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ABSTRACT
Quantification of lattice thermal conductivity of two-dimensional semiconductors like MoS2 is necessary for the design of electronic and
thermoelectric devices, but direct experimental measurements on free-standing samples is challenging. Molecular dynamics simulations, with
appropriate corrections, can provide a reference value for thermal conductivity for these material systems. Here, we construct a new empirical
forcefield of the Stillinger-Weber form, parameterized to phonon dispersion relations, lattice constants and elastic moduli and we use it to
compute a material-intrinsic thermal conductivity of 38.1 W/m-K at room temperature and estimate a maximum thermal conductivity of 85.4
W/m-K at T = 200 K. We also identify that phonon scattering by the large isotopic mass distribution of Mo and S contributes a significant
correction (>45%) to the thermal conductivity at low temperatures.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5085336

In-plane thermal transport is an important consideration for
the design of nanoelectronic and thermoelectric devices made from
layered and two-dimensional (2D) materials which possess some of
the lowest out-of-plane thermal boundary conductance for solid-
solid interfaces.1 Lattice thermal conductivity also determines the
thermal profile of growing two-dimensional crystals in exothermic
synthesis techniques like chemical vapor deposition and is an impor-
tant metric for the fabrication of energy harvesting devices based
on the thermoelectric effect.2–4 Despite this importance, defini-
tive experimental measurements of fundamental thermal proper-
ties of these materials like lattice thermal conductivity have not
been conclusive. The primary experimental challenges, as detailed
in recent reviews,2,5 stem from difficulties in accurately measur-
ing temperature gradients on atomic length scales in suspended
monolayer samples. Further, thermal conductivity of suspended
monolayers and sub-nm-thin materials is greatly quenched (by up
to 85%) when these monolayers are supported on a substrate or
are investigated using contact-probes.6,7 Even state-of-the art non-
contact techniques for thermal conductivity measurement like opto-
thermal Raman are undermined by several implicit assumptions

about optical absorption and equilibrium of phonon modes8 and
are affected by heat losses to the environment9 leading to large
errors in reported values of thermal conductivity.10–12 Further, such
techniques involving localized laser heating can only be used to
investigate room-temperature and high-temperature thermal con-
ductivity and cannot readily access low-temperature regimes.13 In
contrast, atomistic MD simulations are an attractive method for esti-
mating temperature-dependent thermal conductivity of suspended
monolayer systems directly from nm-scale temperature gradients.
Specifically, classical non-equilibrium molecular dynamics (NEMD)
provides a computationally inexpensive way of computing lattice
thermal conductivity for monolayer materials, which includes the
full anharmonicity of interatomic forces within a steady-state (i.e.
dynamic and non-equilibrium) simulation. Classical NEMD simu-
lations offers several advantages over the calculation of lattice ther-
mal conductivity by ab initio atomistic simulations. Solutions to
the phonon Boltzmann transport equation from ab initio simu-
lations involve strong assumptions about phonon scattering rates
and lifetimes as well as boundary conditions for phonon scatter-
ing.14–19 These assumptions are reflected in the large scatter in the
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reported values of calculated thermal conductivity for 2D materi-
als like MoS216,19–25 (Table S1). Further, thermal conductivity val-
ues from classical NEMD simulations are consistent with values
extracted from classical equilibrium MD (EMD) simulations using
Green-Kubo techniques,26 but have a smaller magnitude of system-
atic errors25 (Table S2). However, classical MD simulations ignore
the quantization of vibrational energy levels, which is responsible
for sub-classical specific heat at low temperatures and correspond-
ingly suppressed thermal conductivity. MD simulations in literature
also fail to account for additional phonon scattering introduced by
the naturally-occurring distribution of isotopic masses. Here, we
report quantum-corrected and isotope-corrected thermal conduc-
tivity values for a representative two-dimensional crystal, MoS2,
calculated from NEMD simulations using a new forcefield param-
eterized to reproduce experimental lattice constants, elastic mod-
uli and ab initio calculated phonon dispersion curves. MoS2 is an
ideal material for thermal conductivity calculations since despite
its widespread use in nano-electronic applications, there is a large
scatter in reported values of experimentally determined thermal
conductivity ranging from 34 W/m-K to 84 W/m-K at 300 K.27–30

PARAMETERIZATION OF STILLINGER WEBER
FORCEFIELD (SWFF)

MD simulations for thermal conductivity require the use
of empirical forcefields that can reproduce phonon populations,
phonon and sound velocities and phonon mean free paths accu-
rately. Similar to previous studies,24,25,31,32 we parameterize a
SWFF,33 which models covalent interatomic interactions in the
MoS2 2H crystal structure using 2-body and 3-body terms that
mimic energy profiles for bond-stretching and bond-bending (i.e.
bond-angle distortion) interactions. The total potential energy of the
given system of N atoms located at [r1, r2, . . ., rN] in the SWFF can
be written as

E(r1, r2, . . . rN) = ∑
i<j

V2(rij) + ∑
i<j<k

V3(rij, rjk, θijk)

where rij = |rj−ri|. The 2-body term, V2, is defined as

V2(rij) = A
⎛

⎝

B
rpij
− 1

⎞

⎠
exp(

γ
rij − rcut

)

The two-body term is defined by 3 optimizable parameters, A, B and
γ. The 3-body term, V3 around a central atom i is given by

V3(rij, rik, θijk) = λ exp(
γ1

rij − r1
−

γ2

rik − r2
)(cos θ − cos θ0)

2

where λ, γ1 and γ2 are optimizable parameters. The exponential
decay of interatomic energies and the explicitly-defined cutoff dis-
tance for interatomic interactions makes the forcefield short-ranged
and local, which makes for easier numerical implementation for
large-scale MD simulations.

All SWFF parameters (A, B, γ, K, γ1 and γ2) are optimized for
the MoS2 crystal structure using the GULP program.34 The remain-
ing geometric parameters, namely, the three cutoff distances, rcut ,
r1 and r2 and θ0 are obtained directly from ab initio simulations
(See Section V of supplementary material). θ0 is the included angle
between Mo-S-Mo and S-Mo-S triplets and rcut for each pair of

atoms is set equal to 1.5 times the nearest-neighbor distance between
those types of atoms in the ideal 2H MoS2 crystal structure. 2-body
terms are parameterized for all type of atom-pairs: Mo-Mo, Mo-S
and S-S. 3-body terms are parameterized only for the Mo-S-Mo
and S-Mo-S. Other non-bonded triplets do not contribute to the
potential energy of the crystal. The SWFF is optimized to reproduce
three quantities, namely the lattice constant, in-plane elastic con-
stants and phonon dispersion curves. During optimization, GULP
uses the BFGS scheme to minimize the weighted residuals for these
three observables.

Residual(x) =
Nobs

∑
i
wi(f DFTi − f SWi (x))

2

where i loops over the lattice constant, the elastic constant and
phonon dispersion and f DFT is the DFT-calculated value for observ-
able i and f SW(x) is the value obtained from the Stillinger Weber
forcefield with the parameter set x.

For the purpose of residual evolution and forcefield optimiza-
tion, the phonon dispersion is discretized at 21 points for each band
along the Γ-M-K-Γ direction. Further, for an accurate calculation
of thermal conductivity, it is desirable that the empirical forcefield
accurately reproduces the behavior of low-energy acoustic phonon
modes which are responsible for the bulk of heat conduction at tem-
peratures relevant to this study (T = 100 K – 400 K).17 Therefore, in
our optimization scheme, the three acoustic branches have a larger
weighting factor, wi = 30 for the residual evaluation, compared to
wi = 1 for the high energy optical modes, which have negligible
contributions to thermal transport.17

Non-equilibrium molecular dynamics simulations

NEMD simulations are performed with the new SWFF
(Tables I and II) using the LAMMPS molecular dynamics pro-
gram.35 The simulations are performed on a rectangular monolayer
MoS2 single-crystal of dimensions L × 2L with periodic boundary

TABLE I. Two-body terms of the Stillinger-Weber forcefield. The two-body

interaction term has the form V2 = A( B
rpij
− 1)exp( γ

rij−rcut ).

Interacting Atoms A ρ B rmin rmax

S-S 1.117 0.369 38.564 0.00 4.3463
Mo-S 7.098 0.680 9.971 0.00 3.2033
Mo-Mo 3.777 0.653 26.272 0.00 4.3463

TABLE II. Three-body angle bending terms in the Stillinger-Weber
forcefield. The three-body interaction term has the form V3 =

λ exp( γ1
rij−r1

−
γ2

rik−r2
)(cos θ − cos θ0)

2.

Triplet λ θ0 γ1 = γ2 r12
max r13

max r23
max

S-Mo-S 7.663 82.4795 0.870 3.2034 3.2034 4.3463
Mo-S-Mo 30.230 82.4795 3.482 3.2034 3.2034 4.3463
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conditions along the x- and y-directions. Atomic positions and sim-
ulation cell parameters of the MoS2 monolayer are initially relaxed
using the SWFF until there no net forces on the atoms and no resid-
ual stress on the simulation cell. The system is then heated under
the NPT ensemble to the desired target temperature where thermal
conductivity is to be measured. Next, as defined in Figure 1, two thin
(20Å wide) regions denoted ‘Hot’ and ‘Cold’, which span the entire
width, L, of the simulation cell are defined at x = 3L/2 and x = L/2. To
establish a thermal steady state, a fixed energy flux, Q̇, is added to the
kinetic energy of atoms in the ‘Hot’ region and an identical energy
flux is removed the kinetic energy of atoms in the ‘Cold’ region. This
method36,37 allows us to impose arbitrarily small thermal fluxes,
in contrast to the momentum-swapping method of reverse non-
equilibrium molecular dynamics,38 which can lead to large tempera-
ture gradients spanning ∼100 K and non-linear temperature profiles
near the heat source and sink.

At steady state, this technique establishes a gradient in local
temperature between L/2 and 3L/2 with an approximate and small
temperature gradient of 10-2 K/Å, which falls within the linear
regime for Fourier law of heat conduction.24 In these simulations,
local (i.e. per-atom) temperature is defined in a classical sense based
on the equation ⟨ 1

2mv2
i ⟩ = 3

2kBTi, where the brackets denote aver-
ages over time. Alternative definitions of local temperature based on
quantification of phonon populations are infeasible due to the large
phonon mean free path of MoS2, which is larger than the size of the
simulation cells used in this study.39

NEMD simulations are performed for 24 ns within the NVE
ensemble, and the temperature profile in the system is obtained from
the last 12 ns of the simulation, which ensures that a steady state
has been established. Thermal conductivity of the simulation cell is
obtained from the Fourier law for heat conduction

κ = −
1

2∇T
[

Q̇
L × t

]

where κ is the thermal conductivity of the MoS2 monolayer and ∇T
is the temperature gradient in the steady-state from the source to the
sink due to the energy flux Q̇. L and t are respectively the width and
effective thickness of the MoS2 monolayer and their product is the
cross-sectional area through which heat conduction occurs. The fac-
tor 1/2 comes from the geometry of the simulation system, where
heat conduction from the ‘Hot’ to ‘Cold’ region occurs along the
+x and -x directions. It is important to note that thermal conduc-
tivity calculated from Fourier’s law of heat conduction requires an

estimation of the effective thickness, t, through which the heat flux,
Q̇, is transported. There are several competing definitions for what
constitutes the thickness of a two-dimensional crystal.40 In this
study, we have chosen the effective thickness of the MoS2 mono-
layer to be equal to 6.16 Å, the experimentally calculated interlayer
distance in bulk and multilayer MoS2 samples,41 consistent with
previous studies.17,25

System size dependence in NEMD simulations

Thermal transport in NEMD occurs over two square regions
of size L×L. The dimensions of this artificial system prevent the
participation of larger mean-free-path phonons in the heat conduc-
tion process. Therefore, thermal conductivity values obtained from
NEMD simulations show a strong dependence on the size of the
simulated system, with larger systems resulting in larger calculated
values of κ due to the participation of a larger subset of phonons in
heat transfer. All NEMD simulations in this study are performed in
the Casimir limit,42 i.e. in the regime where the system size is smaller
than the mean free path, Λ, of acoustic phonons (estimated to be
between 17.2 nm and 2200 nm for MoS216,17). Therefore, to obtain
the material-intrinsic (i.e. size-independent) thermal conductivity of
the system, we follow the scaling scheme used by Oligschleger and
Schon,43 which invokes Matthiessen’s rule of independent scatter-
ing events,44 to extrapolate κ to a (hypothetical) system of infinite
size using the relation below.

1
κ
=

l0
κ0

(
1
l

+
1
l0
)

where 1/l is the inverse scattering length due to the source-sink dis-
tance and 1/l0 is the material-intrinsic inverse scattering length due
to phonon-phonon scattering. The intrinsic size-independent ther-
mal conductivity κ0 of the material can be obtained at the limit
1/l→ 0. It is important to note that such linear extrapolation schemes
in the Casimir regime are extremely sensitive to the size of the
systems used for extrapolation.45

System size dependence of thermal conductivity is evaluated by
calculating thermal conductivity values from NEMD simulations on
crystals of size L×2L where L is one of 19, 30, 40, 60, 144, 200 and
300 nm. Figure 2(a) shows the dependence of the computed thermal
conductivity at 300 K on simulation cell sizes, reflecting increas-
ing thermal conductivity values for larger system sizes. Figure 2(b)
demonstrates the system size scaling method based on Matthiessen’s

FIG. 1. Schematic of NEMD simula-
tions for thermal conductivity calcu-
lation. Thermal energy is added to and
removed from the ‘Hot’ (x = 3L/2) and
‘Cold’ (x = L/2) regions respectively in a
monolayer MoS2 single crystal of dimen-
sions 2L × L which leads to a steady-
state thermal profile in the +x and -x
directions.
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FIG. 2. System size dependence of NEMD thermal conductivity. (a) Calcu-
lated thermal conductivity shows a strong dependence on system size with larger
simulation cells yielding larger thermal conductivity at 300K. (b) Material intrinsic
thermal conductivity of MoS2 can be obtained from the intercept of the inverse
thermal conductivity against inverse system size.

rule and extracts an intercept value of 1/κMD(300K) = 0.019( W
mK )

−1.
The large system sizes used in this study up to 300 nm ensure that
linear extrapolation leads to bulk thermal conductivity predictions
that lie within 20% of those predicted by lattice dynamics.

Temperature dependence of calculated
thermal conductivity

This procedure is repeated at different temperatures, 100 K,
200 K, 300 K and 400 K to obtain κMD(T) (Figure 3(a)). These
NEMD-calculated thermal conductivity values show a monotonic
decrease with increasing temperatures due to greater phonon popu-
lation and correspondingly greater phonon-phonon scattering rates
(Figure 3(b)). This trend of decreasing thermal conductivity with
increasing temperature is consistent with experimental measure-
ments only at high temperatures above the Debye temperature, θD.
One of the most significant drawbacks of NEMD-based calculations
of thermal conductivity is the completely classical nature of the sim-
ulation, which is applicable only to solids above θD.39 Therefore,
calculated κMD values for T > θD ∼ 263 K46 are realistic, but extrap-
olations of this method to low temperatures (∼100 K)24 are not
justified.

FIG. 3. Temperature Scaling. (a) System size scaling of thermal conductivity sim-
ulations performed on MoS2 monolayers at four temperatures. Open circles rep-
resent the intercept of the linear extrapolation scheme of Oligschleger and Schon
for each temperature. (b) Size-independent thermal conductivity values show a
monotonic decrease with increasing temperature due to increased phonon-phonon
scattering.

Below θD, the quantization of vibrational energy becomes the
major source of error in NEMD-calculated thermal conductivity.
Specifically, lattice thermal conductivity of crystals is linearly pro-
portional to the lattice specific heat, Cv.

κ =
1
3
CvvΛ

where v and Λ are the group velocity and mean free path of phonons
respectively. The specific heat in classical NEMD simulations is con-
stant at CMD

v = 3NkB, at all temperatures, which corresponds to the
high temperature limit of experimental specific heat values, Cq

v(T).
Therefore, the non-classical system-level correction to the MD ther-
mal conductivity, κMD(T), can be obtained by substituting the classi-
cal value of specific heat in κMD(T) with the experimentally realistic
value of Cq

v(T).

κcorr(T) = κMD(T) ×
Cq
v(T)
CMD
v

This empirical system-level correction accounts for the relative
occupation of different vibrational energy levels and provides a
good approximation of κMD at temperatures T < θD. More rig-
orous, phonon-mode-specific corrections have been proposed for
crystalline systems, which additionally correct for different relax-
ation times and phonon line-widths at different temperatures,47,48

but these corrections are not attempted in our work.

Non-classical specific heat calculations

The quantized vibrational energy of the crystal is given by the
equation

⟨E⟩ = ∫ h̵ωBE(ω,T)G(ω)dω

where G(ω) is the phonon density of states and BE(ω, T) is
the temperature-dependent Bose-Einstein distribution given by

BE(ω,T) = (exp( h̵ω
kBT

) − 1)
−1

. The lattice specific heat is then given
by the equation

Cv =
d⟨E⟩
dT

= kB ∫ (
h̵ω
kBT

)

2 exp h̵ω
kBT

(exp h̵ω
kBT

− 1)
2 G(ω)dω

Figure 4(a) shows the computed Cv, which approaches the classical
value of 3kB at high temperatures. Figure 4(b) compares κMD(T) with
the quantum-corrected κcorr(T) showing significantly reduced values
below θD.

Phonon scattering by isotopes

Phonon scattering in experimental MoS2 samples come from
four sources.

a. Phonon-phonon scattering, which controls the temperature-
dependence of thermal conductivity

b. Scattering by isotopes
c. Scattering by point defects, primarily sulfur vacancies49

d. Scattering by crystal edges, boundaries and terminations
For the case of material-intrinsic thermal conductivity (i.e. for

a defect-free, infinitely large crystal), the last two terms vanish, leav-
ing phonon-phonon and phonon-isotope scattering as the primary
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FIG. 4. Sub-classical specific heat. (a) Computed temperature-dependent spe-
cific heat of MoS2 monolayers. (b) System-level corrections to NEMD thermal con-
ductivity reproduces low-temperature behavior of increasing thermal conductivity
with temperature.

mechanisms controlling thermal conductivity. In order to quantify
the impact of phonon scattering by cation and anion isotopes, we
compare the thermal conductivity of a crystal containing an explicit
distribution of atomic isotopes at their natural concentration, with
a model crystal where the mass of all atoms of a given species are
set equal to its abundance-weighted average of atomic masses of
all isotopes. Table S4 lists the isotopes of Molybdenum and Sulfur
along with their naturally occurring abundances.50–52 As Figure 5
demonstrates, the lack of phonon scattering by discrete isotopes
leads to a nearly 45% greater value for thermal conductivity of the
model crystal with homogeneous atomic masses. This behavior is
qualitatively similar to that observed in thermal conductivity exper-
iments on diamond and uranium, where isotopically pure samples
show significantly larger thermal conductivity.53,54 However, the
magnitude of thermal conductivity suppression due to isotopes is
significantly larger in the case of MoS2 due primarily to the polydis-
persity of isotopic distribution in Molybdenum and Sulfur compared
to Carbon and the relatively larger normalized isotope mass distri-
bution in Molybdenum compared to Uranium.15 This effect of iso-
topic distribution is more pronounced at low temperatures, where
the other scattering mechanism, phonon-phonon scattering, is less
effective.

FIG. 5. Isotope scattering. Isotope-phonon scattering suppresses the thermal
conductivity of MoS2 monolayers by up to 50% at 100 K.

In conclusion, we have performed NEMD simulations with a
newly-parameterized empirical Stillinger Weber forcefield to calcu-
late the thermal conductivity of suspended monolayer MoS2 as a
function of temperature in the range of 100 K – 400 K. NEMD-
calculated thermal conductivity values were corrected to account
for the suppression of specific heat at low temperatures as well as
phonon scattering by explicit isotopes in the crystal. The reported
thermal conductivity values will serve as a reference for monolayer
MoS2 systems.

SUPPLEMENTARY MATERIAL

See supplementary material for details about forcefield param-
eterization and calculation of vibrational properties.
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