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Abstract 1 

This study constructs an analytical model to understand the phytoplankton dynamics in a one-2 

dimensional system by integrating the physical and biological processes. We present an analytical 3 

solution of phytoplankton distribution along the longitudinal direction of a tidal river. The solution 4 

has two components: water age and accumulative growth. The water age represents the overall 5 

effect of physical transport due to advection, while the accumulative growth represents the 6 

accumulation of phytoplankton biomass due to biological processes during the transport. In 7 

addition, an alternative solution with nonlinear reaction term is given to account for the feedback 8 

mechanism of nonlinear processes that affect phytoplankton growth rate. The nonlinear reaction 9 

term can be also used to approximate the effect of physical mixing on phytoplankton distribution.  10 

The analytical solutions can be further used to predict the temporal variation and spatial 11 

distribution of phytoplankton along the tidal river. They also serve as a mathematical tool to unite 12 

different field phytoplankton observations. We applied the model in the Tidal Freshwater Region 13 

(TFR) of James River under different dynamic conditions and the model results match well with 14 

the observations, which validates the theory on different time scales. Furthermore, an analysis is 15 

conducted for the Local Chlorophyll-a Maximum (LCM) in the TFR. It shows that the condition 16 

for LCM is biologically controlled, but its location is regulated by river flow and river 17 

geomorphology.  18 

  19 
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1 Introduction 20 

TFR is a part of an estuary that is under heavy influence of tide and river flow, but beyond the 21 

influence of saline water. Due to the strong mixing, it is usually a well-mixed system (Cloern, 22 

1987; Wood et al., 2013). Watershed runoff brings nutrients into TFR resulting in high nutrient 23 

concentration conditions that can support high primary production (Carroll et al., 2013; Heisler et 24 

al., 2008). Therefore, phytoplankton blooms are often observed in TFR (Filardo & Dunstan, 1985; 25 

James et al., 1992; Muylaert et al., 2005), which could pose threat to the ecosystem (Anderson et 26 

al., 2012; Bukaveckas et al., 2011; Cloern, 1996). Phytoplankton growth in TFR is related to many 27 

factors, including nutrients, light, temperature and grazing (Cloern, 1987; Dugdale et al., 2016; 28 

James et al., 1992; Marshall & Affronti, 1992; Qin & Shen, 2017; Sellner et al., 1988). Besides, 29 

the river flow plays an important role in the phytoplankton dynamics in TFR by influencing the 30 

residence time and spatial distribution of phytoplankton (Borsuk et al., 2004; Bukaveckas et al., 31 

2011; Lucas et al., 2009). The interaction between the physical and biological controls on 32 

phytoplankton dynamics is the key for us to interpret the ecosystem features in TFR such as the 33 

chlorophyll maximum (Bukaveckas et al., 2011). In estuaries, physical transport and 34 

phytoplankton growth are both well studied (Glibert et al., 2001; Hong & Shen, 2013; Ralston et 35 

al., 2015; Shen & Lin, 2006), and these studies provide insights to the coupling between these two 36 

elements in TFR. However, if we only focus on the biological behaviors of phytoplankton, we lose 37 

the overall picture of its spatial distribution and connections between upstream and downstream. 38 

On the other hand, if we only study the physical transport, it is insufficient to understand the 39 

complex biological response of phytoplankton to environmental factors. The goal of this work is 40 

to integrate the physical and biological processes to understand the phytoplankton dynamics in 41 

TFR.  42 

For physical transport process, timescale is a useful tool to represent its bulk effect on the 43 

ecosystem (Deleersnijder et al., 2001; Shen et al., 2013). The comparison between the timescale 44 

of physical transport and the timescale of biological processes depicts their relative importance in 45 

regulating the ecosystem. Using transit time and the timescale of algal growth, Lucas et al. (2009) 46 

studied the relationship between phytoplankton biomass and transport time in different estuaries. 47 

Based on the timescales of gravitational circulation, vertical exchange and total oxygen 48 

consumption, Shen et al. (2013) and Du and Shen (2015) studied the dissolved oxygen distribution 49 
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in Chesapeake Bay. To understand the complex water flows, Deleersnijder et al. (2001) introduced 50 

the concept of water age to diagnose the underlying physical processes using timescales. The water 51 

age is the time elapsed since the water parcel left the considered region. The water age is a function 52 

of time and location and it represents the history of the water parcel by relating it to its original 53 

location where the age is set to zero. This concept provides a robust tool for us to interpret the 54 

hydrodynamic process in an aquatic system, as it not only relates the information of water parcels 55 

in different places (Shen & Lin, 2006) but also shows the accumulating effect of flow history. In 56 

this study, we integrate water age into the phytoplankton dynamics to analyze the effect of physical 57 

transport on spatial and temporal variations of phytoplankton.  58 

To describe the phytoplankton behaviors in a waterbody, various biological processes are often 59 

characterized by different rates such as growth rate, respiration rate, grazing rate, etc. (Boynton et 60 

al., 1982; Cerco & Noel, 2004; Liu et al., 2018; Morse et al., 2013; Park et al., 1995). These rates 61 

represent the rates of different processes in changing the phytoplankton biomass and each is 62 

inherited with a timescale in an inverse relationship. Normally, high rate implies a short timescale 63 

and a large influence on the phytoplankton. To study the mass balance of phytoplankton biomass, 64 

different rates can be lumped into two terms (Lucas et al., 2009): growth rate that summaries all 65 

the rates of increasing phytoplankton biomass such as the photosynthesis rate and phagocytic rate 66 

for mixotrophic species (Flynn & Mitra, 2009), and loss rate that summaries all the rates of 67 

decreasing phytoplankton biomass such as respiration rate and grazing rate. By comparing growth 68 

rate and loss rate, we can know whether phytoplankton biomass will increase or not with time. In 69 

addition, these two rates reveal the changing rate of phytoplankton concentration in an aquatic 70 

system relative to the physical transport. Phytoplankton net growth rate can be further defined as 71 

the growth rate subtracted by the loss rate (Lucas et al., 2009). Moreover, growth and loss rates 72 

can both vary with time and space because of the responses of phytoplankton to varying 73 

environmental conditions, which substantially increases the difficulty in studying phytoplankton 74 

dynamics.  75 

Because growth and loss rates may change in different location, essentially, their effects on 76 

phytoplankton are locally defined focusing on the phytoplankton biological behaviors in individual 77 

places (Anderson et al., 2008). These rates are not able to provide the bulk effect on phytoplankton 78 

that accumulated in time and space. In addition, they cannot give the information about the relation 79 

between phytoplankton in different places even the water parcels of phytoplankton are physically 80 
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related. In order to integrate the biological rates with physical transport, Lucas et al. (2009) 81 

developed a conceptual phytoplankton model for a one-dimensional, uniform and steady state 82 

system. This model considers the phytoplankton concentrations that go in and out a system by 83 

comparing the physical and biological timescales. Basically, it shows that phytoplankton 84 

concentration increases/decreases through time during physical transit, when growth rate is 85 

larger/smaller than loss rate. Phytoplankton is regarded as passive tracers conveyed by the water 86 

parcel. In the system, phytoplankton grows or decays with time depending on the sign of the net 87 

growth rate. In the meantime, water parcel flow through the system, e.g., from the head to the end 88 

of an estuary. From a Lagrangian point of view, time and space are tightly coupled for the 89 

phytoplankton in a particular water parcel. Therefore, when phytoplankton are transported in a 90 

certain distance, the phytoplankton also spends a certain time for their biological changes.  91 

Generally, field measurements for phytoplankton concentrations can be divided into two 92 

categories: the first category focuses on the time series at a fixed location lacking enough spatial 93 

resolution and the second category focuses on the spatial variation at a specific time lacking 94 

enough temporal resolution  (Chesapeake Bay Program, 2016). It is not practical to obtain 95 

phytoplankton measurements with both high temporal and spatial resolutions. To fill the data gap, 96 

efforts have been made to integrate different kinds of observations to understand the physical and 97 

biological controls on phytoplankton dynamics (Cianelli et al., 2017; Qin & Shen, 2017). Models 98 

(either analytical or numerical) are also used to estimate the phytoplankton concentration at the 99 

vacancy of measurements. Lucas’s phytoplankton model is sufficient to describe a simple steady 100 

water system (Lucas et al., 2009). However, it may fail to capture the phytoplankton variations in 101 

a varying system. In this work, we present a more generic analytical phytoplankton model that can 102 

analyze the phytoplankton variation when biological rates and physical transit time are both 103 

changing with time and space. Mathematically, it is composed of two components: one responsible 104 

for the physical transport (water age) and the other responsible for the accumulation of biological 105 

effects. This model provides a tool to unite different kinds of phytoplankton measurements 106 

regarding its spatiotemporal variations. It has the potential of predicting one from the other if only 107 

one kind of measurement is available. Thus, it can also be used to check the consistence between 108 

them. Different from numerical models, what we derived in this study is an analytical solution to 109 

the equation of phytoplankton dynamics, which can be used in many areas including: 1) predicting 110 

phytoplankton variation in time and space, 2) integrating the biological and physical factors that 111 
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affect phytoplankton variations, 3) building a relation between temporal variation and spatial 112 

variation of phytoplankton, and 4) theoretically analyzing phytoplankton phenomenon. In this 113 

work, we apply this new model in the TFR of James River located in the lower Chesapeake Bay 114 

to predict the temporal and spatial phytoplankton variations.  115 

2 Method 116 

To simulate chlorophyll spatiotemporal variations in estuaries, numerical modeling is the most 117 

popular method by coupling a biological model of phytoplankton growth with a hydrodynamics 118 

model (Cerco, 2013; Liu et al., 2018; Park et al., 1995; Shen et al., 2017).  In addition, empirical 119 

models are also often used by statistically linking the phytoplankton variations with environmental 120 

factors (Chesapeake Environmental Communications, 2015; Fitzpatrick et al., 2014; Shen et al., 121 

2016a). These methods are usually focused on the long-term variabilities of chlorophyll compared 122 

with monthly or semi-monthly observations (Cerco & Noel, 2004; Chesapeake Bay Program, 123 

2016).  In this study, we adopt a new approach by directly deriving the analytical solution to the 124 

equations of phytoplankton dynamics. Then, evaluation of the solution can reproduce downstream 125 

chlorophyll variations.   126 

2.1 Phytoplankton Dynamics without diffusivity  127 

Many TFRs can be described by a one-dimensional system that is homogenous in the cross 128 

section. The river flow generally varies longitudinally with time. If the diffusivity effect can be 129 

neglected, water parcels are simply advected from upstream to downstream (Lucas et al., 2009; 130 

Shen et al., 1999). For these types of water system, the phytoplankton dynamics can be expressed 131 

in the following equation along with a boundary condition:  132 

 ( )growth loss net

C C
u C C

t x
µ µ µ∂ ∂+ = − ⋅ = ⋅

∂ ∂
  , for  [ ]0,  x L∈  (1) 

 133 

 ( ) ( ),  0C t x a t= = ,  (2) 

where ( ),C t x (mg/L) is phytoplankton biomass which can also be represented by chlorophyll 134 

concentration in the unit of μg[Chl]/L; t  is time; x  is the downstream distance from the river head; 135 

( ),u t x (m/s) is velocity; 
growthµ  and 

loss
µ  are phytoplankton growth and loss rate respectively; 136 
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( ),net t xµ is the net growth rate and L  is the length of TFR. In addition, ( )a t  is the boundary 137 

condition for phytoplankton concentration located at the river head and it varies with time. Note 138 

both ( ),u t x and ( ),net t xµ  are varying with time and space. 
C

t

∂
∂

represents the local changing rate 139 

of phytoplankton biomass, which is controlled by two processes. First, phytoplankton is 140 

transported by the river flow with a velocity u . Second, phytoplankton concentration is changing 141 

along the transport at the rate of 
net

µ .  Here, phytoplankton in the system [ ]0,  L is assumed to 142 

originate from the upstream at 0x =  and there is no local sources such as benthic resuspension 143 

(Kemp & Boynton, 1992).  144 

 The solution to Equations (1-2) is  145 

 ( ) ( ), G
C t x t Ta e= − ⋅   , for  [ ]0,  x L∈  (3) 

where ( ),T t x and ( ),G t x  are implicitly expressed by the equations below: 146 

 1
T T

u
t x

∂ ∂+ =
∂ ∂

 (4) 

 147 

 net

G G
u

t x
µ∂ ∂+ =

∂ ∂
 (5) 

 148 

 ( ), 0 0T t x = =  (6) 

 149 

 ( ), 0 0G t x = = .  (7) 

Here, the analytical solution Equation (3) contains two terms (T and G ) that can be obtained by 150 

solving Equations (4-7) once velocity filed ( ),u t x and net growth rate ( ),net t xµ  are given. By 151 

comparing Equation (4) with the water age equations in (Deleersnijder et al., 2001; Shen & Lin, 152 

2006), we can find that T  is water age in a one-dimensional system when diffusivity is neglected. 153 

It has a unit of time that represents the time elapsed since the water parcel leaves the river head at 154 

0x = . On the other hand, G  is a non-dimensional number and it represents the accumulative 155 

effect of net growth rate during the elapsed time T . If G  is larger/smaller than zero, 156 
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phytoplankton concentration will increase/decrease. If G  is zero, phytoplankton concentration 157 

will remain the same.  Hereafter, we will call G as accumulative growth.  158 

The combination of T and G disentangles the physical and biological effects in Equation 159 

(1) resulting in an elegant expression of phytoplankton concentration in time and space as in 160 

Equation (3). Equation (3) is the product of two parts: ( )t Ta −  and Ge , both of which have clear 161 

physical meanings. ( )t Ta −  relates the phytoplankton concentration at ( ),t x  to the boundary 162 

phytoplankton concentration at a previous time with a time lag of T . Essentially, it states that the 163 

water parcel at ( ),t x  is originated from the upstream boundary ( 0x = ) at time of ( )t T− . The 164 

phytoplankton concentration ( )a t T−  serves as the initial phytoplankton concentration for the 165 

water parcel at ( ),t x  when it leaves the boundary and travels to the location x . The second part 166 

Ge tells whether phytoplankton concentration will increase or decrease when phytoplankton 167 

reaches its current location at ( ),t x . It is obtained by integrating the biological effect 
netµ  during 168 

the time period from ( )t T−  to t  when phytoplankton is transported downstream. It can be seen 169 

from Equation (5) that the accumulative effect depends not only on net growth rate but also on the 170 

physical transport. The interpretation of solution actually follows the movement of water parcel 171 

from Lagrangian point of view, which becomes more natural if transformation 
d

u
dt t x

∂ ∂= +
∂ ∂

is 172 

made on the above equations from Eulerian coordinate to Lagrangian coordinate (e.g. Equation 5 173 

is transformed to net

dG

dt
µ= ). 174 

 175 

2.2 Solution with Nonlinear Reaction Term  176 

In Equation (1), we summarize all the biological effects into a single term namely net 177 

growth rate 
netµ . This simplification facilitates our analysis on the coupling between physical and 178 

biological processes. It assumes that all the information about the phytoplankton growth and loss 179 

can be sufficiently resolved by 
netµ . However, in reality it is always difficult to estimate an accurate 180 

netµ because the acquisition of physical and biological information in time and space is demanding. 181 

In addition, there exists nonlinear processes that impact phytoplankton concentration. For 182 
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example, zooplankton grazing rate may relate to zooplankton concentration which in turn relates 183 

to phytoplankton concentration (Filardo & Dunstan, 1985; Wang & Y.Kuo, 2009). In some cases, 184 

phytoplankton self-shading effect can reduce its growth rate under high phytoplankton 185 

concentration (Barros et al., 2003). Also, interaction among phytoplankton species may be 186 

important under high phytoplankton concentration (Lim et al., 2014). All these factors are difficult 187 

to be quantified by the single net growth term. To partially include these effects in the model, we 188 

add a feedback mechanism into the 
netµ in the form of ( )0 1net net k Cµ µ= ⋅ + ⋅  where ( )0 ,net t xµ  is the 189 

initial estimate of net growth rate and k  is a constant used to modify 0
netµ  depending on 190 

phytoplankton concentration C . The modified net growth rate 
netµ  decreases with C  if k  is 191 

negative/positive and 0
netµ  is larger/smaller than zero. With this new form, Equation (1) becomes 192 

a partial differential equation with a nonlinear term: 193 

 ( )0 1net

C C
u k C C

t x
µ∂ ∂+ = ⋅ + ⋅ ⋅

∂ ∂
  , for  [ ]0,  x L∈ .  (8) 

The form of Equation (8) is similar to the logistic model that is widely used in biology to describe 194 

the population growth of many different kinds of lives on earth such as bacteria (Rice University, 195 

2013). Here, we focus on the feedback mechanism that phytoplankton concentration can affect the 196 

net growth rate, especially under high concentration.  197 

On the other hand, the nonlinear term 0 2
netk Cµ⋅ ⋅  in Equation (8) plays a similar role as 198 

physical mixing in smoothing the spatial gradient of phytoplankton concentration when it has a 199 

negative value. The negative nonlinear term means larger attenuation for higher phytoplankton 200 

concentrations (large values of C ), but smaller attenuation for lower phytoplankton 201 

concentrations (small values of C ). Along with time, the peaks of phytoplankton concentrations 202 

in space will be depressed. It resembles the function of physical mixing that can be important in 203 

estuaries (MacCready & Geyer, 2010). This similarity will be further illustrated in Section 4.1. 204 

Although Equation (8) is a nonlinear equation, an analytical solution can still be obtained 205 

as:  206 

 ( ) ( )
( ) ( ),

1 1

G

G

T

T

t
C t x

k t

a e

a e

− ⋅
=

+ ⋅ − ⋅ −
 , for  [ ]0,  x L∈ ,   (9) 

with Equation (5) slightly modified as: 207 



9 

 

 0
net

G G
u

t x
µ∂ ∂+ =

∂ ∂
 (10) 

where T  remains the same as in Equation (3). Appendix A shows the proof that Equation (9) is 208 

the solution to Equation (8).  209 

 210 

2.3 Simple Cases  211 

The exact expressions of the analytical solution Equations (3, 9) depend on the Equations 212 

(4-7, 10) given boundary condition, velocity field and net growth rate. In other words, the explicit 213 

forms of Equations (3, 9) depend on whether the explicit expressions of T  and G are possible. In 214 

many cases, explicit forms of the solutions may not be possible if velocity and net growth rate 215 

have complicated forms. However, when simplifications are made, we can get explicit solutions.  216 

 217 

2.3.1 Spatially Varying Net Growth Rate and Velocity Field 218 

When velocity field and net growth rate do not change with time, they can be expressed as 219 

( )u x and ( )net xµ  or ( )0
net xµ . By solving Equations (4-7), we can obtain the form of Equation (3) 220 

as:  221 

 ( ) ( )0

x d
T x

u

η
η

= ∫ .  (11) 

 222 

 ( ) ( )
( )0

,
x

net
G t x d

u

µ η
η

η
= ∫ .  (12) 

With an nonlinear reaction term, we can obtain the expression of Equation (9) with the same T as 223 

in Equation (11) and  224 

 ( ) ( )
( )

0

0
,

x
net

G t x d
u

µ η
η

η
= ∫ .  (13) 

2.3.2 Constant Net Growth Rate and Spatially Varying Velocity Field 225 

Based on 2.3.1, if net growth rate is further regarded as constant, Equations (3, 9) become: 226 

 ( ) ( ), net T
C t x t Ta eµ ⋅= − ⋅ .  (14) 
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and  227 

 ( ) ( )
( ) ( )

0

0
,

1 1

net

net

T

T

t T
C t x

k t T

a

a

e

e

µ

µ

⋅

⋅

− ⋅
=

+ ⋅ − ⋅ −
.  (15) 

where T is the same as in Equation (11).  228 

2.3.3 Constant Boundary Condition, Net Growth Rate and Velocity Field 229 

In the simplest case when boundary condition, net growth rate and velocity field do not 230 

change with time and space, the solution in Equation (3) is degenerated to:  231 

 ( ) net
x
uC x a e

µ ⋅
= ⋅ .  (16) 

where a , 
netµ  and uare all constant. Equation (16) is the phytoplankton model presented by Lucas 232 

et al. (2009). This means that the phytoplankton model in (Lucas et al., 2009) is a special case of 233 

our generic model, which provides a validity for our theory about phytoplankton dynamics.   234 

 If there is nonlinear reaction term, Equation (9) becomes: 235 

 
( )

0

0

1 1

net

net

x
u

x
u

C x

k

a

a

e

e

µ

µ

⋅

⋅

⋅=
 

+ ⋅ ⋅ − 
 

.  
(17) 

 236 

2.4 Phytoplankton Prediction in The Downstream    237 

As shown in Equations (3, 9), the phytoplankton concentration in the downstream only 238 

depends on the boundary condition once water age and accumulative growth are known, which 239 

means that we can use phytoplankton concentration measured at the boundary to predict 240 

downstream phytoplankton concentration in time and space.  241 

Based on Equations (3, 9), if we fix at a downstream location 
0x x= , we can estimate the 242 

temporal variation of local phytoplankton concentration:  243 

 ( ) ( )( ) ( )0
0 0

,
, ,

G t x
C t x t T t xa e= − ⋅    (18) 

 244 
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 ( ) ( )( ) ( )

( )( ) ( )( )
0

0

0
0

0

,

,

,
,

1 , 1

G

G

t x

t x

T

T

t t x
C t x

k t t x

a e

a e

− ⋅
=

+ ⋅ − ⋅ −
    (19) 

If we fix at a particular time 
0t t= , we can estimate the spatial distribution of phytoplankton 245 

concentration:  246 

 ( ) ( )( ) ( )0

0 0 0

,
, ,

G t x
C t x t T t xa e= − ⋅    (20) 

 247 

 ( ) ( )( ) ( )

( )( ) ( )( )
0

0 0

0
0

0 0

,

,

,
,

1 , 1

G

G

t x

t x

T

T

t t x
C t x

k t t x

a e

a e

− ⋅
=

+ ⋅ − ⋅ −
    (21) 

On the other hand, if the spatial distribution of phytoplankton concentration at time 
0t t=  248 

is known, we can estimate the temporal variation of phytoplankton concentration at the boundary 249 

based on Equation (20, 21) as below:   250 

 ( ) ( )( ) ( )( )1
0 01

0

,
, 0

G t T t
C x b T t e

ξξ ξ
−−− −

= = − ⋅    (22) 

 251 

 ( )
( )( )

( )( ) ( )( ) ( )( )
1

0 0

1
0

1 1
0 0

,
, 0

1
G t T t

b T t
C x

k b T t k b T te
ξ

ξ
ξ

ξ ξ
−

−

−− −−

−
= =

 + ⋅ − ⋅ − ⋅ − 

   (23) 

where ( )0 0 0, ,  t T t L tξ  ∈ −  , ( )1
T ξ−  is the inverse function of ( )0 ,T t x , and ( )b x  for [ ]0,  x L∈252 

is phytoplankton concentration in space at time 
0t t= . 253 

 254 

 255 

  256 
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3 Results 257 

TFR in many estuaries shares common features in hydrology, geomorphology and water 258 

chemistry (Bukaveckas et al., 2011). It often has a regular shape in the longitudinal direction and 259 

a constricted cross section under strong fluvial influence, resulting in a transit time changing with 260 

river inflow. In addition, the water is usually in abundance of nutrients and suspended particulate 261 

matters (Wood et al., 2013) . These characterize the interaction between the hydrodynamics and 262 

phytoplankton dynamics in TFR as different from other regions in estuaries. Particularly, physical 263 

transport may play an important role in regulating phytoplankton distribution (Filardo & Dunstan, 264 

1985; Sellner et al., 1988; Sze, 1981). In this section, we will apply our theory in the TFR of James 265 

River by integrating all kinds of available observations.  266 

 267 

3.1 Observation in James River TFR 268 

James River is located in the lower Chesapeake Bay. It is about 170 km in length from its 269 

fall line to the river mouth (Shen & Lin, 2006).  The river inflow can vary from 10 m3/s to over 270 

8000 m3/s with an average river discharge of about 200 m3/s (Fang et al., 1973; U.S. Geological 271 

Survey Data, 2018). The James River is characterized by complex hydrodynamics (Shen et al., 272 

1999) and high chlorophyll concentration is often observed (Wood et al., 2013). The tidal influence 273 

can propagate up to the Richmod, VA. Generally, the tidal range in the upper James River is about 274 

one meter (Shen et al., 2016b), and the tidal current has an amplitude varying from 0.25 m/s to 0.5 275 

m/s. The subtidal current in the upper narrow, deep channels is more influenced by the river flow 276 

with speed varying from 0.0 m/s to 3 m/s, while the current speed becomes much smaller in the 277 

lower broad expansion. Filardo and Dunstan (1985) conducted a field experiment in the upper 278 

James River and found that there is an inverse relationship between river discharge and chlorophyll 279 

concentration. Bukaveckas et al. (2011) reported a local chlorophyll-a maximum recurring each 280 

summer in the downstream of the confluence of tidal James River and Appomattox River. They 281 

pointed out that the chlorophyll-a maximum coincides with low salinity and high turbidity zone, 282 

and  the location is related to the river geomorphology.  283 

 In the TFR of James River, three types of phytoplankton measurements are available on 284 

http://web2.vims.edu/vecos/. The first one is continuous monitoring data at fixed stations that 285 
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report chlorophyll concentrations every 15 minutes, but there are only a few such stations in James 286 

River. The second one is dataflow cruise data showing chlorophyll distribution over a large portion 287 

of the river at discrete dates. They have good spatial coverage, but lack temporal resolution. The 288 

third one is long-term monthly water quality monitoring data at fixed stations, available from 1985 289 

to the present. The first two types of data are measured as chlorophyll fluorescence, which is 290 

different from the chlorophyll-a data of the third type. In the following Section 3.2 and 3.3, we are 291 

trying to predict spatial variations in dataflow based on the continuous monitoring data at fixed 292 

station. For the comparison, we do not convert chlorophyll fluorescence into chlorophyll-a 293 

concentration. Instead, the chlorophyll values at the same location and time are checked to ensure 294 

the consistence between the two types of chlorophyll data. In addition, correlation coefficient 295 

(CC), and model skill are used to evaluate the comparison between model and observation. The 296 

model skill is defined by ( ) ( )22
SS 1 model obs / |model obs | |obs obs |

i i i i i i

i i

= − − − + −∑ ∑297 

(Willmott, 1981), where  modeli
and obsi

are time series of modeled and observed chlorophyll, 298 

and overbar denotes average.  299 

 300 

3.2 Constant Net Growth Rate under Low Flow Condition 301 

Under low flow conditions when river discharge does not vary considerably, the velocity 302 

can be regarded as constant over time. If the net growth rate is also assumed to be constant, the 303 

solutions in Equations (14, 15) can be used to estimate downstream phytoplankton concentration 304 

based on the boundary condition of phytoplankton concentration.  305 

 In the upper James River, chlorophyll concentration in unit of μg/L (as a proxy of 306 

phytoplankton concentration) is reported every 15 minutes at continuous monitoring Station 307 

JMS073.37 (Figure 1a). This serves as the boundary condition of phytoplankton concentration for 308 

our model configuration under the assumption that every water parcel passes this station before 309 

travelling downstream. The model axis (red line in Figure 1a) starts from JMS073.37 ( 0x = ) and 310 

goes downstream along the river channel. Figure 1b shows the time series of chlorophyll 311 

measurements at JMS073.37 for the period 06/01/2008-08/15/2008. Chlorophyll concentration 312 

from dataflow data is also available on 08/13/2008 which provides a snapshot of downstream 313 
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chlorophyll distribution. The dataflow date are interpolated along the model axis and the result 314 

serves as observation data for model comparison.  315 

The river discharge in James River (U.S. Geological Survey Data, 2018) had a small 316 

variation during the two months prior to 08/13/2008 when dataflow data of chlorophyll is 317 

measured. The average was 37 m3/s with a standard deviation about 16 m3/s. For simplicity, the 318 

river discharge is regarded as constant with 37 m3/s, which implies that the velocity field does not 319 

change with time. Based on the continuity equation that river discharge (m3/s) equals water 320 

velocity (m/s) multiplied by river cross sectional area (m2), we can estimate the velocity filed ( )u x  321 

along the river. Note that the effect of tidal excursion is neglected in the calculation as we focus 322 

on the long-term chlorophyll variation here and the residual velocity sufficiently serves the 323 

purpose. The estimated velocity field along with the river cross sectional area are shown in Figure 324 

2 based on the 10-meter resolution bathymetry data from Federal Emergency Management Agency 325 

(2010).  326 

 Given the phytoplankton boundary condition at JMS073.37 and velocity field, Equation 327 

(14) can be implemented in the TFR of James River. By using constant net growth rates, 328 

downstream phytoplankton can be estimated in unit of μg[Chl]/L. These net growth rates are based 329 

on Qin and Shen (2017), but are modified to best estimate downstream chlorophyll concentration. 330 

Figure 3a is based on Equation (14) using net growth rates of -0.028 day-1. The modeled 331 

chlorophyll generally matches the observation. The decreasing trend of chlorophyll from upstream 332 

to downstream is well reproduced. However, there are three chlorophyll peaks that largely deviate 333 

from the observation occurring at locations: around 5 km, 10 km and 12 km. These spatial peaks 334 

are resulting from the temporal oscillations of boundary chlorophyll concentration at times:  335 

around August 5th, July 25th and July 20th (Figure 1b). Because physical mixing is not included in 336 

Equation (14), these boundary oscillations are advected to the downstream as chlorophyll peaks in 337 

space. The missing of these peaks in observational data shows that physical mixing is also 338 

important in the TFR of James River as shown by Li et al. (2004). Additionally, if we applied a 339 

small trial net growth rate of -0.01 day-1 in the model, it over-predicts the chlorophyll distribution 340 

(Figure 3a) and the result merely represents the advection the boundary condition toward the 341 

downstream. If we applied a larger value -0.05 day-1, the chlorophyll concentration in the 342 

downstream is overly attenuated except the large peaks. Overall, the mean net growth rate for 343 

phytoplankton in July-August, 2008 is about -0.03 day-1 and this magnitude is consistent with the 344 
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results in Qin and Shen (2017). The negative value suggests that a chlorophyll maximum may be 345 

located in the upstream of Station JMS073.37 as shown in Figure 1a. Also, we noticed that the two 346 

different chlorophyll observations (dataflow data and continuous monitoring data) used for 347 

comparison are consistent regarding the chlorophyll concentration at ( )08/13/2008,  0t x= =  348 

which is around 25 μg/L (Figure 3).  349 

 Figure 3b shows chlorophyll estimates with nonlinear term. The results are based on 350 

Equation (15) with two sets of parameters: 0 1( 0.015 daynetµ −= − , -10.05 μg L)k = ⋅  and 351 

0 1( 0.0075 daynetµ −= − , -10.2 μg L)k = ⋅ . Compared to the results in Figure 3a, the model skill in 352 

chlorophyll is improved as the estimates match observation better visually with less chlorophyll 353 

oscillation and depressed peaks along the river. This is attributed to the negative nonlinear term 354 

contained in Equation (8) that larger decay rate is associated with higher chlorophyll concentration. 355 

Given that chlorophyll concentration varies around [20, 60] μg/L, the apparent net growth rate 356 

( )0 1net net k Cµ µ= ⋅ + ⋅ varies about [-0.06, -0.03] day-1 and [-0.0975, -0.0375] day-1 for the two 357 

different sets of parameters respectively. Therefore, a large k in Equation (8) means that the net 358 

growth rate has a large variation by relating to phytoplankton concentration.  359 

 360 

 361 
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 362 

Figure 1. Chlorophyll in the TFR of James River. The triangle in (a) refers to the location of 363 

continuous monitoring Station JMS073.37 and chlorophyll time series from 06/01/2008 to 364 

08/15/2008 is shown in (b) with moving average in blue line using 12-hour window. The color 365 

lines in (a) represent chlorophyll distribution from dataflow measurement on 08/13/2008 in the 366 

upper James River. The red line in (a) shows model axis starting from Station JMS073.37.   367 

 368 
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 369 

 370 

 371 

Figure 2. Average velocity along James River in the TFR and the river cross-section area. The 372 

constant river discharge 37 m3/s is assumed for the calculation under low flow condition.  373 

 374 
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 375 

Figure 3. Chlorophyll estimates on 08/13/2008 with constant net growth rates under low flow 376 

condition. The x-axis starts from Station JMS073.37 along the river. The upper panel shows model 377 

result with net growth rate -0.028 day-1 that is chosen because it best predict downstream 378 

chlorophyll variation. Two other modeling results with a smaller net negative growth rate -0.01 379 

day-1 (dotted line) and a larger negative net growth rate -0.05 day-1 (dashed line) are shown for 380 

comparison. The lower panel shows model results with two sets of trial parameters: 381 
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( 0 10.015 daynetµ −= − , -10.05 μg Lk = ⋅ ) and ( 0 10.0075 daynetµ −= − , -10.2 μg Lk = ⋅ ) based on based 382 

on Equation (15). The chlorophyll observation (black line) is interpolated from dataflow data on 383 

08/13/2008 as shown in Figure 1 .  384 

 385 

3.3 Constant Net Growth Rate Under High Flow Condition 386 

To test whether Equation (14, 15) can still work under high flow condition, we choose a 387 

period 07/01/2006-07/06/2006 during which the river discharge changed from below 200 m3/s to 388 

over 2000 m3/s. The mean river discharge was about 435 m3/s with a standard deviation of about 389 

452 m3/s. In order to apply Equation (14, 15) in the TFR of James River, the flow rate is still 390 

regarded as a constant of 435 m3/s although it is highly variable. Similar to Figure 2, the velocity 391 

field along the river channel is calculated (not shown) in an inverse relationship to the river cross-392 

sectional area. In addition, chlorophyll dataflow data is available on 07/06/2006 as shown in Figure 393 

4a. Because of the large river flow, the retention time of water parcel in our computation domain 394 

is short (less than one week), which means that downstream chlorophyll distribution on 07/06/2006 395 

is only related to boundary condition in the prior week.  Figure 4b shows the chlorophyll time 396 

series from continuous monitoring data at Station JMS073.37, which serve as the chlorophyll 397 

boundary condition at 0x = .  398 

Similar to Figure 3, Figure 5a-b show model results based on Equation (14, 15). Figure 5a 399 

is obtained with constant net growth rate of -0.4 day-1. Most of the chlorophyll estimate is 400 

overestimated especially during the range [ ]0,  10x∈ km. Figure 5b is obtained with the net 401 

growth rates modified to approximate  biological feedback mechanism or physical mixing; and 402 

two sets of parameters are used: 0 1( 0.3 daynetµ −= − , -10.05 μg L)k = ⋅  and 0 1( 0.15 daynetµ −= − ,403 

-10.2 μg L)k = ⋅ . Compared to Figure 5a, the chlorophyll estimates in Figure 5b are improved as 404 

the estimates are closer the observation visually between [ ]10,  25x∈ km and the chlorophyll 405 

oscillations inherited from the continuous monitoring data are largely depressed. However, the 406 

modeled chlorophyll in [ ]0,  10x∈  is still much higher than the observation. One cause for the 407 

overestimation is the mismatch of chlorophyll measurements between continuous monitoring data 408 
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and dataflow data as indicated by the chlorophyll concentrations at ( )07/06/2006, 0t x= = where 409 

the values are around 18 μg/L and 10 μg/L respectively (Figure 5b). The reason for the mismatch 410 

is likely because the continuous monitoring Station JMS073.37 is located nearshore, while the 411 

passage of dataflow cruise is along the river channel.  412 

 In order to reduce the mismatch between different chlorophyll measurements, the 413 

continuous monitoring chlorophyll during 07/01/2006-07/06/2006 is scaled by multiplying a factor 414 

of 0.55 to be new boundary condition (indicated in Figure 5c). This ensures that two types of data 415 

are consistent. The resulting chlorophyll estimates based on Equation (14, 15) are shown in Figure 416 

5c-d. Overall, the results are further improved with respect to Figure 5a-b. In Figure 5c, the 417 

chlorophyll estimate is for a constant net growth rate of -10.2 daynetµ = − , which represents the 418 

average net growth rate in the downstream. Figure 5d shows the results for net growth rates with 419 

nonlinear reaction term with two sets of parameters: 0 1( 0.2 daynetµ −= − , -10.05 μg L)k = ⋅  and 420 

0 1( 0.1 daynetµ −= − , -10.2 μg L)k = ⋅ . If the modified chlorophyll at the boundary is around [10,20] 421 

μg/L (multiplying the observational values in Figure 4b by 0.55), the two sets of parameters 422 

translate to net growth rates: [-0.3, -0.4] day-1 and [-0.3, -0.5] day-1 respectively. The chlorophyll 423 

estimates in Figure 5c-d are generally similar, but with smaller chlorophyll peaks in Figure 5d 424 

because nonlinear term in Equation (8) has a similar effect as physical mixing in smooth horizontal 425 

peaks (see discussion in Section 4.1). The two model results all reproduce the general trend of 426 

observational chlorophyll in the downstream in that chlorophyll stays high (around 10 μg/L) in 427 

[ ]0,  10x∈ km; drops rapidly in [ ]10,  15x∈ km; and stays low (around 5 μg/L) in [ ]15,  25x∈ km. 428 

Compared to the results in Figure 3b under low flow condition, both the observation and model 429 

estimate in Figure 5c-d present more chlorophyll oscillation in downstream. This is probably due 430 

to the short transit time under high flow condition, so that chlorophyll oscillation from the 431 

boundary is still preserved instead of being completely smoothed by physical mixing. The 432 

mismatch between the phases of chlorophyll oscillation is because of the simplified velocity filed 433 

resulting from the assumption of a constant flow rate. Nevertheless, the results show that our model 434 

still can predict the general tread of chlorophyll distribution in the downstream under high flow 435 

condition although improvement may be achieved by using a varying velocity field.  436 

 437 
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 438 

Figure 4. Chlorophyll in the TFR of James River. The format is the same as Figure 1. The color 439 

lines in upper panel (a) represent chlorophyll distribution from dataflow measurement on 440 

07/06/2007 in the upper James River. The lower panel (b) shows chlorophyll time series at Station 441 

JMS073.37 from 07/01/2006 to 07/06/2006 with moving average in blue line using 12-hour 442 

window.  443 

 444 
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 445 

Figure 5. Chlorophyll estimates on 07/06/2006 with constant net growth rates under high flow 446 

condition. The upper left panel (a) shows model result with net growth rate of  -0.4 day-1 based on 447 

Equation (14). The lower left panel (b) shows model results for two sets of trial parameters: 448 

( 0 10.3 daynetµ −= − , -10.05 μg Lk = ⋅ ) and ( 0 10.15 daynetµ −= − , -10.2 μg Lk = ⋅ ) based on Equation 449 

(15). Note that there is a mismatch for chlorophyll measurements between the continuous 450 

monitoring data and dataflow data at (t=07/06/2006, x=0). Panels (c, d) are similar to panels (a, 451 

b), but are obtained with modified continuously monitoring data by a factor of 0.55. The panel (c) 452 

is for constant net growth rate of -0.2 day-1, while the parameters for the results in panel (d) are 453 

( 0 10.2 daynetµ −= − , -10.05 μg Lk = ⋅ ) and ( 0 10.1 daynetµ −= − , -10.2 μg Lk = ⋅ ). The net growth 454 

rates in (a) and (c) are chosen based on Qin and Shen (2017) to best predict downstream 455 

chlorophyll variations. The chlorophyll observation (black line) is interpolated from dataflow data 456 
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on 07/06/2006 as shown in Figure 4. The observational data marked in the box in (a) with dash 457 

line roughly correspond to the continuously monitoring chlorophyll data marked in the box in 458 

Figure 4b.   459 

 460 

3.4 Variable Net Growth Rate and Velocity Field 461 

In this section, we apply Equations (3, 9) in the TFR of James River with spatiotemporally 462 

varying net growth rate and velocity field. Figure 6 shows the model domain that starts from 463 

Station TF5.2A. There are 5 long-term water quality stations from Chesapeake Bay Program 464 

(2016): TF5.2A, TF5.2, TF5.5, TF5.5A, and TF5.6 providing measurements for NO3, NH4, PO4, 465 

water temperature and light attenuation coefficient. Here, we interpolate the measurement data in 466 

time and space to estimate the phytoplankton net growth rate 0
netµ  in the TFR of James River and 467 

the detail of the calculation is attached in Appendix B. Formulations of water quality models 468 

(Cerco & Noel, 2004; Park et al., 1995) are used to computer 0
netµ  by integrating environmental 469 

factors. The simulation period is selected to be 1999-2005 when different hydrological conditions 470 

are included (Figure C1).  471 

Figure 7 shows the 0
netµ  from 1999 to 2005 at 4 water quality monitoring stations below 472 

TF5.2A at noon time when 0
netµ  is maximum during the daytime. On the other hand, the nighttime 473 

0
netµ  becomes negative (not shown) because photosynthesis is shut down, but phytoplankton 474 

metabolism and predation by higher trophic levels are not. 0
netµ  has a larger magnitude at Station 475 

TF5.3 than at other stations probably because of the better light condition in the upper James River 476 

around Station TF5.3, as indicated by the distribution of light attenuation in Figure B1. The 477 

variations of 0
netµ  at downstream Stations TF5.5, TF5.5A and TF5.6 share similar features due to 478 

the similar geomorphology at these stations where river channel is broad and shallow, which is 479 

different from TF5.3. Also, 0
netµ  presents strong seasonal variabilities. Normally, it has a spring 480 

peak and a fall peak, and has a trough in the winter. In the summer months, 0
netµ varies much 481 

depending on the environmental nutrient conditions at different locations.  482 
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Because velocity observation in this region is limited, we obtain velocity field from 483 

numerical model of SCHISM that was applied in the entire Chesapeake Bay (Ye et al., 2018; 484 

Zhang & Baptista, 2008; Zhang et al., 2016). The velocity is tidal-averaged over the river cross 485 

section resulting in a one-dimensional velocity filed ( ),u t x  in the TFR of James River. Based on 486 

Equations (4, 6), we further calculated the water age from 1999 to 2005 in the model domain 487 

starting from Station TF5.2A. Figure 8 shows the time series of water age at 4 downstream stations 488 

below TF5.2A. The water age increases as it goes downstream and has strong interannual 489 

variability that is generally larger in 1999, 2001, 2002, but smaller in 2003 and 2004. Similarly, 490 

based on Equations (7, 10), we calculated the accumulative growth and Figure 9 shows the results 491 

at the same 4 stations as in Figure 8. The accumulative growth represents the accumulated 492 

biological effect and the positive values mean that the phytoplankton biomass will increase as it 493 

moves downstream after leaving the boundary at TF5.2A. The accumulative growth has a smaller 494 

magnitude at station TF5.3, while it is larger at stations TF5.5, TF5.5A and TF5.6. All the 4 stations 495 

share similar interannual variabilities for accumulative growth with higher values from 1999 to 496 

2002 and smaller values in 2003 and 2004.  497 

 With the water age and accumulative growth known for the TFR of James River, we can 498 

evaluate the analytical solutions of Equations (3, 9) with the boundary condition of chlorophyll-a 499 

measured at TF5.2A. Figure 10 shows the results against observational data. Both solutions well 500 

reproduce the seasonal variability of chlorophyll-a that it is normally small in the winter and peaks 501 

during the summer months. Also, the interannual variability is well captured (e.g. higher 502 

chlorophyll-a concentrations in 1999-2002 and 2005, and smaller chlorophyll-a concentrations in 503 

2003 and 2004). However, the solution based on Equation (3) presents many chlorophyll-a peaks. 504 

Although these peaks generally correspond to the high chlorophyll-a data, they are much higher 505 

than the observations. The cause is related to the form of the Equation (1) of phytoplankton 506 

dynamics that allows phytoplankton to grow exponentially and unlimited as long as it has a 507 

positive net growth rate. With an nonlinear reaction term, the result from Equation (9) is more 508 

reasonable and the high chlorophyll-a peaks are depressed. Additionally, we notice that the 509 

difference between the two solutions only happens under high chlorophyll-a concentration when 510 

strong feedback effect is associated with Equation (9). Overall, the analytical model can well 511 

predict the downstream chlorophyll-a regarding the seasonal and interannual variations. The error 512 
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mainly results from the insufficient temporal and spatial resolutions of long-term monitoring data 513 

(Figure C1), and insufficient representation of the physical mixing by the nonlinear term.  514 

 515 

Figure 6. The TFR of James river with 5 long-term monitoring stations (triangles): TF5.2A, TF5.3, 516 

TF5.5, TF5.5A and TF5.6. The red line is our model axis starting from Station TF5.2A. 517 

 518 
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 519 

Figure 7. Phytoplankton net growth rates at noon time at 4 water quality monitoring stations.  520 

 521 

Figure 8. Time series of water age ( ),T t x  at 4 water quality monitoring stations in the upper 522 

James River from 1999 to 2005. The water age is defined as the elapsed time since a water parcel 523 

leaves TF5.2A.  524 
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 525 

Figure 9. Time series of accumulative growth ( ),G t x  at 4 water quality monitoring stations in 526 

the upper James River from 1999 to 2005. 527 

 528 
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 529 

Figure 10. Time series of chlorophyll-a from the analytical model at 4 stations in the upper James 530 

River. The modeled chlorophyll-a are compared with long-term monitoring data (circles) from 531 

Chesapeake Bay Program. The green lines are the results based on Equations (3), while the red 532 

lines are results with an nonlinear reaction term based on Equation (9) with 10.015 ( )k g Lµ −= − ⋅ .  533 

 534 

  535 
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4 Discussion  536 

4.1 Analysis on the Model Results  537 

Water age is the elapsed time after phytoplankton leaves its origin. It represents the time that 538 

allows phytoplankton to grow or decay during its transport from upstream to downstream. The 539 

accumulative growth is the accumulation of biological effects in time from upstream to 540 

downstream. It is a non-dimensional number that represents how phytoplankton biomass changes 541 

relatively to its original concentration at the starting points. If it is larger/smaller than zero, the 542 

biomass concentration will increase/decrease; while if it is zero, the biomass concentration will 543 

keep unchanged. The fact that the accumulative growth is determined by phytoplankton net growth 544 

rate and the time phytoplankton being transported is important for us to understand phytoplankton 545 

variation in time and space. For example, if a high phytoplankton concentration is observed at one 546 

particular location, it could be attributed to the accumulation of biological growth resulting in a 547 

large accumulative growth or the high phytoplankton concentration advected from upstream. 548 

Further, if the high phytoplankton centration is related to the large accumulative growth, it could 549 

be due to large net growth rate or long transit time (large water age). When transit time is fixed, 550 

larger net growth rate means that phytoplankton can grow faster resulting in higher phytoplankton 551 

concentration. In contrast, when net growth rate is fixed, longer transit time allows phytoplankton 552 

to grow for a longer time, which can also result in higher phytoplankton concentration. Therefore, 553 

physical and biological processes are tightly coupled in determining the phytoplankton 554 

concentration regarding its temporal variation and spatial distribution.  555 

In the analytical model, local sources like phytoplankton from benthic resuspension are not 556 

considered. It is assumed that all phytoplankton seeds originate from the upstream, which makes 557 

the boundary condition important as shown in the form of Equation (3). The variation of boundary 558 

phytoplankton concentration such as chlorophyll peaks influences the downstream phytoplankton 559 

concentrations. This can be seen by comparing the continuous monitoring chlorophyll data 560 

(marked in the box) in Figure 4b with the dataflow chlorophyll data (marked in the box) in Figure 561 

5a (note earlier date corresponds to further downstream location). However, this does not mean 562 

that boundary condition completely determines the downstream phytoplankton because physical 563 

transport and biological factors are also important. In the regions of long residence time, 564 
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phytoplankton have enough growth time to reach its maximum concentration that is ultimately 565 

limited by the local environmental resources regardless of the initial condition.   566 

For the solutions of phytoplankton concentration in Equations (3, 9), their expressions depend 567 

on the forms of water age and accumulative growth. In many cases, explicit expressions of the 568 

solutions maybe not possible if the velocity filed and phytoplankton net growth rate have 569 

complicated forms. For some simple cases, we can get the explicit expressions for phytoplankton 570 

concentration as shown in 2.3. In the simplest situation when velocity, net growth rate and 571 

boundary condition are all constant, the solution in Equation (3) is degenerated to the solution for 572 

a steady and uniform system that is discussed by Lucas et al. (2009). However, our solutions in 573 

Equations (3, 9) are more generic, which describes the evolvement of phytoplankton concentration 574 

in a variables system with time and space.  575 

The successful application of the analytical model in the TFR of James River proves the 576 

validity of the model in capturing the key elements in regulating phytoplankton growth. In James 577 

River, traditional numerical models or empirical models are capable of simulating the long-term 578 

variations of chlorophyll on seasonal or interannual timescales, and their results are usually 579 

evaluated against monthly observational data (Chesapeake Environmental Communications, 2015; 580 

Fitzpatrick et al., 2014; Shen et al., 2017). However, these models are lacking of the capability to 581 

reproduce chlorophyll results on fine scales. In this study, our analytical solution can be used to 582 

reproduce short-term variabilities of fine-resolution chlorophyll, and the results are compared with 583 

fine-resolution dataflow chlorophyll. For the long-term simulation (low-resolution), our modeled 584 

chlorophyll in Figure 10 has similar model skill compared to previous model. In Figure 3 and 585 

Figure 5, simplified solutions with constant net growth rates are used to predict downstream 586 

chlorophyll distribution under low and high flow conditions. Different rates lead to different results 587 

that could overestimate or underestimate the downstream chlorophyll concentration. For the two 588 

cases in our study, the net growth rate is about -0.03 day-1 (Figure 3a) under low flow condition, 589 

while it is about -0.2 day-1 (Figure 5c) under high flow condition. In addition, the results in Figure 590 

3b and Figure 5d with feedback mechanism match the results visually better than the ones in Figure 591 

3a and Figure 5c, although both solutions can reproduce the general distribution of downstream 592 

chlorophyll distribution. For the more general case, Figure 10 shows the results with variable 593 

velocity field and net growth rate. Although the boundary condition is based on the monthly 594 
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chlorophyll-a data at TF5.2A and the phytoplankton net growth rate is also inferred from the 595 

monthly water quality measurements only available at 5 stations, the predicted chlorophyll-a 596 

matches the observational chlorophyll-a well regarding the seasonal and interannual variations. 597 

For both model results and observational data, the chlorophyll-a is generally smaller in winter and 598 

higher in summer with oscillations. In addition, for all the 4 stations in Figure 10, 2003 and 2004 599 

are two exceptional years in that the chlorophyll-a concentrations are small compared to other 600 

years. Consistent with the results in Figure 3b and Figure 5d, the solution with feedback 601 

mechanism in Figure 10 performs better. The major improvement is that many chlorophyll-a peaks 602 

are depressed thanks to the nonlinear term in Equation (8).  603 

Mathematically, the nonlinear term 0 2
netk Cµ⋅ ⋅  has a similar effect as physical mixing in 604 

depressing the peaks when it has a negative value, which is illustrated in Figure 11. The nonlinear 605 

term reduces concentrations of the chlorophyll-a peaks, but keeps lower chlorophyll-a 606 

concentrations nearly unchanged. The difference for physical mixing is that it not only reduces the 607 

peak values, but also increases the chlorophyll-a concentration in the lower part at the same time. 608 

Because there are many uncertainties in estimating the net growth rate and velocity field, it is 609 

acceptable to approximate the physical mixing effect in our model using a nonlinear reaction term 610 

( )0 1net k C Cµ ⋅ + ⋅ ⋅ . This alternative form of phytoplankton growth term provides more flexibility 611 

to mimic physical mixing effect with the combination of 0
netµ  and k . Different from physical 612 

mixing, the sink term 0 2
net

k Cµ⋅ ⋅  can reduce phytoplankton concentration at non-peak regions, 613 

while physical mixing tends to enhance the concentration. To compensate this, we can adjust the 614 

0
netµ  to increase the phytoplankton concentration at non-peak regions. Though this method is not 615 

physically based, it provides a way to simulate mixing effect on phytoplankton distribution in our 616 

analytical model, and yields an analytical solution. In Equation (8), the effect of physical mixing 617 

is not separable from the biological effect from the negative feedback mechanism. However, when 618 

phytoplankton concentration is low when the feedback mechanism can be neglected (Barros et al., 619 

2003; Rice University, 2013), we can largely attribute the nonlinear effect to the physical mixing.  620 

Figure 10 shows the strong interannual variability of chlorophyll-a in TFR of James River. 621 

Besides the influence of boundary condition, the interannual variability of chlorophyll-a for the 4 622 

stations in Figure 10 is also attributed to the accumulation of biological processes. This is shown 623 
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by the accumulative growth in Figure 9 that shares a similar interannual variation as chlorophyll-624 

a in Figure 10. Because there is no strong interannual variation for phytoplankton net growth rate 625 

(Figure 7), the interannual variation of accumulative growth is in turn largely related to water age 626 

(Figure 8), which is controlled by river flow. The correlation between river flow and water age is 627 

shown in Figure 12. The correlation is most obvious at Station TF5.3 and goes down visually 628 

towards downstream. In 2003 and 2004, the river flow is relatively high with maximum flow rate 629 

over 1600 m3/s (Figure C1). The annual mean flow rates are 413.6 m3/s and 269.2 m3/s for 2003 630 

and 2004 respectively, while the annual mean flow rates from 1999 to 2002 are all below 140 m3/s. 631 

Therefore, the interannual variation of James River flow is responsible for the interannual variation 632 

of water age with an inverse relationship as high flow causes short transit time. Based on these 633 

analyses, the interannual variation of James River flow is one cause for the interannual variation 634 

of chlorophyll-a in the TFR of James River.  635 

 636 

 637 
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 638 

Figure 11. The evolvement of chlorophyll-a distribution with time, which has a Gaussian shape 639 

(solid line) at the beginning. The dash line represents the chlorophyll-a distribution with physical 640 

mixing after 5 days, while the dash-dotted line represents the chlorophyll-a distribution with 641 

nonlinear term after 5 days.  642 

 643 
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 644 

Figure 12. Water age versus James River flow rate at 4 stations in the TFR of James River.  645 

 646 

4.2 Local Chlorophyll-a Maximum in TFR 647 

LCM refers to the region in TFR with elevated chlorophyll-a concentration (Bukaveckas et 648 

al., 2011). It could be related to changes of river geomorphology or biological factors such as light 649 

condition (Bukaveckas et al., 2011; Pennock, 1985). The high primary production in this region 650 

can impact the food webs and local ecosystem (Cloern, 2006). Here, we study it by using our 651 

analytical solutions. By assuming that boundary condition, velocity field and net growth rate do 652 

not change with time, we can get the downstream chlorophyll-a distribution according to Equations 653 

(11, 12):  654 

 ( )
( )

( )0

x net
d

u
C x a e

µ η η
η=

∫
⋅ ,  

(24) 

where a  is the constant boundary condition. Since the necessary condition for chlorophyll-a to get 655 

maximum in space is 0
C

x

∂ =
∂

, Equation (24) leads to  656 
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 ( ) 0net mxµ = ,  (25) 

where mx  is the location for 0
C

x

∂ =
∂

. Note Equation (25) is a necessary condition for LCM instead 657 

of a sufficient condition. Mathematically, 0
C

x

∂ =
∂

means that chlorophyll-a reaches local maxima 658 

or local minima in space. While there may exist multiple local maxima, the chlorophyll-a 659 

maximum is only one of them with maximum value. Biologically, Equation (25) means that 660 

phytoplankton growth rate is balanced by its loss rate, and an equilibrium state is reached locally. 661 

Beyond the region ( mx x= ), the chlorophyll-a concentration will increase (or decrease) towards 662 

either side. For example, deviated from the location of LCM, when m mx x x x< > , the 663 

chlorophyll-a is always smaller than the maximum chlorophyll-a concentration at mx x=  as the 664 

net growth rate netµ  is larger/smaller than zero.  665 

Equation (25) means that the condition for LCM is only biologically controlled. Basically, 666 

this states that the maximum chlorophyll-a concentration in an aquatic system should be only 667 

limited by biological factors such as nutrient concentrations and light condition. It represents the 668 

capacity of the system for phytoplankton growth, which is not related to flow condition. On the 669 

other hand, the location of LCM can be influenced by physical factors, which is different from the 670 

condition of LCM. For example, if phytoplankton needs certain time to increase to its maximum 671 

concentration under a constant net growth, larger river flow will cause the maximum chlorophyll-672 

a concentration occurring further downstream as water parcel with larger velocity can travel further 673 

for a given period. In the case when river flow is too large, maximum concentration may never be 674 

reached before the water parcel is advected out of the system, which partially explains why 675 

chlorophyll-a remained low in 2003 and 2004 in the TFR of James River (Figure 10).  676 

If the expression of the net growth rate ( )net xµ  is known, we can find the location of LCM 677 

by simply analyzing ( )net xµ . However, in reality, ( )net xµ  is often unknown. In order to estimate 678 

the location of LCM (or the location of maximum chlorophyll-a concentration in the TFR system), 679 

we can use Equations (12) by assuming:  680 
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a. The river cross section has a shape ( )0 1A A xα= ⋅ + ⋅  in the longitudinal direction and 681 

the velocity is ( ) ( )0 1

Q
u x

A xα
=

⋅ + ⋅
, where A  is the river cross section area; 0A is the 682 

area at the boundary; Q  is a constant river flow rate; and α  is the coefficient to 683 

represent the longitudinal change of  river cross section that can be positive, zero, or 684 

negative.  685 

b. Boundary condition of chlorophyll-a concentration a  is constant. 686 

c. Phytoplankton net growth netµ  is constant before the location of LCM (beyond the 687 

LCM, it will become negative).  688 

d. The maximum chlorophyll-a concentration is mC , which is determined by biological 689 

factors related to the system capacity for phytoplankton growth. According to Equation 690 

(3), the corresponding accumulative growth at LCM is ln m
m

C
G

a

 =  
 

.  691 

Based on these assumptions and Equations (12), we can calculate the accumulative growth:  692 

 
( )

( ) ( )20 0

0 0

0

1
1 1 ,   0

2

,   =0

x x
net

net net

net

A Ad
d x

u Q Q
G

A
x

Q

α η µηµ µ η α α
η α

µ α

 ⋅ + ⋅ ⋅  ⋅ = ⋅ = + − ≠  = 
⋅



∫ ∫
.  (26) 

At the location of LCM, we have ( )m mG x G= , which leads to: 693 

 
( )1

1 2 1
,   0

,   =0
mx

αθ
αα

θ α

 + −= ≠


.  (27) 

where mx  is the location of LCM and 
0

m

net

G Q

A
θ

µ
= . Figure 13 shows the location of LCM predicted 694 

by Equation (27) with different α  values for different shapes of river cross-sections. When θ  695 

increases, the location of LCM increases (moving towards downstream). Also, it is interesting to 696 

notice that the line curves upward/downward when 0 0α α> < , while it is a straight line when 697 

0α = .  698 
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Equation (27) demonstrates that the location of LCM increases with river flow Q  when 699 

other factors remain unchanged, which is consistent with the analysis above. To verify this, we 700 

extracted the locations of LCM from dataflow data in the TFR of James River and associated them 701 

with James River flow rates averaged for the past week. It well reproduces the relation between 702 

river flow and location of LCM that location of LCM moves downstream as river flow increases 703 

(Figure 14). In addition, a theoretical fit with positive α  based on Equation (27) is shown in Figure 704 

14. It matches the observational data well regarding the general trend. The upward curve with 705 

positive α  is also consistent with the James River geomorphology in the TFR where river cross 706 

section generally increases from Station TF5.3 to Station TF5.5A (Figure 6). Despite of the 707 

simplicity of Equation (27), the good agreement between observation and theory suggests that our 708 

analytical model well represents the phytoplankton dynamics in the TFR of James River.   709 

 710 

4.3 Extension to Three Dimensional System 711 

In this work, the analytical model is only applied to one phytoplankton species in a one-712 

dimensional system in the TFR. The concept of integrating physical processes and biological 713 

processes in phytoplankton dynamics may work for multiple phytoplankton species in three 714 

dimensional system if there is no species interaction. This extension is valid in an advection-715 

dominant system (Cianelli et al., 2017), but may fails when physical mixing is too strong or too 716 

complicated.  Cianelli et al. (2017)Assuming the three dimensional velocity field ( )xtu
vv

,  and net 717 

growth rate ( ),net t xµ
v

 (or ( )0 ,net t xµ
v

 ) are known, the equation for the phytoplankton dynamics is:   718 

 VxCCu
t

C
net ∈⋅=∇⋅+

∂
∂ vv

      ,µ . (28) 

Similar to Equation (3), the solution is:  719 

 ( ) ( )( ) ( )xtG
exxtTtaxtC

vvvv ,
0,,, ⋅−= ,   (29) 

and water age ( )xtT
v

,  and accumulative growth are determined by following equations:  720 

 1=∇⋅+
∂
∂

Tu
t

T v
  , (30) 

 721 
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 netGu
t

G µ=∇⋅+
∂
∂ v

  , (31) 

 722 

 ( ) Ω∈= xxtT
vv

     ,0,   , (32) 

 723 

 ( ) Ω∈= xxtG
vv

     ,0,   , (33) 

 724 

where Ω  is the boundary on domain V ; ( )xta
v

,  is the boundary condition of phytoplankton 725 

concentration on Ω ; and 0x
r

 is the starting point on the boundary for water parcels. Note that the 726 

boundary Ω  here does not refer to the physical surface that embraces the volume V , but refers to 727 

the location from which the water flow starts. If the feedback mechanism is added as 728 

( )0= 1net net kCµ µ ⋅ + , the solution becomes: 729 

 ( ) ( )
( ) ( )G

G

exTtak

exTta
xtC

−⋅−⋅+
⋅−=

1,1

,
,

0

0
v

v

,   (34) 

with a modified accumulative growth as shown below: 730 

 0
netGu

t

G µ=∇⋅+
∂
∂ v

 . (35) 

 731 

 732 

 733 

 734 

 735 

 736 
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 737 

Figure 13.  Location of LCM predicted by Equation (27) with different values of α (km-1), where 738 

α represents the coefficient for longitudinal change of  river cross section. The y-axis is 739 

0

m

net

G Q

A
θ

µ
= , where mG  is accumulative growth; Q  is the river flow rate; and 0A  is the cross 740 

section area at the boundary.  741 

 742 



40 

 

 743 

Figure 14. Location of LCM versus James River flow rate. Dots represent the LCM extracted from 744 

dataflow observational data in the TFR of James River, while the line is a theoretical fit based on 745 

Equation (27) with 
0

150m

net

G

A µ
=

⋅
 s.m-2 and  0.2α =  km-1 . 746 

 747 

5 Summary  748 

The combination of physical processes and biological processes influences phytoplankton in 749 

time and space. In this work, they are mathematically summarized into velocity field and 750 

phytoplankton net growth rate respectively to construct an analytical model for phytoplankton 751 

dynamics in a one-dimensional system. We are able to get an analytical solution for the 752 

downstream phytoplankton concentration. In order to account for the nonlinear biological 753 

processes that affect phytoplankton variation, we also provide an alternative solution with 754 

nonlinear reaction term. The nonlinear reaction term can also be used to approximate physical 755 

mixing. The analytical solutions have two essential components: water age and accumulative 756 
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growth. Both components have clear physical meanings providing insights on how physical and 757 

biological factors regulate the phytoplankton spatiotemporal variations. The analytical solution not 758 

only predicts downstream phytoplankton concentration based on boundary condition, but also 759 

provides a tool for us to integrate different types of field phytoplankton observations. We applied 760 

the analytical model in the TFR of James under different dynamic conditions. The good agreement 761 

between model results and observations validates the theory. In addition, based on the analytical 762 

solution, an analysis is made to study the LCM in the TFR. It shows that the condition of LCM is 763 

biologically controlled, but its location is related to river flow and river geomorphology.  764 

In summary, the analytical model is useful in describing the phytoplankton dynamics in a one-765 

dimensional, advection-dominant system. It can be applied: 766 

a) to study the interaction between physical and biological factors on phytoplankton,  767 

b) to simulate downstream phytoplankton concentration in time and space, 768 

c) to analyze phytoplankton related phenomena such as LCM in estuary,  769 

       d)  and to approximate the nonlinear effects on phytoplankton growth.  770 
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Appendix A: Proof of Equation (9) as the solution to Equation (8) 771 

Substituting Equation (9) into Equation (8), we have: 772 
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1 1

        =
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G

net net

k a e

C k C LHSµ µ

 + ⋅ ⋅ − 

⋅ + ⋅ ⋅ =
  

(A1) 

Note that Equations (4, 10) are used in the above derivation.  773 

 774 

Appendix B: Calculation of Net Growth Rate in the TFR of James River 775 

 In this section, the phytoplankton net growth rate from 1999 to 2005 is estimated based on 776 

the water quality measurements from Chesapeake Bay Program (2016) and water quality model 777 

formulations from Park et al. (1995). First, the spatiotemporal variations of nutrients (NO3, NH4, 778 

PO4), temperature and light attenuation coefficient are estimated by linearly interpolating the 779 

measurement data onto time period [01/01/1999, 12/31/2005] and space range [0 km, 65 km] 780 

(Figure 6). The results are shown in Figure B1. In addition, the solar radiation from North 781 

American Regional Reanalysis (NARR) is used to estimate Photosynthetically Available 782 

Radiation (PAR) for phytoplankton growth (Figure). The daytime variation is calculated based on 783 

latitude and day number of year (Forsythe et al., 1995).   784 



43 

 

The information obtained above is then used to compute phytoplankton net growth rate 785 

following Park et al. (1995) and Chapra (1997). The net growth of phytoplankton is composed of 786 

its growth, basal metabolism and predation by higher trophic levels with the expression:  787 

 net G BM PRµ = − − .  (B1) 

where G  is growth rate (day-1), BM  is metabolism rate (day-1) and PR  is the predation rate (day-
788 

1).  789 

 The growth rate represents how phytoplankton grows in the environment of nutrients, light 790 

and temperature as below:  791 

 ( ) ( ) ( )maxG G f N f I f T= ⋅ ⋅ ⋅ .  (B2) 

 792 

 ( ) 3 4 4

3 4 4

min ,  
NO NH PO

f N
KHN NO NH KHP PO

 +
=   + + + 

.  (B3) 

 793 

 ( )
0

1
exp 1

H

m m

I I
f I dz

H I I

 
= − + ⋅ 

 
∫ .  (B4) 

 794 

 ( )0 expI I Ke Z= ⋅ − ⋅ .  (B5) 

 795 

 ( )
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( )

2
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1 ,  if  

2 ,  if  
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KTG T T T T

KTG T T T T

f T
e

e

− ⋅ − ≤

− ⋅ − >


= 



.  (B6) 

where maxG  is the maximum growth rate (day-1); ( ) ( ) ( ),  ,  f N f I f T    are the phytoplankton 796 

growth limitation factors for nutrients, light and temperature respectively; 3NO  is nitrate 797 

concentration (mg/L); 4NH  is ammonium concentration (mg/L); 4PO  is phosphate concentration 798 

(mg/L); KHN (mg/L) and KHP (mg/L) are the half saturation constants for nitrogen and 799 

phosphorus respectively; I is light intensity (Ly/day) and 0I  is the light intensity (Ly/day) at water 800 

surface; mI  is the optimal light intensity (Ly/day) for phytoplankton growth; Ke is light extinction 801 
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coefficient (m-1); H is water depth (m); Z is the vertical distance from water surface (m); T is 802 

water temperature (oC) and optT  is the optimal temperature for phytoplankton growth (oC); 1KTG803 

(oC-2) and 2KTG (oC-2) are the temperature dependence coefficients for phytoplankton growth 804 

when temperature is blow and above optT  respectively.  805 

 The metabolism rate and predation rate are both modulated by temperature as below:  806 

 ( )0 expBM BM KT T TR = ⋅ ⋅ −  .  (A7) 

 807 

 ( )0 expPR PR KT T TR = ⋅ ⋅ −  .  (A8) 

where 0BM (day-1) and 0PR (day-1) are the reference metabolism rate and predation rate at 808 

reference temperature TR (oC) respectively; KT is the temperature dependence coefficient (oC-1).  809 

 Based on Equations (B1-A8), we computed phytoplankton net growth rate netµ that varies 810 

from 1999 to 2005 in our model domain (Figure 6) with parameter values in Table B1 referenced 811 

to Park et al. (1995).  812 

 813 

 814 

Figure B1. The interpolated NO3, NH4, PO4, water temperature, and light attenuation coefficient 815 

based on monthly observational data that are shown in dots. The lower right panel is daily mean 816 
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Photosynthetically Available Radiation in unit of Langley/day extracted from North American 817 

Regional Reanalysis database.  818 

 819 

 Table B1. Parameter values used to calculate phytoplankton net growth rate 820 

maxG =3.0 day-1 KHN =0.01 mg/L KHP =0.001 mg/L mI = 40 Ly/day 

1KTG =0.001 oC-1 2KTG =0.001 oC-1 optT =25 oC 0BM =0.04 day-1 

0PR =0.01 day-1 KT = 0.069 oC-1 TR =20 oC  

 821 

 822 

Appendix C: Flow Rate of James River  823 

 824 

Figure C1. James River flow rate from 1999 to 2005. The number on the figure for each year is 825 

annual mean river flow rates. River flow data is from U.S. Geological Survey Data (2018).  826 

 827 

 828 

 829 
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