 x 10-2 7.217 x 10-1 3.378 x 10-5 1.794 x 10-6
64 0.017188 3.255 x 10-3 3.608 x 10-1 4.801 x 10-4 2.772 x 10-5
128 0.008594 8.130 x 10-4 1.804 x 10-1 2.082 x 10-2 1.164 x 10-3
256 0.004297 1.903 x 10-4 9.021 x 10-2 4.567 x 10-1 2.547 x 10-2

Figure 3.54: Spatial refinement analysis for Prob. 3.20 (Bi Pe, 0.1). Results are computed using 1D elements
and a spatial refinement factor rx = 2. The formal orders of accuracy are shown for each plot. Left plot:
the L2 norm quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.21: Cylindrical gap heat transfer

An infinitely long fuel rod has constant thermal conductivity k and internal heat generation .
It is exposed on its right surface to some constant temperature u(r„) = u„. The temperature jump

across the gap and cladding is

q 

+ 

r q'  
ln
 (7',0)

— uco = —
27rrf hgap 27rke rei

(3.27a)

where uf is the fuel surface temperature, uco is the cladding outside temperature, and k, is the cladding

thermal conductivity. For this problem, the gap conductance hgap reduces to kgas Ar f ln(rcarf )), where

kgas is the thermal conductivity of the fill gas and re, is the cladding inside radius. The analytic solution

for the temperature distribution in the fuel is

u(r) = uf + (1 _ r2
47r k f r2

where rf is the fuel radius and kf is the fuel thermal conductivity.

The problem is run in BISON using two

blocks: the fuel domain (left block) on in

X E [0, 1.0] and the clad domain (right block)

in X E [1.1, 1.2]. The domain between the two

blocks is the gap and is filled with an inert gas

with a predefined fill gas thermal conductivity.

Neumann and Dirichlet boundary conditions

are applied: (du/dx)x=0 = 0 and u(xcu) =

uo. Steady state heat conduction is consid-

ered with the following properties: fuel ther-

mal conductivity k f = 10 W/m/K, cladding

thermal conductivity k, = 10 W/m/K, volu-

metric heat generation qm = 400 W/m3, gas

thermal conductivity kgas = 0.1 W/m/K, and

Biot number Bi 0.1.

The exact and computed solutions are

shown in Fig. 3.55 for three meshes and two

FE types (linear: EDGE2; quadratic: EDGE3).

A convergence study is performed with a re-

finement factor of two (7.7. = 2). The mesh

700

650
ti
II

600

550

500

700

650
r,
II

U 600

550

500

700

650

II

600

550

500

u,

_ —Exact, u
-•-EDGE2,
-o-EDGE3, a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

4

2

0

—2

—4

4

2

0

—2

—4

4

2

0

—2

—4

(3.27b)

u -

•

0.0 0.2 0.4 0.6 0.8 1.0 1.2
X

Figure 3.55: Temperature distribution and residuals for
Prob. 3.21. Results are shown for the first three meshes.
First column: exact and FE solutions using 1D elements.
Second column: residuals are computed between the exact
and computed solutions.

72 of 87



refinements are performed uniformly in both the fuel and cladding domains; however, the norms are com-

puted only in the fuel domain. The computed norms are plotted and tabulated in Fig. 3.56. The linear FE

solution is second order accurate, as expected. The quadratic solution is within numerical error of the exact

solution due to its quadratic shape.
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No.
Elems h

Linear (p = 1)

IMIL2 IluHill

Quadratic (p = 2)

117111L2 Hubli

elem_type=EDGE2 elem_type=EDGE3
2 0.550000 1.707 x 10° 8.355 x 10° 9.814 x 10-7 2.247 x 10-10
4 0.275000 5.128 x 10-1 4.824 x 10° 8.239 x 10-8 3.232 x 10-7
8 0.137500 1.314 x 10-1 2.513 x 10° 5.104 x 10-7 4.684 x 10-6
16 0.068750 3.284 x 10-2 1.272 x 10° 1.188 x 10-7 1.515 x 10-8
32 0.034375 8.187 x 10-3 6.386 x 10-1 1.811 x 10-5 1.684 x 10-6
64 0.017188 2.043 x 10-3 3.196 x 10-1 3.613 x 10-4 2.387 x 10-5
128 0.008594 5.110 x 10-4 1.599 x 10-1 4.981 x 10-3 3.682 x 10-4
256 0.004297 1.106 x 10-4 7.994 x 10-2 2.069 x 10-1 1.506 x 10-2

Figure 3.56: Spatial refinement analysis for Prob. 3.21 (Bi Pe, 0.1). Results are computed using 1D elements
and a spatial refinement factor 7.7. = 2. The formal orders of accuracy are shown for each plot. Left plot:
the L2 norm quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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Problem 3.22: Spherical gap heat transfer

A fuel sphere has constant thermal conductivity k and internal heat generation V". It is exposed

on its right surface to some constant temperature u(r„) = u„. The temperature jump across the gap

and cladding is
( 1

f— 
uco 
 + 

47k, 're7; rco 

1 )
(3.28a)

where ?If is the fuel surface temperature, uco is the cladding outside temperature, and Ice is the cladding
thermal conductivity. For this problem, the gap conductance hg reduces to kgas (r (Ty— r.,1)), where
kgas is the thermal conductivity of the fill gas and rc, is the cladding inside radius. The analytic solution

for the temperature distribution in the fuel is

u(r) = ?if  ql (1 — v2287rr f k f rf

where r f is the fuel radius and kf is the fuel thermal conductivity.

The problem is run in BISON using two

blocks: the fuel domain (left block) on in

X E [0, 1.0] and the clad domain (right block)

in X E [1.1, 1.2]. The domain between the two

blocks is the gap and is filled with an inert gas

with a predefined fill gas thermal conductivity.

Neumann and Dirichlet boundary conditions

are applied: (du/dx)x=0 = 0 and u(zco) =

uo. Steady state heat conduction is consid-

ered with the following properties: fuel ther-

mal conductivity k f = 10 W/m/K, cladding

thermal conductivity k, = 10 W/m/K, volu-

metric heat generation qm = 400 W/m3, gas

thermal conductivity kgas = 0.1 W/m/K, and

Biot number Bi 0.1.

The exact and computed solutions are

shown in Fig. 3.57 for three meshes and two

FE types (linear: EDGE2; quadratic: EDGE3).

A convergence study is performed with a re-

finement factor of two (rx = 2). The mesh

refinements are performed uniformly in both

the fuel and cladding domains; however, the
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Figure 3.57: Temperature distribution and residuals for
Prob. 3.22. Results are shown for the first three meshes.
First column: exact and FE solutions using 1D elements.
Second column: residuals are computed between the exact
and computed solutions.
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norms are computed only in the fuel domain. The computed norms are plotted and tabulated in Fig. 3.58.

The linear FE solution is second order accurate, as expected. The quadratic solution is within numerical

error of the exact solution due to its quadratic shape.
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No.
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Linear (p = 1)

IMIL2

Quadratic (p = 2)

117111L2 Hub

elern_type=EDGE2 elem_type=EDGE3
2 0.550000 1.140 x 10° 3.939 x 10° 5.914 x 10-6 3.716 x 10-11
4 0.275000 3.927 x 10-1 3.491 x 10° 3.190 x 10-7 2.009 x 10-7
8 0.137500 1.044 x 10-1 1.912 x 10° 1.223 x 10-7 1.974 x 10-6
16 0.068750 2.643 x 10-2 9.773 x 10-1 7.120 x 10-7 3.652 x 10-7
32 0.034375 6.626 x 10-3 4.914 x 10-1 1.719 x 10-6 4.472 x 10-7
64 0.017188 1.657 x 10-3 2.461 x 10-1 7.594 x 10-4 6.617 x 10-5
128 0.008594 4.165 x 10-4 1.231 x 10-1 1.676 x 10-4 1.457 x 10-5
256 0.004297 9.451 x 10-5 6.154 x 10-2 1.676 x 10-4 1.457 x 10-5

Figure 3.58: Spatial refinement analysis for Prob. 3.22 (Bi Pe, 0.1). Results are computed using 1D elements
and a spatial refinement factor 7.7. = 2. The formal orders of accuracy are shown for each plot. Left plot:
the L2 norm quantifies convergence of the temperature distribution. Right plot: the H1 norm quantifies
convergence of the heat flux. Table: numerical values used to construct the plots.
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4. Concluding Remarks

In this study, the fuel performance code BISON was verified using an extensive set of verification prob-

lems. The majority of problems were designed to test BISON's conduction solution, and two additional

problems test the mechanics capabilities. A physics-based approach was used to design a verification matrix

which included all combinations of physics and simulation options. By mapping out code capabilities in a

verification matrix, it is ensured that all capabilities are tested and gaps are clearly identified. The considered

code capabilities were: treatment of the temporal term, chosen coordinate system, dimensionality, material

property treatment, external source treatment, and boundary condition options.

Sixteen MES problems and three MMS problems were employed for the basic heat conduction solution.

Three additional MES problems tested the heat conduction solution in the presence of a gap. Two MES

problems were added to test the mechanical solution in the elastic region. These problems were selected to

fill obvious gaps in the verification matrix. Though the matrix is not fully covered, this work establishes a

baseline pedigree of the code which can be expanded upon later.

1. All one-dimensional verification problems display the proper convergence behavior for both first and

second order Lagrange polynomials using any type of FE. This includes:

• second order convergence of the temperature distribution for linear FEs,

• first order convergence of the heat flux for linear FEs,

• third order convergence of the temperature distribution for quadratic FEs,

• second order convergence of the heat flux for quadratic FEs, and

• super-convergent behavior for problems where the FEs shape matches the analytic solution.

2. The verification studies performed in this work are being incorporated into BISON documentation and

automated test suites.

3. The capability of BISON to solve MMS problems has been demonstrated for the first time. This is an

important step for future verification work, as MMS is the state-of-the-art verification method.

4. For two-dimensional problems, corner singularities arise due to non-smoothness of the domain (cor-

ners, edges, etc. on the boundary), change of the boundary conditions from one type to another, or

discontinuities of the solution or model coefficients. For most problems, these effects are mild enough

to maintain first order convergence.
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5. Bessel functions and infinite series are not yet implemented as functions in MOOSE. This limits the

multi-dimensional problems which can be incorporated into the BISON verification matrix, since their

analytic solutions are complex functions.

6. The problems in this study use simplest meshes and uniform mesh refinement. This creates a strong

base of verification, but future work may expand to more complicated refinement strategies: more

complex meshes, non-uniform mesh refinement, local mesh refinement, differing aspect ratios, and

combined temporal/spatial order analysis.

This work is the first expansive verification work performed for the BISON code. It establishes support-

ing evidence that the BISON solution is a faithful representation of the underlying mathematical model,

especially for the heat conduction solution.

In the future, this work will be expanded to include testing of species conservation and more expansive

testing of the mechanical response. Though two mechanics problems are created for this study (see Ap-

pendix B), a great number of tests is necessary to create a proper verification matrix to cover the mechanics.

Significant effort is required to expand the verification matrix to include two- and three-dimensional prob-

lems, problems with atypical behavior, and problems that couple more than one conservation equation. This

could reveal numerical bugs that are hidden when only individual equations are tested.
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A. Vector Identities

The vector u is expressed by u = i1u1 + i2u2 i1u3 in terms of the local unit vectors ii for i = 1,2,3.

1/) denotes a scalar.

• Cartesian coordinates (x, y, z)

Gradient of //) : =

Laplacian of : V2V) =

Divergence of u : V • u =-

Curl of u : V x u =

. 00 . 00 .
zx  + zy + zz 

ux1 ux2 ux3
820 02,0 82,0

(9X2 (94 .94

att1 011,2 tht3
-r 7-

UX1 UX2 UX3

4 au3 (91L2 _L (971,1 au3 . Ou2 au1
.x 'y a + Zz
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• Cylindrical coordinates (r, 0, z)

Gradient of : =

Laplacian of //) : V2'0 =

Divergence of u : V • u

Curl of u : V x u = 
Ou3 aU2  -  )

r 00 az
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• Spherical coordinates (r,O, (p)

Gradient of 0 : V 0 =

Laplacian of 0 :

Divergence of u : V • u =

Curl of u : V x u =

v20 
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1 0 (r2 00 + 1
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B. Mechanics: Method of Exact Solutions

Problem B.1: Static, 1D, an elastic rod subjected to stress

Considering a rod of length, l in the absence of any body forces subject to an applied stress of go.

The displacement, u is obtained by

u(x) =E
( )

x 2

where E is the Young's modulus, o-0 is the applied stress.

The governing equations for the static response of the rod are:

(B.1)

equation of equilibrium: —
do- 
+ b = 0, (B.2)

dx

strain-displacement relation: E = -
du

, (B.3)
dx

constitutive relation: a = Ee. (B.4)

where E is the Young's modulus, u is the displacement, e is the strain, and b is the body force.

The problem domain is defined in X e [0, 1]. Fig. B.1 shows the exact and FE solutions of the displace-

ment and strain. The solution is super-convergent for both linear and quadratic FEs due to the linearity of

Eq. B.1.
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Figure B.1: Displacement, strain, and residuals for Prob. B.1. Results are shown for the first two meshes.
First row: exact and FE solutions using 1D elements. Second row: residuals between the exact solution and
the FE solutions.

Table B.1: Norms computed for Prob. B.1 from the spatial refinement analysis (rx = 2). The errors are
computed in two ways: (1) L2 norm and (2) H1 norm.

No.
Elems h

1 1.000000
2 0.500000
4 0.250000
8 0.125000
16 0.062500
32 0.031250

Linear (p = 1)

iktilL2 Hull'li

Quadratic (p = 2)

11741,2 llull1/1

elem_type=EDGE2 elem_type=EDGE3

2.276 x 10-13 7.886 x 10-13 2.276 x 10-13 7.886 x 10-13
2.276 x 10-13 7.886 x 10-13 3.716 x 10-12 1.287 x 10-11
2.752 x 10-12 9.532 x 10-12 7.520 x 10-12 2.605 x 10-11
8.527 x 10-12 2.954 x 10-11 1.476 x 10-15 8.534 x 10-15
2.034 x 10-12 7.044 x 10-12 1.372 x 10-17 1.186 x 10-16
1.004 x 10-11 3.479 x 10-11 1.690 x 10-14 5.390 x 10-14
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Problem B.2: Static axisymmetric 1D problem, thick-walled cylinder subjected to internal

pressure

A thick-walled cylinder is subjected to a uniform radial internal pressure, q and a traction-free

external pressure [43, 17]. For the axisymmetric one-dimensional problem in which no rigid body modes

exist. No essential displacement boundary conditions are necessary. Ignored temperature and inertia

effects. The normal stresses in the longitudinal, circumferential, and radial directions are respectively

denoted as o-1, o-2, and a-3:

(a2 — r2)
(71 r2 (a2 b2) a2 = 0,

qb2 (a2 + r2)
u3 r2 (a2 b2) (B.5)

where a is the outer radius and b is the inner radius (a < b), r is the radius, q is the force per unit area.

The axisymmetric elasticity problem. Let us consider an infinitely long cylinder in which the displacement

field is given by u(r, z) = u(r) and v(r, z) = 0 [17, pp.73-74]. The non-zero strains are E = fer,601 =

The equilibrium equation simplifies to the following form

— 82u
br (B.6)p 

at2
.

ar

For an isotropic material, stress-strain relations—including temperature effects—are given by

(a-,

)

[(1— v) v 1(E,— ozAT
(B.7)

(1 + v)(1 — 2v)

and

v (1 — v) Eo aAT

o-, = v(o-, + ae) — EaAT (B.8)

where E is Young's modulus and v is Poisson's ratio.

The problem domain is defined in X e [0.5, 1.0]. A Dirichlet boundary conditions is applied to the

bottom boundary and the left boundary is a pressure boundary. Young's modulus is E = 10 000 N/m2 and

Poisson's ratio is v = 0.3. Fig. B.2 shows the exact solution and FE solutions of the axisymmetric problem.

The results are shown with 32x32 elements for each 2D element type.

The analytical solution exists for the stresses, however the primary variable is displacement. Therefore,

the expected convergence behavior of the displacement cannot be captured through the use of a code veri-

fication study. Instead, solution verification is performed and the results are shown in Fig. B.3. Norms are

calculated by comparing successively refined solutions at the inner surface of the cylinder.
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Figure B.2: Exact and FE solutions for Prob. B.2. Results are shown for a single a 32x32 mesh for five
different types of FE. First row: exact and FE solutions using 2D elements for one-dimensional FE solution
of stresses. Second row: residuals between the exact solution and the FE solutions.
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Figure B.3: Spatial refinement analysis for Prob. B.2. Solution verification at the inner surface for displace-
ment solution of the axisymmetric problem. Errors are quantified in terms of the L2 norm.
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