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Abstract

Optimization problems involving two decision makers at two different decision
levels are referred to as bi-level programming problems. In this work, we present
novel algorithms for the exact and global solution of two classes of bi-level pro-
gramming problems, namely (i) bi-level mixed-integer linear programming prob-
lems (B-MILP) and (ii) bi-level mixed-integer convex quadratic programming
problems (B-MIQP) containing both integer and bounded continuous variables
at both optimization levels. Based on multi-parametric programming theory,
the main idea is to recast the lower level problem as a multi-parametric program-
ming problem, in which the optimization variables of the upper level problem
are considered as bounded parameters for the lower level. The resulting exact
multi-parametric mixed-integer linear or quadratic solutions are then substi-
tuted into the upper level problem, which can be solved as a set of single-level,
independent, deterministic mixed-integer optimization problems. Extensions to
problems including right-hand-side uncertainty on both lower and upper lev-
els are also discussed. Finally, computational implementation and studies are
presented through test problems.
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Mixed-integer programming

1. Introduction

Optimization problems involving two decision makers at two different deci-
sion levels are referred to as bilevel programming problems: the first decision
maker (upper level; leader) is solving an optimization problem which includes
in its constraint set another optimization problem solved by the second decision
maker (lower level; follower). This class of problems has attracted considerable
attention across a broad range of research communities, including economics,
sciences and engineering. It was applied to many and diverse problems that
require hierarchical decision making such as transportation network planning
(Boyce and Mattsson, 1999; Migdalas, 1995; Yang and Yagar), 1995), urban plan-
ning (Tam and Lam) [2004)), economic planning (Gao et al. 2011} |Miljkovic}, [2002;
[Robbins and Lundayl, [2016)), policy decision making (Avraamidou et al.l [2018]),

design under uncertainty (Floudas et al.| [2001} Terapetritou and Pistikopoulos|

11996; Ryu et al., |2004; |Avraamidou and Pistikopoulos)), design and control in-
tegration (Brengel and Seider] 1992} [Luyben and Floudas) [1994alb} Tanartkit|
land Biegler| [1996)), hierarchical control (Avraamidou and Pistikopoulos, 2017a}
[Faisca et al.,2009; Katebi and Johnson) [1997)), and supply chain planning

and Youl, 2018}, [Calvete et all, 2010} [Grossmannl 2005} [Seferlis and Giannelos,
[2004; |Avraamidou and Pistikopoulos| [2017b; [Yue and You, 2017)).

Such decision making problems can involve decisions in both discrete and
continuous variables. A motivating example that falls in this class is presented

below.

1.1. Motivating example: Production and Distribution Planning Integration
Supply chains are systems with multiple decision levels corresponding to
different activities, spanning from the procurement of raw materials to the dis-
tribution of the final products to the costumers. Even though these decisions
are interlinked and can affect each other, in most cases they are considered

individually (Grossmannl, [2005] [2004]).
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Figure 1: Schematic of the production-distribution planning problem with two companies

The significance of the integration of production and distribution decisions

inside supply chains, in order to account for the interactions between them,

has been recognized by different researchers (Erenguc et al. 1999; [Vidal and|

\Goetschalckxl, [1997; |Grossmann, 2005). Proposed integrated approaches include

assuming (i) that one company controls the integrated process by owning both

the processing plants and distribution centers (Gupta and Maranas, 2000; |Sousa

et al.,|2008; |Jung et al.,[2004)), or (ii) that the processing plants and distribution

centers are owned by different companies, each trying to optimize their own
objective (Calvete et all, 2010} [Seferlis and Giannelos, [2004; Roghanian et al.,
2007; [Kuo and Han| 2011} Ivanov et al., [2013).

Considering the second case, the production-distribution planning (PD) prob-
lem can be expressed as a hierarchical decision problem, involving two different
decision makers corresponding to each company. Assuming one company owns
the production plants and another the distribution centers, the resulting prob-
lem is a two level hierarchical decision problem. The first level is responsible for
optimizing the distribution centers overall costs and is influenced by the second
level that is responsible for optimizing the production plants overall costs.

When considering the PD problem, decisions taken at both decision lev-
els can involve both continuous (e.g. production rates, distribution rates) or
discrete (e.g. choice of production plant, choice of distribution center, active
routes) variables. Therefore, the integrated PD problem results into a mixed-
integer bilevel programming problem with both integer and continuous variables

at both optimization levels.
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1.2. Mized-integer bilevel programming problems (B-MIP)

Problems such as the integrated PD problem are referred to as mixed-integer

bilevel programing problems (B-MIP), and have the general form of:

min Fi(z,y)

1,Y1
s.t. Gi(z,y) <0
Lo,y € argmin{Fy(z,y) : Ga(z,y) <0, Ha(x,y) = 0}
xr2,Y2

r=lo" 2" y=n" 'l
reR" yez™

where x1 is a vector of the upper level problem continuous variables, y; is a
vector of the upper level integer variables, x5 is a vector of the lower level
problem continuous variables, ys is a vector of the lower level integer variables,
x is a vector of all continuous variables, y is a vector of all integer variables.

The general formulation of the mixed-integer bilevel programming problem
(1), corresponds to a number of different classes of problems. Table 1 classifies
these problems into four categories that can be expanded to cover the linear,
quadratic and non-linear sub-class of each Type, as identified by [Gumus and

Floudas| (2005).

Table 1: Types of mixed-integer bilevel programming problems

Problem Type Upper level variables Lower Level variables
Type 1 Continuous and/or Integer ~Continuous

Type 2 Integer Integer

Type 3 Continuous Integer

Type 4 Continuous and/or Integer ~Continuous and Integer

1.8. Challenges and Previous work

Bilevel programming problems are very challenging to solve, even in the

linear case (shown to be NP-hard by Hansen et al.| (1992) and |[Deng] (1998))). To
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strengthen these results |Vicente et al. (1994) proved that even checking strict
or local optimality is NP-hard.

For classes of problems where the lower level problem also involves discrete
variables, the complications are further increased, typically requiring global op-
timization methods for their solution and often resulting to approximate solu-
tions. The major difficulty for this class of problems arises from the fact that
conventional solution methods for continuous bi-level problems are no longer ap-
plicable when integer variables exist at the lower level. One of the most widely
used solution approaches for continuous bi-level problems with convex objective
functions and constraints, is the transformation of the problem to a single level
problem using the Karush-Kuhn-Tucker (KKT) optimality conditions. Since
this method requires gradient information it is not directly applicable to bi-
level problems with integer variables on the lower level, even though in some
cases there is merit in using them (Gumus and Floudas, |2005; |Saharidis and
lerapetritoul |2009; Mitsos|, 2010). Also, the branch and bound rules used to
solve mixed-integer problems cannot be directly or effectively applied to mixed-
integer bi-level problems (Bard and Moore, [1990). It is worth noting here, that
algorithms developed for non-convex continuous bi-level problems such as [Gu-
mus and Floudas| (2001); Mitsos et al.| (2008]); [Zhu and Guol| (2017, can be
extended into solution methods for mixed-integer problems.

In the literature, methods developed for the solution of mixed-integer bi-
level problems have mainly addressed the linear Type 1 and 2 problems. Tables
2, 3, 4 and 5 summarize some of the most important solution methods for bi-
level mixed-integer linear problems of Type 1, Type 2, Type 3 and Type 4
respectively, in the open literature. Table 6 and Table 7 summarize approaches
for the solution of bi-level mixed-integer non-linear problems of Type 1, Type 2
and Type 4 B Note that general strategies for the global and exact solution of

Type 4 bi-level mixed-integer linear or quadratic problems are scarce.

IThe Notes column in Tables 2, 3, 4, 5, 6 and 7 represents important features, limitations

or advantages of the works as written in each individual manuscript.



Table 2: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 1

Algorithm

Reference

Notes

Branch and

Bound

‘Wen and Yang) (1990

Heuristic approach, only
integer optimization
variables are allowed in

the upper level.

Only integer optimization

Tabu search ‘Wen and Huang (1996 variables in the upper
level. Approximate.
Multi-Parametric
Faisca et al.| (2007 Exact.
Programming
Benders Caramia and Mari| (2016
e-optimal.
decomposition Fontaine and Minner| (2014

Table 3: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 2

Algorithm

Reference

Notes

Penalty Function

1996

Vicente et al.

Also provided theory
for Type 1.

Branch and Bound

Bard and Moore

1992

Implicit Enumeration.
Assume: all binary, no

upper level constraints.

Chvatal-Gomory

cuts (cutting plane)

Dempe| (2001

Generates a lower

bound to the problem.

Branch and Cut All binary. Based on
DeNegre and Ralphs| (2009

(cutting plane) Bard and Moore| (1992

Genetic Algorithm  |Nishizaki and Sakawa/ (2005) Approximate solutions.

Evolutionary

Algorithm

Handoko et al.| (2015

Global optimality is

not guaranteed.
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Table 4: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 3

Algorithm Reference Notes

Lower level variables
Branch and Cut Dempe and Kue| (2017)  cannot affect the upper

level constraints.

Polynomial Dempe| (2001]) Cutting plane,

Approximation Dempe et al.| (2000) approximate.

Parametric integer Cannot guarantee
Koppe et al.| (2010)

programming optimality.

1.4. Key contribution

In this paper, we present global optimization algorithms for the exact solu-

tion of two classes of bilevel programming problems, namely:

1. Bilevel mixed-integer linear programming problems (B-MILP)

2. Bilevel mixed-integer convex quadratic programming problems (B-MIQP)

Both classes belong to sub-class Type 4 (i.e. containing both integer and
continuous variables at both optimization levels), while the proposed algorithms
are also applicable to problems of Types 1-3.

The proposed algorithms are a result of new developments on multi-parametric
programming theory (Acevedo and Pistikopoulos, [1997; |Oberdieck and Pis-
tikopoulos, [2015; |(Oberdieck et al. |2016a) and our earlier results and devel-
oped algorithms on continuous bilevel linear and quadratic programming (Faisca
et al., 2007}, 12009). The main idea of this type of algorithms for the solution of
mixed-integer bilevel problems is to recast the lower level problem as a multi-
parametric programming problem, in which the optimization variables of the
upper level problem (both continuous and integer) are considered as parame-
ters for the lower level problem. The resulting exact parametric solutions are
then substituted into the upper level problem, which can be solved as a set of

single-level deterministic mixed-integer programming problems.



Table 5: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 4

Algorithm Reference Notes

Implicit Enum.

Branch and

Bound

Moore and Bard| (1990 Cannot guarantee

optimality.

Approximate local
Penalty Function |Dempe et al.| (2005

solutions.
e-optimal. Leader
Benders
Saharidis and Ierapetritou (2009 controls all binary
decomposition
variables.
Only integer
Branch and Xu and Wang| (2014]); Xuf (2012 optimization
Bound Caramia and Mari| (2016 variables in the
upper level.
Lower level
variables cannot
Lagrangean
Rahmani and MirHassani| (2015 appear in the
relaxation

constraints of the

upper level.

Projection-based  [Yue and You| (2016
e-optimal.
Reformulation Zeng and An| (2014
Row-and-column
Poirion et al.| (2015 e-optimal.

generation

Exact. Leader

variables that

Fischetti et al.| (2016 influence the

Branch-and-Cut

follower decisions
are all integer.

Fischetti et al.| (2017 Exact.
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Table 6: Indicative list of previous work on bi-level mixed-integer non-linear optimization

problems of Type 1 and Type 2

Type  Algorithm Reference Notes

Lower level is
Branch and Edmunds and Bard| (1992)
Type 1 convex quadratic.
Bound

Gumus and Floudas| (2001) Approximate.

Only for separable

Parametric and monotone
Jan and Chern| (1994)
Analysis constraints and
Type 2
objective.
Fuzzy Pareto optimal
Emam (2006)
Programming solution.

The proposed algorithms are implemented in a prototype toolbox, B-POP
(Avraamidou and Pistikopoulos, 2018a)), that uses POP’s (Oberdieck et al.
2016b) mp-MILP and mp-MIQP solvers to solve B-MILP and B-MIQP prob-
lems. Computational studies are carried out to show the capabilities and scala-
bility of B-POP. To our knowledge, B-POP is currently the only freely accessible
toolbox for the solution of bi-level mixed-integer linear and quadratic program-
ming problems.

Section 2 presents the solution algorithm for the Type 4 B-MILP, while its
application is illustrated via three numerical examples. Section 3 addresses the
Type 4 B-MIQP algorithm and is illustrated through two numerical examples.
The theory is extended in Section 4 to cover the existence of right hand side
uncertainty on both optimization levels, while Section 5 summarizes the compu-

tational implementation and computational studies of the presented algorithms.

2. Bilevel Mixed-integer Linear Programming Problems

A widely known property of the general bilevel programming problem is

that the feasible set of the inner problem is parametric in terms of the decision



lems of Type 4

Table 7: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

Algorithm Reference Notes

Simulated Near global
Sahin and Ciric| (1998

Annealing solutions.

The lower level

Branch and must be linear
Gumus and Floudas| (2005
Bound in continuous
variables.
Lower level
Li and Wang (2008 functions are
Genetic Hecheng and Yuping| (2008 separable or
Algorithms convex.
Near optimal
Arroyo and Fernandez (2009
solutions.
Multi- Reformulation
Parametric Dominguez and Pistikopoulos| (2010) via convex hull.
Programming Approximate.
Branch and
Kleniati and Adjiman| (2015 e-optimal.
Sandwich
Bounding Mitsos| (2010 e-optimal.

Value Function

Based

Lozano and Smith

2017

Requires all
upper-level
variables to be

integer.

10
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variables of the outer problem. To effectively utilize this property, Pistikopoulos
and co-workers have presented a series of algorithms based on multi-parametric
programming theory, which can address different classes of continuous multilevel
programming problems (Faisca et al., 2007, [2006).

Expanding on their earlier works, the approach presented here is based upon
a recently proposed Multi-parametric Mixed-integer Linear Programming (mp-
MILP) algorithm of Oberdieck et al., 2014 |Oberdieck et al.| (2014)) summarized
in Appendix I, and new theory for binary parameters in multi-parametric pro-
gramming problems (Oberdieck et al.l |2017)). The proposed methodology will
be firstly introduced through the general form of the B-MILP problem (2), and

then illustrated through 3 numerical examples.

min Fi(z,y) =Tz + ley
1,1
s.t. Avx+ By < b
T2,Y2 € argg};{Fz(x,y) =cTw+dyy: A+ Boy < ba}  (2)
v=lo" " y=mnT
reXCR" yeYCzZ™
where ¢1, dy, A1, B1, by are constant coefficient matrices in the upper level
(leader) problem, and cq, do, A2, Ba, by are constant coefficient matrices in the
lower level (follower) problem, and X and Y are compact polyhedral convex sets
of dimensions n and m, respectively.

As a first step, we establish bounds for all integer and continuous variables,
by solving problems (3) to (6) for upper level variables z;1 , and y; g, for all
a€{l,.n1} and B € {1,...,n2}, where n; and ny are the dimensions of vectors
x1 and y; respectively. Similar problems are solved for the lower level variables
z1,, and ya s, for all v € {1,..n3} and § € {1,..n4} (where ng and ny are the
dimensions of vectors x5 and ya respectively), in order to obtain bounds on both
z, 2t <x <2V, andy, y* <y <yY.

L _ .
T1,o = min T1,0

s.t. A1$ + Bly é bl (3)
Asx + Boy < by

11



T1,,° = min —T1q
s.t. Alx + Bly S bl (4)
AQQE + Bgy S bg

yrLp” =min  yip
s.t. AlfL’ + Bly S b1 (5)
Ag.’l? + Bgy S b2

y1,3Y = min —Y1,8
s.t. Az + By < by (6)
Asx + Boy < bs

Then, the B-MILP is transformed into a binary B-MILP by expressing in-
teger variables, y1 1....Y1n, and y21....Y2.n,, in terms of binary 0-1 variables,
U1 pds Ul pms € 0,1} for all B and 9251, -, Y2.6.n € 10,1} for all §, by fol-
lowing the formulas presented in (Section 6.2.1 - Remark 1).

The hat accent will be omitted in the following steps for simplicity.
As a next step, the lower level problem of the binary B-MILP, is transformed
into a mp-MILP problem (7), in which the optimization variables of the upper
level problem, x; and y» that appear in the lower level problem, are considered

as parameters for the lower level.

min dgTy + e Tx
Z2,Y2
s.t. Bgy S bg — AQI‘ (7)

The solution of (7) using multi-parametric mixed-integer programming (mp-
MILP) solution algorithms, such as Bank and Hansel (1984); Bank and Mandel
(1988)); Baotic et al| (2006)); Bemporad et al| (2000); Crema, (2002); [Dua and|
[Pistikopoulos| (2000); Dua et al.| (2002)); |Jia and Ierapetritoul (2006); Li and Ter-|
lapetritoul (2007); Oberdieck and Pistikopoulos (2015); Oberdieck et al.| (2014);
Wittmann-Hohlbein and Pistikopoulos| (2012, 2013), provide the complete pro-

file of optimal solutions of the lower level problem as explicit functions of the

variables of the higher level problem with corresponding expressions (8).

12
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POP®) , the Parametric Optimization toolbox (Oberdieck et al., |2016b)),
can be used at this step to get the optimal solutions (8). POP® toolbox fea-
tures a state-of-the-art multi-parametric programming solver for continuous and
mixed-integer linear and quadratic problems. The toolbox is freely available for
download in parametric.tamu.edu website. Appendix I illustrates the main steps

for the solution of mp-MILP problems through POP®) toolbox.

GL=pit+aqz+ry, 1 i HiloTyl]T <y

& =p2+ qur +ray1, Y2 if HolaTyl )" < hy
x2,Y2 = .

& =pr+apry + ey, Ur if HylaTyl )" < hy

where & are vectors of the lower level (follower) continuous variables and
1; are vectors of the lower level integer variables, p;, q; and r; are all constant
vectors, Hy[zTyT])T < hy is referred to as critical region(C'RF), and k denotes

the number of computed critical regions.

Remark 1: Solutions (8) comprise of all optimal solutions in the feasible space

of the upper level variables and not all feasible solutions.

The computed solutions (8) are then substituted into the upper level prob-
lem, which can be solved as a set of single-level deterministic mixed-integer
programming problems, (9). More specifically, the functions £ expressing the
lower level variables (z3) in terms of the upper level variables (z1 and y;), are
substituted in the place of lower level variables (2 and y2) in the upper level
problem, eliminating in this way the lower level variables form the upper level

problem. Moreover, the critical region definitions are added to the correspond-

13



ing single level problems as an additional set of constraints.

Zz1 = min
Z1,Y1

s.t.

Z9 = min
Z1,Y1

S.t.

Zp = min
Z1,Y1

s.t.

T

ez T (a,y)' ] +d "y e ")"
T

Ai[r e (x,51)"] + By T ') < by

HylzTyl 1" <h

T
aTleTé (@ y) '] +di [y T )"

T
AT (z1,y1)"] + By TeeT|T < by
Hy[z{y{]" < hy

T

Tz T (e, )] +di T [T T)T
T

Al Te (@, 91)" ] + Biln TR 1T < by

Hi[z{y{]" < hy,

The single-level, deterministic programming problems (9) are independent

of each other, making it possible to use parallel programming to solve them

simultaneously.

The solutions of the above single level MILP problems correspond to different

15 sub-optimal solutions of the original B-MILP. The final step of the algorithm is

to compare all the sub-optimal solutions to obtain the minimum z that would

correspond to the exact and global optimum, z*, of the original bi-level problem.

The proposed algorithm is summarized in Algorithm 1.

Remark 2: Pessimistic and Optimistic Solutions:

170 When the optimal solution of the lower level problem is not unique for

the set of optimal upper level variables the decision maker can take a pes-

simistic or an optimistic decision.This degeneracy can result either because

of the lower level integer variables or because of the lower level continuous

variables.

175 For the cases where a degeneracy results because of the lower level integer

variables the solution method described above is able to capture all de-

generate solutions and therefore supply the decision maker with both the

14



Algorithm 1 Multi-parametric algorithm for the solution of Bilevel Mixed-

Integer Linear Programming problems

1:

2:

3:

Establish integer and continuous variable bounds
Express integer variables into binary and substitute in (2)
Formulate the mp-MILP problem (7)
Solve (7) and obtain solution [xo yo]T = F;(21,y1) defined over CR;.
for i+ 1,....,#CR; do
Formulate MILP (9-7)

Solve (9-i) to get candidate solution z;

end for

return z; with minimum value

185

pessimistic and optimistic solutions.

For the cases where a degeneracy results because of the lower level con-
tinuous variables the multi-parametric solution via POP®) toolbox is not
able to supply the decision maker with the full range of degenerate solu-
tions. Even though there are techniques to handle degeneracy in multi-
parametric problems (Gal and Nedoma, [1972; [Jones et al., [2007}; |Olaru
and Dumur}, |2006; Spjotvold et al., [2005), those are not yet implemented

in the approach described above.

Therefore, it is assumed that there is a unique optimal solution for the
continuous lower level variables corresponding to the upper level optimal

solution.

2.1. Numerical Examples

190

Three B-MILP numerical examples will be solved to illustrate the use of the

proposed algorithm.

15



2.1.1. FExample 1: LP-ILP

Consider the following Type 3 example taken from Dempe| (2001)):

rrgn —x1 — 229 + 3y1 + 3.2y2
s.t. -y — Y2 < 2
Y1 +y2 <2
—2<y12<2
lein — T1Y1 — T2Y2 (10)

st.—x1 +312 <3
I17I2§1
—1’1—1’2§—2

yeR?, zezt™

Step 1: Bounds are established for the unbounded integer variables x; and
o resulting in 1 <xy <3 and 1 < xy < 2.

Step 2: The problem is transformed into a 0-1 binary B-MILP. Following
Floudas| (1995)), the integer variables z; and x5 can be expressed through binary
variables as x1 = 1 4+ 1, + 221, and o = 1 + x9,. Therefore, formulation (10)

can be reformulated as (11).

min —T1q — 2.Z‘1b — 2%‘2@ + 3y1 + 3.23/2 -3
Yy
s.t. —y1 — Y2 < 2
y1ty2 <2
—2<y12<2

(10, T1p, T2q) € arg{ min (14 + 221 + 1)y1 + (220 + 1)1

Z1a:%1b,%2a

st. — 1y —2T1p + 379, <1
Tiq + 2T1p — W24 <1
—T1q — 2T1p — T2e <0}

Yy €R2 214, 21p, 22, € {0,1}°
(11)

105 Step 3: The lower level problem is reformulated as a mp-ILP, in which the

optimization variables of the upper level problem y; and ys are considered as

16



Table 8: Lower level problem solution of Example 1

Critical Objective
Definition Variable value
Region Function
CR1 —2<y12<2 | y1 + ¥y T1a =0, T1ap =0, T2,=0
parameters.
- T
1 0 Tla
min 2 0|y T | + {1 1} Y
T1a,T1b,T2a
0 1 T2q

-1 -2 3| |21
s.t. 12 =1 |z

IN
S =

-1 -2 —1]| |x9,

—2<y12<2
T1a, T1b, T2a € {0, 1}3
Step 4: The above problem is then solved using a mp-ILP algorithm and
yields the optimal parametric solution given in Table 8. In this example the

200 parametric solution consists of only one critical region.

Step 5: The solution obtained is then substituted into the upper level
problem to formulate one new single-level deterministic linear programming

(LP) problem.

Hzin =34 3y1 + 3.2y

s.t. —Y1 — Y2 <2
y1+y2 <2 (13)
—2<y12 <2
y € R?

Step 6: Problem (13) is solved using CPLEX linear programming solver,
and results to the solution presented in Table 9. Since only one solution is

derived no comparison procedure in this step is needed and the solution listed

17



Table 9: Solution of the single level problem formulated in Example 1

Objective Function | Continues Variables | Discrete Variables

—94 Yy = O7 Yo = -2 xry = 1, To = 1

in Table 9 is the exact and global optimal solution of Example 1.

20s 2.1.2. Example 2: ILP-ILP
Consider the following Type 2 class example taken from [Moore and Bard

(1990):

min —x — 10y
s.t. y € arg{myin Y
s.t.  —25x 4 20y <30
z+2y <10 (14)
20 —y <15
-2z — 10y < —15}
z,y € Z+?
Step 1 & 2: Bounds are established for all the variables, resulting in 1 <
xz < 8and 1 <y < 4. The problem is then transformed into a 0-1 binary B-ILP
210 problem (4.1), by expressing the integer variables z and y through the binary
variables x1, x3, 3, y1 and y2 as x =1+ x1 + 229 +4dxs and y = 1 + y1 + 2y

18



Table 10: Lower level problem solution of Example 2

Critical Region | Definition Objective | Variables
CR1 IQZO, I3=0 2 ylzl, yQZO
CR2 —To — X3 S -1 1 Y1 = 0, Yo = 0

Floudas| (1995]).

min —x1 — 2x9 — 4wz — 10y; — 20y — 11

Z1,T2,T3

s.t. (y1,y2) € arg{?gliyr; Y1 +2y2 +1
s.t.  —25x1 — 502y — 100z3 + 20y, + 40y2 < 35
T1 + 2wo +4w3 +2y1 +4y2 <7
2x1 +4xo +8x3 —y1 —2y2 < 14
—2x1 — 4wy — 8xz — 10y; + 20y < —3}

X1,T2,T3 € {LO}S y Y1, Y2 S {07 ]-}2
(15)

Step 3: The lower level problem is then reformulated as a mp-MILP (16),
in which the optimization variables of the upper level problem, xq, 2 and z3,

215 are considered as parameters.

min Y1+ 2y2 + 1
Y1,Y2

s.t. 25x1 — 50x2 — 100z3 4+ 20y + 40y, < 35
T1 + 2w +4w3 + 2y1 +4y2 <7
211 +4xo +8x3 —y1 —2y2 < 14
—2x1 — 4x9 — 823 — 10y; + 20y, < —3
1, w9, 3 € {1,01° 1,9 € {0,1}?
Step 4: The above problem is then solved using the theory presented in
Oberdieck et al.| (2017)) for binary parameters in multi-parametric problems,
and yields to the optimal parametric solution presented in Table 10.
Step 5 & 6: The solution obtained is then substituted into the upper level

220 problem to formulate two new single-level ILP problems corresponding to each
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Table 11: Solution of the single level problem formulated in Example 2

Critical | Objective Transformed Original
Region | Function Variables Variables
CR1 —22 z1=1, 29=0, 2z3=0]|2z=2, y=2
CR2 —18 r1=1, x2=1, z3=1|x=8, y=1

critical region. Solving this single level problems using CPLEX results to the
solution presented in Table 11.
After the comparison procedure the global optimum is found to be -22 with

r=2and y=2.

225 2.1.3. Example 3: MILP-MILP

Consider the following Type 4 class example:

min 4x1 — w9 + x3 + Sy — 6ys3

Z1,2,Y3

s.t. (x3,91,2) € arg{ min — x1 + x2 — 23 — Y1 + dY2 + Y3

z3,Y1,2

s.t. 6.4xy + 7.2x9 + 2.523 < 11.5
—8x1 —4.925 — 3.223 <5
3.3z1 + 4.1xo + 0.0223 + 4y 4+ 4.5y2 + 0.5y3 < 1
—10<x12<10 }
x1, 20,3 € R3, y1,y2,y3 € {0,1}°
(17)
Step 1 & 2: This example is already bounded and in terms of binary 0 — 1
variables, therefore we can go directly to Step 3.
Step 3: Considering only the lower level problem, and treating 1, x5 and

230 y3 (upper level variables) as parameters, the lower level problem is transformed
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to a mp-MILP (18).

min —21 — Y1+ 5Y2 + T2 — 223 + Y3

Z3,Y1,2

s.t. 6.4r; <11.5 — 7.2x9 — 2.5x3
—8z1 < 5+ 4.975 + 3.225 (18)

3.3x1 +4y1 + 4.5y <1 —4.12x9 — 0.02z3 — 0.5y3

—10 S x1,2 S 10

Step 4: Problem (18) is then solved using POP toolbox and the theory

presented in |(Oberdieck et al.[(2017]), and yields the optimal parametric solution

shown in Table 12.

235 Step 5: Each solution was then substituted into the upper level problem,

resulting into 8 single level linear programming problems, (19), corresponding

to each critical region.

Z1 = min
Z1,2

s.t.

2zg = min
1,2

s.t.

—161x7 — 20622 + 50

—0.6242, — 0.780xy < —0.175
0.624z1 + 0.781xz2 < 0.198
I S 10

1.442, — 3.8815 — 1.4 (19)

0.626z1 + 0.779z2 < 0.0787
0.044z1 + 0.999z2 < 4.565
—0.6241z1 — 0.7814z2 < 0.666
—-10<z; <10

—X2 < 10

Remark 3: Mixed integer linear or quadratic bilevel problems with all of the

binary variables appearing in the lower level problem will result in pure

240 continuous single-level programming problems at Step 5 of the algorithm.

Step 6: All 8 linear programming problems (19) were solved using CPLEX

solver and their solution is reported in Table 13.
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Table 12: Example 3: Parametric solution of the lower level problem

CR | Definition Variables
—0.6242; — 0.780x2 < —0.175 r3 = —165x;
1 205zx2 + 50
0.624x, + 0.781x2 < 0.198 y1 =0
21 <10, y3=0 y2 =10
0.624x, + 0.781x9 < —0.570 r3 = —2.56z;
2.88z2 4 4.6
? —0.6242; — 0.780x2 < 0.594 y1 =0
z1 <10, y3=0 y2 =0
—0.62621 — 0.780x2 < 0.596 r3 = —165x
2052 + 50
3 0.624x1 + 0.781zy < —0.570 =1
—0.62621 — 0.780x2 < 0.594 y2 =0
1 <10, y3=0
n
0.626z1 + 0.779z2 < —0.693 r3 = —2.56z
2.88x2 + 4.6
! 0.044z1 + 0.999z2 < 4.565 =1
-10< 21 <10 Yo =0
-2 <10, y3=1
0.626z1 + 0.779z2 < 0.0787 r3 = —2.56x;
2.88x5 + 4.6
8 0.044z1 + 0.999z2 < 4.565 y1 =0
—0.624121 — 0.7814z2 < 0.666 y2 =0

-10<2; <10

—x2 < 107 Ys = 1
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Table 13: Solution of the single level problems generated in Example 3

Critical Region | Objective | z; To T3 Y1 | Y2 | Y3
CR1 —38.115 —10 8.243 | 10.128 |0 |0 | O
CR2 —37.969 —10 7.26 | 9.291 0 [0 |0
CR3 173.636 —8.835 | 6.329 | 210306 | 1 |0 | O
CR4 —24.457 —7.032 | 4.879 | 8.549 1 10 |0
CR5 —24.438 —7.020 | 4.879 | 8.520 0 [0 |0
CR6 61.086 —2.736 | 2.055 | 80.083 |0 [0 |1
CR7 —25.708 —7.187 | 4.886 | 8.928 1 10 |1
CR8 —30.704 —7.185 | 4.886 | 8.921 0 |0 |1

After the comparison procedure the solution with the minimum objective

value was chosen as the global solution of the bilevel programming problem

(14), lying in critical region 1, with z; = —10,29 = 8.243, 25 = 10.128 and

y1,2,3 = 0.

3. Bilevel Mixed-integer Quadratic programming problems

The algorithm presented in Section 2 is extended for mixed-integer quadratic

programming problems of the following general form (20), belonging to problem

class Type 4.

min
T1,Y1

s.t.

T
(Q1TW +e1) wtca

Az + By <by

T
(x2,92) € arg{min  (Q2"w +¢2)" w + ceo
Z2,Y2 (20)

s.t. Asx + Boy < by }

re€XCR" yeYCzr

T
v =[zT2l]T, y=[WlyI]", w=[Ty"]

where Q1, c¢1,c.1 A1, B, by are constant coefficient matrices in the upper level

(leader) problem, and Qa, c2, cea, Az, Ba, be are constant coefficient matrices
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in the lower level (follower) problem. Qs is positive definite, and X and Y are
compact polyhedral convex sets of dimensions n and p respectively.

The main idea and methodology for solving this type of problems follows
the methodology proposed in Section 2, and is based on a recently developed
mp-MIQP algorithm by |Oberdieck and Pistikopoulos| (2015), summarized in
Appendix II. The proposed methodology will be firstly introduced through the
general form of the B-MIQP problem (20), and then illustrated through two
numerical examples.

The first three steps of the B-MIQP algorithm are similar to the first three
steps of the B-MILP algorithm. In Step 1 integer and continuous variable
bounds are established and in Step 2 integer variables are transformed into
binary variables similarly to Steps 1 and 2 of the B-MILP algorithm. In Step
3 the lower level problem of the reformulated B-MIQP is transformed into a
mp-MIQP problem (21), in which the optimization variables of the upper level
problem that appear in the lower level problem, x; and ¥, are considered as
parameters for the lower level problem.

)T

min (QgTw 4+ c2) W e
Z2,Y2
s.t. Agl‘ + Bgy < b2 (21)

ol <z <z ¥

The solution of the mp-MIQP problem (21), using mp-MIQP algorithms
through POP toolbox, will result to the complete profile of optimal solutions
of the lower level problem as explicit functions of the variables of the upper
level problem with corresponding critical regions. Critical regions for mp-MIQP
problems can be non-convex. The final step of the mp-MIQP algorithm is
a comparison procedure (minmax, affine, exact) for overlapping critical regions
that are created by the integer terms (Oberdieck et al.,[2016b). This comparison
step is essential as only one critical region can be optimal at any given point
in the space. The quadratic objective function of the lower level problem can
therefore make the final critical regions non-convex, by the creation of non-linear

inequalities for the definition of the final critical regions (22) (Oberdieck and
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Pistikopoulos|, 2015)).

&S =p1+qr+aTrznYr i Hizg <hg,gi(o) <o

: ] & =po+ qery + 21 row, Yo if Hazy < Ha,go(x1) < go
T2, Y2| =

& = pr + e + 21 gy, if Higwy < by, gi(21) < g

Therefore, in Step 5 we substitute the multi-parametric solution into the

upper level MIQP problem to formulate single level MIQP or MINLP problems.

275 In

Step 6 the single level problems are solved using appropriate mixed-integer

linear, quadratic or non-linear global optimization solvers, and their solutions

are compared to select the global optimum solution.

The proposed algorithm in summarized in Algorithm 2.

Algorithm 2 Multi-parametric algorithm for the solution of Bilevel Mixed-

Integer Quadratic Programming problems

1:

2:

3:

Establish integer and continuous variable bounds
Express integer variables into binary and substitute in (20)
Formulate the mp-MIQP problem (21)
Solve (21) and obtain solution [z2 y]? = F;(z1,y1) defined over CR;.
fori« 1,..,#CR,; do
Formulate MIQP or MINLP using (20) and (22)
Solve MIQP or MINLP to get candidate solution z;
end for

return z; with minimum value

Remark 4: This algorithm achieves exact and global optimal solutions when

@1 > 0. For problem cases where this property does not hold, this algo-

rithm is able to achieve approximate global optimum solutions.
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3.1. Numerical Examples

Two B-MIQP numerical examples will be solved to illustrate the use of the

proposed algorithm.

265 3.1.1. Example 4: QP-IQP
Consider the following Type 4 class example taken from [Edmunds and Bard

(1992):

min (x—2)2 + (y — 2)?

s.t. min y?
Yy
st. —2rxr—2y< -5 (23)
r—y<1
3r+2y <8

reR, ye{0,1,2}
Step 1: Bounds are established for the unbounded continuous variable x (y
is already bounded), resulting in % <z< %.
200 Step 2: The problem is reformulated into a 0-1 binary B-MIQP (24) by
expressing the integer variable y as a linear function of new binary variables y;

and y2, y = y1 + 2y2.

min  (z—2)*+ (y1 + 2y2 — 2)?
st min (y1 + 2y2)?
Y1,Y2
st. —2x—2y; —4y, < -5
T—y1 — 2y <1
3x 4+ 2y1 +4y2 <8
HAS R? Y1,Y2 S {07 1}2
Step 3: The lower level problem is then reformulated as a mp-MIQP prob-

lem (25), by considering the upper level optimization variable, x, as a parameter.
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Table 14: Lower level problem solution of Example 4

Critical Region | Definition Objective Function | Variables

CR1 15<z<2 |1 =1, yo=0

min (y1 + 2y2)?

Y1.Y2
s.t. —2y; —4dy2 <2x -5
—y1— 2y <~z +1 (25)
2y1 +4y2 < —3x+8
t<r<s
Step 4: The resulting mp-MIQP problem (25) is solved using POP toolbox,
resulting in the optimal solution presented in Table 14.
205 Step 5: The two solutions were then substituted into the upper level prob-
lem, resulting into two single level quadratic programming problems (see Remark

1) corresponding to each critical region.

v (26)
s.t 15<2<2

Z9 = min z —2)2
i (x—-2) @)

s.t. 05 <xz<4/3
Step 6: The resulting problems are convex quadratic programming prob-
lems therefore CPLEX solver was used for their solution (Table 15). After
s00 comparison the global solution of the problem was found to be at = 4/3 and

y = 2 with the objective value of 4/9.
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Table 15: Solution of the single level problem formulated in Example 4

Critical Region | Objective Function | Variables
CR1 5 r=2, y=1
CR2 4/9 x=4/3, y=2

8.1.2. Example 5: MIQP-MIQP

Consider the following Type 4 class example problem:

min 422 — 23 + 229 + 23 + by1 + 6y3
Z1,22,Y3
s.t. —y1—Y2—ys < —1

igilnufx% + Y% 4 By + T2y1 — T2y — Bz — 15y; — 16y
s.t. 6.4x1 + 7.2x9 + 2.523 < 11.5
—8x1 —4.929 — 3.223 <5
3.3x1 +4.129 4+ 0.0223 + 4y1 + 4.5y2 + 0.5ys < 1
-10<2, <10
—10 <29 <10

3
z1, T2, 3 €R®, y1,y2,y3 € {0,1}

Step 1 & 2: The problem is already bounded and in the form of a binary 0 —1
B-MIQP problem, therefore we can directly proceed to Step 3.

Step 3: The lower level problem is reformulated as a mp-MIQP problem
by considering the upper level optimization variables that appear in the lower
level (x1,x2,ys3) as parameters.

Step 4: The existence of bilinear terms introduces another step for the solu-
tion of this problem, as a z-transformation to eliminate those terms is required.
This transformation can be done through POP toolbox, and the resulting mp-
MIQP problem is solved again using POP toolbox and the theory presented in
Oberdieck et al.[ (2017)), resulting in the optimal parametric solution presented
in Table 16 and Figure 2.

Step 5: All 12 critical regions that form the parametric solution were then

substituted into the upper level problem, formulating twelve single level MIQP
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Table 16: Example 5: Solution of the lower level problem

CR | Definition Variables
0.624x; + 0.781z9 < 0.198 x3 = —16521 — 20522 + 50
1 —0.627z1 — 0.779z2 < —0.185 | y1 =0
1 <10 ys =10
0.044z1 + 0.999z9 < 4.565 r3 = —2.5x7 — 1.531lxy —
1.563
0.624x1 + 0.781z9 < 0.198 y1 =0
? 0.853z1 + 52229 < —0.959 Yo =
—0.6241z1 — 0.7814x9 < 0.57
—r1 <10
—x9 < 10
0.624x1 + 0.781xy < —0.57 x3 =125
3 —0.627z1 — 0.779z2 < —0.575 | y1 =0
z1 <10 y2=10
—0.853z1 — 0.5223z2 < 0.959 | 23 =1.25
0.62721 + 0.7792 < 0.185 =0
4 —0.624z1 — 0.781z2 < 0.57 y2 =10
z1 <10
—x2 < 10
n
0.624z1 + 0.7814x9 < —1.434 | 3 =1.25
11 | —0.627x1 — 0.779z2 < 1.430 y1 =20
1 <10 Yo =1
0.627x1 + 0.779z2 < —0.670 x3 =125
—0.853z1 — 0.522z2 < 0.959 =0
12 | —0.624z, — 0.781z, < 1.434 Y2 =1

x1§10

—T2 S 10
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Figure 2: Example 5: Graphical representation of the parametric solution of the mp-MIQP

problem
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problems corresponding to each critical region.

Step 6: The resulting problems where then solved using CPLEX solver
and their solution is presented in Table 17. After the comparison procedure
the global optimum was found to be in critical region 11 with an upper level

objective function of -1.742.

4. Mixed integer bilevel programming with right hand side uncer-

tainty

For applications that involve constantly changing and unpredictable condi-
tions it is of high importance to consider the effect of uncertainties in program-
ming problems. When considering bilevel programming formulations, uncer-
tainties can be both integer or continuous, and can arise in both optimization
levels. Such examples include i) supply chain planning: unstable business envi-
ronment, with constantly changing market conditions and customer needs and
expectations (Gupta and Maranas, 2000; [Jung et al.l |2004; Ryu et al., [2007), i)
hierarchical model predictive control: constantly changing system states and un-
predicted system disturbances (Sakizlis et al., [2004) and iii) economic planning:
world trade, politics, weather etc. (Radner and Portes, (1975)).

The presence of uncertainty in bilevel problems has been addressed before for
the continuous linear case Ryu et al|(2004) and the continuous quadratic case
(Faisca et al., [2007). In this work we present an extension of our earlier work
that covers both mixed integer linear and quadratic cases. We are considering
the uncertainty to be unstructured but bounded, and can appear in one or both
optimization levels.

We are addressing the following bilevel programming problem with right
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Table 17: Example 5: Single level solutions

CR | Variables Obj.
Level 1

1 x1 = 1.283, o = —0.771, y3 = 1, z3 = —3.589, | 3.913
y1=0,y2=0

2 x1 = —1.328, 22 = 0.331, y3 = 1, 3 = 1.25, 4y =0, | 10.951
Y2 =0

3 21 =0.565, o = —1.193, y3 =1, x3 = 1.25, y1 =0, | 6.790
Y2 =0

4 x1 =0.563, xo = —1.179, y3 =1, z3 = 1.25, y; =0, | 6.810
y2 =0

5 x1 = —1.180, 20 = 0.090, y3 =0, z3 = 1.25, y; = 1, | 7.825
y2=0

6 21 =0.544, xo = —1.298, y3 =0, 3 = 1.25, yy =1, | 4.372
y2 =10

7 21 =0.542, x9 = —1.285, y3 =0, 3 = 1.25, y; = 1, | 4.386
Y2 =0

8 21 = 0.530, z2 = —2.702, y3 = 0, 3 = 1.25, y1 = 1, | 2.952
y2 =1

9 x1 = —0.002, zo = —1.834, y3 = 0, z3 = 1.25, | -1.577
1 =0,y2=1

10 x1 = 0.530, zo = —2.702, y3 = 0, 3 = 1.25, y1 = 1, | 2.952
y2 =1

11 | 1 =0.375, 20 = —2.137,y3 =0, xz3 = 1.25, y; =0, | -1.742
y2 =1

12 x1 =0.373, xzo = —2.133, y3 =0, z3 = 1.25, y; =0, | -1.740

y2 =1
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hand side uncertainty 6.

T
min (QlTw + Ht19 + Cl) w + (Qtlﬁ —+ Cﬂ)T9 —+ Cel

T1,Y1

s.t. All’ + Bly S b1 + F19
T
min (QgTw + Hiof + ) w+ (Q28 + c2)T0 + ceo

T2,Y2
s.t. AQiE + Bzy S b2 + F29 (29)
z=[2Tad]’, zeR"

y=livl", yez’
w=[aTy"]"
0 €0 :={0ecRIMO<d}

where @1, Hy1, c1, Q1, ¢i1, ce1 A1, By, by, Fy are constant coefficient
matrices in the upper level (leader) problem, and Qa, Hya, ¢2, Qt2, Ct2, Ce2 As,
Bs, ba, Fy are constant coefficient matrices in the lower level (follower) problem.
Q1 and @ are positive definite, and it is assumed that upper level optimization
variables that appear in the lower level problem, and lower level integer variables,
are bounded, or their bounds can be derived through the problem constraints.

For the solution of this problem we follow the following steps:

Step 1: Similarly to the BMILP and BMIQP algorithm, integer and contin-
uous variable bounds are established for the variables that appear in the lower
level problem.

Step 2: Integer variables are transformed into binary 0-1 variables.

Step 3: The lower level problem is transformed into a mp-MIQP or mp-
MILP, considering as parameters both the upper level variables that appear in
the lower lever (z1,%1), and the uncertainty 6.

Step 4: The resulting multi-parametric problems are solved using POP
toolbox.

Step 5: Each critical region is substituted into the upper level problem to
result into k single level multi-parametric problems, considering the uncertainty
0 as parameters.

Step 6: The resulting & multi-parametric problems are solved using POP

toolbox.
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Step 7: All k parametric solutions are combined. For overlapping regions
the exact comparison procedure implemented in POP toolbox and presented
in |Oberdieck and Pistikopoulos| (2015]) is used to result to the final exact and

global parametric solution of the original bilevel problem.

4.1. Numerical Fxample
4.1.1. Example 6: mp-MIQP-MILP

Consider the following Type 4 class example with right hand side uncertainty

min 4212 + x3y3 + 5y — 6ys — 6% + 26

T1,Y3

s.t. y1+y2 +y3 <1
min —x; — 229 — Y1 + Syo + 0

T2,Y1,2
st. 6.4x1 + 2515 < 11.5— 7.2
—8x1 — 3215 < 5+ 4.96 (30)
3.311 + 0.0225 + dyy + 4.5y2 < 1 —4.16
~10< z; < 10
~10< 6 < 10

z1, 2 € R%, y1,12,y3 € {0, 1}2

Steps 1 & 2: The problem is already bounded and in a binary form.

Step 3: The lower level problem is transformed into a mp-MILP problem.
Both the upper level variables that appear in the lower level (z1) and uncertainty
(0) are being treated as parameters for the lower level problem.

Step 4: The problem is then solved using POP toolbox, and yields to the
optimal parametric solution presented in Table 18.

Step 5: The solutions obtained for every critical region are then substituted
into the upper level problem to formulate five new single level mp-MIQP prob-
lems. More specifically, the functions of the optimization variables of the lower
level, zo, y1 and s, in terms of the upper level optimization variables, xz; and
0, are substituted in the upper level problem. The definition of each critical

region is added to each new single level problem as a new set of constraints.
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Table 18: Example 6: Solution of the lower level problem

CR | Definition Variables
—0.6242, — 0.7800 < —0.175 x9 = —16521 — 20560 + 50
1 0.624x1 +0.7816 < 0.198 y1 =0
z1 <10 y2 =10
0.624z; + 0.7816 < —0.570 x9 = —2.56x; — 2.880 4 4.6
2 —0.6242, — 0.7800 < 0.594 y1 =0
z1 <10 y2=10
—0.6262, — 0.7800 < 0.596 9 = —16521 — 2050 + 50
0.624z; + 0.7816 < —0.570 y1 =1
’ —0.62621 — 0.7800 < 0.594 y2 =0
z1 <10
0.6262; + 0.7800 < —0.596 xg = —2.56x1 — 2.880 4 4.6
0.044z; + 0.9996 < 4.565 yp=1
! —-10< 2 <10 Yo =10
-6 <10
0.044z; + 0.9996 < 4.565 To = —2.56x1 — 2.8860 + 4.6
0.62627 + 0.7800 < 0.175 y1 =0
5 —0.6242, — 0.7810 < 0.570 y2 =0

-10<2; £10
-0<10
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Table 19: Example 6: Solution of the single level mp-MIQPs

CR | Definition Objective

1.1 | —4.824 <0< 7.733 2.1360% — 408.0100 — 8.154
1.2 | 7733 <0 <7.812 —6% — 2036 — 1406

51 ] 0.290 <6 <1.241 —6% —0.8800 — 2.219

5.2 | —4.824 <6 <0.290 2.09660% — 2.6746 — 1.959
5.3 | —4.882 < 6 < —4.824 | 0.0016? + 0.00926 + 0.0002
5.4 | 1.2407 < 0 < 8.7160 2.13662 — 8.6616 — 2.607

Step 6: The five resulting single level problems are in the form of mp-MIQP
problems, with the uncertainty 6 being a parameter of the single level problems.
Therefore, the POP toolbox was used for their solution. Each critical region
formed in Step 4 is now divided into smaller regions as another parametric
programming problem is solved within the original regions.

A summary of the resulting parametric solutions of all five problems is pre-
sented in Table 19. Figure 3 graphically illustrates the objective function versus
the uncertain parameter 6 for all the critical regions derived in Step 6.

Step 7: As a last step, the solutions generated from each critical region
are compared and the parametric solutions resulting to the minimum objective
through the parametric space are chosen as the final solution of the mixed integer
bi-level programming problem with uncertainty. Table 20 summarizes the final
solution of this problem. The solution can also be seen in Figure 3 as it consists
of the lines forming the lower value of the objective function in the space of the

parameter 6.

5. Computational Implementation

The presented B-MILP and B-MIQP algorithms have been implemented in
our new B-POP toolbox (Avraamidou and Pistikopoulos, 2018a)), a MATLAB

toolbox for bilevel programming, an extension to our already developed POP
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Figure 3: Example 6:
mp-MIQP problems

Graphical representation of the parametric solution of the single level

toolbox. The toolbox features i) bilevel programming solvers for linear and

a0 quadratic programming problems and their mixed-integer counter-parts, ii) a

versatile problem generator capable of creating random bilevel problems of ar-

bitrary size, and iii) a library of bilevel programming test problems.

In B-POP we consider the following bilevel programming problem:

min
T1,Y1

s.t.

T
) w4 ca

(QlTW + 1
Az + By <b

: T
(z9,12) € arg{min  (Q2Tw + c2) w+ ceo

z2,Y2 (31)
s.t. Asx 4+ Boy < by }

zeR™ yeZ?
T
v =[zT2d]T, y=[Wlyl]", w=[Ty"]

To our knowledge, currently available bi-level solution toolboxes exist for

the solution of continuous bi-level programming problems, and this include

ss  YALMIP® (Lofberg] 2004) and JAMS®) (JAMS)) for convex continuous prob-
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Table 20: Example 6: Final solution

CR | Definition Objective

4.1 | —5.014 <0 < —4.882 | 0.0116% + 0.0096 + 0.0002
3.1 | —4.882 <0< —4.840 | 2.1360% — 2.5756 + 6.669
5.3 | —4.840 < 0 < —4.824 | 0.0116? 4 0.00960 + 0.0002
5.2 | —4.824 <0 < —0.015 | 2.09602 — 2.6746 — 1.959
1.1 | —0.015 <6 <7.733 2.13660% — 408.0100 — 8.154

1.2 | 7733 <0 <7.812 —6? — 20360 — 1406

34 | 7.812<60 <8799 2.0960% — 310.3740 + 4.065
3.3 | 8.799 <6 <8.802 —62 — 2030 — 701

4.2 | 8802<60<10 —62? — 0.8800 — 1.095

lems, and BLEAQ/N-BLEA® (Sinha 2003|) for non-convex continuous prob-
lems. A new toolbox for the solution of bilevel mixed-integer linear problems is
available by Matteo Fischetti et al., and to our knowledge B-POP is currently
the only freely accessible toolbox for bilevel mixed-integer quadratic program-

410 Ming problems.

5.1. Problem solution

Multi-parametric programming: For the lower level multi-parametric
programming problems, B-POP utilizes POP toolbox to solve the problem. The
user can specify the solution method that can be either geometrical, combina-

a5 torial or connected graph algorithms, or utilize POPs interface with the solver
in MPT Toolbox (more information in |Oberdieck et al.| (2016b))).
Sinlge level deterministic problems: For the resulting transformed sin-
gle level problems, being either LP, QP, MI(N)LP programming problems, B-
POP features links to CPLEX, NAG or MATLAB solvers as LP or QP solvers,
a0 and CPLEX or MATLAB for MI(N)LP problems.
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5.2. Computational Performance

A small set of problems was solved to show the capabilities of the presented
algorithms and B-POP toolbox. More computational results and in-depth dis-
cussion on the cababilities of B-POP toolbox for different classes of multi-level
problems are discussed in |Avraamidou and Pistikopoulos| (2018alb) .

The computations were carried out on a 2-core machine with an Intel Core
i7 at 3.1 GHz and 16 GB of RAM, MATLAB R2016a, and IBM ILOG CPLEX
Optimization Studio 12.6.3.

In order to highlight the applicability of B-POP as well as its scaling ca-
pabilities, we are considering both mixed-integer linear and quadratic bilevel
problems of different sizes and structures. The results of the computations are
presented in Table 21 for the B-MILP problems and in Table 22 for the B-
MIQP problems, where z; is the number of upper level continuous variables
that also appear in the lower level, y; is the number of upper level binary
0 — 1 variables, x5 is the number of lower level continuous variables, - is the
number of lower level binary 0 — 1 variables, m is the number of constraints
(excluding boundary constraints), "mp-Level 2 " is the time required to solve
the lower level problem multi-parametrically (i.e Step 4), "Single Level" is the
time required by CPLEX to solve the single level transformed problems and
select the minimum one, and finally "Total time" is the total time required for
the solution of the bilevel problem. The test problems in Tables 21 and 22 are
available at parametric.tamu.edu\ POP\ under the names 'BPOP _BMILP’ and
'BPOP_BMIQP’.

5.3. Discussion on the computational results

The proposed algorithm can be used to solve the randomly generated B-
MILP problems with up to 480 variables (a total of all integer and continuous)
and B-MIQP problems with up to 65 variables (a total of all integer and contin-
uous) in less than 4 minutes for 92% of the problems. The size and complexity
of the bi-level problems that can be solved through the proposed approach is

constrained by the capabilities of the multi-parametric mixed integer solution
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Table 21: Computational results: B-MILP

mp-Level 2 | Single Level | Total

Problem | z; Y1 To Y2 m
(s) (s) (s)

test8 40 | 40 | 2 2 22 | 291.130 0.1731 291.3035
test9 45 | 45 | 2 2 25 | 112.6904 0.2437 112.93.42
test10 50 | 50 | 2 2 27 | 455.0280 0.9539 455.09819
test25 2 2 75 | 75 | 40 | 4.1390 0.0026 4.1416
test26 2 2 80 | 80 | 42 | 3.8449 0.0023 3.8472
test27 2 2 85 | 8 | 45 | 5.6016 0.0031 5.6047
test28 2 2 90 | 90 | 47 | 5.4821 0.0032 5.4853
test29 2 2 95 |95 | 50 | 5.9115 0.0029 5.9144
test30 2 2 100 | 100 | 52 | 8.1234 0.0029 8.1263
test44 40 |40 | 40 | 40 | 40 | 5.4329 0.0025 5.4354
test4b 45 | 45 |45 | 45 | 45 | 4.3939 0.0021 4.3960
test46 50 | 50 | 50 | 50 | 50 | 8.3232 0.0099 8.3331
testd7 55 | b5 | 55 | 55 | 55 | 8.9885 0.0034 8.9918
test48 60 | 60 | 60 | 60 | 60 | 17.5849 0.0109 17.5957
test49 65 | 65 |65 | 65 |65 | 10.2242 0.0046 10.2288
test5H0 70 |70 |70 | 70 | 70 | 24.5837 0.0123 24.5960
testdl 7S |75 |75 | 75 | 75 | 18.4030 0.0057 18.4087
test52 80 |8 |80 |80 |80 | 13.8105 0.0069 13.8175
testhH3 8 |8 |8 |8 |85 | 19.7149 0.0142 19.7291
testb4 90 |90 |90 |90 |90 | 37.1772 0.0080 37.1852
testbHd 95 |95 |95 |95 | 95 | 59.2469 0.0159 59.2628
testH6 100 | 100 | 100 | 100 | 100 | 55.3647 0.0080 55.3727
testh7 105 | 105 | 105 | 105 | 105 | 45.3738 0.0095 45.3833
test58 110 | 110 | 110 | 110 | 110 | 68.0360 0.0074 68.0434
testhH9 115 | 115 | 115 | 115 | 115 | 100.8653 0.0119 100.8772
test60 120 | 120 | 120 | 120 | 120 | 191.6486 0.0477 191.6963
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Table 22: Computational results: B-MIQP

mp-Level 2 | Single Level | Total

Problem | z1 | y1 | 2 | y2 | m
(s) (s) (s)

testl 5 |5 |2 |2 |5 |4.1001 0.1238 4.2239
test2 10 1102 |2 |7 | 26959 0.0377 2.7336
test3 1511512 |2 |10 | 152.1813 0.4648 152.6460
test4 20 1202 |2 |12 | 201.1591 0.5662 201.7052
testd 251252 |2 | 15| 175.0922 0.9555 176.0477
test6 2 |2 |5 |5 |5 |79.3080 0.0730 79.3742
test7 2 |2 |10]10 |7 | 257.4909 0.0060 257.4969
test8 5 |2 |5 |2 |3 |85233 0.1221 8.6353
test9 1012 102 |5 | 33.0615 0.0601 33.6625
test10 1512 |15 |2 |6 | 32.3564 0.0532 32.4096
test1l 2012 | 202 |7 | 473702 0.5851 47.9553
test12 2512 | 25|2 |8 |4.5226 0.0345 4.5571
test13 2015 | 202 |5 | 1654143 0.7007 166.1150
test14 10 10 | 30 | 5 | 1 | 210.9560 0.0386 210.9946
test1b 5 |2 [25]5 |1 183.3612 0.0856 183.4468
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algorithm as the time required for the solution of the single level MIPs is always
much smaller than the solution time required for the solution of the lower level
multi-parametric problems. It is evident that this algorithm is not intended for
the solution of larger scale problems and will not be able to handle problems
much bigger than those presented in the computational studies, especially for

the case of B-MIQP problems.

6. Conclusion

This paper introduces novel algorithms for the exact global solution of a
range of classes of mixed integer bi-level programming problems that contain
integer and continuous variables in both optimization levels. The algorithms uti-
lize multi-parametric programming to solve the lower level problem as a function
of the upper level variables, and are able to supply the decision maker with the
exact and global solution of the bi-level problem. Furthermore an extension of
the algorithms is introduced for the parametric solution of bi-level mixed-integer
problems under uncertainty.

The proposed approaches has been successfully implemented into a MAT-
LAB toolbox, B-POP, and their performance and efficiency was assessed through
a set of test problems, suggesting that the limiting step is the solution of the
multi-parametric program in the lower optimization level.

Ongoing work involves the improvement of the computational performance
of the presented algorithm by developing methodologies that eliminating the
need for exploration of the full parametric space.

Further work also involves the extension of the presented algorithm for the
solution of multi-level problems, as well as more general non-linear bilevel prob-
lems. Also bilevel problems with right hand side uncertainty will be explored
further, and the presented algorithm for their solution will be implemented into

B-POP toolbox.

42



485

490

Acknowledgement

This work is based upon work supported by the National Science Foundation
under grant no. CBET-1705423 [PAROC] and 1739977 [INFEWS], and by the
U.S. Department of Energy under RAPID SYNOPSIS Project (DE-EE0007888-
09-03).

Financial support from Texas A&M University and Texas A&M Energy

Institute is also gratefully acknowledged.

References

Acevedo, J., Pistikopoulos, E., 1997. A multiparametric programming approach
for linear process engineering problems under uncertainty. Industrial and

Engineering Chemistry Research 36, 717-728.

Arroyo, J., Fernandez, F., 2009. A genetic algorithm approach for the analy-
sis of electric grid interdiction with line switching. 2009 15th International

Conference on Intelligent System Applications to Power Systems, ISAP ’09 .

Avraamidou, S., Beykal, B., P.E. Pistikopoulos, I., N. Pistikopoulos, E., 2018.
A hierarchical food-energy-water nexus (few-n) decision-making approach for

land use optimization.

Avraamidou, S., Pistikopoulos, E.N., . Adjustable robust optimization through

multi-parametric programming. Under Review .

Avraamidou, S., Pistikopoulos, E.N., 2017a. A multi-parametric bi-level opti-
mization strategy for hierarchical model predictive control. 27th European
Symposium on Computer-Aided Process Engineering (ESCAPE-27) , 1591—
1596.

Avraamidou, S., Pistikopoulos, E.N., 2017b. A multiparametric mixed-integer
bi-level optimization strategy for supply chain planning under demand uncer-

tainty. IFAC-PapersOnLine 50, 10178 — 10183.

43



505

510

520

525

Avraamidou, S., Pistikopoulos, E.N., 2018a. B-pop: Bi-level parametric opti-

mization toolbox. Computers & Chemical Engineering .

Avraamidou, S., Pistikopoulos, E.N., 2018b. Multi-parametric global optimiza-
tion approach for tri-level mixed-integer linear optimization problems. Journal

of Global Optimization .

Bank, B., Hansel, R., 1984. Stability of mixed-integer quadratic programming
problems. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 1-17.

Bank, B., Mandel, R., 1988. Parametric integer optimization. Akademie-Verlag
39.

Baotic, M., Christophersen, F.J., Morari, M., 2006. Constrained optimal control
of hybrid systems with a linear performance index. IEEE Transactions on

Automatic Control 51, 1903-1919.

Bard, J.F., Moore, J.T., 1990. A branch and bound algorithm for the bilevel
programming problem. Siam Journal on Scientific and Statistical Computing

11, 281-292.

Bard, J.F., Moore, J.T., 1992. An algorithm for the discrete bilevel programming
problem. Naval Research Logistics 39, 419-435.

Bemporad, A., Borrelli, F., Morari, M., 2000. Piecewise linear optimal con-
trollers for hybrid systems. Proceedings of the American Control Conference

2, 1190-1194.

Boyce, D., Mattsson, L.G., 1999. Modeling residential location choice in relation
to housing location and road tolls on congested urban highway networks.

Transportation Research Part B-Methodological 33, 581-591.

Brengel, D.D., Seider, W.D., 1992. Coordinated design and control optimization

of nonlinear processes. Computers & Chemical Engineering 16, 861-886.

44



530

535

545

550

Calvete, H., Gale, C., Oliveros, M.J., 2010. Bilevel model for productiondis-
tribution planning solved by using ant colony optimization. Computers and

Operations Research 38, 320-327.

Caramia, M., Mari, R., 2016. A decomposition approach to solve a bilevel
capacitated facility location problem with equity constraints. Optimization

Letters 10, 997-1019.

Crema, A., 2002. The multiparametric 0—1-integer linear programming problem:

A unified approach. European Journal of Operational Research 139, 511-520.
Dempe, S., 2001. Discrete bilevel optimization problems. Technical Report .

Dempe, S., Kalashnikov, D.V.; Rios-Mercado, R., 2005. Discrete bilevel pro-
gramming: Application to a natural gas cash-out problem 166, 469—488.

Dempe, S., Kue, F.M., 2017. Solving discrete linear bilevel optimization prob-
lems using the optimal value reformulation. Journal of Global Optimization

68, 255-277.

Dempe, S., Richter, K., Freiberg, T.B., Chemnitz, T., 2000. Bilevel program-
ming with knapsack constraints. Central European Journal of Operations

Research 8.

DeNegre, S.T., Ralphs, T.K., 2009. A branch-and-cut algorithm for integer
bilevel linear programs. Operations Research and Cyber-Infrastructure , 65—

78.

Deng, X., 1998. Complexity issues in bilevel linear programming. Multilevel

Optimization: Algorithms and Applications , 149-164.

Dominguez, L.F., Pistikopoulos, E.N., 2010. Multiparametric programming
based algorithms for pure integer and mixed-integer bilevel programming

problems. Computers & Chemical Engineering 34, 2097-2106.

45



555

560

570

580

Dua, V., Bozinis, N., Pistikopoulos, E., 2002. A multiparametric programming
approach for mixed-integer quadratic engineering problems. Computers and

Chemical Engineering 26, 715-733.

Dua, V., Pistikopoulos, E.N.; 2000. An Algorithm for the Solution of Multipara-
metric Mixed Integer Linear Programming Problems. Annals of Operations

Research 99, 123-139.

Edmunds, T.A., Bard, A.J., 1992. An algorithm for the mixed-integer nonlinear
bilevel programming problem. Annales of Operations Research 34, 149-162.

Emam, O.E., 2006. A fuzzy approach for bi-level integer non-linear program-

ming problem. Applied Mathematics and Computation 172, 62-71.

Erenguc, S., Simpson, N., Vakharia, A., 1999. Integrated produc-
tion/distribution planning in supply chains: An invited review. European

Journal of Operational Research 115, 219-236.

Faisca, N.P., Dua, V., Rustem, B., Saraiva, P.M., Pistikopoulos, E.N., 2007.
Parametric global optimisation for bilevel programming. Journal of Global

Optimization 38, 609-623.

Faisca, N.P., Dua, V., Saraiva, P.M., Rustem, B., Pistikopoulos, E.N., 2006. A
global parametric programming optimisation strategy for multilevel problems.
16th European Symposium on Computer Aided Process Engineering and 9th

International Symposium on Process Systems Engineering 21, 215-220.

Faisca, N.P., Saraiva, P.M., Rustem, B., Pistikopoulos, E.N.; 2009. A multi-
parametric programming approach for multilevel hierarchical and decen-
tralised optimisation problems. Computational Management Science 6, 377—

397.

Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M., 2016. Intersection cuts for
bilevel optimization. Integer Programming and Combinatorial Optimization

, TT-88.

46



585

600

Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M., 2017. A new general-purpose
algorithm for mixed-integer bilevel linear programs. Operations Research 65,

1615-1637.

Floudas, C., 1995. Nonlinear and Mixed-Integer Optimization: Fundamentals
and Applications. Oxford University Press.

Floudas, C.A., Gumus, Z.H., Ierapetritou, M.G., 2001. Global optimization
in design under uncertainty: Feasibility test and flexibility index problems.

Industrial & Engineering Chemistry Research 40, 4267-4282.

Fontaine, P., Minner, S., 2014. Benders decomposition for discrete-continuous
linear bilevel problems with application to traffic network design. Transporta-

tion Research Part B: Methodological 70, 163-172.

Gal, T., Nedoma, J., 1972. Multiparametric linear programming. Management

Science 18, 406-422.

Gao, J., You, F., 2018. A stochastic game theoretic framework for decentralized
optimization of multi-stakeholder supply chains under uncertainty. Comput-

ers and Chemical Engineering .

Gao, Y., Zhang, G.Q., Lu, J., Wee, H.M., 2011. Particle swarm optimization
for bi-level pricing problems in supply chains. Journal of Global Optimization

o1, 245-254.

Grossmann, 1., 2004. Challenges in the new millennium: Product discovery and
design, enterprise and supply chain optimization, global life cycle assessment.

Computers and Chemical Engineering 29, 29-39.

Grossmann, 1., 2005. Enterprise-wide optimization: A new frontier in process

systems engineering. AIChE Journal 51, 1846 — 1857.

Gumus, Z.H., Floudas, C.A., 2001. Global optimization of nonlinear bilevel

programming problems. Journal of Global Optimization 20, 1-31.

47



610

620

625

Gumus, Z.H., Floudas, C.A., 2005. Global optimization of mixed-integer bilevel

programming problems. Computational Management Science 2, 181-212.

Gupta, A., Maranas, C., 2000. A two-stage modeling and solution framework
for multisite midterm planning under demand uncertainty. Industrial and

Engineering Chemistry Research 39, 3799-3813.

Handoko, S., Chuin, L., Gupta, A., Soon, O., Kim, H., Siew, T., 2015. Solving
multi-vehicle profitable tour problem via knowledge adoption in evolutionary
bi-level programming. 2015 IEEE Congress on Evolutionary Computation,
CEC 2015 - Proceedings , 2713-2720.

Hansen, P.; Jaumard, B., Savard, G., 1992. New branch-and-bound rules for
linear bilevel programming. SIAM J. Sci. Stat. Comput. 13, 1194-1217.

Hecheng, L., Yuping, W., 2008. Exponential distribution-based genetic algo-
rithm for solving mixed-integer bilevel programming problems. Journal of

Systems Engineering and Electronics 19, 1157-1164.

lerapetritou, M.G., Pistikopoulos, E.N., 1996. Batch plant design and opera-
tions under uncertainty. Industrial & Engineering Chemistry Research 35,

T72-787.

Ivanov, D., Sokolov, B., Pavlov, A., 2013. Dual problem formulation and its
application to optimal redesign of an integrated production-distribution net-
work with structure dynamics and ripple effect considerations. International

Journal of Production Research 51, 5386-5403.

JAMS, . Jams solver, gams development corporation. General Algebraic Mod-

eling System (GAMS) Release 24.8.5 .

Jan, R.H., Chern, M.S., 1994. Nonlinear integer bilevel programming. European
Journal of Operational Research 72, 574-587.

Jia, Z., lerapetritou, M.G., 2006. Uncertainty analysis on the righthand side for
milp problems. AIChE Journal 52, 2486-2495.

48



635

640

650

Jones, C., Kerrigan, E., Maciejowski, J., 2007. Lexicographic perturbation for
multiparametric linear programming with applications to control. Automatica

43, 1808-1816.

Jung, J., Blau, G., Pekny, J., Reklaitis, G., Eversdyk, D., 2004. A simulation
based optimization approach to supply chain management under demand un-

certainty. Computers and Chemical Engineering 28, 2087-2106.

Katebi, M., Johnson, M., 1997. Predictive control design for large-scale systems.
Automatica 33, 421-425.

Kleniati, P.M., Adjiman, C.S., 2015. A generalization of the branch-and-
sandwich algorithm: From continuous to mixed-integer nonlinear bilevel prob-

lems. Computers & Chemical Engineering 72, 373-386.

Koppe, M., Queyranne, M., Ryan, C.T., 2010. Parametric integer programming
algorithm for bilevel mixed integer programs. Journal of Optimization Theory

and Applications 146, 137-150.

Kuo, R., Han, Y., 2011. A hybrid of genetic algorithm and particle swarm
optimization for solving bi-level linear programming problem - a case study

on supply chain model. Applied Mathematical Modelling 35, 3905-3917.

Li, H.C., Wang, Y.P., 2008. Exponential distribution-based genetic algorithm
for solving mixed-integer bilevel programming problems. Journal of Systems

Engineering and Electronics 19, 1157-1164.

Li, Z., Ierapetritou, M.G., 2007. A new methodology for the general multi-
parametric mixed-integer linear programming (milp) problems. Industrial &

Engineering Chemistry Research 46, 5141-5151.

Lofberg, J., 2004. Yalmip: A toolbox for modeling and optimization in mat-
lab. Proceedings of the IEEE International Symposium on Computer-Aided
Control System Design , 284-289.

49



660

670

680

Lozano, L., Smith, J.C., 2017. A value-function-based exact approach for the
bilevel mixed-integer programming problem. Operations Research 65, 768

786.

Luyben, M.L., Floudas, C.A., 1994a. Analyzing the interaction of design and
control .1. a multiobjective framework and application to binary distillation

synthesis. Computers & Chemical Engineering 18, 933-969.

Luyben, M.L., Floudas, C.A., 1994b. Analyzing the interaction of design and
control .2. reactor separator recycle system. Computers & Chemical Engi-

neering 18, 971-994.

McCormick, G., 1976. Computability of global solutions to factorable non-
convex programs: Part i - convex underestimating problems. Mathematical

Programming 10, 147-175.

Migdalas, A., 1995. Bilevel programming in traffic planning: Models, methods
and challenge. Journal of Global Optimization 7, 381-405.

Miljkovic, D., 2002. Privatizing state farms in yugoslavia. Journal of Policy

Modeling 24, 169-179.

Mitsos, A., 2010. Global solution of nonlinear mixed-integer bilevel programs.

Journal of Global Optimization 47, 557-582.

Mitsos, A., Lemonidis, P., Barton, P., 2008. Global solution of bilevel programs

with a nonconvex inner program. Journal of Global Optimization 42, 475-513.

Moore, J.T., Bard, J.F., 1990. The mixed integer linear bilevel programming
problem. Operations Research 38, 911-921.

Nishizaki, I., Sakawa, M., 2005. Computational methods through genetic algo-
rithms for obtaining stackelberg solutions to two-level integer programming

problems. Cybernetics and Systems 36, 565-579.

Oberdieck, R., Diangelakis, N., Nascu, I., Papathanasiou, M., Sun, M., Avraami-

dou, S., Pistikopoulos, E., 2016a. On multi-parametric programming and its

50



690

705

applications in process systems engineering. Chemical Engineering Research

and Design 116, 61-82.

Oberdieck, R., Diangelakis, N., Papathanasiou, M., Nascu, 1., Pistikopoulos, E.,
2016b. Pop - parametric optimization toolbox. Industrial and Engineering

Chemistry Research 55, 8979-8991.

Oberdieck, R., Diangelakis, N.A., Avraamidou, S., Pistikopoulos, E.N., 2017.
On unbounded and binary parameters in multi-parametric programming: ap-
plications to mixed-integer bilevel optimization and duality theory. Journal

of Global Optimization 69, 587-606.

Oberdieck, R., Pistikopoulos, E., 2015. Explicit hybrid model-predictive control:
The exact solution. Automatica 58, 152-159.

Oberdieck, R., Wittmann-Hohlbein, M., Pistikopoulos, E., 2014. A branch
and bound method for the solution of multiparametric mixed integer linear

programming problems. Journal of Global Optimization 59, 527-543.

Olaru, S., Dumur, D., 2006. On the continuity and complexity of control laws
based on multiparametric linear programs. Proceedings of the IEEE Confer-

ence on Decision and Control , 5465-5470.

Poirion, P.L., Toubaline, S., D’Ambrosio, C., Leo, L., 2015. Bilevel mixed-

integer linear programs and the zero forcing set. Optimization online .

Radner, R., Portes, R., 1975. Economic planning under uncertainty : recent

theoretical developments. Economic planning, East and West , 93-117.

Rahmani, A., MirHassani, S., 2015. Lagrangean relaxation-based algorithm for

bi-level problems. Optimization Methods and Software 30, 1-14.

Robbins, M.J., Lunday, B.J., 2016. A bilevel formulation of the pediatric vaccine

pricing problem. European Journal of Operational Research 248, 634—645.

o1



715

730

Roghanian, E., Sadjadi, S., Aryanezhad, M., 2007. A probabilistic bi-level lin-
ear multi-objective programming problem to supply chain planning. Applied

Mathematics and Computation 188, 786-800.

Ryu, J.H., Dua, V., Pistikopoulos, E., 2007. Proactive scheduling under un-
certainty: A parametric optimization approach. Industrial and Engineering

Chemistry Research 46, 8044-8049.

Ryu, J.H., Dua, V., Pistikopoulos, E.N., 2004. A bilevel programming frame-
work for enterprise-wide process networks under uncertainty. Computers &

Chemical Engineering 28, 1121-1129.

Saharidis, G.K., lerapetritou, M.G., 2009. Resolution method for mixed integer
bi-level linear problems based on decomposition technique. Journal of Global

Optimization 44, 29-51.

Sahin, K.H., Ciric, A.R., 1998. A dual temperature simulated annealing ap-
proach for solving bilevel programming problems. Computers & Chemical

Engineering 23, 11-25.

Sakizlis, V., Kakalis, N., Dua, V., Perkins, J., Pistikopoulos, E., 2004. Design
of robust model-based controllers via parametric programming. Automatica

40, 189-201.

Seferlis, P., Giannelos, N., 2004. A two-layered optimisation-based control strat-
egy for multi-echelon supply chain networks. Computers and Chemical Engi-

neering 28, 799-809.

Sinha, S., 2003. Fuzzy mathematical programming applied to multi-level pro-

gramming problems. Computers and Operations Research 30, 1259-1268.

Sousa, R., Shah, N.; Papageorgiou, L., 2008. Supply chain design and multilevel
planning-an industrial case. Computers and Chemical Engineering 32, 2643—

2663.

92



740

745

765

Spjotvold, J., Tondel, P., Johansen, T., 2005. A method for obtaining continuous
solutions to multiparametric linear programs. IFAC Proceedings Volumes

(IFAC-PapersOnline) 16, 253-258.

Tam, M.L., Lam, W.H.K., 2004. Balance of car ownership under user demand
and road network supply conditions - case study in hong kong. Journal of

Urban Planning and Development-Asce 130, 24-36.

Tanartkit, P., Biegler, L.T., 1996. A nested, simultaneous approach for dynamic
optimization problems .1. Computers & Chemical Engineering 20, 735-741.

Vicente, L., Savard, G., Judice, J., 1994. Descent approaches for quadratic
bilevel programming. Journal of Optimization Theory and Applications 81,

379-399.

Vicente, L., Savard, G., Judice, J., 1996. Discrete linear bilevel programming

problem. Journal of Optimization Theory and Applications 89, 597—-614.

Vidal, C., Goetschalckx, M., 1997. Strategic production-distribution models:
A critical review with emphasis on global supply chain models. European

Journal of Operational Research 98, 1-18.

Wen, U.P., Huang, A.D., 1996. A simple tabu search method to solve the mixed-
integer linear bilevel programming problem. European Journal of Operational

Research 88, 563-571.

Wen, U.P., Yang, Y.H., 1990. Algorithms for solving the mixed integer 2-level
linear-programming problem. Computers & Operations Research 17, 133-142.

Wittmann-Hohlbein, M., Pistikopoulos, E.N., 2012. A two-stage method for
the approximate solution of general multiparametric mixed-integer linear pro-
gramming problems. Industrial & Engineering Chemistry Research 51, 8095—
8107.

Wittmann-Hohlbein, M., Pistikopoulos, E.N.,; 2013. On the global solution
of multi-parametric mixed integer linear programming problems. Journal of

Global Optimization 57, 51-73.

33



770

785

Xu, P., 2012. Three essays on bilevel optimization algorithms and applications.

Ph.D. thesis, Iowa State University .

Xu, P., Wang, L..Z., 2014. An exact algorithm for the bilevel mixed integer linear
programming problem under three simplifying assumptions. Computers &

Operations Research 41, 309-318.

Yang, H., Yagar, S., 1995. Traffic assignment and signal control in saturated
road networks. Transportation Research Part a-Policy and Practice 29, 125-

139.

Yue, D., You, F., 2016. Projection-based reformulation and decomposition al-
gorithm for a class of mixed-integer bilevel linear programs. Computer Aided

Chemical Engineering 38, 481-486.

Yue, D., You, F., 2017. Stackelberg-game-based modeling and optimization for
supply chain design and operations: A mixed integer bilevel programming

framework. Computers and Chemical Engineering 102, 81-95.

Zeng, B., An, Y., 2014. Solving bilevel mixed integer program by reformulations

and decomposition. Optimization online .

Zhu, X., Guo, P., 2017. Approaches to four types of bilevel programming prob-
lems with nonconvex nonsmooth lower level programs and their applications
to newsvendor problems. Mathematical Methods of Operations Research 86,

255-275.

94



Appendix I - Algorithm for the solution of mp-MILP problems

A schematic representation showing the steps of the algorithm for the so-

lution of mp-MILP problems (12) by |Oberdieck et al| (2014) is shown below.

min Qw+ HO

z,y

st. Azt BEy<b+Fo
reR", ye{0,1}P,w= [xTyT]
6 e0:={0cRICRAI < CRy},

(32)

where Q € R(mtp)x(ntp) o o H € R(P)Xa A ¢ Rmxn E e R™*P p e R™,

F € R™*7 and © is compact.

Initialisation
Current Upper Bound ==

[ Selve the Fully Relaxed Problem |
Select a Branching Variable
and Update List of Nodes N

N

(o]
Select a Node i. N = N\ {i}

Compare the Objective Function Value of the
Current Solution with the Current Upper Bound

P

[ Create Under- and Gverestimator

=0
YES
NO
v

Remove from =, the uncertain space where
1) Problem (3) is infeasible
2) An integer solution is found
3) The solution is greater than the upper bound

Remove from Z; the uncertain space where
1) Problem (3) is infeasible
2) The solution is greater than the upper bound

NO

Use the Under- and Overestimator
to construct a critical region which
contains the envelope of solutions

NO

Figure 4: The mp-MILP algorithm proposed by |Oberdieck et al.l (I2014|)
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Appendix II - Exact algorithm for the solution of mp-MIQP problems

790 The algorithm of |Oberdieck and Pistikopoulos| (2015 for the solution of

problems with the general formulation of (13) is summarized below. It is based

on the decomposition algorithm shown graphically in Figure 5.

min (Qu+HO+¢) w
@y

s.t. Ax+ FEy<b+ F0
v eR", ye{0,1}P,w=[z"y"]
0 €0 :={0cRICR40 < CRy},

(33)

where Q € RtP)x(n+p) o 0 H € R(TP)X4 ¢ c R*P A € R™*" E € R™*P,

beR™, F € R™*? and O is compact.

é

Check for new
combination of
binary variables

4

Pick new Fix y* and
critical region solve mp-QP,

Compare and
update the
Upper Bound

B S

s

Figure 5: A graphical representation of the decomposition algorithm 1, 2002).

705 Initialization: A candidate solution for the binary variables is found by
solving the MIQP problem formed when considering parameters as optimization
variables. A binary solution is obtained and subsequently fixed in the original

problem, thus resulting in a mp-QP problem. This problem can be solved

using the algorithm presented in Dua et al| (2002)), which results in an initial

soo partitioning of the parameter space and provides a parametric upper bound to
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the solution. The upper bound for the remaining part of the parameter space
which has not yet been explored is set to infinity.

Step 1: A candidate solution for the binary variables is found by considering
parameters as optimization variables and solving the resulting MIQP problem.

Step 2: Create an affine outer approximation by employing McCormick
relaxations (McCormick| (1976)) for each bilinear or quadratic term in the con-
straints. Since the nonlinearities in the constraints only arise from comparison
procedures, these relaxations are calculated during the comparison procedure.

Step 3: The candidate solution of the binary variables is substituted into
the initial problem, thus resulting in a mp-QP. This mp-QP problem can be
solved using mp-QP algorithms by |Dua et al.| (2002).

Step 4: This and all subsequent steps have to be performed for each critical
region. Compare solution with the current upper bound. Here the explicit
solution of the problem is considered and thus two new critical regions are
created.

Step 5: Calculate appropriate relaxations in order to create the outer ap-
proximation for the next iteration.

Step 6: The original inequalities from the current critical region are re-
introduced to each newly formed critical region, while the relaxations used before
are removed. The newly formed critical regions are returned to Step 1 thus
resuming the iteration.

Termination: The algorithm terminates as soon as problem in Step 1 is

infeasible for all critical regions.
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