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Abstract

This study constructs an analytical model to understand the phytoplankton dynamics in a one-
dimensional system by integrating the physical and biological processes. We present an analytical
solution of phytoplankton distribution along the longitudinal direction of a tidal river. The solution
has two components: water age and accumulative growth. The water age represents the overall
effect of physical transport due to advection, while the accumulative growth represents the
accumulation of phytoplankton biomass due to biological processes during the transport. In
addition, an alternative solution with nonlinear reaction term is given to account for the feedback
mechanism of nonlinear processes that affect phytoplankton growth rate. The nonlinear reaction
term can be also used to approximate the effect of physical mixing on phytoplankton distribution.
The analytical solutions can be further used to predict the temporal variation and spatial
distribution of phytoplankton along the tidal river. They also serve as a mathematical tool to unite
different field phytoplankton observations. We applied the model in the Tidal Freshwater Region
(TFR) of James River under different dynamic conditions and the model results match well with
the observations, which validates the theory on different time scales. Furthermore, an analysis is
conducted for the Local Chlorophyll-a Maximum (LCM) in the TFR. It shows that the condition
for LCM is biologically controlled, but its location is regulated by river flow and river

geomorphology.
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1 Introduction

TFR is a part of an estuary that is under heavy influence of tide and river flow, but beyond the
influence of saline water. Due to the strong mixing, it is usually a well-mixed system (Cloern,
1987; Wood et al., 2013). Watershed runoff brings nutrients into TFR resulting in high nutrient
concentration conditions that can support high primary production (Carroll et al., 2013; Heisler et
al., 2008). Therefore, phytoplankton blooms are often observed in TFR (Filardo & Dunstan, 1985;
James et al., 1992; Muylaert et al., 2005), which could pose threat to the ecosystem (Anderson et
al., 2012; Bukaveckas et al., 2011; Cloern, 1996). Phytoplankton growth in TFR is related to many
factors, including nutrients, light, temperature and grazing (Cloern, 1987; Dugdale et al., 2016;
James et al., 1992; Marshall & Affronti, 1992; Qin & Shen, 2017; Sellner et al., 1988). Besides,
the river flow plays an important role in the phytoplankton dynamics in TFR by influencing the
residence time and spatial distribution of phytoplankton (Borsuk et al., 2004; Bukaveckas et al.,
2011; Lucas et al., 2009). The interaction between the physical and biological controls on
phytoplankton dynamics is the key for us to interpret the ecosystem features in TFR such as the
chlorophyll maximum (Bukaveckas et al., 2011). In estuaries, physical transport and
phytoplankton growth are both well studied (Glibert et al., 2001; Hong & Shen, 2013; Ralston et
al., 2015; Shen & Lin, 2006), and these studies provide insights to the coupling between these two
elements in TFR. However, if we only focus on the biological behaviors of phytoplankton, we lose
the overall picture of its spatial distribution and connections between upstream and downstream.
On the other hand, if we only study the physical transport, it is insufficient to understand the
complex biological response of phytoplankton to environmental factors. The goal of this work is
to integrate the physical and biological processes to understand the phytoplankton dynamics in
TFR.

For physical transport process, timescale is a useful tool to represent its bulk effect on the
ecosystem (Deleersnijder et al., 2001; Shen et al., 2013). The comparison between the timescale
of physical transport and the timescale of biological processes depicts their relative importance in
regulating the ecosystem. Using transit time and the timescale of algal growth, Lucas et al. (2009)
studied the relationship between phytoplankton biomass and transport time in different estuaries.
Based on the timescales of gravitational circulation, vertical exchange and total oxygen

consumption, Shen et al. (2013) and Du and Shen (2015) studied the dissolved oxygen distribution
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in Chesapeake Bay. To understand the complex water flows, Deleersnijder et al. (2001) introduced
the concept of water age to diagnose the underlying physical processes using timescales. The water
age is the time elapsed since the water parcel left the considered region. The water age is a function
of time and location and it represents the history of the water parcel by relating it to its original
location where the age is set to zero. This concept provides a robust tool for us to interpret the
hydrodynamic process in an aquatic system, as it not only relates the information of water parcels
in different places (Shen & Lin, 2006) but also shows the accumulating effect of flow history. In
this study, we integrate water age into the phytoplankton dynamics to analyze the effect of physical
transport on spatial and temporal variations of phytoplankton.

To describe the phytoplankton behaviors in a waterbody, various biological processes are often
characterized by different rates such as growth rate, respiration rate, grazing rate, etc. (Boynton et
al., 1982; Cerco & Noel, 2004; Liu et al., 2018; Morse et al., 2013; Park et al., 1995). These rates
represent the rates of different processes in changing the phytoplankton biomass and each is
inherited with a timescale in an inverse relationship. Normally, high rate implies a short timescale
and a large influence on the phytoplankton. To study the mass balance of phytoplankton biomass,
different rates can be lumped into two terms (Lucas et al., 2009): growth rate that summaries all
the rates of increasing phytoplankton biomass such as the photosynthesis rate and phagocytic rate
for mixotrophic species (Flynn & Mitra, 2009), and loss rate that summaries all the rates of
decreasing phytoplankton biomass such as respiration rate and grazing rate. By comparing growth
rate and loss rate, we can know whether phytoplankton biomass will increase or not with time. In
addition, these two rates reveal the changing rate of phytoplankton concentration in an aquatic
system relative to the physical transport. Phytoplankton net growth rate can be further defined as
the growth rate subtracted by the loss rate (Lucas et al., 2009). Moreover, growth and loss rates
can both vary with time and space because of the responses of phytoplankton to varying
environmental conditions, which substantially increases the difficulty in studying phytoplankton
dynamics.

Because growth and loss rates may change in different location, essentially, their effects on
phytoplankton are locally defined focusing on the phytoplankton biological behaviors in individual
places (Anderson et al., 2008). These rates are not able to provide the bulk effect on phytoplankton
that accumulated in time and space. In addition, they cannot give the information about the relation

between phytoplankton in different places even the water parcels of phytoplankton are physically
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related. In order to integrate the biological rates with physical transport, Lucas et al. (2009)
developed a conceptual phytoplankton model for a one-dimensional, uniform and steady state
system. This model considers the phytoplankton concentrations that go in and out a system by
comparing the physical and biological timescales. Basically, it shows that phytoplankton
concentration increases/decreases through time during physical transit, when growth rate is
larger/smaller than loss rate. Phytoplankton is regarded as passive tracers conveyed by the water
parcel. In the system, phytoplankton grows or decays with time depending on the sign of the net
growth rate. In the meantime, water parcel flow through the system, e.g., from the head to the end
of an estuary. From a Lagrangian point of view, time and space are tightly coupled for the
phytoplankton in a particular water parcel. Therefore, when phytoplankton are transported in a
certain distance, the phytoplankton also spends a certain time for their biological changes.
Generally, field measurements for phytoplankton concentrations can be divided into two
categories: the first category focuses on the time series at a fixed location lacking enough spatial
resolution and the second category focuses on the spatial variation at a specific time lacking
enough temporal resolution (Chesapeake Bay Program, 2016). It is not practical to obtain
phytoplankton measurements with both high temporal and spatial resolutions. To fill the data gap,
efforts have been made to integrate different kinds of observations to understand the physical and
biological controls on phytoplankton dynamics (Cianelli et al., 2017; Qin & Shen, 2017). Models
(either analytical or numerical) are also used to estimate the phytoplankton concentration at the
vacancy of measurements. Lucas’s phytoplankton model is sufficient to describe a simple steady
water system (Lucas et al., 2009). However, it may fail to capture the phytoplankton variations in
a varying system. In this work, we present a more generic analytical phytoplankton model that can
analyze the phytoplankton variation when biological rates and physical transit time are both
changing with time and space. Mathematically, it is composed of two components: one responsible
for the physical transport (water age) and the other responsible for the accumulation of biological
effects. This model provides a tool to unite different kinds of phytoplankton measurements
regarding its spatiotemporal variations. It has the potential of predicting one from the other if only
one kind of measurement is available. Thus, it can also be used to check the consistence between
them. Different from numerical models, what we derived in this study is an analytical solution to
the equation of phytoplankton dynamics, which can be used in many areas including: 1) predicting

phytoplankton variation in time and space, 2) integrating the biological and physical factors that
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affect phytoplankton variations, 3) building a relation between temporal variation and spatial
variation of phytoplankton, and 4) theoretically analyzing phytoplankton phenomenon. In this
work, we apply this new model in the TFR of James River located in the lower Chesapeake Bay

to predict the temporal and spatial phytoplankton variations.

2  Method

To simulate chlorophyll spatiotemporal variations in estuaries, numerical modeling is the most
popular method by coupling a biological model of phytoplankton growth with a hydrodynamics
model (Cerco, 2013; Liu et al., 2018; Park et al., 1995; Shen et al., 2017). In addition, empirical
models are also often used by statistically linking the phytoplankton variations with environmental
factors (Chesapeake Environmental Communications, 2015; Fitzpatrick et al., 2014; Shen et al.,
2016a). These methods are usually focused on the long-term variabilities of chlorophyll compared
with monthly or semi-monthly observations (Cerco & Noel, 2004; Chesapeake Bay Program,
2016). In this study, we adopt a new approach by directly deriving the analytical solution to the
equations of phytoplankton dynamics. Then, evaluation of the solution can reproduce downstream

chlorophyll variations.

2.1 Phytoplankton Dynamics without diffusivity

Many TFRs can be described by a one-dimensional system that is homogenous in the cross
section. The river flow generally varies longitudinally with time. If the diffusivity effect can be
neglected, water parcels are simply advected from upstream to downstream (Lucas et al., 2009;
Shen et al., 1999). For these types of water system, the phytoplankton dynamics can be expressed

in the following equation along with a boundary condition:

_+u_§=('ugrowth _Iuloss)mz'uw [, for XD[O’ L] (D)

C(t, x=0)=a(t), 2)
where C (t, X) (mg/L) is phytoplankton biomass which can also be represented by chlorophyll
concentration in the unit of ug[Chl]/L; 7 is time; x is the downstream distance from the river head;

u(t, x) (m/s) is velocity; u and g, are phytoplankton growth and loss rate respectively;

growth
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M., (t, x) is the net growth rate and L is the length of TFR. In addition, a(l‘) is the boundary

condition for phytoplankton concentration located at the river head and it varies with time. Note
both u (t , x) and U, (t , X) are varying with time and space. %—(; represents the local changing rate
of phytoplankton biomass, which is controlled by two processes. First, phytoplankton is
transported by the river flow with a velocity u. Second, phytoplankton concentration is changing
along the transport at the rate of g , . Here, phytoplankton in the system [0, L] is assumed to

originate from the upstream at x =0 and there is no local sources such as benthic resuspension
(Kemp & Boynton, 1992).

The solution to Equations (1-2) is
C(t,x)=a(t-T)@° ,for x0[0, L] 3)

where T (t, x) and G (t, x) are implicitly expressed by the equations below:

LANLLEY )

ot Ox
%=y, ®)
ot Ox

T(r,x=0)=0 (6)
G(t,x=0)=0. (7

Here, the analytical solution Equation (3) contains two terms (7' and G ) that can be obtained by

solving Equations (4-7) once velocity filed u(,x)and net growth rate 4, (¢,x) are given. By

comparing Equation (4) with the water age equations in (Deleersnijder et al., 2001; Shen & Lin,
2006), we can find that 7" is water age in a one-dimensional system when diffusivity is neglected.
It has a unit of time that represents the time elapsed since the water parcel leaves the river head at
x=0. On the other hand, G is a non-dimensional number and it represents the accumulative

effect of net growth rate during the elapsed time 7. If G is larger/smaller than zero,
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phytoplankton concentration will increase/decrease. If G 1is zero, phytoplankton concentration
will remain the same. Hereafter, we will call G as accumulative growth.

The combination of 7 and G disentangles the physical and biological effects in Equation

(1) resulting in an elegant expression of phytoplankton concentration in time and space as in

Equation (3). Equation (3) is the product of two parts: a(r-7) and e“, both of which have clear
physical meanings. a(r+-7) relates the phytoplankton concentration at (t,x) to the boundary

phytoplankton concentration at a previous time with a time lag of 7'. Essentially, it states that the

water parcel at (t,x) is originated from the upstream boundary (x =0) at time of (r—T7). The
phytoplankton concentration a(t -T ) serves as the initial phytoplankton concentration for the
water parcel at (t,x) when it leaves the boundary and travels to the location x. The second part
e’ tells whether phytoplankton concentration will increase or decrease when phytoplankton
reaches its current location at (t, x). It is obtained by integrating the biological effect x4 , during

the time period from (r —7) to f when phytoplankton is transported downstream. It can be seen

from Equation (5) that the accumulative effect depends not only on net growth rate but also on the

physical transport. The interpretation of solution actually follows the movement of water parcel

from Lagrangian point of view, which becomes more natural if transformation o +ua—1$
t t X

made on the above equations from Eulerian coordinate to Lagrangian coordinate (e.g. Equation 5

is transformed to C;—G =4, ).
t

2.2 Solution with Nonlinear Reaction Term

In Equation (1), we summarize all the biological effects into a single term namely net

growth rate g . This simplification facilitates our analysis on the coupling between physical and

biological processes. It assumes that all the information about the phytoplankton growth and loss

can be sufficiently resolved by 4 . However, in reality it is always difficult to estimate an accurate
u,,, because the acquisition of physical and biological information in time and space is demanding.

In addition, there exists nonlinear processes that impact phytoplankton concentration. For
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example, zooplankton grazing rate may relate to zooplankton concentration which in turn relates
to phytoplankton concentration (Filardo & Dunstan, 1985; Wang & Y.Kuo, 2009). In some cases,
phytoplankton self-shading effect can reduce its growth rate under high phytoplankton
concentration (Barros et al., 2003). Also, interaction among phytoplankton species may be
important under high phytoplankton concentration (Lim et al., 2014). All these factors are difficult

to be quantified by the single net growth term. To partially include these effects in the model, we

add a feedback mechanism into the y

net

in the form of g, = 1 [{1+k [C) where £, (1,x) is the

initial estimate of net growth rate and k is a constant used to modify /), depending on

phytoplankton concentration C . The modified net growth rate g  decreases with C if k is

negative/positive and £ is larger/smaller than zero. With this new form, Equation (1) becomes

a partial differential equation with a nonlinear term:
_+u6_:ﬂ'?” [{1+k )T , for xD[O, L]. (8)
X

The form of Equation (8) is similar to the logistic model that is widely used in biology to describe
the population growth of many different kinds of lives on earth such as bacteria (Rice University,
2013). Here, we focus on the feedback mechanism that phytoplankton concentration can affect the
net growth rate, especially under high concentration.

On the other hand, the nonlinear term k [, [C* in Equation (8) plays a similar role as

physical mixing in smoothing the spatial gradient of phytoplankton concentration when it has a

negative value. The negative nonlinear term means larger attenuation for higher phytoplankton

concentrations (large values of (), but smaller attenuation for lower phytoplankton

concentrations (small values of C ). Along with time, the peaks of phytoplankton concentrations

in space will be depressed. It resembles the function of physical mixing that can be important in

estuaries (MacCready & Geyer, 2010). This similarity will be further illustrated in Section 4.1.
Although Equation (8) is a nonlinear equation, an analytical solution can still be obtained

as:

_a(t-1)e°

1k (-1)if1-ef)

C(t,x) , for XD[O, L] , (9)

with Equation (5) slightly modified as:
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(10)

where T remains the same as in Equation (3). Appendix A shows the proof that Equation (9) is

the solution to Equation (8).

2.3 Simple Cases

The exact expressions of the analytical solution Equations (3, 9) depend on the Equations
(4-7, 10) given boundary condition, velocity field and net growth rate. In other words, the explicit
forms of Equations (3, 9) depend on whether the explicit expressions of 7 and G are possible. In
many cases, explicit forms of the solutions may not be possible if velocity and net growth rate

have complicated forms. However, when simplifications are made, we can get explicit solutions.

2.3.1 Spatially Varying Net Growth Rate and Velocity Field

When velocity field and net growth rate do not change with time, they can be expressed as

u (x) and u (x) or 4, (x) . By solving Equations (4-7), we can obtain the form of Equation (3)

as:
v d
T(X)ZIOM(Z)' (11)
G(l,x)ZJ.;Mdﬂ. (12)

With an nonlinear reaction term, we can obtain the expression of Equation (9) with the same T as

in Equation (11) and
0
G([’x):JO’U”L(”)d”' (13)
2.3.2  Constant Net Growth Rate and Spatially Varying Velocity Field

Based on 2.3.1, if net growth rate is further regarded as constant, Equations (3, 9) become:

C(t,x)=a(t-T)@H". (14)
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( T @ﬂget
C (t , X (15)

1+k Bz [él pthe )
228  where T'is the same as in Equation (11).
229 2.3.3 Constant Boundary Condition, Net Growth Rate and Velocity Field
230 In the simplest case when boundary condition, net growth rate and velocity field do not
231 change with time and space, the solution in Equation (3) is degenerated to:

net ﬁ
C(x)=a™ . (16)

232 where a, u  and uare all constant. Equation (16) is the phytoplankton model presented by Lucas

net

233 et al. (2009). This means that the phytoplankton model in (Lucas et al., 2009) is a special case of

234 our generic model, which provides a validity for our theory about phytoplankton dynamics.

235 If there is nonlinear reaction term, Equation (9) becomes:
net d
c (x) _ a @ﬂo u
= (17)
I+klalll-e U
236

237 2.4 Phytoplankton Prediction in The Downstream

238 As shown in Equations (3, 9), the phytoplankton concentration in the downstream only
239  depends on the boundary condition once water age and accumulative growth are known, which
240 means that we can use phytoplankton concentration measured at the boundary to predict
241  downstream phytoplankton concentration in time and space.

242 Based on Equations (3, 9), if we fix at a downstream location x = x,, we can estimate the

243 temporal variation of local phytoplankton concentration:
C(t.x,)=a(t-1(t.x,)) ) (18)

244

10
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a(r-7(t.x,)) )
1+ ke (r=7(1.x,)) [él —eG(”XO))

C(t.x,)= (19)

If we fix at a particular time r=¢,, we can estimate the spatial distribution of phytoplankton

0°

concentration:

C (1. x) = a(t, =T (1, x)) @) (20)

—1+k BI(IO—T(tO,x)) [él—eG(to’x)) (21)

On the other hand, if the spatial distribution of phytoplankton concentration at time ¢ = ¢,

is known, we can estimate the temporal variation of phytoplankton concentration at the boundary

based on Equation (20, 21) as below:

C(f,x — 0) — b(T_l (to _ f)) @—G(IO,T-I(to—f)) (22)
b(T™ (1, =€)

[1+kDB (17 (1, - €)) @ -k (T (1, ¢))

where fD[to —T(to,L), toj, T ({) is the inverse function of T(to,x), and b(x) forxD[O, L]

is phytoplankton concentration in space at time ¢ =¢,.

11
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3 Results

TFR in many estuaries shares common features in hydrology, geomorphology and water
chemistry (Bukaveckas et al., 2011). It often has a regular shape in the longitudinal direction and
a constricted cross section under strong fluvial influence, resulting in a transit time changing with
river inflow. In addition, the water is usually in abundance of nutrients and suspended particulate
matters (Wood et al., 2013) . These characterize the interaction between the hydrodynamics and
phytoplankton dynamics in TFR as different from other regions in estuaries. Particularly, physical
transport may play an important role in regulating phytoplankton distribution (Filardo & Dunstan,
1985; Sellner et al., 1988; Sze, 1981). In this section, we will apply our theory in the TFR of James

River by integrating all kinds of available observations.

3.1 Observation in James River TFR

James River is located in the lower Chesapeake Bay. It is about 170 km in length from its
fall line to the river mouth (Shen & Lin, 2006). The river inflow can vary from 10 m%/s to over
8000 m?/s with an average river discharge of about 200 m?/s (Fang et al., 1973; U.S. Geological
Survey Data, 2018). The James River is characterized by complex hydrodynamics (Shen et al.,
1999) and high chlorophyll concentration is often observed (Wood et al., 2013). The tidal influence
can propagate up to the Richmod, VA. Generally, the tidal range in the upper James River is about
one meter (Shen et al., 2016b), and the tidal current has an amplitude varying from 0.25 m/s to 0.5
m/s. The subtidal current in the upper narrow, deep channels is more influenced by the river flow
with speed varying from 0.0 m/s to 3 m/s, while the current speed becomes much smaller in the
lower broad expansion. Filardo and Dunstan (1985) conducted a field experiment in the upper
James River and found that there is an inverse relationship between river discharge and chlorophyll
concentration. Bukaveckas et al. (2011) reported a local chlorophyll-a maximum recurring each
summer in the downstream of the confluence of tidal James River and Appomattox River. They
pointed out that the chlorophyll-a maximum coincides with low salinity and high turbidity zone,
and the location is related to the river geomorphology.

In the TFR of James River, three types of phytoplankton measurements are available on

http://web2.vims.edu/vecos/. The first one is continuous monitoring data at fixed stations that

12
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report chlorophyll concentrations every 15 minutes, but there are only a few such stations in James
River. The second one is dataflow cruise data showing chlorophyll distribution over a large portion
of the river at discrete dates. They have good spatial coverage, but lack temporal resolution. The
third one is long-term monthly water quality monitoring data at fixed stations, available from 1985
to the present. The first two types of data are measured as chlorophyll fluorescence, which is
different from the chlorophyll-a data of the third type. In the following Section 3.2 and 3.3, we are
trying to predict spatial variations in dataflow based on the continuous monitoring data at fixed
station. For the comparison, we do not convert chlorophyll fluorescence into chlorophyll-a
concentration. Instead, the chlorophyll values at the same location and time are checked to ensure
the consistence between the two types of chlorophyll data. In addition, correlation coefficient

(CC), and model skill are used to evaluate the comparison between model and observation. The

S —\2
model skill is defined by SS=1-(model, —obs,)’/¥"(jmodel, - obs, | +obs, ~obs, )

(Willmott, 1981), where model, and obs, are time series of modeled and observed chlorophyll,

and overbar denotes average.

3.2 Constant Net Growth Rate under Low Flow Condition

Under low flow conditions when river discharge does not vary considerably, the velocity
can be regarded as constant over time. If the net growth rate is also assumed to be constant, the
solutions in Equations (14, 15) can be used to estimate downstream phytoplankton concentration
based on the boundary condition of phytoplankton concentration.

In the upper James River, chlorophyll concentration in unit of pug/L (as a proxy of
phytoplankton concentration) is reported every 15 minutes at continuous monitoring Station
JMS073.37 (Figure 1a). This serves as the boundary condition of phytoplankton concentration for
our model configuration under the assumption that every water parcel passes this station before
travelling downstream. The model axis (red line in Figure 1a) starts from JMS073.37 (x =0) and
goes downstream along the river channel. Figure 1b shows the time series of chlorophyll
measurements at JMS073.37 for the period 06/01/2008-08/15/2008. Chlorophyll concentration

from dataflow data is also available on 08/13/2008 which provides a snapshot of downstream

13
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chlorophyll distribution. The dataflow date are interpolated along the model axis and the result
serves as observation data for model comparison.

The river discharge in James River (U.S. Geological Survey Data, 2018) had a small
variation during the two months prior to 08/13/2008 when dataflow data of chlorophyll is
measured. The average was 37 m?/s with a standard deviation about 16 m?*/s. For simplicity, the
river discharge is regarded as constant with 37 m%/s, which implies that the velocity field does not

change with time. Based on the continuity equation that river discharge (m’/s) equals water
velocity (m/s) multiplied by river cross sectional area (m?), we can estimate the velocity filed u (x)

along the river. Note that the effect of tidal excursion is neglected in the calculation as we focus
on the long-term chlorophyll variation here and the residual velocity sufficiently serves the
purpose. The estimated velocity field along with the river cross sectional area are shown in Figure
2 based on the 10-meter resolution bathymetry data from Federal Emergency Management Agency
(2010).

Given the phytoplankton boundary condition at JMS073.37 and velocity field, Equation
(14) can be implemented in the TFR of James River. By using constant net growth rates,
downstream phytoplankton can be estimated in unit of pg[Chl]/L. These net growth rates are based
on Qin and Shen (2017), but are modified to best estimate downstream chlorophyll concentration.
Figure 3a is based on Equation (14) using net growth rates of -0.028 day'. The modeled
chlorophyll generally matches the observation. The decreasing trend of chlorophyll from upstream
to downstream is well reproduced. However, there are three chlorophyll peaks that largely deviate
from the observation occurring at locations: around 5 km, 10 km and 12 km. These spatial peaks
are resulting from the temporal oscillations of boundary chlorophyll concentration at times:
around August 5, July 25" and July 20% (Figure 1b). Because physical mixing is not included in
Equation (14), these boundary oscillations are advected to the downstream as chlorophyll peaks in
space. The missing of these peaks in observational data shows that physical mixing is also
important in the TFR of James River as shown by Li et al. (2004). Additionally, if we applied a
small trial net growth rate of -0.01 day™! in the model, it over-predicts the chlorophyll distribution
(Figure 3a) and the result merely represents the advection the boundary condition toward the
downstream. If we applied a larger value -0.05 day!, the chlorophyll concentration in the
downstream is overly attenuated except the large peaks. Overall, the mean net growth rate for

phytoplankton in July-August, 2008 is about -0.03 day™! and this magnitude is consistent with the
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results in Qin and Shen (2017). The negative value suggests that a chlorophyll maximum may be
located in the upstream of Station JMS073.37 as shown in Figure 1a. Also, we noticed that the two

different chlorophyll observations (dataflow data and continuous monitoring data) used for
comparison are consistent regarding the chlorophyll concentration at (t=()8/ 13/2008, xZO)
which is around 25 pg/L (Figure 3).

Figure 3b shows chlorophyll estimates with nonlinear term. The results are based on

Equation (15) with two sets of parameters: (4, =-0.015 day™,k=0.05ug”’ ) and

(., =-0.0075 day ™',k =0.2 pg™' (). Compared to the results in Figure 3a, the model skill in
chlorophyll is improved as the estimates match observation better visually with less chlorophyll
oscillation and depressed peaks along the river. This is attributed to the negative nonlinear term
contained in Equation (8) that larger decay rate is associated with higher chlorophyll concentration.
Given that chlorophyll concentration varies around [20, 60] pg/L, the apparent net growth rate
U, = 1o, ({1 + k [C) varies about [-0.06, -0.03] day! and [-0.0975, -0.0375] day™ for the two

different sets of parameters respectively. Therefore, a large k in Equation (8) means that the net

growth rate has a large variation by relating to phytoplankton concentration.
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Figure 1. Chlorophyll in the TFR of James River. The triangle in (a) refers to the location of
continuous monitoring Station JMS073.37 and chlorophyll time series from 06/01/2008 to
08/15/2008 1s shown in (b) with moving average in blue line using 12-hour window. The color
lines in (a) represent chlorophyll distribution from dataflow measurement on 08/13/2008 in the

upper James River. The red line in (a) shows model axis starting from Station JMS073.37.
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constant river discharge 37 m¥/s is assumed for the calculation under low flow condition.
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Figure 3. Chlorophyll estimates on 08/13/2008 with constant net growth rates under low flow
condition. The x-axis starts from Station JMS073.37 along the river. The upper panel shows model
result with net growth rate -0.028 day!' that is chosen because it best predict downstream
chlorophyll variation. Two other modeling results with a smaller net negative growth rate -0.01
day™! (dotted line) and a larger negative net growth rate -0.05 day-1 (dashed line) are shown for

comparison. The lower panel shows model results with two sets of trial parameters:
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(4, =-0.015day™ , k =0.05 pg" (L) and (1, ==0.0075 day ™',k =0.2 pg™' [L) based on based

on Equation (15). The chlorophyll observation (black line) is interpolated from dataflow data on
08/13/2008 as shown in Figure 1 .

3.3 Constant Net Growth Rate Under High Flow Condition

To test whether Equation (14, 15) can still work under high flow condition, we choose a
period 07/01/2006-07/06/2006 during which the river discharge changed from below 200 m%/s to
over 2000 m%/s. The mean river discharge was about 435 m>/s with a standard deviation of about
452 m’/s. In order to apply Equation (14, 15) in the TFR of James River, the flow rate is still
regarded as a constant of 435 m3/s although it is highly variable. Similar to Figure 2, the velocity
field along the river channel is calculated (not shown) in an inverse relationship to the river cross-
sectional area. In addition, chlorophyll dataflow data is available on 07/06/2006 as shown in Figure
4a. Because of the large river flow, the retention time of water parcel in our computation domain
is short (less than one week), which means that downstream chlorophyll distribution on 07/06/2006
is only related to boundary condition in the prior week. Figure 4b shows the chlorophyll time
series from continuous monitoring data at Station JMS073.37, which serve as the chlorophyll
boundary condition at x =0.

Similar to Figure 3, Figure 5a-b show model results based on Equation (14, 15). Figure 5a

is obtained with constant net growth rate of -0.4 day!. Most of the chlorophyll estimate is
overestimated especially during the range xD[O, 10] km. Figure 5b is obtained with the net
growth rates modified to approximate biological feedback mechanism or physical mixing; and
two sets of parameters are used: (4, =—0.3day”,k=0.05 ug" (L) and (4, =-0.15 day™",
k =0.2 pg' (). Compared to Figure 5a, the chlorophyll estimates in Figure 5b are improved as
the estimates are closer the observation visually between xD[lO, 25] km and the chlorophyll
oscillations inherited from the continuous monitoring data are largely depressed. However, the
modeled chlorophyll in xD[O, 10] is still much higher than the observation. One cause for the

overestimation is the mismatch of chlorophyll measurements between continuous monitoring data
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and dataflow data as indicated by the chlorophyll concentrations at (t =07/06/2006, x = O) where

the values are around 18 pg/L and 10 pg/L respectively (Figure 5b). The reason for the mismatch
is likely because the continuous monitoring Station JMS073.37 is located nearshore, while the
passage of dataflow cruise is along the river channel.

In order to reduce the mismatch between different chlorophyll measurements, the
continuous monitoring chlorophyll during 07/01/2006-07/06/2006 is scaled by multiplying a factor
of 0.55 to be new boundary condition (indicated in Figure 5c). This ensures that two types of data
are consistent. The resulting chlorophyll estimates based on Equation (14, 15) are shown in Figure
Sc-d. Overall, the results are further improved with respect to Figure 5a-b. In Figure 5c, the
chlorophyll estimate is for a constant net growth rate of 4, =—0.2 day”', which represents the

average net growth rate in the downstream. Figure 5d shows the results for net growth rates with

nonlinear reaction term with two sets of parameters: (4, =—0.2 day™', k=0.05 pg' L) and

w, =-0.1 day™',k =0.2 pg” [L). If the modified chlorophyll at the boundary is around [10,20]

pg/L (multiplying the observational values in Figure 4b by 0.55), the two sets of parameters
translate to net growth rates: [-0.3, -0.4] day™! and [-0.3, -0.5] day' respectively. The chlorophyll
estimates in Figure 5c-d are generally similar, but with smaller chlorophyll peaks in Figure 5d
because nonlinear term in Equation (8) has a similar effect as physical mixing in smooth horizontal
peaks (see discussion in Section 4.1). The two model results all reproduce the general trend of

observational chlorophyll in the downstream in that chlorophyll stays high (around 10 pg/L) in
xD[(), 10] km; drops rapidly in xD[lO, 15] km; and stays low (around 5 pg/L) in xD[lS, 25] km.

Compared to the results in Figure 3b under low flow condition, both the observation and model
estimate in Figure Sc-d present more chlorophyll oscillation in downstream. This is probably due
to the short transit time under high flow condition, so that chlorophyll oscillation from the
boundary is still preserved instead of being completely smoothed by physical mixing. The
mismatch between the phases of chlorophyll oscillation is because of the simplified velocity filed
resulting from the assumption of a constant flow rate. Nevertheless, the results show that our model
still can predict the general tread of chlorophyll distribution in the downstream under high flow

condition although improvement may be achieved by using a varying velocity field.
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Figure 4. Chlorophyll in the TFR of James River. The format is the same as Figure 1. The color
lines in upper panel (a) represent chlorophyll distribution from dataflow measurement on
07/06/2007 in the upper James River. The lower panel (b) shows chlorophyll time series at Station
JMSO073.37 from 07/01/2006 to 07/06/2006 with moving average in blue line using 12-hour

window.
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Figure 5. Chlorophyll estimates on 07/06/2006 with constant net growth rates under high flow
condition. The upper left panel (a) shows model result with net growth rate of -0.4 day! based on
Equation (14). The lower left panel (b) shows model results for two sets of trial parameters:
(2, ==0.3day™", k=0.05ug" L) and (4, ==0.15 day™,k =0.2 ug"' [L) based on Equation
(15). Note that there is a mismatch for chlorophyll measurements between the continuous
monitoring data and dataflow data at (t=07/06/2006, x=0). Panels (c, d) are similar to panels (a,
b), but are obtained with modified continuously monitoring data by a factor of 0.55. The panel (c)
is for constant net growth rate of -0.2 day!, while the parameters for the results in panel (d) are
(4, =-0.2day™" k=0.05pug" L) and (4, =-0.1day', k=02 pg"' OL). The net growth
rates in (a) and (c) are chosen based on Qin and Shen (2017) to best predict downstream

chlorophyll variations. The chlorophyll observation (black line) is interpolated from dataflow data
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on 07/06/2006 as shown in Figure 4. The observational data marked in the box in (a) with dash
line roughly correspond to the continuously monitoring chlorophyll data marked in the box in

Figure 4b.

3.4 Variable Net Growth Rate and Velocity Field

In this section, we apply Equations (3, 9) in the TFR of James River with spatiotemporally
varying net growth rate and velocity field. Figure 6 shows the model domain that starts from
Station TF5.2A. There are 5 long-term water quality stations from Chesapeake Bay Program
(2016): TFS5.2A, TF5.2, TF5.5, TF5.5A, and TF5.6 providing measurements for NO3, NHy, PO,

water temperature and light attenuation coefficient. Here, we interpolate the measurement data in
time and space to estimate the phytoplankton net growth rate £, in the TFR of James River and

the detail of the calculation is attached in Appendix B. Formulations of water quality models
(Cerco & Noel, 2004; Park et al., 1995) are used to computer £ by integrating environmental

factors. The simulation period is selected to be 1999-2005 when different hydrological conditions
are included (Figure C1).

Figure 7 shows the £ from 1999 to 2005 at 4 water quality monitoring stations below
TF5.2A at noon time when £/, is maximum during the daytime. On the other hand, the nighttime
(., becomes negative (not shown) because photosynthesis is shut down, but phytoplankton

metabolism and predation by higher trophic levels are not. ., has a larger magnitude at Station

TF5.3 than at other stations probably because of the better light condition in the upper James River

around Station TF5.3, as indicated by the distribution of light attenuation in Figure B1. The
variations of £, at downstream Stations TF5.5, TF5.5A and TF5.6 share similar features due to
the similar geomorphology at these stations where river channel is broad and shallow, which is
different from TF5.3. Also, g, presents strong seasonal variabilities. Normally, it has a spring
peak and a fall peak, and has a trough in the winter. In the summer months, £, varies much

depending on the environmental nutrient conditions at different locations.
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Because velocity observation in this region is limited, we obtain velocity field from
numerical model of SCHISM that was applied in the entire Chesapeake Bay (Ye et al., 2018;
Zhang & Baptista, 2008; Zhang et al., 2016). The velocity is tidal-averaged over the river cross

section resulting in a one-dimensional velocity filed u (t, x) in the TFR of James River. Based on

Equations (4, 6), we further calculated the water age from 1999 to 2005 in the model domain
starting from Station TF5.2A. Figure 8 shows the time series of water age at 4 downstream stations
below TF5.2A. The water age increases as it goes downstream and has strong interannual
variability that is generally larger in 1999, 2001, 2002, but smaller in 2003 and 2004. Similarly,
based on Equations (7, 10), we calculated the accumulative growth and Figure 9 shows the results
at the same 4 stations as in Figure 8. The accumulative growth represents the accumulated
biological effect and the positive values mean that the phytoplankton biomass will increase as it
moves downstream after leaving the boundary at TF5.2A. The accumulative growth has a smaller
magnitude at station TF5.3, while it is larger at stations TF5.5, TFS.5A and TF5.6. All the 4 stations
share similar interannual variabilities for accumulative growth with higher values from 1999 to
2002 and smaller values in 2003 and 2004.

With the water age and accumulative growth known for the TFR of James River, we can
evaluate the analytical solutions of Equations (3, 9) with the boundary condition of chlorophyll-a
measured at TF5.2A. Figure 10 shows the results against observational data. Both solutions well
reproduce the seasonal variability of chlorophyll-a that it is normally small in the winter and peaks
during the summer months. Also, the interannual variability is well captured (e.g. higher
chlorophyll-a concentrations in 1999-2002 and 2005, and smaller chlorophyll-a concentrations in
2003 and 2004). However, the solution based on Equation (3) presents many chlorophyll-a peaks.
Although these peaks generally correspond to the high chlorophyll-a data, they are much higher
than the observations. The cause is related to the form of the Equation (1) of phytoplankton
dynamics that allows phytoplankton to grow exponentially and unlimited as long as it has a
positive net growth rate. With an nonlinear reaction term, the result from Equation (9) is more
reasonable and the high chlorophyll-a peaks are depressed. Additionally, we notice that the
difference between the two solutions only happens under high chlorophyll-a concentration when
strong feedback effect is associated with Equation (9). Overall, the analytical model can well

predict the downstream chlorophyll-a regarding the seasonal and interannual variations. The error
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513  mainly results from the insufficient temporal and spatial resolutions of long-term monitoring data

514  (Figure C1), and insufficient representation of the physical mixing by the nonlinear term.
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516  Figure 6. The TFR of James river with 5 long-term monitoring stations (triangles): TF5.2A, TF5.3,
517 TF5.5, TF5.5A and TF5.6. The red line is our model axis starting from Station TF5.2A.
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520  Figure 7. Phytoplankton net growth rates at noon time at 4 water quality monitoring stations.
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James River from 1999 to 2005. The water age is defined as the elapsed time since a water parcel

leaves TF5.2A.
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Figure 9. Time series of accumulative growth G(t, x) at 4 water quality monitoring stations in

the upper James River from 1999 to 2005.
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Figure 10. Time series of chlorophyll-a from the analytical model at 4 stations in the upper James
River. The modeled chlorophyll-a are compared with long-term monitoring data (circles) from

Chesapeake Bay Program. The green lines are the results based on Equations (3), while the red

lines are results with an nonlinear reaction term based on Equation (9) with £ =-0.015 (,Ug)_1 (L.
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4  Discussion

4.1 Analysis on the Model Results

Water age is the elapsed time after phytoplankton leaves its origin. It represents the time that
allows phytoplankton to grow or decay during its transport from upstream to downstream. The
accumulative growth is the accumulation of biological effects in time from upstream to
downstream. It is a non-dimensional number that represents how phytoplankton biomass changes
relatively to its original concentration at the starting points. If it is larger/smaller than zero, the
biomass concentration will increase/decrease; while if it is zero, the biomass concentration will
keep unchanged. The fact that the accumulative growth is determined by phytoplankton net growth
rate and the time phytoplankton being transported is important for us to understand phytoplankton
variation in time and space. For example, if a high phytoplankton concentration is observed at one
particular location, it could be attributed to the accumulation of biological growth resulting in a
large accumulative growth or the high phytoplankton concentration advected from upstream.
Further, if the high phytoplankton centration is related to the large accumulative growth, it could
be due to large net growth rate or long transit time (large water age). When transit time is fixed,
larger net growth rate means that phytoplankton can grow faster resulting in higher phytoplankton
concentration. In contrast, when net growth rate is fixed, longer transit time allows phytoplankton
to grow for a longer time, which can also result in higher phytoplankton concentration. Therefore,
physical and biological processes are tightly coupled in determining the phytoplankton

concentration regarding its temporal variation and spatial distribution.

In the analytical model, local sources like phytoplankton from benthic resuspension are not
considered. It is assumed that all phytoplankton seeds originate from the upstream, which makes
the boundary condition important as shown in the form of Equation (3). The variation of boundary
phytoplankton concentration such as chlorophyll peaks influences the downstream phytoplankton
concentrations. This can be seen by comparing the continuous monitoring chlorophyll data
(marked in the box) in Figure 4b with the dataflow chlorophyll data (marked in the box) in Figure
Sa (note earlier date corresponds to further downstream location). However, this does not mean
that boundary condition completely determines the downstream phytoplankton because physical

transport and biological factors are also important. In the regions of long residence time,
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phytoplankton have enough growth time to reach its maximum concentration that is ultimately

limited by the local environmental resources regardless of the initial condition.

For the solutions of phytoplankton concentration in Equations (3, 9), their expressions depend
on the forms of water age and accumulative growth. In many cases, explicit expressions of the
solutions maybe not possible if the velocity filed and phytoplankton net growth rate have
complicated forms. For some simple cases, we can get the explicit expressions for phytoplankton
concentration as shown in 2.3. In the simplest situation when velocity, net growth rate and
boundary condition are all constant, the solution in Equation (3) is degenerated to the solution for
a steady and uniform system that is discussed by Lucas et al. (2009). However, our solutions in
Equations (3, 9) are more generic, which describes the evolvement of phytoplankton concentration

in a variables system with time and space.

The successful application of the analytical model in the TFR of James River proves the
validity of the model in capturing the key elements in regulating phytoplankton growth. In James
River, traditional numerical models or empirical models are capable of simulating the long-term
variations of chlorophyll on seasonal or interannual timescales, and their results are usually
evaluated against monthly observational data (Chesapeake Environmental Communications, 2015;
Fitzpatrick et al., 2014; Shen et al., 2017). However, these models are lacking of the capability to
reproduce chlorophyll results on fine scales. In this study, our analytical solution can be used to
reproduce short-term variabilities of fine-resolution chlorophyll, and the results are compared with
fine-resolution dataflow chlorophyll. For the long-term simulation (low-resolution), our modeled
chlorophyll in Figure 10 has similar model skill compared to previous model. In Figure 3 and
Figure 5, simplified solutions with constant net growth rates are used to predict downstream
chlorophyll distribution under low and high flow conditions. Different rates lead to different results
that could overestimate or underestimate the downstream chlorophyll concentration. For the two
cases in our study, the net growth rate is about -0.03 day™! (Figure 3a) under low flow condition,
while it is about -0.2 day™! (Figure 5¢) under high flow condition. In addition, the results in Figure
3b and Figure 5d with feedback mechanism match the results visually better than the ones in Figure
3a and Figure Sc, although both solutions can reproduce the general distribution of downstream
chlorophyll distribution. For the more general case, Figure 10 shows the results with variable

velocity field and net growth rate. Although the boundary condition is based on the monthly
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chlorophyll-a data at TF5.2A and the phytoplankton net growth rate is also inferred from the
monthly water quality measurements only available at 5 stations, the predicted chlorophyll-a
matches the observational chlorophyll-a well regarding the seasonal and interannual variations.
For both model results and observational data, the chlorophyll-a is generally smaller in winter and
higher in summer with oscillations. In addition, for all the 4 stations in Figure 10, 2003 and 2004
are two exceptional years in that the chlorophyll-a concentrations are small compared to other
years. Consistent with the results in Figure 3b and Figure 5d, the solution with feedback
mechanism in Figure 10 performs better. The major improvement is that many chlorophyll-a peaks

are depressed thanks to the nonlinear term in Equation (8).
Mathematically, the nonlinear term k [/’ [C* has a similar effect as physical mixing in

depressing the peaks when it has a negative value, which is illustrated in Figure 11. The nonlinear
term reduces concentrations of the chlorophyll-a peaks, but keeps lower chlorophyll-a
concentrations nearly unchanged. The difference for physical mixing is that it not only reduces the
peak values, but also increases the chlorophyll-a concentration in the lower part at the same time.
Because there are many uncertainties in estimating the net growth rate and velocity field, it is

acceptable to approximate the physical mixing effect in our model using a nonlinear reaction term

w. I:Ql +k EZ‘) [C . This alternative form of phytoplankton growth term provides more flexibility

to mimic physical mixing effect with the combination of g’ and k. Different from physical

0
net

mixing, the sink term k [C* can reduce phytoplankton concentration at non-peak regions,

while physical mixing tends to enhance the concentration. To compensate this, we can adjust the

(., to increase the phytoplankton concentration at non-peak regions. Though this method is not

physically based, it provides a way to simulate mixing effect on phytoplankton distribution in our
analytical model, and yields an analytical solution. In Equation (8), the effect of physical mixing
is not separable from the biological effect from the negative feedback mechanism. However, when
phytoplankton concentration is low when the feedback mechanism can be neglected (Barros et al.,

2003; Rice University, 2013), we can largely attribute the nonlinear effect to the physical mixing.

Figure 10 shows the strong interannual variability of chlorophyll-a in TFR of James River.
Besides the influence of boundary condition, the interannual variability of chlorophyll-a for the 4

stations in Figure 10 is also attributed to the accumulation of biological processes. This is shown
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by the accumulative growth in Figure 9 that shares a similar interannual variation as chlorophyll-
a in Figure 10. Because there is no strong interannual variation for phytoplankton net growth rate
(Figure 7), the interannual variation of accumulative growth is in turn largely related to water age
(Figure 8), which is controlled by river flow. The correlation between river flow and water age is
shown in Figure /2. The correlation is most obvious at Station TF5.3 and goes down visually
towards downstream. In 2003 and 2004, the river flow is relatively high with maximum flow rate
over 1600 m%/s (Figure C1). The annual mean flow rates are 413.6 m3/s and 269.2 m%/s for 2003
and 2004 respectively, while the annual mean flow rates from 1999 to 2002 are all below 140 m?/s.
Therefore, the interannual variation of James River flow is responsible for the interannual variation
of water age with an inverse relationship as high flow causes short transit time. Based on these
analyses, the interannual variation of James River flow is one cause for the interannual variation

of chlorophyll-a in the TFR of James River.
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Figure 12. Water age versus James River flow rate at 4 stations in the TFR of James River.

4.2 Local Chlorophyll-a Maximum in TFR

LCM refers to the region in TFR with elevated chlorophyll-a concentration (Bukaveckas et
al., 2011). It could be related to changes of river geomorphology or biological factors such as light
condition (Bukaveckas et al., 2011; Pennock, 1985). The high primary production in this region
can impact the food webs and local ecosystem (Cloern, 2006). Here, we study it by using our
analytical solutions. By assuming that boundary condition, velocity field and net growth rate do
not change with time, we can get the downstream chlorophyll-a distribution according to Equations

(11, 12):

* et (17) in
c(x) :a@jo n " 24)

where a is the constant boundary condition. Since the necessary condition for chlorophyll-a to get

maximum in space is (Z—C =0, Equation (24) leads to
X
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Moot (%,) =0, (25)

where x,, is the location for oc =0. Note Equation (25) is a necessary condition for LCM instead
X

of a sufficient condition. Mathematically, Z—C =0 means that chlorophyll-a reaches local maxima
X

or local minima in space. While there may exist multiple local maxima, the chlorophyll-a
maximum is only one of them with maximum value. Biologically, Equation (25) means that
phytoplankton growth rate is balanced by its loss rate, and an equilibrium state is reached locally.

Beyond the region (x =x,,), the chlorophyll-a concentration will increase (or decrease) towards
either side. For example, deviated from the location of LCM, when x<x,, / x>x, , the
chlorophyll-a is always smaller than the maximum chlorophyll-a concentration at x =x,, as the

net growth rate 4,,, is larger/smaller than zero.

Equation (25) means that the condition for LCM is only biologically controlled. Basically,
this states that the maximum chlorophyll-a concentration in an aquatic system should be only
limited by biological factors such as nutrient concentrations and light condition. It represents the
capacity of the system for phytoplankton growth, which is not related to flow condition. On the
other hand, the location of LCM can be influenced by physical factors, which is different from the
condition of LCM. For example, if phytoplankton needs certain time to increase to its maximum
concentration under a constant net growth, larger river flow will cause the maximum chlorophyll-
a concentration occurring further downstream as water parcel with larger velocity can travel further
for a given period. In the case when river flow is too large, maximum concentration may never be
reached before the water parcel is advected out of the system, which partially explains why

chlorophyll-a remained low in 2003 and 2004 in the TFR of James River (Figure 10).

If the expression of the net growth rate 4, (x) is known, we can find the location of LCM

by simply analyzing U, (x) . However, in reality, L, (x) is often unknown. In order to estimate

the location of LCM (or the location of maximum chlorophyll-a concentration in the TFR system),

we can use Equations (12) by assuming;:
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a. The river cross section has a shape A=A, [@1 +a Dc) in the longitudinal direction and

Y
4, [(1+alx)

area at the boundary; Q is a constant river flow rate; and a is the coefficient to

the velocity is u (x) = , where A is the river cross section area; A, is the

represent the longitudinal change of river cross section that can be positive, zero, or
negative.

b. Boundary condition of chlorophyll-a concentration « is constant.

c. Phytoplankton net growth f/,,, is constant before the location of LCM (beyond the
LCM, it will become negative).

d. The maximum chlorophyll-a concentration is C,,, which is determined by biological

factors related to the system capacity for phytoplankton growth. According to Equation
C

m

(3), the corresponding accumulative growth at LCM is G, =In [—j .
a

Based on these assumptions and Equations (12), we can calculate the accumulative growth:

yor [J'd_” = q’:Man =%[(l+ax)2 —1}, az0

G= u(n) . ©6)

At the location of LCM, we have G (xm) =G,, , which leads to:

m>

l(\/l +200 —1)

X, =1a , a#0. (27)
g, a=0

G, 0

net

where x,, is the location of LCM and & =

. Figure 13 shows the location of LCM predicted

by Equation (27) with different o values for different shapes of river cross-sections. When &
increases, the location of LCM increases (moving towards downstream). Also, it is interesting to

notice that the line curves upward/downward when a >0/a <0, while it is a straight line when

a=0.
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Equation (27) demonstrates that the location of LCM increases with river flow Q when
other factors remain unchanged, which is consistent with the analysis above. To verify this, we
extracted the locations of LCM from dataflow data in the TFR of James River and associated them
with James River flow rates averaged for the past week. It well reproduces the relation between
river flow and location of LCM that location of LCM moves downstream as river flow increases
(Figure 14). In addition, a theoretical fit with positive a based on Equation (27) is shown in Figure
14. It matches the observational data well regarding the general trend. The upward curve with
positive a is also consistent with the James River geomorphology in the TFR where river cross
section generally increases from Station TF5.3 to Station TF5.5A (Figure 6). Despite of the
simplicity of Equation (27), the good agreement between observation and theory suggests that our

analytical model well represents the phytoplankton dynamics in the TFR of James River.

4.3  Extension to Three Dimensional System

In this work, the analytical model is only applied to one phytoplankton species in a one-
dimensional system in the TFR. The concept of integrating physical processes and biological
processes in phytoplankton dynamics may work for multiple phytoplankton species in three
dimensional system if there is no species interaction. This extension is valid in an advection-
dominant system (Cianelli et al., 2017), but may fails when physical mixing is too strong or too

complicated. Cianelli et al. (2017)Assuming the three dimensional velocity field « (t)?) and net
growth rate 4, , (t, ;c) (or ), (t, ;c) ) are known, the equation for the phytoplankton dynamics is:

%—fﬁEﬂ]C:ﬂm c, x0OV. (28)

Similar to Equation (3), the solution is:
C(t.x)=ale -7 %).%,) 2, (29)
and water age T(t, )?) and accumulative growth are determined by following equations:

a—T+L7[D]T:1 , (30)
ot
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0G

9 v amG=p, | 31)
ot

T(t,x)=0, x0Q , (32)
G(t,x)=0, x0Q , (33)

where Q is the boundary on domain V ; a(t, )?) is the boundary condition of phytoplankton
concentration on Q ; and X, is the starting point on the boundary for water parcels. Note that the

boundary Q here does not refer to the physical surface that embraces the volume V', but refers to

the location from which the water flow starts. If the feedback mechanism is added as

et = Hpe ({1 +kC), the solution becomes:

( X) _ a(t =T, )?0) B?G . (34)
k(e -T,%,) - )’
with a modified accumulative growth as shown below:
oG |, _
E"‘M DDG:ﬂ’?et . (35)
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738  Figure 13. Location of LCM predicted by Equation (27) with different values of a (km™'), where

739  a represents the coefficient for longitudinal change of river cross section. The y-axis is
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dataflow observational data in the TFR of James River, while the line is a theoretical fit based on
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net

S Summary

The combination of physical processes and biological processes influences phytoplankton in
time and space. In this work, they are mathematically summarized into velocity field and
phytoplankton net growth rate respectively to construct an analytical model for phytoplankton
dynamics in a one-dimensional system. We are able to get an analytical solution for the
downstream phytoplankton concentration. In order to account for the nonlinear biological
processes that affect phytoplankton variation, we also provide an alternative solution with
nonlinear reaction term. The nonlinear reaction term can also be used to approximate physical

mixing. The analytical solutions have two essential components: water age and accumulative
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growth. Both components have clear physical meanings providing insights on how physical and
biological factors regulate the phytoplankton spatiotemporal variations. The analytical solution not
only predicts downstream phytoplankton concentration based on boundary condition, but also
provides a tool for us to integrate different types of field phytoplankton observations. We applied
the analytical model in the TFR of James under different dynamic conditions. The good agreement
between model results and observations validates the theory. In addition, based on the analytical
solution, an analysis is made to study the LCM in the TFR. It shows that the condition of LCM is
biologically controlled, but its location is related to river flow and river geomorphology.

In summary, the analytical model is useful in describing the phytoplankton dynamics in a one-
dimensional, advection-dominant system. It can be applied:

a) to study the interaction between physical and biological factors on phytoplankton,

b) to simulate downstream phytoplankton concentration in time and space,

c) to analyze phytoplankton related phenomena such as LCM in estuary,

d) and to approximate the nonlinear effects on phytoplankton growth.
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Appendix A: Proof of Equation (9) as the solution to Equation (8)

Substituting Equation (9) into Equation (8), we have:

a'tﬁ aTj@% e 99 a@G[lez'[ﬁl—aTj[Ql—eG) ks 99 G
RES = ot or o0t A

1+ k=) [1+kri-¢)
a'[ﬁ aT]@GJr i Al a@G[kuz'Eﬁ_aTj[QheG) kDmG G_
P) d Ox

X x _ J
" Ikai-et) ' [1+kmifi-eo)]
1T a0,
ot Ox o Ox (A1)
1+krfl-e%)

a@a{kw'[@—”_u”)[@_e )k 2 oG aGﬂ
_ ot 0x or O0x
[1+kt]z[ﬂl—ea)]2

a0, k@O

:1+kuz[Q1 ) [1+lezEQ1—em)]2

=, [C + 1, K [C* = LHS

Note that Equations (4, 10) are used in the above derivation.

Appendix B: Calculation of Net Growth Rate in the TFR of James River

In this section, the phytoplankton net growth rate from 1999 to 2005 is estimated based on
the water quality measurements from Chesapeake Bay Program (2016) and water quality model
formulations from Park et al. (1995). First, the spatiotemporal variations of nutrients (NO3, NHa,
PO4), temperature and light attenuation coefficient are estimated by linearly interpolating the
measurement data onto time period [01/01/1999, 12/31/2005] and space range [0 km, 65 km]
(Figure 6). The results are shown in Figure B1. In addition, the solar radiation from North
American Regional Reanalysis (NARR) is used to estimate Photosynthetically Available
Radiation (PAR) for phytoplankton growth (Figure). The daytime variation is calculated based on
latitude and day number of year (Forsythe et al., 1995).
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The information obtained above is then used to compute phytoplankton net growth rate
following Park et al. (1995) and Chapra (1997). The net growth of phytoplankton is composed of
its growth, basal metabolism and predation by higher trophic levels with the expression:

U,,, =G—-BM - PR. (B1)

where G is growth rate (day'), BM is metabolism rate (day!) and PR is the predation rate (day
1)'
The growth rate represents how phytoplankton grows in the environment of nutrients, light

and temperature as below:

G =G F (N) O (1) (7). (B2)

f(N)Zmin£ NO*NHy, PO ] (B3)
KHN +NO, +NH,  KHP+PO,

f(I):% :éexp(—é+ljﬂiz. (B4)

1=1,[exp(-KelZ). (B5)

2
-KTG1 npt—T) . if T<T,,,,

e
f(1)= - : (B6)
e—KTGZ[(]T—Top,) it T>T,,

where G, is the maximum growth rate (day'); [ f (N ) f (I ) f (T)] are the phytoplankton
growth limitation factors for nutrients, light and temperature respectively; NO; is nitrate

concentration (mg/L); NH, is ammonium concentration (mg/L); PO, is phosphate concentration

(mg/L); KHN (mg/L) and KHP(mg/L) are the half saturation constants for nitrogen and
phosphorus respectively; [is light intensity (Ly/day) and I, is the light intensity (Ly/day) at water

surface; I,, is the optimal light intensity (Ly/day) for phytoplankton growth; Ke is light extinction
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coefficient (m™); H is water depth (m); Z is the vertical distance from water surface (m); T'is

water temperature (°C) and 7,

¢ 18 the optimal temperature for phytoplankton growth (°C); KTGl

(°C?) and KTG2(°C?) are the temperature dependence coefficients for phytoplankton growth

when temperature is blow and above T,

¢ Tespectively.

The metabolism rate and predation rate are both modulated by temperature as below:

BM =BM [éxp| KT (T -TR) |. (A7)

PR = PR, éxp[ KT [T -TR)]. (A8)
where BM (day!) and PR, (day!) are the reference metabolism rate and predation rate at

reference temperature TR (°C) respectively; KTis the temperature dependence coefficient (°C™).

Based on Equations (B1-A8), we computed phytoplankton net growth rate (4, ,, that varies

from 1999 to 2005 in our model domain (Figure 6) with parameter values in Table B1 referenced

to Park et al. (1995).
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Figure B1. The interpolated NOs, NH4, PO4, water temperature, and light attenuation coefficient

based on monthly observational data that are shown in dots. The lower right panel is daily mean
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Table B1. Parameter values used to calculate phytoplankton net growth rate

G,

max

=3.0 day!

KHN =0.01 mg/L

KHP=0.001 mg/L

I,, =40 Ly/day

KTG1=0.001 °C!

KTG2=0.001 °C*!

T,

ot =25 °C

BM ,=0.04 day!

PR,=0.01 day"!

KT =0.069 °C!

TR =20 °C

Appendix C: Flow Rate of James River
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Figure C1. James River flow rate from 1999 to 2005. The number on the figure for each year is

annual mean river flow rates. River flow data is from U.S. Geological Survey Data (2018).
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