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Abstract

Typically, **C flux analysis relies on assumptions of both metabolic and isotopic steady state. If
metabolism is steady but isotope labeling is not allowed to fully equilibrate, isotopically
nonstationary metabolic flux analysis (INST-MFA) can be used to estimate fluxes. This requires
solution of differential equations that describe the time-dependent labeling of network
metabolites, while iteratively adjusting the flux and pool size parameters to match the transient
labeling measurements. INST-MFA holds a number of unique advantages over approaches that
rely solely upon steady-state isotope enrichments. First, INST-MFA can be applied to estimate
fluxes in autotrophic systems, which consume only single-carbon substrates. Second, INST-
MFA is ideally suited to systems that label slowly due to the presence of large intermediate pools
or pathway bottlenecks. Finally, INST-MFA provides increased measurement sensitivity to
estimate reversible exchange fluxes and metabolite pool sizes, which represents a potential
framework for integrating metabolomic analysis with **C flux analysis. This review highlights
the unique capabilities of INST-MFA, describes newly available software tools that automate
INST-MFA calculations, presents several practical examples of recent INST-MFA applications,

and discusses the technical challenges that lie ahead.



Introduction

Isotope tracer methods for assessing metabolic fluxes have far-reaching applications in both
biotechnology and medicine. Fluxes represent the ultimate outcome of metabolic control across
multiple mechanistic levels and, therefore, provide a quantitative representation of the cellular
metabolic state [1]. As a result, knowledge of metabolic fluxes is useful for improving
biocatalysts through metabolic engineering or developing diagnostics and therapies for metabolic
diseases. *C metabolic flux analysis (MFA) has been used to study metabolic phenotypes of
numerous microbial, plant, and animal systems under well-controlled experimental conditions
[2,3]. However, the underlying assumptions of metabolic and isotopic steady state required for
rigorous *C MFA studies are continually being challenged by applications involving more
complex systems and shorter experimental time scales. Isotopically nonstationary MFA (INST-
MFA) has thus emerged in response to the need to obviate the assumption of isotopic steady state

so that fluxes can be estimated from isotopically transient labeling data.

Though INST-MFA offers several advantages over steady-state **C MFA [4,5], its increased
computational and experimental demands have previously hindered its widespread adoption [6].
Fortunately, much progress has been made to streamline INST-MFA workflows over the past
three years. The purpose of this review is to highlight the unique capabilities of INST-MFA and
present recent examples of how advances in theory and methodology have been put into practice.
In particular, we describe newly available software tools that automate the computational
modeling steps required for INST-MFA, which have provided a major step forward in the field.
Finally, we conclude with a discussion of impending challenges that must be overcome to spur

INST-MFA ahead into new application areas. We refer readers to other well-written reviews on



the fundamentals of **C MFA [7,8] or detailed descriptions of the experimental workflow of

INST-MFA (Figure 1A) [6,9].

Essential concepts of INST-MFA

Metabolic pathways rearrange substrate atoms in unique and predictable ways. Therefore,
administration of a stable isotope tracer, such as *C-labeled glucose, to a biological system
enables the relative contributions from different pathways (and ultimately their fluxes) to be
determined by monitoring the patterns of isotope incorporation that emerge in downstream
metabolites over time. This process is analogous to adding a colored dye into a network of stirred
tanks such that the rate of labeling in each tank is determined by its residence time constant. In a
similar manner, the isotope labeling dynamics (Figure 1B, circles) of each metabolite pool will
depend on its turnover time constant. Eventually, the system will reach an isotopic steady state
wherein the labeling of each metabolite is fully equilibrated and will remain constant as long as

the metabolic state is unperturbed.

Because many metabolic pathways often act in concert to rearrange substrate atoms in complex
ways, it is typically necessary to use a mathematical model to infer information about fluxes
from isotope labeling experiments (ILES). These metabolic models are specific for each system
under study. Every reaction in the model should be associated with an annotated enzyme or
transport process, and all atom rearrangements should be confirmed from the biochemical
literature. This information is used to enumerate mass balances and isotopomer balances that
describe the conservation of atoms within the network. Once constructed, the model is used to

simulate isotope enrichments by iteratively guessing the values of metabolic fluxes. The



simulated enrichments are then compared to those measured experimentally. In the early
iterations, differences between simulated and measured metabolite enrichments are usually rather
large (Figure 1B, orange line). This difference is gradually minimized after subsequent iterations
(Figure 1B, green line) until the model converges to a best-fit solution that is confined by the
measured isotope enrichments, as well as any directly measureable fluxes and pool sizes (Figure
1B, blue line). This unique flux solution provides a snapshot of the system’s metabolism during

the ILE.

Mathematical models used for both MFA and INST-MFA assume that the system is at metabolic
steady state. In other words, the reaction fluxes and metabolite pool sizes remain constant
throughout the duration of the ILE. The critical difference between the two approaches is that
INST-MFA applies ordinary differential equations (ODEs) to simulate how isotope labeling
measurements change over time. Therefore, transient labeling measurements collected across
multiple time points can serve as inputs for INST-MFA, while measurements used for MFA
must be collected after isotope labeling has fully equilibrated. Even though the metabolic
networks may be similar in size, the simulation times for INST-MFA are usually significantly
longer due to 1) the need to repeatedly solve ODEs rather than algebraic balance equations and
2) the increased number of measurement time points that need to be simulated. For example, a
single steady-state flux estimation for a large E. coli network with measurements at a single time
point (taken from [4]) took less than 10 seconds, while a single INST-MFA flux estimation with

measurements at nine time points took approximately 10 minutes.



Applications of INST-MFA

For systems where steady-state isotope labeling is informative and can be obtained within the
timeframe of a typical ILE, stationary *C MFA is usually the preferred approach because of its
relative simplicity. However, there are important situations where fluxes cannot be determined at

isotopic steady state, and hence INST-MFA is required.

Autotrophic systems

First, INST-MFA can be applied to estimate fluxes in autotrophic systems, which consume only
single-carbon substrates [9,10]. This task is impossible with stationary **C MFA due to the fact
that all carbon atoms in the system are derived from the same source and therefore become
uniformly labeled at isotopic steady state (Figure 2A, final time point) [10-12]. Hence, steady-
state labeling measurements are independent of fluxes and cannot be used to estimate their
values. However, since unique labeling patterns exist during the transient period that precedes
isotopic steady state (Figure 2A, intermediate time points), these measurements can be used to

calculate a unique flux solution using INST-MFA.

Since the first autotrophic network was mapped using INST-MFA in the model cyanobacterium
Synechocystis sp. PCC6803 [10], there has been a surge in applications of INST-MFA to define
the diverse and intricate capabilities of photoautotrophic metabolism. For instance, INST-MFA
has been recently used to expose enhanced carbon assimilation capabilities in the fast-growing
cyanobacterium Synechococcus elongatus UTEX 2973 [13] and a surprisingly flexible
metabolism of a recombinant ethylene-producing strain of Synechocystis sp. PCC6803 [14].

Besides prokaryotes, researchers have also applied INST-MFA to characterize the



photoautotrophic metabolism in compartmentalized eukaryotes such as plant leaves [15],
diatoms [16], and algae [17]. In another study, the first use of INST-MFA to examine the effects

of nitrate deprivation on photoautotrophic metabolism was also successfully conducted [18].

INST-MFA has also immensely benefited the biotechnology of algae and cyanobacteria (recently
reviewed in [19]) as it ties genome engineering efforts to changes in photoautotrophic metabolic
fluxes, and vice versa. For instance, recent work by Jazmin et al. [20] demonstrates the ability to
identify metabolic bottlenecks in a recombinant aldehyde-producing cyanobacterial strain by
using INST-MFA to guide rational metabolic engineering. A recent INST-MFA study in the
diatom Phaeodactylum tricornutum elucidated the change in photoautotrophic metabolism in
response to increased lipid production caused by overexpression of diacylglycerol
acyltransferase [16]. In another example, Hendry et al. [21] shed light upon the metabolic effects
of disrupting a major carbon storage pathway by performing INST-MFA on a cyanobacterium
with inactivated glycogen synthesis genes. Their study was particularly interesting as it showed
that mutants were capable of redistributing carbon towards alternative sinks, which helps explain
why inactivating glycogen synthesis has had mixed outcomes when applied to different

production platforms [22-25].

Systems that are slow to label

Second, INST-MFA is ideally suited to systems that label slowly due to the presence of large
intermediate pools or pathway bottlenecks. Slow labeling poses a challenge for the design of
ILEs because isotopic steady state may not be achieved within the period that the system can be

maintained at metabolic steady state (Figure 2B). This scenario is most pertinent in mammalian



systems, which often experience a switch from lactate production during exponential growth
phase to lactate consumption during stationary growth phase [26]. Several earlier studies in
mammalian cell cultures have applied INST-MFA to determine fluxes from transient labeling
patterns measured during the short-lived periods of metabolic steady state [27-30]. Similar
approaches have been recently applied to murine embryonic stem cell lines [31] and

immortalized human amniocytes [32].

The use of INST-MFA in cell culture systems has the added benefit of avoiding the additional
time and cost of feeding isotope tracers over extended periods [33,34]. As a result, INST-MFA is
expected to become an indispensable tool for extending *C MFA approaches to studies of
industrial bioprocesses. Besides INST-MFA, slow labeling dynamics can also be circumvented
through parallel labeling experiments with multiple tracers that probe different parts of the
metabolic network [35]. For instance, parallel ILEs with labeled glucose and glutamine were
applied to overcome the slow labeling of TCA cycle metabolites in CHO cells such that
stationary MFA could be applied [36]. A recent study has further combined parallel labeling

strategies with INST-MFA [32] to maximize the information content of each ILE.

Systems that require increased precision

Finally, INST-MFA provides increased sensitivity to estimate reversible exchange fluxes, futile
cycles, and metabolite pool sizes [37-39]. It is important to note that the latter capability provides
a potential framework for integrating and cross-validating metabolomic analysis with flux
analysis [40]. Many net fluxes are estimated with greater precision by INST-MFA due to the

shear increase in number of measurement inputs that are regressed [39]. Reversible exchange



fluxes [41,42], on the other hand, are often poorly estimated by steady-state MFA [38] and can
introduce instability to the simulations if they are too large [43]. INST-MFA has been used to
precisely determine some exchange fluxes that were otherwise unobservable, even in systems
that achieve rapid isotopic steady states (Figure 2C). In a few instances, unique reaction
mechanisms such as metabolite pool buffering [44,45] and futile ATP cycling [46] were

discovered based on exchange fluxes determined by INST-MFA.

Publicly available software for INST-MFA

There are presently two publicly available Matlab software packages designed to perform INST-
MFA: INCA [47] and OpenMebius [48]. The most useful feature of these tools is that they
greatly simplify the network specification and model building steps of INST-MFA by
automatically generating metabolite balances and isotopomer balances from user-defined
reactions and atom transitions. Moreover, mass isotopomer distribution data, gathered from
either GC-MS or LC-MS/MS, can be conveniently imported into these programs from excel
worksheets. Once the experimental inputs and metabolic network are specified, users are guided

through the analysis workflow leading to the calculation of flux results (Figure 1A).

With either software, the flux estimations occur through iterative simulations performed within
the Matlab computing environment. In each iteration, reaction fluxes are guessed to solve the
metabolite and isotopomer balance equations in order to generate simulated isotope enrichment
data. The sum of squared residuals (SSR), which is a measure of discrepancy between the
simulated and experimentally measured enrichment data, is assessed after each run and

minimized in subsequent runs. The iterations are terminated once no further improvements in



SSR can be achieved. In INCA, a goodness-of-fit assessment is available to help users identify
major sources of discrepancies between the model simulations and experimental measurements.
The fit of the experimental data to the model is considered “acceptable” when the SSR falls

within the expected chi-square distribution range [49].

To determine the precision of an acceptable solution, statistical metrics are applied to assess the
95% confidence intervals of each calculated flux and pool size. In doing so, INCA uses either
parameter continuation [49] or Monte Carlo analysis [50] while OpenMebius utilizes a grid
search method. Once any of these statistical procedures is completed, the lower and upper
bounds for each flux and pool size estimate are computed. In addition, a confidence interval plot
is generated for each reaction that describes the sensitivity of the SSR to the estimated flux
value. A flux can be estimated precisely when the SSR is sensitive to perturbations in its

estimated value.

Finally, it is also worth noting that the simulation run times for many INST-MFA models can be
rather long, and hence parallelization capabilities are essential to ensure that total analysis times
are not prohibitive [47]. Using a cyanobacterial INST-MFA model consisting of 55 reactions and
34 metabolites [20], running 50 flux estimations from random initial guesses required ~20
minutes using INCA on a parallel cluster of 5 quad-core Linux computers (Intel Core i7 2600
processor with 4 GB of memory). Calculation of all 95% confidence intervals using parameter
continuation required ~6 hours of run time. These same calculations would have required

approximately 20 times longer if run in serial mode. For basic program setup and



troubleshooting in INCA, users are encouraged to make use of its comprehensive user manual

[51].

Conclusions and challenges ahead

In recent years, INST-MFA has advanced from a theoretical curiosity to a practical method of
flux assessment. It has proven useful for quantifying metabolism of systems that cannot achieve
isotopic steady state or do not produce informative steady-state labeling patterns. The release of
generalized software tools [47,48,52] implementing advanced computational algorithms [4,5] has

now made INST-MFA more widely available to the scientific community.

Despite its advantages, the increased complexity of INST-MFA introduces additional difficulties
at both the computational and experimental levels. First, introducing isotopically nonstationary
measurements adds further complexity to experimental design. In addition to the design
parameters that must be considered in the steady-state case, INST-MFA requires careful
selection of sampling time points and possibly metabolite pool size measurements [53]. These
new dimensions make the search for an optimal experimental design even more difficult and
time-consuming. Several computational approaches have been developed to efficiently traverse
this design space, including parameterized sampling and a posteriori ranking of measurement
time points [54,55]. Adebiyi et al. [12] recently applied these principles to examine the optimal
design of ILEs for determination of fluxes in cyanobacteria. They found that a minimum of three
sample time points were needed for precise flux estimation. Because some fluxes were more
sensitive to early time points and others were more sensitive to later time points, it was

concluded that sampling should span the entire ILE time course from the early transient period



until the labeling approaches steady state. This was best accomplished using an exponential
sampling strategy, where the time intervals between successive samples were gradually increased

through repeated scaling by a constant factor.

Adebiyi et al. [12] also examined the importance of pool size measurements on the precision of
flux estimates. Unlike related approaches such as kinetic flux profiling [53,56], direct
measurements of intracellular metabolite pool sizes are not critical for flux estimation by INST-
MFA. The pool sizes are treated as adjustable model parameters, which are optimized to match
the experimental labeling dynamics during the data regression. This is a significant advantage of
INST-MFA over other modeling approaches that depend explicitly on pool size measurements or
kinetic parameters that are not reliably obtained in vivo. For instance, it is often difficult to
achieve absolute quantification of intracellular pool sizes due to losses during metabolite
extraction or unknown subcellular compartmentation of metabolites. Therefore, most prior
INST-MFA studies have not supplied pool size measurements to the data regression
[10,13,18,20,21,31,32]. In fact, studies using both simulated data sets [12,15] and actual
experimental data sets [13] have concluded that the addition of pool size measurements made

negligible contributions toward flux determination by INST-MFA.

Second, the labeling of some intracellular metabolites can exhibit very short isotopic transients,
on the order of minutes to even seconds. Rapid sampling and quenching must be applied in these
situations to obtain meaningful data. The field of metabolomics has witnessed considerable
progress in this area, and some of these measurement techniques have already been successfully

adapted for INST-MFA studies in E. coli [37,38]. If downstream sample processing and data



analysis can be streamlined and automated, INST-MFA could soon become the basis for high-
throughput MFA studies [37,57]. Continued progress to overcome these technical hurdles will
undoubtedly open the door to further innovations that extend the scope and reach of INST-MFA

into new application areas.
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Special interest

[18]* Nitrogen starvation induces significant carbon flux redistribution in cyanobacteria. Since
this response was too rapid for practical application of INST-MFA, the authors examined the
effects of a partially recapitulated nitrogen starvation phenotype in a mutant strain deficient for
nitrate import. Using a 1-liter photobioreactor, the mutant was successfully maintained in
exponential growth to enable INST-MFA studies. The results suggest that cyanobacterial
responses to nitrate starvation involve increasing flux through anaplerotic reactions and elevating
ATP consumption.

[20]* By comparing the fluxes in an isobutyraldehyde producer to a non-producing strain under
photoautotrophic conditions, differences in metabolic fluxes through precursor pathways were

identified and subsequently targeted for overexpression, leading to improved strain performance.



[21]* Redirecting flux of fixed carbon from major carbon sinks toward synthetic production
pathways is a long-standing goal of metabolic engineering in photoautotrophs. Glycogen storage
consumes significant amounts of fixed carbon that could be otherwise directed to product
synthesizing pathways. This study revealed that cyanobacterial mutants that are incapable of
accumulating glycogen redistribute carbon toward other storage molecules, such as sucrose.
[32]* This study combined parallel labeling with [1,2-**C,]glucose and [U-**Cs]glutamine with
INST-MFA to characterize metabolism of adenovirus infection in human amniocyte-derived

cells.

Outstanding interest

[14]** By comparing the kinetic **C-labelling patterns in wild-type and ethylene-producing
Synechocystis strains, the Yu lab found that metabolic flux flowing into the TCA cycle was
dramatically enhanced in the ethylene-producing strain. The results showed that about 13% of
total fixed carbon flowed into the TCA cycle in the wild-type strain, whereas flux entering the
TCA cycle reached 37% of total fixed carbon in a strain with optimized ethylene-forming
enzyme (EFE) expression. Concomitantly, the predominantly bifurcated TCA cycle flux changed
to a cyclic pattern in the EFE-expressing strain.

[15]** This study describes the application of INST-MFA to a terrestrial plant system for the
first time. Through comparison of plants that had been acclimated to “normal” and “high” light
conditions, metabolic flux maps were used to identify changes in photorespiratory and
biosynthetic fluxes that occurred in plants that were adapted to high-light conditions.

[17]** This study performed comprehensive characterization of a new strain of eukaryotic algae.

Photoautotrophic and photoheterotrophic metabolism were studied with INST-MFA and



compared side-by-side. Biomass components and macromolecular compositions were measured.
This is also the first study for which INST-MFA was used to characterize photoautotrophic

metabolism across four compartments; cytosol, chloroplast, mitochondria and peroxisome.
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Figure captions

Figure 1. Summary of the flux estimation procedure using INST-MFA.

(A) Simplified workflow of INST-MFA studies. Currently available software tools, namely
INCA and OpenMebius, are used for model specification, flux estimation, and statistical
analysis. Initial guesses of fluxes and pool sizes are needed for the first iteration (iter)

only. The flux map generated is a snapshot of metabolism during the course of the ILE.

(B) Circles indicate a typical enrichment profile of a metabolite following introduction of an
isotope tracer. Lines represent model-simulated measurements. After numerous iterations
(orange and green lines), the model converges on a solution that minimizes the SSR

between the experimentally determined and model-simulated measurements (blue line).

Figure 2. Practical applications of INST-MFA (cases A, B, and C) versus MFA (case C

only).

(A) Autotrophic systems. Due to the use of a single-carbon tracer, no unique flux solution can

be calculated at isotopic steady state because all metabolites become uniformly labeled.

(B) Slow labeling dynamics. The labeling of some metabolites may be too slow to achieve

isotopic steady state within the timeframe that metabolic steady state can be maintained.

(C) Rapid isotopic steady state. Although stationary MFA can be used to determine fluxes,
INST-MFA can be used in some situations to improve estimates of exchange fluxes and

pool sizes if rapid sampling is available.

Arrows represent fluxes and tanks represent pool sizes at each time point.
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