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Abstract

Optimization problems involving two decision makers at two different decision

levels are referred to as bi-level programming problems. In this work, we present

novel algorithms for the exact and global solution of two classes of bi-level pro-

gramming problems, namely (i) bi-level mixed-integer linear programming prob-

lems (B-MILP) and (ii) bi-level mixed-integer convex quadratic programming

problems (B-MIQP) containing both integer and bounded continuous variables

at both optimization levels. Based on multi-parametric programming theory,

the main idea is to recast the lower level problem as a multi-parametric program-

ming problem, in which the optimization variables of the upper level problem

are considered as bounded parameters for the lower level. The resulting exact

multi-parametric mixed-integer linear or quadratic solutions are then substi-

tuted into the upper level problem, which can be solved as a set of single-level,

independent, deterministic mixed-integer optimization problems. Extensions to

problems including right-hand-side uncertainty on both lower and upper lev-

els are also discussed. Finally, computational implementation and studies are

presented through test problems.
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Mixed-integer programming

1. Introduction

Optimization problems involving two decision makers at two different deci-

sion levels are referred to as bilevel programming problems: the first decision

maker (upper level; leader) is solving an optimization problem which includes

in its constraint set another optimization problem solved by the second decision5

maker (lower level; follower). This class of problems has attracted considerable

attention across a broad range of research communities, including economics,

sciences and engineering. It was applied to many and diverse problems that

require hierarchical decision making such as transportation network planning

(Boyce and Mattsson, 1999; Migdalas, 1995; Yang and Yagar, 1995), urban plan-10

ning (Tam and Lam, 2004), economic planning (Gao et al., 2011; Miljkovic, 2002;

Robbins and Lunday, 2016), policy decision making (Avraamidou et al., 2018),

design under uncertainty (Floudas et al., 2001; Ierapetritou and Pistikopoulos,

1996; Ryu et al., 2004; Avraamidou and Pistikopoulos), design and control in-

tegration (Brengel and Seider, 1992; Luyben and Floudas, 1994a,b; Tanartkit15

and Biegler, 1996), hierarchical control (Avraamidou and Pistikopoulos, 2017a;

Faisca et al., 2009; Katebi and Johnson, 1997), and supply chain planning (Gao

and You, 2018; Calvete et al., 2010; Grossmann, 2005; Seferlis and Giannelos,

2004; Avraamidou and Pistikopoulos, 2017b; Yue and You, 2017).

Such decision making problems can involve decisions in both discrete and20

continuous variables. A motivating example that falls in this class is presented

below.

1.1. Motivating example: Production and Distribution Planning Integration

Supply chains are systems with multiple decision levels corresponding to

different activities, spanning from the procurement of raw materials to the dis-25

tribution of the final products to the costumers. Even though these decisions

are interlinked and can affect each other, in most cases they are considered

individually (Grossmann, 2005, 2004).
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Figure 1: Schematic of the production-distribution planning problem with two companies

The significance of the integration of production and distribution decisions

inside supply chains, in order to account for the interactions between them,30

has been recognized by different researchers (Erenguc et al., 1999; Vidal and

Goetschalckx, 1997; Grossmann, 2005). Proposed integrated approaches include

assuming (i) that one company controls the integrated process by owning both

the processing plants and distribution centers (Gupta and Maranas, 2000; Sousa

et al., 2008; Jung et al., 2004), or (ii) that the processing plants and distribution35

centers are owned by different companies, each trying to optimize their own

objective (Calvete et al., 2010; Seferlis and Giannelos, 2004; Roghanian et al.,

2007; Kuo and Han, 2011; Ivanov et al., 2013).

Considering the second case, the production-distribution planning (PD) prob-

lem can be expressed as a hierarchical decision problem, involving two different40

decision makers corresponding to each company. Assuming one company owns

the production plants and another the distribution centers, the resulting prob-

lem is a two level hierarchical decision problem. The first level is responsible for

optimizing the distribution centers overall costs and is influenced by the second

level that is responsible for optimizing the production plants overall costs.45

When considering the PD problem, decisions taken at both decision lev-

els can involve both continuous (e.g. production rates, distribution rates) or

discrete (e.g. choice of production plant, choice of distribution center, active

routes) variables. Therefore, the integrated PD problem results into a mixed-

integer bilevel programming problem with both integer and continuous variables50

at both optimization levels.
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1.2. Mixed-integer bilevel programming problems (B-MIP)

Problems such as the integrated PD problem are referred to as mixed-integer

bilevel programing problems (B-MIP), and have the general form of:

min
x1,y1

F1(x, y)

s.t. G1(x, y) ≤ 0

H1(x, y) = 0

x2, y2 ∈ arg min
x2,y2

{F2(x, y) : G2(x, y) ≤ 0, H2(x, y) = 0}

x = [x1
T x2

T ]
T
, y = [y1

T y2
T ]
T

x ∈ Rn, y ∈ Zm

(1)

where x1 is a vector of the upper level problem continuous variables, y1 is a

vector of the upper level integer variables, x2 is a vector of the lower level

problem continuous variables, y2 is a vector of the lower level integer variables,55

x is a vector of all continuous variables, y is a vector of all integer variables.

The general formulation of the mixed-integer bilevel programming problem

(1), corresponds to a number of different classes of problems. Table 1 classifies

these problems into four categories that can be expanded to cover the linear,

quadratic and non-linear sub-class of each Type, as identified by Gumus and60

Floudas (2005).

Table 1: Types of mixed-integer bilevel programming problems

Problem Type Upper level variables Lower Level variables

Type 1 Continuous and/or Integer Continuous

Type 2 Integer Integer

Type 3 Continuous Integer

Type 4 Continuous and/or Integer Continuous and Integer

1.3. Challenges and Previous work

Bilevel programming problems are very challenging to solve, even in the

linear case (shown to be NP-hard by Hansen et al. (1992) and Deng (1998)). To
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strengthen these results Vicente et al. (1994) proved that even checking strict65

or local optimality is NP-hard.

For classes of problems where the lower level problem also involves discrete

variables, the complications are further increased, typically requiring global op-

timization methods for their solution and often resulting to approximate solu-

tions. The major difficulty for this class of problems arises from the fact that70

conventional solution methods for continuous bi-level problems are no longer ap-

plicable when integer variables exist at the lower level. One of the most widely

used solution approaches for continuous bi-level problems with convex objective

functions and constraints, is the transformation of the problem to a single level

problem using the Karush-Kuhn-Tucker (KKT) optimality conditions. Since75

this method requires gradient information it is not directly applicable to bi-

level problems with integer variables on the lower level, even though in some

cases there is merit in using them (Gumus and Floudas, 2005; Saharidis and

Ierapetritou, 2009; Mitsos, 2010). Also, the branch and bound rules used to

solve mixed-integer problems cannot be directly or effectively applied to mixed-80

integer bi-level problems (Bard and Moore, 1990). It is worth noting here, that

algorithms developed for non-convex continuous bi-level problems such as Gu-

mus and Floudas (2001); Mitsos et al. (2008); Zhu and Guo (2017), can be

extended into solution methods for mixed-integer problems.

In the literature, methods developed for the solution of mixed-integer bi-85

level problems have mainly addressed the linear Type 1 and 2 problems. Tables

2, 3, 4 and 5 summarize some of the most important solution methods for bi-

level mixed-integer linear problems of Type 1, Type 2, Type 3 and Type 4

respectively, in the open literature. Table 6 and Table 7 summarize approaches

for the solution of bi-level mixed-integer non-linear problems of Type 1, Type 290

and Type 4 1. Note that general strategies for the global and exact solution of

Type 4 bi-level mixed-integer linear or quadratic problems are scarce.

1The Notes column in Tables 2, 3, 4, 5, 6 and 7 represents important features, limitations

or advantages of the works as written in each individual manuscript.
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Table 2: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 1

Algorithm Reference Notes

Wen and Yang (1990)

Heuristic approach, only

Branch and integer optimization

Bound variables are allowed in

the upper level.

Tabu search Wen and Huang (1996)

Only integer optimization

variables in the upper

level. Approximate.

Multi-Parametric
Faisca et al. (2007) Exact.

Programming

Benders Caramia and Mari (2016)
ε-optimal.

decomposition Fontaine and Minner (2014)

Table 3: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 2

Algorithm Reference Notes

Penalty Function Vicente et al. (1996)
Also provided theory

for Type 1.

Branch and Bound Bard and Moore (1992)

Implicit Enumeration.

Assume: all binary, no

upper level constraints.

Chvatal-Gomory
Dempe (2001)

Generates a lower

cuts (cutting plane) bound to the problem.

Branch and Cut
DeNegre and Ralphs (2009)

All binary. Based on

(cutting plane) Bard and Moore (1992)

Genetic Algorithm Nishizaki and Sakawa (2005) Approximate solutions.

Evolutionary
Handoko et al. (2015)

Global optimality is

Algorithm not guaranteed.
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Table 4: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 3

Algorithm Reference Notes

Branch and Cut Dempe and Kue (2017)

Lower level variables

cannot affect the upper

level constraints.

Polynomial Dempe (2001) Cutting plane,

Approximation Dempe et al. (2000) approximate.

Parametric integer
Koppe et al. (2010)

Cannot guarantee

programming optimality.

1.4. Key contribution

In this paper, we present global optimization algorithms for the exact solu-

tion of two classes of bilevel programming problems, namely:95

1. Bilevel mixed-integer linear programming problems (B-MILP)

2. Bilevel mixed-integer convex quadratic programming problems (B-MIQP)

Both classes belong to sub-class Type 4 (i.e. containing both integer and

continuous variables at both optimization levels), while the proposed algorithms

are also applicable to problems of Types 1-3.100

The proposed algorithms are a result of new developments on multi-parametric

programming theory (Acevedo and Pistikopoulos, 1997; Oberdieck and Pis-

tikopoulos, 2015; Oberdieck et al., 2016a) and our earlier results and devel-

oped algorithms on continuous bilevel linear and quadratic programming (Faisca

et al., 2007, 2009). The main idea of this type of algorithms for the solution of105

mixed-integer bilevel problems is to recast the lower level problem as a multi-

parametric programming problem, in which the optimization variables of the

upper level problem (both continuous and integer) are considered as parame-

ters for the lower level problem. The resulting exact parametric solutions are

then substituted into the upper level problem, which can be solved as a set of110

single-level deterministic mixed-integer programming problems.
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Table 5: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 4

Algorithm Reference Notes

Branch and
Moore and Bard (1990)

Implicit Enum.

Bound
Cannot guarantee

optimality.

Penalty Function Dempe et al. (2005)
Approximate local

solutions.

Benders
Saharidis and Ierapetritou (2009)

ε-optimal. Leader

decomposition
controls all binary

variables.

Only integer

Branch and Xu and Wang (2014); Xu (2012) optimization

Bound Caramia and Mari (2016) variables in the

upper level.

Rahmani and MirHassani (2015)

Lower level

Lagrangean
variables cannot

relaxation
appear in the

constraints of the

upper level.

Projection-based Yue and You (2016)
ε-optimal.

Reformulation Zeng and An (2014)

Row-and-column
Poirion et al. (2015) ε-optimal.

generation

Branch-and-Cut
Fischetti et al. (2016)

Exact. Leader

variables that

influence the

follower decisions

are all integer.

Fischetti et al. (2017) Exact.
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Table 6: Indicative list of previous work on bi-level mixed-integer non-linear optimization

problems of Type 1 and Type 2

Type Algorithm Reference Notes

Type 1
Branch and Edmunds and Bard (1992)

Lower level is

Bound
convex quadratic.

Gumus and Floudas (2001) Approximate.

Type 2

Jan and Chern (1994)

Only for separable

Parametric and monotone

Analysis constraints and

objective.

Fuzzy
Emam (2006)

Pareto optimal

Programming solution.

The proposed algorithms are implemented in a prototype toolbox, B-POP

(Avraamidou and Pistikopoulos, 2018a), that uses POP’s (Oberdieck et al.,

2016b) mp-MILP and mp-MIQP solvers to solve B-MILP and B-MIQP prob-

lems. Computational studies are carried out to show the capabilities and scala-115

bility of B-POP. To our knowledge, B-POP is currently the only freely accessible

toolbox for the solution of bi-level mixed-integer linear and quadratic program-

ming problems.

Section 2 presents the solution algorithm for the Type 4 B-MILP, while its

application is illustrated via three numerical examples. Section 3 addresses the120

Type 4 B-MIQP algorithm and is illustrated through two numerical examples.

The theory is extended in Section 4 to cover the existence of right hand side

uncertainty on both optimization levels, while Section 5 summarizes the compu-

tational implementation and computational studies of the presented algorithms.

2. Bilevel Mixed-integer Linear Programming Problems125

A widely known property of the general bilevel programming problem is

that the feasible set of the inner problem is parametric in terms of the decision
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Table 7: Indicative list of previous work on bi-level mixed-integer linear optimization prob-

lems of Type 4

Algorithm Reference Notes

Simulated
Sahin and Ciric (1998)

Near global

Annealing solutions.

Gumus and Floudas (2005)

The lower level

Branch and must be linear

Bound in continuous

variables.

Lower level

Li and Wang (2008) functions are

Genetic Hecheng and Yuping (2008) separable or

Algorithms convex.

Arroyo and Fernandez (2009)
Near optimal

solutions.

Multi-

Dominguez and Pistikopoulos (2010)

Reformulation

Parametric via convex hull.

Programming Approximate.

Branch and
Kleniati and Adjiman (2015) ε-optimal.

Sandwich

Bounding Mitsos (2010) ε-optimal.

Lozano and Smith (2017)

Requires all

Value Function upper-level

Based variables to be

integer.
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variables of the outer problem. To effectively utilize this property, Pistikopoulos

and co-workers have presented a series of algorithms based on multi-parametric

programming theory, which can address different classes of continuous multilevel130

programming problems (Faisca et al., 2007, 2006).

Expanding on their earlier works, the approach presented here is based upon

a recently proposed Multi-parametric Mixed-integer Linear Programming (mp-

MILP) algorithm of Oberdieck et al., 2014 Oberdieck et al. (2014) summarized

in Appendix I, and new theory for binary parameters in multi-parametric pro-

gramming problems (Oberdieck et al., 2017). The proposed methodology will

be firstly introduced through the general form of the B-MILP problem (2), and

then illustrated through 3 numerical examples.

min
x1,y1

F1(x, y) = c1
Tx+ d1

T y

s.t. A1x+B1y ≤ b1
x2, y2 ∈ arg min

x2,y2
{F2(x, y) = c2

Tx+ d2
T y : A2x+B2y ≤ b2}

x = [x1
T x2

T ]
T
, y = [y1

T y2
T ]
T

x ∈ X ⊆ Rn, y ∈ Y ⊆ Zm

(2)

where c1, d1, A1, B1, b1 are constant coefficient matrices in the upper level

(leader) problem, and c2, d2, A2, B2, b2 are constant coefficient matrices in the

lower level (follower) problem, and X and Y are compact polyhedral convex sets

of dimensions n and m, respectively.135

As a first step, we establish bounds for all integer and continuous variables,

by solving problems (3) to (6) for upper level variables x1,α and y1,β , for all

α ∈ {1, ..n1} and β ∈ {1, ..., n2}, where n1 and n2 are the dimensions of vectors

x1 and y1 respectively. Similar problems are solved for the lower level variables

x1,γ and y2,δ, for all γ ∈ {1, ..n3} and δ ∈ {1, ..n4} (where n3 and n4 are the

dimensions of vectors x2 and y2 respectively), in order to obtain bounds on both

x, xL ≤ x ≤ xU , and y, yL ≤ y ≤ yU .

x1,α
L = min x1,α

s.t. A1x+B1y ≤ b1
A2x+B2y ≤ b2

(3)
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x1,α
U = min −x1,α

s.t. A1x+B1y ≤ b1
A2x+B2y ≤ b2

(4)

y1,β
L = min y1,β

s.t. A1x+B1y ≤ b1
A2x+B2y ≤ b2

(5)

y1,β
U = min −y1,β

s.t. A1x+B1y ≤ b1
A2x+B2y ≤ b2

(6)

Then, the B-MILP is transformed into a binary B-MILP by expressing in-

teger variables, y1,1....y1,n2
and y2,1....y2,n4

, in terms of binary 0-1 variables,

ŷ1,β,1, ..., ŷ1,β,n5 ∈ {0, 1} for all β and ŷ2,δ,1, ..., ŷ2,δ,n6 ∈ {0, 1} for all δ, by fol-

lowing the formulas presented in Floudas (1995) (Section 6.2.1 - Remark 1).

The hat accent will be omitted in the following steps for simplicity.140

As a next step, the lower level problem of the binary B-MILP, is transformed

into a mp-MILP problem (7), in which the optimization variables of the upper

level problem, x1 and y2 that appear in the lower level problem, are considered

as parameters for the lower level.

min
x2,y2

d2
T y + c2

Tx

s.t. B2y ≤ b2 −A2x

xL ≤ x ≤ xU
(7)

The solution of (7) using multi-parametric mixed-integer programming (mp-

MILP) solution algorithms, such as Bank and Hansel (1984); Bank and Mandel

(1988); Baotic et al. (2006); Bemporad et al. (2000); Crema (2002); Dua and

Pistikopoulos (2000); Dua et al. (2002); Jia and Ierapetritou (2006); Li and Ier-

apetritou (2007); Oberdieck and Pistikopoulos (2015); Oberdieck et al. (2014);145

Wittmann-Hohlbein and Pistikopoulos (2012, 2013), provide the complete pro-

file of optimal solutions of the lower level problem as explicit functions of the

variables of the higher level problem with corresponding expressions (8).
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POP R© , the Parametric Optimization toolbox (Oberdieck et al., 2016b),

can be used at this step to get the optimal solutions (8). POP R© toolbox fea-150

tures a state-of-the-art multi-parametric programming solver for continuous and

mixed-integer linear and quadratic problems. The toolbox is freely available for

download in parametric.tamu.edu website. Appendix I illustrates the main steps

for the solution of mp-MILP problems through POP R© toolbox.

x2, y2 =



ξ1 = p1 + q1x1 + r1y1, ψ1 if H1[xT1 y
T
1 ]T ≤ h1

ξ2 = p2 + q2x1 + r2y1, ψ2 if H2[xT1 y
T
1 ]T ≤ h2

...
...

ξk = pk + qkx1 + rky1, ψk if Hk[xT1 y
T
1 ]T ≤ hk

(8)

where ξi are vectors of the lower level (follower) continuous variables and155

ψi are vectors of the lower level integer variables, pi, qi and ri are all constant

vectors, Hk[xT1 y
T
1 ]T ≤ hk is referred to as critical region(CRk), and k denotes

the number of computed critical regions.

Remark 1: Solutions (8) comprise of all optimal solutions in the feasible space

of the upper level variables and not all feasible solutions.160

The computed solutions (8) are then substituted into the upper level prob-

lem, which can be solved as a set of single-level deterministic mixed-integer

programming problems, (9). More specifically, the functions ξ expressing the

lower level variables (x2) in terms of the upper level variables (x1 and y1), are

substituted in the place of lower level variables (x2 and y2) in the upper level

problem, eliminating in this way the lower level variables form the upper level

problem. Moreover, the critical region definitions are added to the correspond-
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ing single level problems as an additional set of constraints.

z1 = min
x1,y1

c1
T [x1

T ξ1(x1, y1)
T

]
T

+ d1
T [y1

Tψ1
T ]T

s.t. A1[x1
T ξ1(x1, y1)

T
]
T

+B1[y1
Tψ1

T ]T ≤ b1
H1[xT1 y

T
1 ]T ≤ h1

z2 = min
x1,y1

c1
T [x1

T ξ2(x1, y1)
T

]
T

+ d1
T [y1

Tψ2
T ]T

s.t. A1[x1
T ξ2(x1, y1)

T
]
T

+B1[y1
Tψ2

T ]T ≤ b1
H2[xT1 y

T
1 ]T ≤ h2

...

zk = min
x1,y1

c1
T [x1

T ξk(x1, y1)
T

]
T

+ d1
T [y1

Tψk
T ]T

s.t. A1[x1
T ξk(x1, y1)

T
]
T

+B1[y1
Tψk

T ]T ≤ b1
Hk[xT1 y

T
1 ]T ≤ hk

(9)

The single-level, deterministic programming problems (9) are independent

of each other, making it possible to use parallel programming to solve them

simultaneously.

The solutions of the above single level MILP problems correspond to different

sub-optimal solutions of the original B-MILP. The final step of the algorithm is165

to compare all the sub-optimal solutions to obtain the minimum z that would

correspond to the exact and global optimum, z∗, of the original bi-level problem.

The proposed algorithm is summarized in Algorithm 1.

Remark 2: Pessimistic and Optimistic Solutions:

When the optimal solution of the lower level problem is not unique for170

the set of optimal upper level variables the decision maker can take a pes-

simistic or an optimistic decision.This degeneracy can result either because

of the lower level integer variables or because of the lower level continuous

variables.

For the cases where a degeneracy results because of the lower level integer175

variables the solution method described above is able to capture all de-

generate solutions and therefore supply the decision maker with both the

14



Algorithm 1 Multi-parametric algorithm for the solution of Bilevel Mixed-

Integer Linear Programming problems
1: Establish integer and continuous variable bounds

2: Express integer variables into binary and substitute in (2)

3: Formulate the mp-MILP problem (7)

4: Solve (7) and obtain solution [x2 y2]T = Fi(x1, y1) defined over CRi.

5: for i← 1, ...,#CRi do

6: Formulate MILP (9-i)

7: Solve (9-i) to get candidate solution zi

8: end for

9: return zi with minimum value

pessimistic and optimistic solutions.

For the cases where a degeneracy results because of the lower level con-

tinuous variables the multi-parametric solution via POP R© toolbox is not180

able to supply the decision maker with the full range of degenerate solu-

tions. Even though there are techniques to handle degeneracy in multi-

parametric problems (Gal and Nedoma, 1972; Jones et al., 2007; Olaru

and Dumur, 2006; Spjotvold et al., 2005), those are not yet implemented

in the approach described above.185

Therefore, it is assumed that there is a unique optimal solution for the

continuous lower level variables corresponding to the upper level optimal

solution.

2.1. Numerical Examples

Three B-MILP numerical examples will be solved to illustrate the use of the190

proposed algorithm.
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2.1.1. Example 1: LP-ILP

Consider the following Type 3 example taken from Dempe (2001):

min
y

−x1 − 2x2 + 3y1 + 3.2y2

s.t. −y1 − y2 ≤ 2

y1 + y2 ≤ 2

−2 ≤ y1,2 ≤ 2

min
x
− x1y1 − x2y2

s.t.− x1 + 3x2 ≤ 3

x1 − x2 ≤ 1

−x1 − x2 ≤ −2

y ∈ Rn, x ∈ Z+m

(10)

Step 1: Bounds are established for the unbounded integer variables x1 and

x2 resulting in 1 ≤ x1 ≤ 3 and 1 ≤ x2 ≤ 2.

Step 2: The problem is transformed into a 0-1 binary B-MILP. Following

Floudas (1995), the integer variables x1 and x2 can be expressed through binary

variables as x1 = 1 + x1a + 2x1b and x2 = 1 + x2a. Therefore, formulation (10)

can be reformulated as (11).

min
y

−x1a − 2x1b − 2x2a + 3y1 + 3.2y2 − 3

s.t. −y1 − y2 ≤ 2

y1 + y2 ≤ 2

−2 ≤ y1,2 ≤ 2

(x1a, x1b, x2a) ∈ arg{ min
x1a,x1b,x2a

(x1a + 2x1b + 1)y1 + (x2a + 1)y2

s.t. − x1a − 2x1b + 3x2a ≤ 1

x1a + 2x1b − x2a ≤ 1

−x1a − 2x1b − x2a ≤ 0 }

y ∈ R2, x1a, x1b, x2a ∈ {0, 1}3

(11)

Step 3: The lower level problem is reformulated as a mp-ILP, in which the195

optimization variables of the upper level problem y1 and y2 are considered as
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Table 8: Lower level problem solution of Example 1

Critical
Definition

Objective
Variable value

Region Function

CR1 −2 ≤ y1,2 ≤ 2 y1 + y2 x1a = 0, x1ab = 0, x2a = 0

parameters.

min
x1a,x1b,x2a




1 0

2 0

0 1

 y

T 

x1a

x1b

x2a

 +
[
1 1

]
y

s.t.


−1 −2 3

1 2 −1

−1 −2 −1



x1a

x1b

x2a

 ≤


1

1

0


−2 ≤ y1,2 ≤ 2

x1a, x1b, x2a ∈ {0, 1}3

(12)

Step 4: The above problem is then solved using a mp-ILP algorithm and

yields the optimal parametric solution given in Table 8. In this example the

parametric solution consists of only one critical region.200

Step 5: The solution obtained is then substituted into the upper level

problem to formulate one new single-level deterministic linear programming

(LP) problem.

min
y

−3 + 3y1 + 3.2y2

s.t. −y1 − y2 ≤ 2

y1 + y2 ≤ 2

−2 ≤ y1,2 ≤ 2

y ∈ R2

(13)

Step 6: Problem (13) is solved using CPLEX linear programming solver,

and results to the solution presented in Table 9. Since only one solution is

derived no comparison procedure in this step is needed and the solution listed
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Table 9: Solution of the single level problem formulated in Example 1

Objective Function Continues Variables Discrete Variables

−9.4 y1 = 0, y2 = −2 x1 = 1, x2 = 1

in Table 9 is the exact and global optimal solution of Example 1.

2.1.2. Example 2: ILP-ILP205

Consider the following Type 2 class example taken from Moore and Bard

(1990):

min
x

−x− 10y

s.t. y ∈ arg{min
y

y

s.t. − 25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

−2x− 10y ≤ −15}

x, y ∈ Z+2

(14)

Step 1 & 2: Bounds are established for all the variables, resulting in 1 ≤

x ≤ 8 and 1 ≤ y ≤ 4. The problem is then transformed into a 0-1 binary B-ILP

problem (4.1), by expressing the integer variables x and y through the binary210

variables x1, x2, x3, y1 and y2 as x = 1 + x1 + 2x2 + 4x3 and y = 1 + y1 + 2y2
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Table 10: Lower level problem solution of Example 2

Critical Region Definition Objective Variables

CR1 x2 = 0, x3 = 0 2 y1 = 1, y2 = 0

CR2 −x2 − x3 ≤ −1 1 y1 = 0, y2 = 0

Floudas (1995).

min
x1,x2,x3

−x1 − 2x2 − 4x3 − 10y1 − 20y2 − 11

s.t. (y1, y2) ∈ arg{min
y1,y2

y1 + 2y2 + 1

s.t. − 25x1 − 50x2 − 100x3 + 20y1 + 40y2 ≤ 35

x1 + 2x2 + 4x3 + 2y1 + 4y2 ≤ 7

2x1 + 4x2 + 8x3 − y1 − 2y2 ≤ 14

−2x1 − 4x2 − 8x3 − 10y1 + 20y2 ≤ −3}

x1, x2, x3 ∈ {1, 0}3 , y1, y2 ∈ {0, 1}2

(15)

Step 3: The lower level problem is then reformulated as a mp-MILP (16),

in which the optimization variables of the upper level problem, x1, x2 and x3,

are considered as parameters.215

min
y1,y2

y1 + 2y2 + 1

s.t. 25x1 − 50x2 − 100x3 + 20y1 + 40y2 ≤ 35

x1 + 2x2 + 4x3 + 2y1 + 4y2 ≤ 7

2x1 + 4x2 + 8x3 − y1 − 2y2 ≤ 14

−2x1 − 4x2 − 8x3 − 10y1 + 20y2 ≤ −3

x1, x2, x3 ∈ {1, 0}3 , y1, y2 ∈ {0, 1}2

(16)

Step 4: The above problem is then solved using the theory presented in

Oberdieck et al. (2017) for binary parameters in multi-parametric problems,

and yields to the optimal parametric solution presented in Table 10.

Step 5 & 6: The solution obtained is then substituted into the upper level

problem to formulate two new single-level ILP problems corresponding to each220
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Table 11: Solution of the single level problem formulated in Example 2

Critical Objective Transformed Original

Region Function Variables Variables

CR1 −22 x1 = 1, x2 = 0, x3 = 0 x = 2, y = 2

CR2 −18 x1 = 1, x2 = 1, x3 = 1 x = 8, y = 1

critical region. Solving this single level problems using CPLEX results to the

solution presented in Table 11.

After the comparison procedure the global optimum is found to be -22 with

x = 2 and y = 2.

2.1.3. Example 3: MILP-MILP225

Consider the following Type 4 class example:

min
x1,2,y3

4x1 − x2 + x3 + 5y1 − 6y3

s.t. (x3, y1,2) ∈ arg{ min
x3,y1,2

− x1 + x2 − 2x3 − y1 + 5y2 + y3

s.t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5

−8x1 − 4.9x2 − 3.2x3 ≤ 5

3.3x1 + 4.1x2 + 0.02x3 + 4y1 + 4.5y2 + 0.5y3 ≤ 1

−10 ≤ x1,2 ≤ 10 }

x1, x2, x3 ∈ R3, y1, y2, y3 ∈ {0, 1}3

(17)

Step 1 & 2: This example is already bounded and in terms of binary 0− 1

variables, therefore we can go directly to Step 3.

Step 3: Considering only the lower level problem, and treating x1, x2 and

y3 (upper level variables) as parameters, the lower level problem is transformed230
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to a mp-MILP (18).

min
x3,y1,2

−x1 − y1 + 5y2 + x2 − 2x3 + y3

s.t. 6.4x1 ≤ 11.5− 7.2x2 − 2.5x3

−8x1 ≤ 5 + 4.9x2 + 3.2x3

3.3x1 + 4y1 + 4.5y2 ≤ 1− 4.1x2 − 0.02x3 − 0.5y3

−10 ≤ x1,2 ≤ 10

(18)

Step 4: Problem (18) is then solved using POP toolbox and the theory

presented in Oberdieck et al. (2017), and yields the optimal parametric solution

shown in Table 12.

Step 5: Each solution was then substituted into the upper level problem,235

resulting into 8 single level linear programming problems, (19), corresponding

to each critical region.

z1 = min
x1,2

−161x1 − 206x2 + 50

s.t. −0.624x1 − 0.780x2 ≤ −0.175

0.624x1 + 0.781x2 ≤ 0.198

x1 ≤ 10
...

z8 = min
x1,2

1.44x1 − 3.88x2 − 1.4

s.t. 0.626x1 + 0.779x2 ≤ 0.0787

0.044x1 + 0.999x2 ≤ 4.565

−0.6241x1 − 0.7814x2 ≤ 0.666

−10 ≤ x1 ≤ 10

−x2 ≤ 10

(19)

Remark 3: Mixed integer linear or quadratic bilevel problems with all of the

binary variables appearing in the lower level problem will result in pure

continuous single-level programming problems at Step 5 of the algorithm.240

Step 6: All 8 linear programming problems (19) were solved using CPLEX

solver and their solution is reported in Table 13.
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Table 12: Example 3: Parametric solution of the lower level problem

CR Definition Variables

1

−0.624x1 − 0.780x2 ≤ −0.175 x3 = −165x1 −

205x2 + 50

0.624x1 + 0.781x2 ≤ 0.198 y1 = 0

x1 ≤ 10, y3 = 0 y2 = 0

2

0.624x1 + 0.781x2 ≤ −0.570 x3 = −2.56x1 −

2.88x2 + 4.6

−0.624x1 − 0.780x2 ≤ 0.594 y1 = 0

x1 ≤ 10, y3 = 0 y2 = 0

3

−0.626x1 − 0.780x2 ≤ 0.596 x3 = −165x1 −

205x2 + 50

0.624x1 + 0.781x2 ≤ −0.570 y1 = 1

−0.626x1 − 0.780x2 ≤ 0.594 y2 = 0

x1 ≤ 10, y3 = 0

n ... ...

7

0.626x1 + 0.779x2 ≤ −0.693 x3 = −2.56x1 −

2.88x2 + 4.6

0.044x1 + 0.999x2 ≤ 4.565 y1 = 1

−10 ≤ x1 ≤ 10 y2 = 0

−x2 ≤ 10, y3 = 1

8

0.626x1 + 0.779x2 ≤ 0.0787 x3 = −2.56x1 −

2.88x2 + 4.6

0.044x1 + 0.999x2 ≤ 4.565 y1 = 0

−0.6241x1 − 0.7814x2 ≤ 0.666 y2 = 0

−10 ≤ x1 ≤ 10

−x2 ≤ 10, y3 = 1
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Table 13: Solution of the single level problems generated in Example 3

Critical Region Objective x1 x2 x3 y1 y2 y3

CR1 −38.115 −10 8.243 10.128 0 0 0

CR2 −37.969 −10 7.26 9.291 0 0 0

CR3 173.636 −8.835 6.329 210.306 1 0 0

CR4 −24.457 −7.032 4.879 8.549 1 0 0

CR5 −24.438 −7.020 4.879 8.520 0 0 0

CR6 61.086 −2.736 2.055 80.083 0 0 1

CR7 −25.708 −7.187 4.886 8.928 1 0 1

CR8 −30.704 −7.185 4.886 8.921 0 0 1

After the comparison procedure the solution with the minimum objective

value was chosen as the global solution of the bilevel programming problem

(14), lying in critical region 1, with x1 = −10, x2 = 8.243, x3 = 10.128 and245

y1,2,3 = 0.

3. Bilevel Mixed-integer Quadratic programming problems

The algorithm presented in Section 2 is extended for mixed-integer quadratic

programming problems of the following general form (20), belonging to problem

class Type 4.250

min
x1,y1

(Q1
Tω + c1)

T
ω + cc1

s.t. A1x+B1y ≤ b1
(x2, y2) ∈ arg{min

x2,y2
(Q2

Tω + c2)
T
ω + cc2

s.t. A2x+B2y ≤ b2 }

x ∈ X ⊆ Rn, y ∈ Y ⊆ Zp

x = [xT1 x
T
2 ]T , y = [yT1 y

T
2 ]T , ω = [xT yT ]

T

(20)

where Q1, c1,cc1 A1, B1, b1 are constant coefficient matrices in the upper level

(leader) problem, and Q2, c2, cc2, A2, B2, b2 are constant coefficient matrices
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in the lower level (follower) problem. Q2 is positive definite, and X and Y are

compact polyhedral convex sets of dimensions n and p respectively.

The main idea and methodology for solving this type of problems follows255

the methodology proposed in Section 2, and is based on a recently developed

mp-MIQP algorithm by Oberdieck and Pistikopoulos (2015), summarized in

Appendix II. The proposed methodology will be firstly introduced through the

general form of the B-MIQP problem (20), and then illustrated through two

numerical examples.260

The first three steps of the B-MIQP algorithm are similar to the first three

steps of the B-MILP algorithm. In Step 1 integer and continuous variable

bounds are established and in Step 2 integer variables are transformed into

binary variables similarly to Steps 1 and 2 of the B-MILP algorithm. In Step

3 the lower level problem of the reformulated B-MIQP is transformed into a

mp-MIQP problem (21), in which the optimization variables of the upper level

problem that appear in the lower level problem, x1 and y1, are considered as

parameters for the lower level problem.

min
x2,y2

(Q2
Tω + c2)

T
ω + cc2

s.t. A2x+B2y ≤ b2
x1
L ≤ x1 ≤ x1U

(21)

The solution of the mp-MIQP problem (21), using mp-MIQP algorithms

through POP toolbox, will result to the complete profile of optimal solutions

of the lower level problem as explicit functions of the variables of the upper

level problem with corresponding critical regions. Critical regions for mp-MIQP

problems can be non-convex. The final step of the mp-MIQP algorithm is265

a comparison procedure (minmax, affine, exact) for overlapping critical regions

that are created by the integer terms (Oberdieck et al., 2016b). This comparison

step is essential as only one critical region can be optimal at any given point

in the space. The quadratic objective function of the lower level problem can

therefore make the final critical regions non-convex, by the creation of non-linear270

inequalities for the definition of the final critical regions (22) (Oberdieck and
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Pistikopoulos, 2015).

[x2, y2] =



ξ1 = p1 + q1x1 + x1
T r1x1, ψ1 if H1x1 ≤ h1, g1(x1) ≤ g1

ξ2 = p2 + q2x1 + x1
T r2x1, ψ2 if H2x1 ≤ H2, g2(x1) ≤ g2

...
...

ξk = pk + qkx1 + x1
T rkx1, ψk if Hkx1 ≤ hk, gk(x1) ≤ gk

(22)

Therefore, in Step 5 we substitute the multi-parametric solution into the

upper level MIQP problem to formulate single level MIQP or MINLP problems.

In Step 6 the single level problems are solved using appropriate mixed-integer275

linear, quadratic or non-linear global optimization solvers, and their solutions

are compared to select the global optimum solution.

The proposed algorithm in summarized in Algorithm 2.

Algorithm 2 Multi-parametric algorithm for the solution of Bilevel Mixed-

Integer Quadratic Programming problems
1: Establish integer and continuous variable bounds

2: Express integer variables into binary and substitute in (20)

3: Formulate the mp-MIQP problem (21)

4: Solve (21) and obtain solution [x2 y2]T = Fi(x1, y1) defined over CRi.

5: for i← 1, ...,#CRi do

6: Formulate MIQP or MINLP using (20) and (22)

7: Solve MIQP or MINLP to get candidate solution zi

8: end for

9: return zi with minimum value

Remark 4: This algorithm achieves exact and global optimal solutions when

Q1 � 0. For problem cases where this property does not hold, this algo-280

rithm is able to achieve approximate global optimum solutions.

25



3.1. Numerical Examples

Two B-MIQP numerical examples will be solved to illustrate the use of the

proposed algorithm.

3.1.1. Example 4: QP-IQP285

Consider the following Type 4 class example taken from Edmunds and Bard

(1992):

min
x

(x− 2)2 + (y − 2)2

s.t. min
y

y2

s.t. − 2x− 2y ≤ −5

x− y ≤ 1

3x+ 2y ≤ 8

x ∈ R, y ∈ {0, 1, 2}

(23)

Step 1: Bounds are established for the unbounded continuous variable x (y

is already bounded), resulting in 1
2 ≤ x ≤

8
3 .

Step 2: The problem is reformulated into a 0-1 binary B-MIQP (24) by290

expressing the integer variable y as a linear function of new binary variables y1

and y2, y = y1 + 2y2.

min
x

(x− 2)2 + (y1 + 2y2 − 2)2

s.t. min
y1,y2

(y1 + 2y2)2

s.t. − 2x− 2y1 − 4y2 ≤ −5

x− y1 − 2y2 ≤ 1

3x+ 2y1 + 4y2 ≤ 8

x ∈ R, y1, y2 ∈ {0, 1}2

(24)

Step 3: The lower level problem is then reformulated as a mp-MIQP prob-

lem (25), by considering the upper level optimization variable, x, as a parameter.
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Table 14: Lower level problem solution of Example 4

Critical Region Definition Objective Function Variables

CR1 1.5 ≤ x ≤ 2 1 y1 = 1, y2 = 0

CR2 0.5 ≤ x ≤ 4/3 4 y1 = 0, y2 = 1

min
y1,y2

(y1 + 2y2)2

s.t. −2y1 − 4y2 ≤ 2x− 5

−y1 − 2y2 ≤ −x+ 1

2y1 + 4y2 ≤ −3x+ 8

1
2 ≤ x ≤

8
3

(25)

Step 4: The resulting mp-MIQP problem (25) is solved using POP toolbox,

resulting in the optimal solution presented in Table 14.

Step 5: The two solutions were then substituted into the upper level prob-295

lem, resulting into two single level quadratic programming problems (see Remark

1 ) corresponding to each critical region.

z1 = min
x

(x− 2)2 + 1

s.t. 1.5 ≤ x ≤ 2
(26)

z2 = min
x

(x− 2)2

s.t. 0.5 ≤ x ≤ 4/3
(27)

Step 6: The resulting problems are convex quadratic programming prob-

lems therefore CPLEX solver was used for their solution (Table 15). After

comparison the global solution of the problem was found to be at x = 4/3 and300

y = 2 with the objective value of 4/9.
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Table 15: Solution of the single level problem formulated in Example 4

Critical Region Objective Function Variables

CR1 5 x = 2, y = 1

CR2 4/9 x = 4/3, y = 2

3.1.2. Example 5: MIQP-MIQP

Consider the following Type 4 class example problem:

min
x1,x2,y3

4x21 − x22 + 2x2 + x3 + 5y1 + 6y3

s.t. −y1 − y2 − y3 ≤ −1

min
x3,y1,y2

4x23 + y21 + 5y2 + x2y1 − x2y2 − 5x3 − 15y1 − 16y2

s.t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5

−8x1 − 4.9x2 − 3.2x3 ≤ 5

3.3x1 + 4.1x2 + 0.02x3 + 4y1 + 4.5y2 + 0.5y3 ≤ 1

−10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10

x1, x2, x3 ∈ R3, y1, y2, y3 ∈ {0, 1}3

(28)

Step 1 & 2: The problem is already bounded and in the form of a binary 0−1

B-MIQP problem, therefore we can directly proceed to Step 3.

Step 3: The lower level problem is reformulated as a mp-MIQP problem305

by considering the upper level optimization variables that appear in the lower

level (x1, x2, y3) as parameters.

Step 4: The existence of bilinear terms introduces another step for the solu-

tion of this problem, as a z-transformation to eliminate those terms is required.

This transformation can be done through POP toolbox, and the resulting mp-310

MIQP problem is solved again using POP toolbox and the theory presented in

Oberdieck et al. (2017), resulting in the optimal parametric solution presented

in Table 16 and Figure 2.

Step 5: All 12 critical regions that form the parametric solution were then

substituted into the upper level problem, formulating twelve single level MIQP315
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Table 16: Example 5: Solution of the lower level problem

CR Definition Variables

1

0.624x1 + 0.781x2 ≤ 0.198 x3 = −165x1 − 205x2 + 50

−0.627x1 − 0.779x2 ≤ −0.185 y1 = 0

x1 ≤ 10 y2 = 0

2

0.044x1 + 0.999x2 ≤ 4.565 x3 = −2.5x1 − 1.531x2 −

1.563

0.624x1 + 0.781x2 ≤ 0.198 y1 = 0

0.853x1 + 522x2 ≤ −0.959 y2 = 0

−0.6241x1 − 0.7814x2 ≤ 0.57

−x1 ≤ 10

−x2 ≤ 10

3

0.624x1 + 0.781x2 ≤ −0.57 x3 = 1.25

−0.627x1 − 0.779x2 ≤ −0.575 y1 = 0

x1 ≤ 10 y2 = 0

4

−0.853x1 − 0.5223x2 ≤ 0.959 x3 = 1.25

0.627x1 + 0.779x2 ≤ 0.185 y1 = 0

−0.624x1 − 0.781x2 ≤ 0.57 y2 = 0

x1 ≤ 10

−x2 ≤ 10

n ... ...

11

0.624x1 + 0.7814x2 ≤ −1.434 x3 = 1.25

−0.627x1 − 0.779x2 ≤ 1.430 y1 = 0

x1 ≤ 10 y2 = 1

12

0.627x1 + 0.779x2 ≤ −0.670 x3 = 1.25

−0.853x1 − 0.522x2 ≤ 0.959 y1 = 0

−0.624x1 − 0.781x2 ≤ 1.434 y2 = 1

x1 ≤ 10

−x2 ≤ 10
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Figure 2: Example 5: Graphical representation of the parametric solution of the mp-MIQP

problem
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problems corresponding to each critical region.

Step 6: The resulting problems where then solved using CPLEX solver

and their solution is presented in Table 17. After the comparison procedure

the global optimum was found to be in critical region 11 with an upper level

objective function of -1.742.320

4. Mixed integer bilevel programming with right hand side uncer-

tainty

For applications that involve constantly changing and unpredictable condi-

tions it is of high importance to consider the effect of uncertainties in program-

ming problems. When considering bilevel programming formulations, uncer-325

tainties can be both integer or continuous, and can arise in both optimization

levels. Such examples include i) supply chain planning: unstable business envi-

ronment, with constantly changing market conditions and customer needs and

expectations (Gupta and Maranas, 2000; Jung et al., 2004; Ryu et al., 2007), ii)

hierarchical model predictive control: constantly changing system states and un-330

predicted system disturbances (Sakizlis et al., 2004) and iii) economic planning:

world trade, politics, weather etc. (Radner and Portes, 1975).

The presence of uncertainty in bilevel problems has been addressed before for

the continuous linear case Ryu et al. (2004) and the continuous quadratic case

(Faisca et al., 2007). In this work we present an extension of our earlier work335

that covers both mixed integer linear and quadratic cases. We are considering

the uncertainty to be unstructured but bounded, and can appear in one or both

optimization levels.

We are addressing the following bilevel programming problem with right
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Table 17: Example 5: Single level solutions

CR Variables Obj.

Level 1

1 x1 = 1.283, x2 = −0.771, y3 = 1, x3 = −3.589,

y1 = 0, y2 = 0

3.913

2 x1 = −1.328, x2 = 0.331, y3 = 1, x3 = 1.25, y1 = 0,

y2 = 0

10.951

3 x1 = 0.565, x2 = −1.193, y3 = 1, x3 = 1.25, y1 = 0,

y2 = 0

6.790

4 x1 = 0.563, x2 = −1.179, y3 = 1, x3 = 1.25, y1 = 0,

y2 = 0

6.810

5 x1 = −1.180, x2 = 0.090, y3 = 0, x3 = 1.25, y1 = 1,

y2 = 0

7.825

6 x1 = 0.544, x2 = −1.298, y3 = 0, x3 = 1.25, y1 = 1,

y2 = 0

4.372

7 x1 = 0.542, x2 = −1.285, y3 = 0, x3 = 1.25, y1 = 1,

y2 = 0

4.386

8 x1 = 0.530, x2 = −2.702, y3 = 0, x3 = 1.25, y1 = 1,

y2 = 1

2.952

9 x1 = −0.002, x2 = −1.834, y3 = 0, x3 = 1.25,

y1 = 0, y2 = 1

-1.577

10 x1 = 0.530, x2 = −2.702, y3 = 0, x3 = 1.25, y1 = 1,

y2 = 1

2.952

11 x1 = 0.375, x2 = −2.137, y3 = 0, x3 = 1.25, y1 = 0,

y2 = 1

-1.742

12 x1 = 0.373, x2 = −2.133, y3 = 0, x3 = 1.25, y1 = 0,

y2 = 1

-1.740
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hand side uncertainty θ.

min
x1,y1

(Q1
Tω +Ht1θ + c1)

T
ω + (Qt1θ + ct1)T θ + cc1

s.t. A1x+B1y ≤ b1 + F1θ

min
x2,y2

(Q2
Tω +Ht2θ + c2)

T
ω + (Qt2θ + ct2)T θ + cc2

s.t. A2x+B2y ≤ b2 + F2θ

x = [xT1 x
T
2 ]T , x ∈ Rn

y = [yT1 y
T
2 ]T , y ∈ Zp

ω = [xT yT ]
T

θ ∈ Θ := {θ ∈ Rq|Mθ ≤ d}

(29)

where Q1, Ht1, c1, Qt1, ct1, cc1 A1, B1, b1, F1 are constant coefficient

matrices in the upper level (leader) problem, and Q2, Ht2, c2, Qt2, ct2, cc2 A2,340

B2, b2, F2 are constant coefficient matrices in the lower level (follower) problem.

Q1 and Q2 are positive definite, and it is assumed that upper level optimization

variables that appear in the lower level problem, and lower level integer variables,

are bounded, or their bounds can be derived through the problem constraints.

For the solution of this problem we follow the following steps:345

Step 1: Similarly to the BMILP and BMIQP algorithm, integer and contin-

uous variable bounds are established for the variables that appear in the lower

level problem.

Step 2: Integer variables are transformed into binary 0-1 variables.

Step 3: The lower level problem is transformed into a mp-MIQP or mp-350

MILP, considering as parameters both the upper level variables that appear in

the lower lever (x1, y1), and the uncertainty θ.

Step 4: The resulting multi-parametric problems are solved using POP

toolbox.

Step 5: Each critical region is substituted into the upper level problem to355

result into k single level multi-parametric problems, considering the uncertainty

θ as parameters.

Step 6: The resulting k multi-parametric problems are solved using POP

toolbox.
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Step 7: All k parametric solutions are combined. For overlapping regions360

the exact comparison procedure implemented in POP toolbox and presented

in Oberdieck and Pistikopoulos (2015) is used to result to the final exact and

global parametric solution of the original bilevel problem.

4.1. Numerical Example

4.1.1. Example 6: mp-MIQP-MILP365

Consider the following Type 4 class example with right hand side uncertainty

θ.

min
x1,y3

4x1
2 + x3y3 + 5y1 − 6y3 − θ2 + 2θ

s.t. y1 + y2 + y3 ≤ 1

min
x2,y1,2

− x1 − 2x2 − y1 + 5y2 + θ

s.t. 6.4x1 + 2.5x2 ≤ 11.5− 7.2θ

−8x1 − 3.2x2 ≤ 5 + 4.9θ

3.3x1 + 0.02x2 + 4y1 + 4.5y2 ≤ 1− 4.1θ

−10 ≤ x1 ≤ 10

−10 ≤ θ ≤ 10

x1, x2 ∈ R2, y1, y2, y3 ∈ {0, 1}2

(30)

Steps 1 & 2: The problem is already bounded and in a binary form.

Step 3: The lower level problem is transformed into a mp-MILP problem.

Both the upper level variables that appear in the lower level (x1) and uncertainty370

(θ) are being treated as parameters for the lower level problem.

Step 4: The problem is then solved using POP toolbox, and yields to the

optimal parametric solution presented in Table 18.

Step 5: The solutions obtained for every critical region are then substituted

into the upper level problem to formulate five new single level mp-MIQP prob-375

lems. More specifically, the functions of the optimization variables of the lower

level, x2, y1 and y2, in terms of the upper level optimization variables, x1 and

θ, are substituted in the upper level problem. The definition of each critical

region is added to each new single level problem as a new set of constraints.
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Table 18: Example 6: Solution of the lower level problem

CR Definition Variables

1

−0.624x1 − 0.780θ ≤ −0.175 x2 = −165x1 − 205θ + 50

0.624x1 + 0.781θ ≤ 0.198 y1 = 0

x1 ≤ 10 y2 = 0

2

0.624x1 + 0.781θ ≤ −0.570 x2 = −2.56x1 − 2.88θ + 4.6

−0.624x1 − 0.780θ ≤ 0.594 y1 = 0

x1 ≤ 10 y2 = 0

3

−0.626x1 − 0.780θ ≤ 0.596 x2 = −165x1 − 205θ + 50

0.624x1 + 0.781θ ≤ −0.570 y1 = 1

−0.626x1 − 0.780θ ≤ 0.594 y2 = 0

x1 ≤ 10

4

0.626x1 + 0.780θ ≤ −0.596 x2 = −2.56x1 − 2.88θ + 4.6

0.044x1 + 0.999θ ≤ 4.565 y1 = 1

−10 ≤ x1 ≤ 10 y2 = 0

−θ ≤ 10

5

0.044x1 + 0.999θ ≤ 4.565 x2 = −2.56x1 − 2.88θ + 4.6

0.626x1 + 0.780θ ≤ 0.175 y1 = 0

−0.624x1 − 0.781θ ≤ 0.570 y2 = 0

−10 ≤ x1 ≤ 10

−θ ≤ 10
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Table 19: Example 6: Solution of the single level mp-MIQPs

CR Definition Objective

1.1 −4.824 ≤ θ ≤ 7.733 2.136θ2 − 408.010θ − 8.154

1.2 7.733 ≤ θ ≤ 7.812 −θ2 − 203θ − 1406

... ... ...

5.1 0.290 ≤ θ ≤ 1.241 −θ2 − 0.880θ − 2.219

5.2 −4.824 ≤ θ ≤ 0.290 2.096θ2 − 2.674θ − 1.959

5.3 −4.882 ≤ θ ≤ −4.824 0.001θ2 + 0.0092θ + 0.0002

5.4 1.2407 ≤ θ ≤ 8.7160 2.136θ2 − 8.661θ − 2.607

Step 6: The five resulting single level problems are in the form of mp-MIQP380

problems, with the uncertainty θ being a parameter of the single level problems.

Therefore, the POP toolbox was used for their solution. Each critical region

formed in Step 4 is now divided into smaller regions as another parametric

programming problem is solved within the original regions.

A summary of the resulting parametric solutions of all five problems is pre-385

sented in Table 19. Figure 3 graphically illustrates the objective function versus

the uncertain parameter θ for all the critical regions derived in Step 6.

Step 7: As a last step, the solutions generated from each critical region

are compared and the parametric solutions resulting to the minimum objective

through the parametric space are chosen as the final solution of the mixed integer390

bi-level programming problem with uncertainty. Table 20 summarizes the final

solution of this problem. The solution can also be seen in Figure 3 as it consists

of the lines forming the lower value of the objective function in the space of the

parameter θ.

5. Computational Implementation395

The presented B-MILP and B-MIQP algorithms have been implemented in

our new B-POP toolbox (Avraamidou and Pistikopoulos, 2018a), a MATLAB

toolbox for bilevel programming, an extension to our already developed POP
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Figure 3: Example 6: Graphical representation of the parametric solution of the single level

mp-MIQP problems

toolbox. The toolbox features i) bilevel programming solvers for linear and

quadratic programming problems and their mixed-integer counter-parts, ii) a400

versatile problem generator capable of creating random bilevel problems of ar-

bitrary size, and iii) a library of bilevel programming test problems.

In B-POP we consider the following bilevel programming problem:

min
x1,y1

(Q1
Tω + c1)

T
ω + cc1

s.t. A1x+B1y ≤ b1
(x2, y2) ∈ arg{min

x2,y2
(Q2

Tω + c2)
T
ω + cc2

s.t. A2x+B2y ≤ b2 }

x ∈ Rn, y ∈ Zp

x = [xT1 x
T
2 ]T , y = [yT1 y

T
2 ]T , ω = [xT yT ]

T

(31)

To our knowledge, currently available bi-level solution toolboxes exist for

the solution of continuous bi-level programming problems, and this include

YALMIP R© (Lofberg, 2004) and JAMS R© (JAMS) for convex continuous prob-405

37



Table 20: Example 6: Final solution

CR Definition Objective

4.1 −5.014 ≤ θ ≤ −4.882 0.011θ2 + 0.009θ + 0.0002

3.1 −4.882 ≤ θ ≤ −4.840 2.136θ2 − 2.575θ + 6.669

5.3 −4.840 ≤ θ ≤ −4.824 0.011θ2 + 0.009θ + 0.0002

5.2 −4.824 ≤ θ ≤ −0.015 2.096θ2 − 2.674θ − 1.959

1.1 −0.015 ≤ θ ≤ 7.733 2.136θ2 − 408.010θ − 8.154

1.2 7.733 ≤ θ ≤ 7.812 −θ2 − 203θ − 1406

3.4 7.812 ≤ θ ≤ 8.799 2.096θ2 − 310.374θ + 4.065

3.3 8.799 ≤ θ ≤ 8.802 −θ2 − 203θ − 701

4.2 8.802 ≤ θ ≤ 10 −θ2 − 0.880θ − 1.095

lems, and BLEAQ/N-BLEA R© (Sinha, 2003) for non-convex continuous prob-

lems. A new toolbox for the solution of bilevel mixed-integer linear problems is

available by Matteo Fischetti et al., and to our knowledge B-POP is currently

the only freely accessible toolbox for bilevel mixed-integer quadratic program-

ming problems.410

5.1. Problem solution

Multi-parametric programming: For the lower level multi-parametric

programming problems, B-POP utilizes POP toolbox to solve the problem. The

user can specify the solution method that can be either geometrical, combina-

torial or connected graph algorithms, or utilize POPs interface with the solver415

in MPT Toolbox (more information in Oberdieck et al. (2016b)).

Sinlge level deterministic problems: For the resulting transformed sin-

gle level problems, being either LP, QP, MI(N)LP programming problems, B-

POP features links to CPLEX, NAG or MATLAB solvers as LP or QP solvers,

and CPLEX or MATLAB for MI(N)LP problems.420
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5.2. Computational Performance

A small set of problems was solved to show the capabilities of the presented

algorithms and B-POP toolbox. More computational results and in-depth dis-

cussion on the cababilities of B-POP toolbox for different classes of multi-level

problems are discussed in Avraamidou and Pistikopoulos (2018a,b) .425

The computations were carried out on a 2-core machine with an Intel Core

i7 at 3.1 GHz and 16 GB of RAM, MATLAB R2016a, and IBM ILOG CPLEX

Optimization Studio 12.6.3.

In order to highlight the applicability of B-POP as well as its scaling ca-

pabilities, we are considering both mixed-integer linear and quadratic bilevel430

problems of different sizes and structures. The results of the computations are

presented in Table 21 for the B-MILP problems and in Table 22 for the B-

MIQP problems, where x1 is the number of upper level continuous variables

that also appear in the lower level, y1 is the number of upper level binary

0 − 1 variables, x2 is the number of lower level continuous variables, y2 is the435

number of lower level binary 0 − 1 variables, m is the number of constraints

(excluding boundary constraints), "mp-Level 2 " is the time required to solve

the lower level problem multi-parametrically (i.e Step 4 ), "Single Level" is the

time required by CPLEX to solve the single level transformed problems and

select the minimum one, and finally "Total time" is the total time required for440

the solution of the bilevel problem. The test problems in Tables 21 and 22 are

available at parametric.tamu.edu\POP\ under the names ’BPOP_BMILP’ and

’BPOP_BMIQP’.

5.3. Discussion on the computational results

The proposed algorithm can be used to solve the randomly generated B-445

MILP problems with up to 480 variables (a total of all integer and continuous)

and B-MIQP problems with up to 65 variables (a total of all integer and contin-

uous) in less than 4 minutes for 92% of the problems. The size and complexity

of the bi-level problems that can be solved through the proposed approach is

constrained by the capabilities of the multi-parametric mixed integer solution450
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Table 21: Computational results: B-MILP

Problem x1 y1 x2 y2 m
mp-Level 2 Single Level Total

(s) (s) (s)

test8 40 40 2 2 22 291.130 0.1731 291.3035

test9 45 45 2 2 25 112.6904 0.2437 112.93.42

test10 50 50 2 2 27 455.0280 0.9539 455.09819

test25 2 2 75 75 40 4.1390 0.0026 4.1416

test26 2 2 80 80 42 3.8449 0.0023 3.8472

test27 2 2 85 85 45 5.6016 0.0031 5.6047

test28 2 2 90 90 47 5.4821 0.0032 5.4853

test29 2 2 95 95 50 5.9115 0.0029 5.9144

test30 2 2 100 100 52 8.1234 0.0029 8.1263

test44 40 40 40 40 40 5.4329 0.0025 5.4354

test45 45 45 45 45 45 4.3939 0.0021 4.3960

test46 50 50 50 50 50 8.3232 0.0099 8.3331

test47 55 55 55 55 55 8.9885 0.0034 8.9918

test48 60 60 60 60 60 17.5849 0.0109 17.5957

test49 65 65 65 65 65 10.2242 0.0046 10.2288

test50 70 70 70 70 70 24.5837 0.0123 24.5960

test51 75 75 75 75 75 18.4030 0.0057 18.4087

test52 80 80 80 80 80 13.8105 0.0069 13.8175

test53 85 85 85 85 85 19.7149 0.0142 19.7291

test54 90 90 90 90 90 37.1772 0.0080 37.1852

test55 95 95 95 95 95 59.2469 0.0159 59.2628

test56 100 100 100 100 100 55.3647 0.0080 55.3727

test57 105 105 105 105 105 45.3738 0.0095 45.3833

test58 110 110 110 110 110 68.0360 0.0074 68.0434

test59 115 115 115 115 115 100.8653 0.0119 100.8772

test60 120 120 120 120 120 191.6486 0.0477 191.6963
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Table 22: Computational results: B-MIQP

Problem x1 y1 x2 y2 m
mp-Level 2 Single Level Total

(s) (s) (s)

test1 5 5 2 2 5 4.1001 0.1238 4.2239

test2 10 10 2 2 7 2.6959 0.0377 2.7336

test3 15 15 2 2 10 152.1813 0.4648 152.6460

test4 20 20 2 2 12 201.1591 0.5662 201.7052

test5 25 25 2 2 15 175.0922 0.9555 176.0477

test6 2 2 5 5 5 79.3080 0.0730 79.3742

test7 2 2 10 10 7 257.4909 0.0060 257.4969

test8 5 2 5 2 3 8.5233 0.1221 8.6353

test9 10 2 10 2 5 33.0615 0.0601 33.6625

test10 15 2 15 2 6 32.3564 0.0532 32.4096

test11 20 2 20 2 7 47.3702 0.5851 47.9553

test12 25 2 25 2 8 4.5226 0.0345 4.5571

test13 20 5 20 2 5 165.4143 0.7007 166.1150

test14 10 10 30 5 1 210.9560 0.0386 210.9946

test15 5 2 25 5 1 183.3612 0.0856 183.4468
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algorithm as the time required for the solution of the single level MIPs is always

much smaller than the solution time required for the solution of the lower level

multi-parametric problems. It is evident that this algorithm is not intended for

the solution of larger scale problems and will not be able to handle problems

much bigger than those presented in the computational studies, especially for455

the case of B-MIQP problems.

6. Conclusion

This paper introduces novel algorithms for the exact global solution of a

range of classes of mixed integer bi-level programming problems that contain

integer and continuous variables in both optimization levels. The algorithms uti-460

lize multi-parametric programming to solve the lower level problem as a function

of the upper level variables, and are able to supply the decision maker with the

exact and global solution of the bi-level problem. Furthermore an extension of

the algorithms is introduced for the parametric solution of bi-level mixed-integer

problems under uncertainty.465

The proposed approaches has been successfully implemented into a MAT-

LAB toolbox, B-POP, and their performance and efficiency was assessed through

a set of test problems, suggesting that the limiting step is the solution of the

multi-parametric program in the lower optimization level.

Ongoing work involves the improvement of the computational performance470

of the presented algorithm by developing methodologies that eliminating the

need for exploration of the full parametric space.

Further work also involves the extension of the presented algorithm for the

solution of multi-level problems, as well as more general non-linear bilevel prob-

lems. Also bilevel problems with right hand side uncertainty will be explored475

further, and the presented algorithm for their solution will be implemented into

B-POP toolbox.
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Appendix I - Algorithm for the solution of mp-MILP problems

A schematic representation showing the steps of the algorithm for the so-

lution of mp-MILP problems (12) by Oberdieck et al. (2014) is shown below.

min
x,y

Qω +Hθ

s.t. Ax+ Ey ≤ b+ Fθ

x ∈ Rn, y ∈ {0, 1}p, ω = [xT yT ]

θ ∈ Θ := {θ ∈ Rq|CRAθ ≤ CRb},

(32)

where Q ∈ R(n+p)×(n+p) � 0, H ∈ R(n+p)×q, A ∈ <m×n, E ∈ Rm×p, b ∈ Rm,

F ∈ Rm×q and Θ is compact.

Figure 4: The mp-MILP algorithm proposed by Oberdieck et al. (2014)
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Appendix II - Exact algorithm for the solution of mp-MIQP problems

The algorithm of Oberdieck and Pistikopoulos (2015) for the solution of790

problems with the general formulation of (13) is summarized below. It is based

on the decomposition algorithm shown graphically in Figure 5.

min
x,y

(Qω +Hθ + c)
T
ω

s.t. Ax+ Ey ≤ b+ Fθ

x ∈ Rn, y ∈ {0, 1}p, ω = [xT yT ]

θ ∈ Θ := {θ ∈ Rq|CRAθ ≤ CRb},

(33)

where Q ∈ R(n+p)×(n+p) � 0, H ∈ R(n+p)×q, c ∈ Rn+p, A ∈ Rm×n, E ∈ Rm×p,

b ∈ Rm, F ∈ Rm×q and Θ is compact.

Figure 5: A graphical representation of the decomposition algorithm (Dua et al., 2002).

Initialization: A candidate solution for the binary variables is found by795

solving the MIQP problem formed when considering parameters as optimization

variables. A binary solution is obtained and subsequently fixed in the original

problem, thus resulting in a mp-QP problem. This problem can be solved

using the algorithm presented in Dua et al. (2002), which results in an initial

partitioning of the parameter space and provides a parametric upper bound to800
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the solution. The upper bound for the remaining part of the parameter space

which has not yet been explored is set to infinity.

Step 1: A candidate solution for the binary variables is found by considering

parameters as optimization variables and solving the resulting MIQP problem.

Step 2: Create an affine outer approximation by employing McCormick805

relaxations (McCormick (1976)) for each bilinear or quadratic term in the con-

straints. Since the nonlinearities in the constraints only arise from comparison

procedures, these relaxations are calculated during the comparison procedure.

Step 3: The candidate solution of the binary variables is substituted into

the initial problem, thus resulting in a mp-QP. This mp-QP problem can be810

solved using mp-QP algorithms by Dua et al. (2002).

Step 4: This and all subsequent steps have to be performed for each critical

region. Compare solution with the current upper bound. Here the explicit

solution of the problem is considered and thus two new critical regions are

created.815

Step 5: Calculate appropriate relaxations in order to create the outer ap-

proximation for the next iteration.

Step 6: The original inequalities from the current critical region are re-

introduced to each newly formed critical region, while the relaxations used before

are removed. The newly formed critical regions are returned to Step 1 thus820

resuming the iteration.

Termination: The algorithm terminates as soon as problem in Step 1 is

infeasible for all critical regions.
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