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Abstract 

Typically, 
13

C flux analysis relies on assumptions of both metabolic and isotopic steady state. If 

metabolism is steady but isotope labeling is not allowed to fully equilibrate, isotopically 

nonstationary metabolic flux analysis (INST-MFA) can be used to estimate fluxes. This requires 

solution of differential equations that describe the time-dependent labeling of network 

metabolites, while iteratively adjusting the flux and pool size parameters to match the transient 

labeling measurements. INST-MFA holds a number of unique advantages over approaches that 

rely solely upon steady-state isotope enrichments. First, INST-MFA can be applied to estimate 

fluxes in autotrophic systems, which consume only single-carbon substrates. Second, INST-

MFA is ideally suited to systems that label slowly due to the presence of large intermediate pools 

or pathway bottlenecks. Finally, INST-MFA provides increased measurement sensitivity to 

estimate reversible exchange fluxes and metabolite pool sizes, which represents a potential 

framework for integrating metabolomic analysis with 
13

C flux analysis. This review highlights 

the unique capabilities of INST-MFA, describes newly available software tools that automate 

INST-MFA calculations, presents several practical examples of recent INST-MFA applications, 

and discusses the technical challenges that lie ahead. 

  



Introduction 

Isotope tracer methods for assessing metabolic fluxes have far-reaching applications in both 

biotechnology and medicine. Fluxes represent the ultimate outcome of metabolic control across 

multiple mechanistic levels and, therefore, provide a quantitative representation of the cellular 

metabolic state [1].  As a result, knowledge of metabolic fluxes is useful for improving 

biocatalysts through metabolic engineering or developing diagnostics and therapies for metabolic 

diseases. 
13

C metabolic flux analysis (MFA) has been used to study metabolic phenotypes of 

numerous microbial, plant, and animal systems under well-controlled experimental conditions 

[2,3]. However, the underlying assumptions of metabolic and isotopic steady state required for 

rigorous 
13

C MFA studies are continually being challenged by applications involving more 

complex systems and shorter experimental time scales. Isotopically nonstationary MFA (INST-

MFA) has thus emerged in response to the need to obviate the assumption of isotopic steady state 

so that fluxes can be estimated from isotopically transient labeling data.  

 

Though INST-MFA offers several advantages over steady-state 
13

C MFA [4,5], its increased 

computational and experimental demands have previously hindered its widespread adoption [6]. 

Fortunately, much progress has been made to streamline INST-MFA workflows over the past 

three years. The purpose of this review is to highlight the unique capabilities of INST-MFA and 

present recent examples of how advances in theory and methodology have been put into practice. 

In particular, we describe newly available software tools that automate the computational 

modeling steps required for INST-MFA, which have provided a major step forward in the field. 

Finally, we conclude with a discussion of impending challenges that must be overcome to spur 

INST-MFA ahead into new application areas. We refer readers to other well-written reviews on 



the fundamentals of 
13

C MFA [7,8] or detailed descriptions of the experimental workflow of 

INST-MFA (Figure 1A) [6,9]. 

 

Essential concepts of INST-MFA 

Metabolic pathways rearrange substrate atoms in unique and predictable ways. Therefore, 

administration of a stable isotope tracer, such as 
13

C-labeled glucose, to a biological system 

enables the relative contributions from different pathways (and ultimately their fluxes) to be 

determined by monitoring the patterns of isotope incorporation that emerge in downstream 

metabolites over time. This process is analogous to adding a colored dye into a network of stirred 

tanks such that the rate of labeling in each tank is determined by its residence time constant. In a 

similar manner, the isotope labeling dynamics (Figure 1B, circles) of each metabolite pool will 

depend on its turnover time constant. Eventually, the system will reach an isotopic steady state 

wherein the labeling of each metabolite is fully equilibrated and will remain constant as long as 

the metabolic state is unperturbed. 

 

Because many metabolic pathways often act in concert to rearrange substrate atoms in complex 

ways, it is typically necessary to use a mathematical model to infer information about fluxes 

from isotope labeling experiments (ILEs). These metabolic models are specific for each system 

under study. Every reaction in the model should be associated with an annotated enzyme or 

transport process, and all atom rearrangements should be confirmed from the biochemical 

literature. This information is used to enumerate mass balances and isotopomer balances that 

describe the conservation of atoms within the network. Once constructed, the model is used to 

simulate isotope enrichments by iteratively guessing the values of metabolic fluxes. The 



simulated enrichments are then compared to those measured experimentally. In the early 

iterations, differences between simulated and measured metabolite enrichments are usually rather 

large (Figure 1B, orange line). This difference is gradually minimized after subsequent iterations 

(Figure 1B, green line) until the model converges to a best-fit solution that is confined by the 

measured isotope enrichments, as well as any directly measureable fluxes and pool sizes (Figure 

1B, blue line). This unique flux solution provides a snapshot of the system’s metabolism during 

the ILE.  

 

Mathematical models used for both MFA and INST-MFA assume that the system is at metabolic 

steady state. In other words, the reaction fluxes and metabolite pool sizes remain constant 

throughout the duration of the ILE. The critical difference between the two approaches is that 

INST-MFA applies ordinary differential equations (ODEs) to simulate how isotope labeling 

measurements change over time. Therefore, transient labeling measurements collected across 

multiple time points can serve as inputs for INST-MFA, while measurements used for MFA 

must be collected after isotope labeling has fully equilibrated. Even though the metabolic 

networks may be similar in size, the simulation times for INST-MFA are usually significantly 

longer due to 1) the need to repeatedly solve ODEs rather than algebraic balance equations and 

2) the increased number of measurement time points that need to be simulated. For example, a 

single steady-state flux estimation for a large E. coli network with measurements at a single time 

point (taken from [4]) took less than 10 seconds, while a single INST-MFA flux estimation with 

measurements at nine time points took approximately 10 minutes.  



Applications of INST-MFA 

For systems where steady-state isotope labeling is informative and can be obtained within the 

timeframe of a typical ILE, stationary 
13

C MFA is usually the preferred approach because of its 

relative simplicity. However, there are important situations where fluxes cannot be determined at 

isotopic steady state, and hence INST-MFA is required.   

 

Autotrophic systems 

First, INST-MFA can be applied to estimate fluxes in autotrophic systems, which consume only 

single-carbon substrates [9,10]. This task is impossible with stationary 
13

C MFA due to the fact 

that all carbon atoms in the system are derived from the same source and therefore become 

uniformly labeled at isotopic steady state (Figure 2A, final time point) [10-12]. Hence, steady-

state labeling measurements are independent of fluxes and cannot be used to estimate their 

values. However, since unique labeling patterns exist during the transient period that precedes 

isotopic steady state (Figure 2A, intermediate time points), these measurements can be used to 

calculate a unique flux solution using INST-MFA.  

 

Since the first autotrophic network was mapped using INST-MFA in the model cyanobacterium 

Synechocystis sp. PCC6803 [10], there has been a surge in applications of INST-MFA to define 

the diverse and intricate capabilities of photoautotrophic metabolism. For instance, INST-MFA 

has been recently used to expose enhanced carbon assimilation capabilities in the fast-growing 

cyanobacterium Synechococcus elongatus UTEX 2973 [13] and a surprisingly flexible 

metabolism of a recombinant ethylene-producing strain of Synechocystis sp. PCC6803 [14]. 

Besides prokaryotes, researchers have also applied INST-MFA to characterize the 



photoautotrophic metabolism in compartmentalized eukaryotes such as plant leaves [15], 

diatoms [16], and algae [17].  In another study, the first use of INST-MFA to examine the effects 

of nitrate deprivation on photoautotrophic metabolism was also successfully conducted [18]. 

 

INST-MFA has also immensely benefited the biotechnology of algae and cyanobacteria (recently 

reviewed in [19]) as it ties genome engineering efforts to changes in photoautotrophic metabolic 

fluxes, and vice versa. For instance, recent work by Jazmin et al. [20] demonstrates the ability to 

identify metabolic bottlenecks in a recombinant aldehyde-producing cyanobacterial strain by 

using INST-MFA to guide rational metabolic engineering. A recent INST-MFA study in the 

diatom Phaeodactylum tricornutum elucidated the change in photoautotrophic metabolism in 

response to increased lipid production caused by overexpression of diacylglycerol 

acyltransferase [16]. In another example, Hendry et al. [21] shed light upon the metabolic effects 

of disrupting a major carbon storage pathway by performing INST-MFA on a cyanobacterium 

with inactivated glycogen synthesis genes. Their study was particularly interesting as it showed 

that mutants were capable of redistributing carbon towards alternative sinks, which helps explain 

why inactivating glycogen synthesis has had mixed outcomes when applied to different 

production platforms [22-25].  

 

Systems that are slow to label 

Second, INST-MFA is ideally suited to systems that label slowly due to the presence of large 

intermediate pools or pathway bottlenecks. Slow labeling poses a challenge for the design of 

ILEs because isotopic steady state may not be achieved within the period that the system can be 

maintained at metabolic steady state (Figure 2B). This scenario is most pertinent in mammalian 



systems, which often experience a switch from lactate production during exponential growth 

phase to lactate consumption during stationary growth phase [26]. Several earlier studies in 

mammalian cell cultures have applied INST-MFA to determine fluxes from transient labeling 

patterns measured during the short-lived periods of metabolic steady state [27-30].  Similar 

approaches have been recently applied to murine embryonic stem cell lines [31] and 

immortalized human amniocytes [32].  

 

The use of INST-MFA in cell culture systems has the added benefit of avoiding the additional 

time and cost of feeding isotope tracers over extended periods [33,34]. As a result, INST-MFA is 

expected to become an indispensable tool for extending 
13

C MFA approaches to studies of 

industrial bioprocesses. Besides INST-MFA, slow labeling dynamics can also be circumvented 

through parallel labeling experiments with multiple tracers that probe different parts of the 

metabolic network [35]. For instance, parallel ILEs with labeled glucose and glutamine were 

applied to overcome the slow labeling of TCA cycle metabolites in CHO cells such that 

stationary MFA could be applied [36]. A recent study has further combined parallel labeling 

strategies with INST-MFA [32] to maximize the information content of each ILE.  

 

Systems that require increased precision 

Finally, INST-MFA provides increased sensitivity to estimate reversible exchange fluxes, futile 

cycles, and metabolite pool sizes [37-39]. It is important to note that the latter capability provides 

a potential framework for integrating and cross-validating metabolomic analysis with flux 

analysis [40]. Many net fluxes are estimated with greater precision by INST-MFA due to the 

shear increase in number of measurement inputs that are regressed [39]. Reversible exchange 



fluxes [41,42], on the other hand, are often poorly estimated by steady-state MFA [38] and can 

introduce instability to the simulations if they are too large [43]. INST-MFA has been used to 

precisely determine some exchange fluxes that were otherwise unobservable, even in systems 

that achieve rapid isotopic steady states (Figure 2C). In a few instances, unique reaction 

mechanisms such as metabolite pool buffering [44,45] and futile ATP cycling [46] were 

discovered based on exchange fluxes determined by INST-MFA.  

 

Publicly available software for INST-MFA 

There are presently two publicly available Matlab software packages designed to perform INST-

MFA: INCA [47] and OpenMebius [48]. The most useful feature of these tools is that they 

greatly simplify the network specification and model building steps of INST-MFA by 

automatically generating metabolite balances and isotopomer balances from user-defined 

reactions and atom transitions. Moreover, mass isotopomer distribution data, gathered from 

either GC-MS or LC-MS/MS, can be conveniently imported into these programs from excel 

worksheets. Once the experimental inputs and metabolic network are specified, users are guided 

through the analysis workflow leading to the calculation of flux results (Figure 1A). 

 

With either software, the flux estimations occur through iterative simulations performed within 

the Matlab computing environment. In each iteration, reaction fluxes are guessed to solve the 

metabolite and isotopomer balance equations in order to generate simulated isotope enrichment 

data. The sum of squared residuals (SSR), which is a measure of discrepancy between the 

simulated and experimentally measured enrichment data, is assessed after each run and 

minimized in subsequent runs. The iterations are terminated once no further improvements in 



SSR can be achieved. In INCA, a goodness-of-fit assessment is available to help users identify 

major sources of discrepancies between the model simulations and experimental measurements. 

The fit of the experimental data to the model is considered “acceptable” when the SSR falls 

within the expected chi-square distribution range [49]. 

 

To determine the precision of an acceptable solution, statistical metrics are applied to assess the 

95% confidence intervals of each calculated flux and pool size. In doing so, INCA uses either 

parameter continuation [49] or Monte Carlo analysis [50] while OpenMebius utilizes a grid 

search method. Once any of these statistical procedures is completed, the lower and upper 

bounds for each flux and pool size estimate are computed. In addition, a confidence interval plot 

is generated for each reaction that describes the sensitivity of the SSR to the estimated flux 

value. A flux can be estimated precisely when the SSR is sensitive to perturbations in its 

estimated value.  

 

Finally, it is also worth noting that the simulation run times for many INST-MFA models can be 

rather long, and hence parallelization capabilities are essential to ensure that total analysis times 

are not prohibitive [47]. Using a cyanobacterial INST-MFA model consisting of 55 reactions and 

34 metabolites [20], running 50 flux estimations from random initial guesses required ~20 

minutes using INCA on a parallel cluster of 5 quad-core Linux computers (Intel Core i7 2600 

processor with 4 GB of memory). Calculation of all 95% confidence intervals using parameter 

continuation required ~6 hours of run time. These same calculations would have required 

approximately 20 times longer if run in serial mode. For basic program setup and 



troubleshooting in INCA, users are encouraged to make use of its comprehensive user manual 

[51].  

 

Conclusions and challenges ahead 

In recent years, INST-MFA has advanced from a theoretical curiosity to a practical method of 

flux assessment. It has proven useful for quantifying metabolism of systems that cannot achieve 

isotopic steady state or do not produce informative steady-state labeling patterns. The release of 

generalized software tools [47,48,52] implementing advanced computational algorithms [4,5] has 

now made INST-MFA more widely available to the scientific community.  

 

Despite its advantages, the increased complexity of INST-MFA introduces additional difficulties 

at both the computational and experimental levels. First, introducing isotopically nonstationary 

measurements adds further complexity to experimental design. In addition to the design 

parameters that must be considered in the steady-state case, INST-MFA requires careful 

selection of sampling time points and possibly metabolite pool size measurements [53]. These 

new dimensions make the search for an optimal experimental design even more difficult and 

time-consuming. Several computational approaches have been developed to efficiently traverse 

this design space, including parameterized sampling and a posteriori ranking of measurement 

time points [54,55]. Adebiyi et al. [12] recently applied these principles to examine the optimal 

design of ILEs for determination of fluxes in cyanobacteria. They found that a minimum of three 

sample time points were needed for precise flux estimation. Because some fluxes were more 

sensitive to early time points and others were more sensitive to later time points, it was 

concluded that sampling should span the entire ILE time course from the early transient period 



until the labeling approaches steady state. This was best accomplished using an exponential 

sampling strategy, where the time intervals between successive samples were gradually increased 

through repeated scaling by a constant factor.  

 

Adebiyi et al. [12] also examined the importance of pool size measurements on the precision of 

flux estimates. Unlike related approaches such as kinetic flux profiling [53,56], direct 

measurements of intracellular metabolite pool sizes are not critical for flux estimation by INST-

MFA. The pool sizes are treated as adjustable model parameters, which are optimized to match 

the experimental labeling dynamics during the data regression. This is a significant advantage of 

INST-MFA over other modeling approaches that depend explicitly on pool size measurements or 

kinetic parameters that are not reliably obtained in vivo. For instance, it is often difficult to 

achieve absolute quantification of intracellular pool sizes due to losses during metabolite 

extraction or unknown subcellular compartmentation of metabolites. Therefore, most prior 

INST-MFA studies have not supplied pool size measurements to the data regression 

[10,13,18,20,21,31,32]. In fact, studies using both simulated data sets [12,15] and actual 

experimental data sets [13] have concluded that the addition of pool size measurements made 

negligible contributions toward flux determination by INST-MFA. 

 

Second, the labeling of some intracellular metabolites can exhibit very short isotopic transients, 

on the order of minutes to even seconds. Rapid sampling and quenching must be applied in these 

situations to obtain meaningful data. The field of metabolomics has witnessed considerable 

progress in this area, and some of these measurement techniques have already been successfully 

adapted for INST-MFA studies in E. coli [37,38]. If downstream sample processing and data 



analysis can be streamlined and automated, INST-MFA could soon become the basis for high-

throughput MFA studies [37,57]. Continued progress to overcome these technical hurdles will 

undoubtedly open the door to further innovations that extend the scope and reach of INST-MFA 

into new application areas.   
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Special interest 

[18]* Nitrogen starvation induces significant carbon flux redistribution in cyanobacteria. Since 

this response was too rapid for practical application of INST-MFA, the authors examined the 

effects of a partially recapitulated nitrogen starvation phenotype in a mutant strain deficient for 

nitrate import. Using a 1-liter photobioreactor, the mutant was successfully maintained in 

exponential growth to enable INST-MFA studies. The results suggest that cyanobacterial 

responses to nitrate starvation involve increasing flux through anaplerotic reactions and elevating 

ATP consumption. 

[20]* By comparing the fluxes in an isobutyraldehyde producer to a non-producing strain under 

photoautotrophic conditions, differences in metabolic fluxes through precursor pathways were 

identified and subsequently targeted for overexpression, leading to improved strain performance.  



[21]* Redirecting flux of fixed carbon from major carbon sinks toward synthetic production 

pathways is a long-standing goal of metabolic engineering in photoautotrophs. Glycogen storage 

consumes significant amounts of fixed carbon that could be otherwise directed to product 

synthesizing pathways. This study revealed that cyanobacterial mutants that are incapable of 

accumulating glycogen redistribute carbon toward other storage molecules, such as sucrose. 

[32]* This study combined parallel labeling with [1,2-
13

C2]glucose and [U-
13

C5]glutamine with 

INST-MFA to characterize metabolism of adenovirus infection in human amniocyte-derived 

cells.  

 

Outstanding interest 

[14]** By comparing the kinetic 
13

C-labelling patterns in wild-type and ethylene-producing 

Synechocystis strains, the Yu lab found that metabolic flux flowing into the TCA cycle was 

dramatically enhanced in the ethylene-producing strain. The results showed that about 13% of 

total fixed carbon flowed into the TCA cycle in the wild-type strain, whereas flux entering the 

TCA cycle reached 37% of total fixed carbon in a strain with optimized ethylene-forming 

enzyme (EFE) expression. Concomitantly, the predominantly bifurcated TCA cycle flux changed 

to a cyclic pattern in the EFE-expressing strain. 

[15]** This study describes the application of INST-MFA to a terrestrial plant system for the 

first time. Through comparison of plants that had been acclimated to “normal” and “high” light 

conditions, metabolic flux maps were used to identify changes in photorespiratory and 

biosynthetic fluxes that occurred in plants that were adapted to high-light conditions. 

[17]** This study performed comprehensive characterization of a new strain of eukaryotic algae. 

Photoautotrophic and photoheterotrophic metabolism were studied with INST-MFA and 



compared side-by-side. Biomass components and macromolecular compositions were measured. 

This is also the first study for which INST-MFA was used to characterize photoautotrophic 

metabolism across four compartments; cytosol, chloroplast, mitochondria and peroxisome.  
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Figure captions 

Figure 1. Summary of the flux estimation procedure using INST-MFA.  

(A)  Simplified workflow of INST-MFA studies. Currently available software tools, namely 

INCA and OpenMebius, are used for model specification, flux estimation, and statistical 

analysis. Initial guesses of fluxes and pool sizes are needed for the first iteration (iter) 

only. The flux map generated is a snapshot of metabolism during the course of the ILE. 

(B) Circles indicate a typical enrichment profile of a metabolite following introduction of an 

isotope tracer. Lines represent model-simulated measurements. After numerous iterations 

(orange and green lines), the model converges on a solution that minimizes the SSR 

between the experimentally determined and model-simulated measurements (blue line).  

 

Figure 2. Practical applications of INST-MFA (cases A, B, and C) versus MFA (case C 

only).  

(A) Autotrophic systems. Due to the use of a single-carbon tracer, no unique flux solution can 

be calculated at isotopic steady state because all metabolites become uniformly labeled. 

(B) Slow labeling dynamics. The labeling of some metabolites may be too slow to achieve 

isotopic steady state within the timeframe that metabolic steady state can be maintained.  

(C) Rapid isotopic steady state. Although stationary MFA can be used to determine fluxes, 

INST-MFA can be used in some situations to improve estimates of exchange fluxes and 

pool sizes if rapid sampling is available. 

Arrows represent fluxes and tanks represent pool sizes at each time point. 






	ADP4C9C.tmp
	Slide Number 1
	Slide Number 2


