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ABSTRACT

The use of gradient-based data-driven models to solve a range of real-world remote sensing
problems can in practice be limited by the uniformity of available data. Use of data from disparate
sensor types, resolutions, and qualities typically requires compromises based on assumptions that
are made prior to model training and may not necessarily be optimal given over-arching
objectives. For example, while deep neural networks (NNs) are state-of-the-art in a variety of
target detection problems, training them typically requires either limiting the training data to a
subset over which uniformity can be enforced or training independent models which subsequently
require additional score fusion. The method we introduce here seeks to leverage the benefits of
both approaches by allowing correlated inputs from different data sources to co-influence
preferred model solutions, while maintaining flexibility over missing and mismatching data. In
this work we propose a new data fusion technique for gradient updated models based on entropy
minimization and experimentally validate it on a hyperspectral target detection dataset. We
demonstrate superior performance compared to currently available techniques using a range of
realistic data scenarios, where available data has limited spacial overlap and resolution.
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1. INTRODUCTION

Multi-sensor data fusion promises improvements in accuracy, persistence, and timeliness in
remote sensing data exploitation. In the context of Visible through Near Infrared (VNIR) and
Short Wave Infrared (SWIR) hyperspectral imagery, fusion promises enhanced target detection
models that can leverage the unique phenomenology provided in each spectral range [3].
However, practical solutions for fusion remain elusive; in practice, VNIR-SWIR fusion is plagued
by different collection footprints, spatial resolutions, and collection times. Contemporary data
fusion pipelines typically rely on one of two different approaches, with each approach
representing a different set of significant compromises for overall fusion performance [4].

In the first approach, sensor data are concatenated at the pixel level to construct a single
multi-modal model (for example, see [5]). We denote this approach as Fused Model Input (FMI).
FMI can yield a particularly powerful fused model as co-information between modes are used
during model construction (for example, traits of the atmospheric profile apparent in the SWIR
but not the VNIR). In practice, data available for FMI model fitting is limited as the concatenation
process necessitates that both VNIR and SWIR be available to form model input. In the second
approach, outputs from independent per-modality models are combined using some statistical
criteria (for example, mean of model outputs or a more sophisticated technique such as described
in [9, 10, 6, 1]). We denote this as Fused Model Output (FMO). FMO provides great flexibility
and can significantly improve performance over using a single modality in isolation. Since
models are created on a per-mode basis, all available imagery can be used for model fitting.
However, FMO leaves crucial complementary information between modes unexploited during
model fitting, thereby limiting overall fusion performance.

Both FMO and FMI represent significant compromises in overall fusion performance. In this
paper, we develop entropy minimization (EMIN), which seeks to leverage the benefits of FMI,
namely allowing correlated inputs from different data sources to co-influence preferred model
solutions, while maintaining the flexibility afforded through FMO to handle missing or misaligned
data to enhance overall fusion performance EMIN is formulated as an additional penalty loss
term that links observations containing multiple modalities, allowing information sharing between
models when both VNIR and SWIR are available. This approach is reasonably flexible and can be
integrated into gradient-based learning schemes such as deep neural networks. In Section 2, we
describe the mathematical underpinnings of EMIN, in Section 3 we demonstrate the efficacy of
EMIN over FIVIO and FMI in a VNIR-SWIR fusion benchmark, and we conclude in Section 4.

2. ENTROPY MINIMIZATION

We now detail a formulation of entropy minimzation as a useful penalty term for multimodal data
fusion. Let x = (xl ,x2, , xm) be a sequence of observations denoting m E [M] separate
modalities describing the input x. In FMO, M independent models are trained to produce p(yl.e)
which are subsequently combined into a single distribution p(y1x) using various fusion
techniques. Since p(ylei) are independent, features learned from one model can not be used by
another to aid in learning or inference. This results in poor performance when xm are correlated,
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which is true for most real world datasets. EMIN addresses this by explicitly linking parameter
updates of model m to parameters of {m}. One method to link these models during training is to
add a penalty term which is a function of the M models. Such a function should describe a
desirable property of the collective model outputs. For most data fusion problems we desire the
following characteristics:

1. Model agreement: argmaxi(p(yikm)) = c V m which subsequently makes score fusion
trivial (majority vote).

2. Confident predictions: Output distributions are close to dirac delta function.

These characteristics are exemplified in the entropy function. Entropy [8], denoted as H(X), is a
measure of the uncertainty of a random variable X and is defined as:

H(x) = - E paog(pi) (1)
iew

Where pi is the probability X takes on the ith outcome in the set of possible outcomes W. H(X) is
maximized when X is distributed uniformly (maximum uncertainly) and is minimized when p(X)
takes on the dirac delta function (no uncertainty). To enforce the desired criteria, let

p(X) = 
Eme [m] /9(y1xm) 

M
(2)

be the empirical mean of all model outputs, and compute H(X) as described in Eq 1. H(X) is
minimized (at a value of 0) when all models output the same delta function, encouraging both
model agreement and confident predictions. In practice, the maximum value H(X) takes on varies
as a function of 1r therefore it can be useful to normalize entropy by log(re 1) thereby creating a
loss term that is bounded and behaves consistently regardless of the cardinality of model
outcomes.

Training of the M models is performed similar to most traditional gradient based update schemes.
The multimodal loss function takes the form:

(y,9) = E cE(yorm)) + 7H(X)
mem

(3)

Where y is a tunable hyperparameter and CE stands for the traditional cross entropy loss for
classification problems. We note the inclusion of cross entropy in Y(y,p) is specific to data fusion
of multiple classifiers, which may not be the case in other data fusion problems such as regression.
Our contribution mainly lays in the yH(X) term of the loss. With the addition of H(X), parameter
updates of model m rely on the current parameters of the other models, effectively allowing for
correlated inputs to be utilized during training and a large advantage of our framework over
previous methods. In practice and during our hyperparameter search, we find that a constant value
of y works well, but still underperforms compared to when we ramp y, increasing the value and
subsequently the co-information sharing between models over training epochs.
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LABELS FMI FMO EMIN VNIR pseudocolor of train/test data

Figure 3-1 True target labels (left), method detection scores (middle three)
and pseudo data overview (right). Green dashed lines indicate regions of
missing VNIR/SWIR and red dashed line indicates train/test split.

3. EXPERIMENTS

We experimentally validate the efficacy of our proposed entropy minimization method by
utilizing the hyperspectral target detection dataset described in [2]. The scene is built atop
DIRSIG Megascene [7], which covers over half a square mile designed to represent an area of
Northeast Rochester, NY. We utilize the mid-latitude summer atmosphere and 1200 render
from [2], and use the inserted "green_paint_1" disks as targets to detect. The dataset consists of a
single AVIRIS-like sensor spanning 0.4 to 2.5 pm with 10 nm band spacing. To construct a
VNIR-SWIR fusion exemplar problem, we separate this data artificially into two "sensors", with
VNIR composed of bands such that Avnir < 0.9ttm and SWIR composed of bands such that

Alwir > 0.91.1m. This problem setup represents an ideal and unrealistic scenario for FMI: VNIR
and SWIR are perfectly aligned and overlapping at the pixel level. To construct more realistic
fusion scenarios we test performance over varying spatial overlaps and spectral resolutions. For
overlap scenarios we drop the bottom (top) fraction of the VNIR (SWIR) data. This results in the
top of the scene as VNIR only, the middle fraction as both VNIR and SWIR (overlap region), and
the bottom as SWIR only. We test overlap fractions of 10%, 33%, 50%, and 90%. While
simplistic, this simulates a common real problem in practical fusion scenarios in which sensor
collection footprints are only partially overlapping. For multi-resolution scenarios we degrade the
SWIR pixel resolution by Gaussian pyramids at 2.5x and 5.0625x downsampling. Given the more
expensive and sophisticated lithographic processes needed for SWIR detectors, it is common for
SWIR resolution to be much coarser than VNIR. We utilize the leftmost 50% of data to train,
followed by 10% to validate, and the rightmost 40% of the 50/50 overlap scenario of Megascene
to test on. See Fig. 3-1 for visualizations of the overlap fraction of 33%, or 1/3 for each region.

To focus on the effects of different fusion approaches, a relatively simple neural network is
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Figure 3-2 CFAR at threshold 0.05 for baseline techniques FMI and FMO com-
pared to EMIN for 1-1 pixel resolution between VNIR and SWIR in different
overlap scenarios.

utilized as a testbed for FMI, FMO, and EMIN. The model consists of 3 fully connected layers
with 50, 25, and 10 hidden units and rectified linear unit (ReLU) activations between layers.
Extensive hyperparameter search is performed over all major model parameters, with the addition
of y in the EMIN model to ensure well tuned baselines. Several statistical techniques for
combining VNIR and SWIR model outputs under FMO and EMIN were compared, and a simple
average was selected as providing good performance and simple implementation. Following [2],
we utilize the probability of detection at 5% constant false alarm rate (CFAR) to evaluate and
compare techniques.

By varying the amount of overlap between VNIR and SWIR we simulate realistic differences in
collection footprints. The FMI baseline is expected to perform well when significant fractions of
the collection footprints overlap (when the overlap fractions are large) whereas FMO is expected
to perform well for individual data modalities even with limited collection uniformity. Fig. 3-2
highlights CFAR performance for the three techniques in different overlap scenarios when the
pixel resolution for each modality is equivalent (resolution = 1). Both the FMI and FMO
baselines increase with increasing overlap, with no saturation in FMO performance. EMIN
outperforms both baselines when the overlap is above 20% increasing the average CFAR from
.870 to .885. The lack of saturation for FMO may be a limitation of the dataset; the data available
for model training may be insufficient to constrain the upper boundaries on the performance for
each technique. Error bands represent the 95% confidence interval of CFAR for the top 10 models
seen during hyperparameter search.

The resolution studies provide evidence that the performance increase for EMIN in Fig. 3-2 are
conservative estimates. Fig. 3-3 by comparison shows the effects of varying SWIR resolution on
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overall test performance. While the benefits of EMIN are modest compared to FMO and
significant compared to FMI with equivalent pixel resolution between modalities (Fig. 3-2 and
Fig. 3-3 far left), EMIN significantly outperforms both baselines as the SWIR resolution
decreases (Fig. 3-3, center and right). Decreasing SWIR resolution (2.25x decimation) decreases
overall test performance on the FMO baseline compared to no pixel degradation while
maintaining EMIN performance despite the decrease in SWIR resolution. By comparison,
significant pixel level degradation of SWIR resolution (5.0625x decimation) significantly
decreases model performance for FMO and EMIN, while maintaining a large spread (4.1%
difference in CFAR) between EMIN and FMO. FMI in comparison outperforms the FMO
baseline likely because the context available through shared modalities during learning is more
beneficial than the fusion performance from individual models in FMO for this data scenario.
Overall, the more SWIR resolution is degraded the larger the average test performance increase
we observe using EMIN compared to baseline models.

A different view of model performance can be acquired by partitioning the test data by modality.
The bar chart in the top of Fig. 3-4 represents the overall test performance at degraded SWIR
resolution in a 50% overlap data regime. The overall performance averages all sections of the test
partition which includes 50% for which both SWIR and VNIR modalities are available, and the
remaining 50% with either VNIR or SWIR only data (revisit Fig. 3-1 for data partitioning). As
observed in Fig. 3-2, EMIN outperforms FMO and FMI baselines on the average overall test set.
Likewise, EMIN outperforms baselines when only a single modality is available (Fig. 3-4;
bottom). It remains an open question whether the exceptional VNIR performance (bottom left) in
this data regime obfuscates the need for SWIR data during inference. Regardless, training with
SWIR and VNIR using EMIN when overlap exists continues to enhance predictive performance
even when only the VNIR modality is available.

The above discussion offers different views of data performance under different collect footprints
and sensor resolutions scenarios. The complete set of data scenarios we test are reported in
Table. 3-1 and although non-exhaustive provide a strong foundation for further exploration of data
fusion through EMIN.

4. CONCLUSIONS

We outline a new method for multimodal data fusion called entropy minimization (EMIN). EMIN
is formulated as a conjugate loss term sensitive to the expectation of decision agreement across
disparate data sources. We test our new method on a synthetic hyperspectral target detection
problem, and observe significant performance gains compared to baseline fusion techniques. In
the overlap scenarios, FMI is data limited (can only utilize the overlapping data for training) and
achieves a mean CFAR that significantly underperforms FMO and EMIN, but increases with
increasing overlap fraction. EMIN offers the largest performance benefits under non-uniform data
scenarios. We frame our analysis of EMIN in the context of VNIR-SWIR hyperspectral image
fusion for target detection. However, the methodology and formulation of EMIN is not specific to
this scenario, and should be readily applicable to other fusion scenarios. The next steps for this
method are to explore the limit of data scenarios over which EMIN continues to outperform
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Figure 3-3 CFAR at threshold 0.05 for perfect pixel resolution for each modal-
ity (resolution = 1) and for degraded SWIR at 2.25 and 5.0625 at a 50% overlap
fraction.
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Table 3-1 CFAR scores for aIl overlap and resolution data scenarios.

Modality Overlap Resolution CFAR (0.05)
10 1 0.816165
33 1 0.877179

EMIN 1 0.884311
50 2.25 0.87401

5.0625 0.809033
90 1 0.904913
10 1 0.798732
33 1 0.824089

FMI 1 0.820919
50 2.25 0.816957

5.0625 0.767829
90 1 0.875594
10 1 0.829146
33 1 0.854992

FMO 1 0.868463
50 2.25 0.836767

5.0625 0.757528
90 1 0.897781

baseline models, and demonstrate the efficacy of EMIN on target tasks over a wider variety of
fusion applications and scenarios.
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