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���������

We propose a machine�learning model, based on the random�forest method, to predict CO 

adsorption in thiolate protected nanoclusters. Two phases of feature selection and training, 

based initially on the Au25 nanocluster, are utilized in our model. One advantage to a machine�

learning approach is that correlations in defined features disentangle relationships among the 

various structural parameters. For example, in Au25, we find that features based on the 

distribution of Ag atoms relative to the CO adsorption site are the most important in predicting 

adsorption energies. Our machine�learning model is easily extended to other Au�based 

nanoclusters and we demonstrate predictions about CO adsorption on Ag�alloyed Au36 and Au133 

nanoclusters.  

 

�	
���
���machine learning, CO adsorption, Ag�alloyed Au nanoclusters 
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Thiolated gold nanoclusters are one of the most widely studied systems in contemporary 

research. The increased interest is attributed to several promising applications proven for 

thiolated gold nanoclusters in a variety of fields including catalysis, sensing, electronics� and bio�

medicine.1–14 Given recent advancements in synthesis�techniques, bimetallic counterparts of 

these systems are also produced; thereby enabling further tuning of electrochemical properties 

of Au�based nanoclusters and subsequently widening the scope of their applicability.4,15–17 

Unfortunately��combinatorial barriers exist which prevent fast identification of correct cluster 

compositions for chosen applications; subsequently, the enormity of the number of alloyed 

systems provides challenges for characterization. Furthermore, no theoretical methods exist to 

explore all combinatorically�possible alloyed configurations within a practically sensible time 

frame. For example, the number of bimetallic configurations for the smallest known thiolated 

nanocluster, Au15�SR)13, is combinatorically over 32�000 which yields a significant 

computational challenge to characterize all potential structures. The existence of over thirty 

different thiolated nanoclusters composed of 15 to 144 Au atoms increases the importance for 

developing smart approaches capable of making reasonable property predictions.18 

Several researchers have presented reports where they have successfully employed modern 

machine�learning models to predict many electrochemical properties, including electrophilicity 

parameters, atomization energies, dielectric constants, condensed Fukui indices, atomic 

charges, band gaps, gas adsorption, and HOMO/LUMO energies in various nano�systems.19–26 

The basic workflow of these models are to: (1) energetically relax the molecular/crystalline 

systems, (2) create a dataset containing the target property and a set of numerical fingerprints of 

these systems, and (3) train and test machine learning algorithms on these datasets to arrive at 

predictions. A major drawback of these approaches is the difficulty to deal with large systems. 

Energetically relaxing thiolated gold nanocluster systems is computationally challenging which�

compromises the advantages of machine learning.��

In recent years, different approaches of defining coordination numbers were proposed to predict 

adsorption properties in metal nanoclusters without ligand passivation.27–31 However, the 

presence of ligands containing different non�metallic atoms and oriented in different directions 

gives rise to extra complexity in the adsorbent�adsorbate interactions. This complexity is 

difficult to capture with coordination numbers alone.�In this work, we propose an efficient 

machine�learning model aided by a fast ab�initio density functional theory (DFT��approach to 

accomplish adsorption energy predictions in alloyed thiolated nanoclusters. In our model, we 
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use only the structural properties of the un�adsorbed, non�relaxed systems. We do not use the 

knowledge on adsorbent�adsorbate interactions or structural/electronic properties of the 

optimized configurations (which requires performing many additional DFT calculations). While 

this can affect the prediction accuracy, our model can serve as a very fast technique to filter out a 

set of candidates for further testing. We demonstrate performance of the model by predicting 

CO adsorption energies in Ag alloyed Au25�SR)18. CO oxidation has long been the preferred 

reaction to study the catalytic properties of Au�based systems.2,4,32–34  Also, catalytic CO 

oxidation has been tested as a mechanism to remove poisonous CO from H2 in fuel cells����In our 

recent work, we found that CO�adsorption on Ag alloyed Au25 is sensitive to the number of 

dopants and the adsorption energies do not have a predictable trend.36 To the best of our 

knowledge, this is the first machine�learning study done for thiolated�Au�based nanoclusters.� 

�

�������������������������

The success of any machine learning method depends on the quality of the numerical 

representation of the system under study. Such representations, realized as a collection of 

numerical fingerprints, are commonly called ��������. The features in our case fall into four 

main categories based on (�) the distance between atoms, (��) the atomic�bonding counting, (���) 

the graphical representation of the cluster, and (�	) the volume enclosed by atoms.  

We begin our investigation by examining the Au25 structure which consists of a core of 13 Au 

atoms surrounded by six SR�Au�SR�Au�SR staple�like units, where SR stands for thiolate 

ligands (see Fig. S1 for a detailed illustration of the Au25 structure). The main adsorption sites 

in thiolated nanoclusters are the Au atoms on the surface and the facets formed by surface Au 

atoms.3,32,37,38 Our features are applicable to any adsorption site. For the demonstration of our 

method, we only considered adsorption on Au atoms on the surface of Au25 (Blue atoms in Fig. 

1). Since there are 12 Au sites in the staple units, the number of CO�adsorbed structures 

considered were 12×25×15. All these CO�adsorbed structures were energetically relaxed using 

the same force tolerance used for adsorbate�free Au25 structures to facilitate adsorption energy 

calculation.  

The distance between Ag atoms and the adsorbent site (�������� = ���� − ����) forms the basis 

of defining the 
������� features (see Fig. 1). The mean and standard deviation of �������� form 

two simply�defined features (d1, d2). And, the features labeled d3 � d7 are based on the centroid 

position of the Ag atoms relative to the adsorbent site as discussed in the Supporting 
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Information. By identifying the atoms as belonging to different layers based on their distance to 

the adsorbent site, we define another class of features. As marked by the red�dashed curves in 

Fig. 1, boundaries of each layer are defined as concentric circles having radii equivalent to the 

distance between the adsorbent site and neighbors nearest to the adsorbent site. Basic building 

blocks of a nanocluster are atoms. We can also define higher order building blocks such as A�B 

bonds (bonds connecting A and B atoms), or A�B�C and A�B�C�D fragments in each layer ‘
�; 

accordingly, for Au25, we have created 81 atomic�bonding features. For each feature, we can 

subsequently make a normalized count. For example, if a particular layer contains six C, three H 

and five S atoms, normalized counts are 6/(6+3+5), 3/(6+3+5) and 5/(6+3+5) for C, H and S, 

respectively.  

A molecule can also be defined via graphical representation. Atoms and bonds in the molecule 

become nodes and edges of a graph. Using this type of representation, the following features 

were defined: (1) number of Ag atoms within a path length of three units from AS (g1), (2) total 

number of atoms within a path length of two units from AS (g2), (3) number of edges connecting 

two metal atoms within a path length of three units from AS (g3), (4) shortest path lengths 

between AS and the eight nearest neighbor Au or Ag atoms (g4�g11). We add a constant to the 

path length when the metal atom is Ag. This gives a sequence of numbers representing the 

metallic environment and the relative AS�metallic atom distance. Volumetric features include 

the volume enclosed by AS and fifteen of its nearest neighbors (v1) and the volume enclosed by 

the AS and all the Ag sites (v2).  

Now that we have defined a set of features to describe the Au�based nanocluster and the 

absorbent site, we generate data from DFT calculations to discover correlations between 

different features and the absorbent site. Of course, machine�driven algorithms are only feasible 

when very large datasets are available; small datasets increase statistical anomalies. To prepare 

the dataset, we generated AgxAu25�x nanoclusters with � ranging from 1 to 25. We created at least 

500 isomers with random Ag sites for each alloy case �=4�21. For the remaining alloying levels 

(�=1�3 and �=22�25), we created all possible Ag�alloyed configurations. All the calculations 

presented in this work were performed using a local�orbital density functional theory code, 

called FIREBALL.39 We chose Becke40 exchange with Lee�Yang�Parr correlation functional41 

(BLYP) to perform structural relaxations. The basis set is made of optimized numerical local 

atomic orbitals which were confined to regions limited by the corresponding cutoff radii ��. The 

���values used for our study�are given in the Supporting information. The chosen basis set and 

the DFT functional as implemented in FIREBALL have been successfully validated by several 

previous studies on Au nanoparticle systems.36,42–45 The adsorbate�free Ag�alloyed structures 
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6 

 

were energetically relaxed until the root�mean�square error of the force on the atoms was less 

than 0.05 eV/Å.  

An inspection of structural energies of AgxAu25�x revealed jumps in the energy profiles around 

the 15th lowest energy for most of the alloying levels (see Fig. S2 and S3 for energy profiles of 

alloying levels 1�24). These jumps will be hereafter referred to as ‘gaps’ in the energy profiles. It 

is likely that the higher energy structures above these energy gaps have a low probability to exist. 

This assumption is based on the experimental studies of 1�Ag alloyed Au25, which have shown 

that preferable Ag sites are on the surface of Au13 core.46,47 Interestingly, all the structures with a 

Ag atom on the surface of the Au13 core are the ones having energies below the gap in Fig. S2 (a). 

Therefore, a statistically meaningful dataset may consist of structures with energies less than the 

energy corresponding to the gap. However, such a selection criteria results in poor 

representation from alloying levels having low�lying energy gaps. This lack of representation 

reduces the generalizability of the model. Hence, to maximize the number of data points, while 

avoiding the effect from the high energy structures, we selected fifteen lowest energy structures 

from every alloying level to determine the CO adsorption�energy data.  

We should note that lowest�energy adsorbate�free Au25 may not always be associated with 

lowest�energy CO�adsorbed structures. However, we did not restrict the number of CO�adsorbed 

structures based on their energies. This is because, when a reaction takes place, only the most 

energetically favorable Au25 have the likelihood to exist and CO gets adsorbed on these stable 

Au25. Removing the higher energy CO�adsorbed data from the model results in our model being 

applicable only to a small niche of adsorbate�free Au25 associated with low energy CO�adsorbed 

Au25. Such limitations reduce the practical importance and the generalizability of our model as it 

will fail to predict the adsorption energies of most of the experimentally synthesized Au25. 

The adsorption energy is calculated according to (	 = 	
�/��
�����
 − 	��
�����
 − 	
�) for CO 

binding at the Ag/Au sites (at the outer shell of the nanocluster). The final dataset is a (number�

of�configurations) × (number�of�features+1) matrix, with each row corresponding to a different 

calculated Ag alloyed configuration. One of the columns contains the adsorption energies and 

the rest of the columns correspond to different features.  

 

�

����	��������
�
����������
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A distribution of our calculated adsorption energies is shown in Fig. 2. These energies have a 

mean of �0.72 eV and a skewness of 0.99. The positive skewness indicates the presence of values 

deviated from the mean towards the positive energies. Machine�learning algorithms generally 

prefer normal distributions. Thus we transformed all the adsorption energies according to ln(E 

+ ��������). Here, the �������� has to be chosen so that the skewness of the distribution is 

minimized. We found that a minimum skewness of �0.002 results when 2.5 is chosen as this 

constant.  

Developing and testing our model consists of two phases. In the first phase, we evaluate the 

performance of different machine learning algorithms using all the defined features. Tree 

ensemble methods like random forests48,49 and xgboost50 performed better than neural networks 

and other regression methods like linear, ridge, kernel ridge and support vector regression. For 

this study, we chose random forests as implemented in Scikit�learn Python library (discussed in 

the Supporting Information).51 Random forests is a supervised learning algorithm containing a 

forest of decision trees. The final prediction is a weighted average of predictions of all the trees.  

In the �����������, prior to feeding the features to the random forest algorithm, each feature was 

scaled such that each had a zero mean and unit variance. This is to ensure that no single feature 

will dominate the objective function of the algorithm, ignoring the effects of other features with 

lower variance. Next, we randomly split the whole dataset as training and testing sets according 

to the 80:20 ratio. Using a random forest with 100 trees, the data in the training set was used 

with five�fold cross validation. We used the built�in feature ranking method in random forests to 

determine the best features based on their contribution to the prediction accuracy. Fig. 3 shows 

the top 10 features along with their Pearson correlation coefficient and mutual information 

values with respect to the adsorption energy. The Pearson correlation coefficient quantifies the 

linear dependence between two variables while mutual information is a measure of both linear 

and non�linear dependence. The top 10 features have decent linear dependencies with 

adsorption energy, even though our features are based on the geometric properties of non�

relaxed structures. As the adsorption energies were calculated using DFT�relaxed structures, 

these correlation values indicate that our features are likely related to the local chemical 

environment at the vicinity of adsorbent sites of the synthesized structures. Not surprisingly, the 

simplest possible feature for an alloyed system, the number of dopant Ag atoms (nAg) has the 

greatest effect on the prediction accuracy. However, as will be shown, nAg alone is not enough to 

achieve the maximum accuracy. It is also worth noting that all the distance�based features are 

among the top 10 features.  
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The feature�feature correlations in Fig. 4 indicate that the number of dopant Ag atoms has the 

greatest correlation to the other top 14 features (the feature v2 has the next highest correlation 

to the other features). One interesting aspect is that Ag dependency is directly inherent in many 

of the defined features, particularly features based on centroids and bonding information. 

However, the number of dopant Ag atoms are not directly defined within the feature HCH1 

which corresponds to the normalized number of H�C�H fragments in the 1st layer of neighbors 

nearest to the adsorbent site as it is independent of the number of dopant Ag atoms. 

Surprisingly, despite the lack of defined dependency between the two features nAg and HCH1; 

there is a strong correlation between these two features (value of 0.68) as indicated in the 

correlation map of Fig. 4.  

The features specifically designed to measure the clustering of the Ag (d5, d6 and d7) are among 

the top 5 features. It is surprising to find that d6 and d7 contain almost the same information on 

linear dependence (correlation coefficient of 0.99), even though they are based on different 

centroids. This strong correlation indicates that Ag atoms are clustered around a similar central 

position. Despite the close relationship between d6 and d7, random forests has considered both as 

highly important. Even though d5 has the lowest correlation values compared with the top 5, it 

has been ranked as the second most important feature. This could be due to d5 having 

interactions with the other features. Even v2 is an indirect measure of the clustering, as the 

volume enclosed by the adsorbent site and the Ag atoms decreases with Ag atoms being 

clustered within a proximity to each other.  

The counts of building blocks were previously shown to be effective in other systems and we 

were inspired to add these as features for our investigation;21–23 however, we note relatively poor 

scores for building block features with one exception. The occurrence of HCH1 (number of HCH 

units in layer 1) as one of the important features (seen in Fig. 3) show that orientation of ligands 

also plays a significant role in predicting the adsorption energies. This is because H�C�H units 

are only found in the ligands which are more readily located near CO adsorption sites.  

There is no strong agreement between the trends in Pearson correlation and mutual information 

with that of the feature importance, even though for features between nAg and d1 in Fig. 3, high 

mutual information values are generally associated with high feature importance. This was 

further confirmed by constructing an extended correlation map by considering more features 

(for example, see Fig. S4 in Supporting Information). We notice that the features d5�d7 and v2 

are among the highest scoring mutual information values, but not among the features with 

highest Pearson correlation coefficients. This may indicate that non�linear relationships 
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between the adsorption energy and the features that an important role in the prediction. We also 

note that the features having a negative linear correlation with adsorption energy (for example, 

AgAuAu1 and AuAgAu2) have low effect on the prediction.  

Inside the cross validation loop, we train a second random forest model (also with 100 trees) with 

the first � top features to determine optimum � as discussed in the Supporting Information. 

Determination of the new top � features marks the end of the first phase for training our model. 

Using the new set of features selected in the cross validation, we create additional features in the 

�����
������ � known as feature engineering. These features were created by taking the square 

root, raising them to power two and three and taking the log of the selected features as discussed 

in the Supporting Information. Creating more complicated features, like adding and multiplying 

features in 2 or 3 feature combinations and calculating the Euclidian distance between feature 

values and their cluster centers, did not result in improvement of the prediction accuracy. 

Following the same approach as the first phase, the best features were filtered out from the ones 

selected in the first phase and those engineered based on them. Additionally, parameter tuning 

of the random forest method was also performed to determine the optimal parameters of the 

final model. However, no significant gain in the accuracy was obtained with different 

parameters. Therefore, the final model contains only 100 trees with default parameters.  

The features in the final model are the ones of the best cross validation step. These are nAg, 

nAg2, nAg3, d6, d63. This result shows that adsorption energies in Au25 can be predicted with 

only two features along with their non�linear counterparts. This model was then trained once 

with the whole training set and tested with the testing set to arrive at the final prediction 

accuracy.  

The accuracy of our model prediction is shown in the prediction performance plot (log 

transformed), Fig. 5(a) with the distribution of residual error shown in Fig. 5(b). Prediction 

accuracies of the log transformed data are, R2 = 0.77869, MAE = 0.13196 and RMSE = 0.17348. 

The higher the residual error, the more erroneous the result. For negative and positive 

adsorption energies, the mean of the absolute residual errors are 0.20 eV and 0.44 eV, 

respectively. Predicted values corresponding to positive adsorption energies have more 

deviation from the actual values compared to the negative adsorption energies (see Fig. S6). 

Positive adsorption energies correspond to weak CO/Au25 attraction. The potential energy 

surface consists of many local minima with similar energies which results in structurally 

different CO adsorbed isomers having similar adsorption energies. Shallow potential energy 

surfaces do make it difficult for the learning algorithm to accurately predict positive adsorption 
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energies. Another major factor affecting the accuracy of our model may be that the ligands are 

oriented in different directions. Ligands create a complex chemical environment for adsorbate 

molecules. As shown in Fig. 3 and Fig. 4, adsorption energies are mainly affected by the location 

of Ag atoms and the H�C�H fragments closest to the adsorption site. To capture the combined 

effect of ligands and dopants, we fed our model with compound features created by multiplying 

features. However, these new features did not result in improvements for the model accuracy. 

Further, the use of non�relaxed isomers to generate features is also detrimental to the prediction 

accuracy. This is because the presence of dopants significantly affects bonding and atom�atom 

distances of a relaxed structure may be highly deviated from those of the non�relaxed one. Our 

model was unable to learn without ambiguity; however, there is a definite relationship between 

the positive adsorption energies and structural parameters. We also tried to build two models 

for positive and negative adsorption energies. However, this did not result in an increased 

accuracy, which could be due to the reduced number of data points in each sample.  

We extend our model to Au36(SR)24 and Au133(SR)52 nanoclusters; thereby demonstrating the 

versatility of our model. For Au36(SR)24, we used only 1360 isomers having either 1, 2, 3, 6, 9, 12, 

13, 18, or 24 of Ag atoms. At the second phase of feature selection, the best features were found 

to be d7, d73, HC12, d72, HC1, HC13 which gave accuracies of 0.65388 (R2), 0.21582 (RMSE) and 

0.1856 (MAE) for predictions (prediction performance plot shown in Fig. 6(a)). These accuracies 

are encouraging, given the less symmetric geometry of Au36 in comparison to Au25 and the 

smaller sample size used for the training. As Au36 is relatively a small cluster, the number of 

samples can be increased easily to achieve a possible increase in the prediction accuracy. These 

accuracies also show that the features defined based on the nearly spherical Au25 cluster can be 

readily used for the clusters like Au36 which have different symmetries. The Au133(SR)52 

nanocluster is the largest thiolated nanocluster of which the crystal structure has been verified. 

This nanocluster contains 393 atoms with �SCH3 as the ligand. We generated 1898 CO adsorbed 

isomers having 5, 10, 15, 20, 30, 48, 80 and 120 Ag atoms. Even with a small number of samples 

we were able to achieve accuracies of 0.75063 (R2), 0.17128 (RMSE) and 0.11882 (MAE) for 

predictions (prediction performance plot shown in Fig. 6(b)). This shows that our model may be 

well suited for spherical�like clusters. The best features selected at the second phase of feature 

selection were, nAg3, nAg, nAg2, d5, d52, d53, d63, d62, d6, d73, d7, d72, v2, g33, g32, g3, d12, g22, 

v22, d22.  

 

Interestingly, in Au36, features based on the orientation of the ligands have a significant effect on 

the prediction accuracy, whereas in Au25 and Au133, only the dopant�based features have the 
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strongest influence. We hypothesize that this is due to the ligands in Au36 causing a higher steric 

hindrance than the ligands in either Au25 or Au133. To test this hypothesis, we can use the feature 

HC1, the normalized count of H�C bonds within ten nearest neighbors of the adsorbent sites. 

The higher the number of H�C bonds close to the adsorbent site, the larger is the steric 

hindrance. For each adsorbate�free nanocluster, we calculated the average of HC1 over all the 

adsorbent sites. The averages obtained for Au25, Au36, and Au133 are 0.10, 0.14, and 0.09 

respectively. Thus, there are more H�C bonds closer to the adsorbent sites in Au36 compared to 

other two nanoclusters, resulting in greater steric hindrance to approaching CO adsorbates. The 

steric hindrance from H�C bonds is likely related to the sphericity52 of the core of the 

nanoclusters. The closer the value of sphericity to 1, the more spherical is the cluster. More 

spherical surfaces tend to cause less steric hindrance as illustrated in Fig. S8. As shown in Fig. 

S9 (a), the core of Au36 consists of planar�like surfaces with a sphericity of 0.735. Sphericities of 

Au25 and Au133 cores are 0.940 and 0.943 respectively.  

�

��������������

Overall, we have developed a machine�learning model based on the random forest method to 

predict CO adsorption energies for Au�based nanoclusters, starting by training our model with 

the Au25 nanocluster alloyed with Ag. We have defined approximately 100 features to model 

nanoclusters as numerical representations. Over 2,000 data points are contained in our model. 

Using a two�step feature�selection process, and features engineering approaches, we predicted 

the adsorption energies with accuracies of 0.78 (R2) and 0.17 (RMSE). Our chosen features are 

based merely on the structural properties of the unoptimized adsorbate system (to enable rapid 

prediction); our model is an excellent filtering tool to select first round candidates for further, 

more accurate, analysis. The validity of our model was also tested by predicting CO adsorption 

energies in the less symmetric Au36 nanocluster and the larger Au133 nanocluster, using the same 

defined features as the Au25 model, with prediction accuracies (R2) of 0.65 and 0.75, 

respectively.��

�

����������������� �����

More details on the computational methodology and additional calculations�

�

�
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%����&'� �(�� )*&':  

 

 

 

%����&��� The CO/Au25 system (A detailed description on the structure of Au25 is given in Fig. 

S1). Hypothetical boundaries of two nearest�neighbor layers are shown with dashed red curves. 

���stands for the CO adsorbent site. Adsorbent Au/Ag atomic sites on the surface are colored in 

blue. Orange is used for Au/Ag sites in the core inaccessible for CO due to steric hindrance.  
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%����&�+� Variation of the calculated CO adsorption energies.  
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�

%����&����Highest ranking important features selected by random forests and the 

corresponding Pearson correlation coefficient and mutual information values; nAg is the 

number of Ag atoms, d3�d5 are measures of how closely the Ag atoms are clustered around the 

centroid of the Ag locations relative to the adsorbent site, HCH1 is the normalized number of H�

C�H fragments in the 1st layer of neighbors nearest to the adsorbent site, d1 and d2 are mean 

and standard deviation of |�AS−Ag|, and v2 is the volume enclosed by the adsorbent site and the 

Ag sites. �
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%����&�,� Feature-feature correlation map of the top features.  
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�

%����&�-� Prediction performance plots of the final model actual vs. predicted adsorption 

energies: (a) actual vs predicted on regression plot and (b) histogram counts of (predicted – 

actual) adsorption energies.  

  

(b) 

(a) 
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%����&�.�� Prediction performance plots for (a) Au36 and (b) Au133 nanoclusters. 
 

 

 

 

 

 

 

 

�
�

Page 18 of 22

ACS Paragon Plus Environment

Journal of the American Chemical Society

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



19 

 

�&�&�&�/&'�
 

(1)  Liu, Y.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and Selective Epoxidation of 
Styrene with TBHP Catalyzed by Au25 Clusters on Hydroxyapatite. �������
�
�������������� +0�0, �� (4), 550–552. 

(2)  Nie, X.; Qian, H.; Ge, Q.; Xu, H.; Jin, R. CO Oxidation Catalyzed by Oxide�Supported 
Au25(SR)18 Nanoclusters and Identification of Perimeter Sites as Active Centers. ����
���� +0�+, � (7), 6014–6022. 

(3)  Li, G.; Jin, R. Gold Nanocluster�Catalyzed Semihydrogenation: A Unique Activation 
Pathway for Terminal Alkynes. ������
������������������������
�������� +0�,, ��� 
(32), 11347–11354. 

(4)  Li, W.; Liu, C.; Abroshan, H.; Ge, Q.; Yang, X.; Xu, H.; Li, G. Catalytic CO Oxidation Using 
Bimetallic M�Au25–� Clusters: A Combined Experimental and Computational Study on 
Doping Effects. ����������
���� ������
������������ +0�., �!" (19), 10261–10267. 

(5)  Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T. 
Extremely High Stability of Glutathionate�Protected Au25 Clusters Against Core Etching. 
���

 +001, � (5), 835–839. 

(6)  Ghosh, A.; Udayabhaskararao, T.; Pradeep, T. One�Step Route to Luminescent Au18SG14 
in the Condensed Phase and Its Closed Shell Molecular Ions in the Gas Phase. �#� ���#�
����#�$���# +0�+, � (15), 1997–2002. 

(7)  Das, A.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. Crystal Structure and 
Electronic Properties of a Thiolate�Protected Au24 Nanocluster. �������
� +0�,, � (12), 
6458–6462. 

(8)  Yu, Y.; Luo, Z.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D.; Xie, J. Identification of 
a Highly Luminescent Au22(SG)18 Nanocluster. �#���#�����#����# +0�,, ��� (4), 1246–
1249. 

(9)  Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. 
Reversible Switching of Magnetism in Thiolate�Protected Au25 Superatoms. �#���#�����#�
���# +002, ��� (7), 2490–2492. 

(10)  McCoy, R. S.; Choi, S.; Collins, G.; Ackerson, B. J.; Ackerson, C. J. Superatom 
Paramagnetism Enables Gold Nanocluster Heating in Applied Radiofrequency Fields. 
�������� +0��, % (3), 2610–2616. 

(11)  Ramakrishna, G.; Varnavski, O.; Kim, J.; Lee, D.; Goodson, T. Quantum�Sized Gold 
Clusters as Efficient Two�Photon Absorbers. �#���#�����#����# +003, ��" (15), 5032–
5033. 

(12)  Russier�Antoine, I.; Bertorelle, F.; Vojkovic, M.; Rayane, D.; Salmon, E.; Jonin, C.; 
Dugourd, P.; Antoine, R.; Brevet, P.�F. Non�Linear Optical Properties of Gold Quantum 
Clusters. The Smaller the Better. �������
� +0�,, � (22), 13572–13578. 

(13)  Knoppe, S.; Vanbel, M.; van Cleuvenbergen, S.; Vanpraet, L.; Bürgi, T.; Verbiest, T. 
Nonlinear Optical Properties of Thiolate�Protected Gold Clusters. �#� ���#�����#�� +0�-, 
��& (11), 6221–6226. 

(14)  Day, P. N.; Pachter, R.; Nguyen, K. A.; Bigioni, T. P. Linear and Nonlinear Optical 
Response in Silver Nanoclusters: Insight from a Computational Investigation. �#� ���#�
����#�� +0�., �!" (4), 507–518. 

(15)  Negishi, Y.; Iwai, T.; Ide, M. Continuous Modulation of Electronic Structure of Stable 
Thiolate�Protected Au25 Cluster by Ag Doping. �������
��������������� +0�0, �� (26), 
4713. 

(16)  Christensen, S. L.; MacDonald, M. A.; Chatt, A.; Zhang, P.; Qian, H.; Jin, R. Dopant 
Location, Local Structure, and Electronic Properties of Au24Pt(SR)18 Nanoclusters. ����
������
���� ������
������������ +0�+, ��� (51), 26932–26937. 

Page 19 of 22

ACS Paragon Plus Environment

Journal of the American Chemical Society

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



20 

 

(17)  Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. A Quantum Alloy: The 
Ligand�Protected Au25–xAgx(SR)18 Cluster. ����������
���� ������
������������ +0��, ��% 
(15), 7914–7923. 

(18)  Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and 
Nanoparticles: Fundamentals and Opportunities. ����#�'�	# +0�., ��� (18), 10346–
10413. 

(19)  Pereira, F.; Latino, D. A. R. S.; Aires�de�Sousa, J. Estimation of Mayr Electrophilicity with 
a Quantitative Structure–Property Relationship Approach Using Empirical and DFT 
Descriptors. �#�(�)#�����# +0��, %� (22), 9312–9319. 

(20)  Rupp, M.; Tkatchenko, A.; Müller, K.�R.; von Lilienfeld, O. A. Fast and Accurate Modeling 
of Molecular Atomization Energies with Machine Learning.  ���#�'�	#�$���# +0�+, �"* 
(5), 058301. 

(21)  Huan, T. D.; Mannodi�Kanakkithodi, A.; Ramprasad, R. Accelerated Materials Property 
Predictions and Design Using Motif�Based Fingerprints.  ���#�'�	#�+ +0�-, &! (1), 
014106. 

(22)  Zhang, Q.; Zheng, F.; Zhao, T.; Qu, X.; Aires�de�Sousa, J. Machine Learning Estimation of 
Atom Condensed Fukui Functions. ,�
#�-��# +0�., �. (2), 62–69. 

(23)  Mannodi�Kanakkithodi, A.; Pilania, G.; Huan, T. D.; Lookman, T.; Ramprasad, R. 
Machine Learning Strategy for Accelerated Design of Polymer Dielectrics. +0�., �, 
20952. 

(24)  Pilania, G.; Mannodi�Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. 
E.; Lookman, T. Machine Learning Bandgaps of Double Perovskites. �����������'������ 
+0�., �, 19375. 

(25)  Borboudakis, G.; Stergiannakos, T.; Frysali, M.; Klontzas, E.; Tsamardinos, I.; Froudakis, 
G. E. Chemically Intuited, Large�Scale Screening of MOFs by Machine Learning 
Techniques. ��/�������������
�,������
� +0�1, � (1), 40. 

(26)  Pereira, F.; Xiao, K.; Latino, D. A. R. S.; Wu, C.; Zhang, Q.; Aires�de�Sousa, J. Machine 
Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and 
LUMO Orbitals. ������
�����������
�-�������������
�,�
�
��) +0�1, .% (1), 11–21. 

(27)  Mpourmpakis, G.; Andriotis, A. N.; Vlachos, D. G. Identification of Descriptors for the CO 
Interaction with Metal Nanoparticles. �����$���# +0�0, �" (3), 1041–1045. 

(28)  Calle�Vallejo, F.; Loffreda, D.; Koper, M. T. M.; Sautet, P. Introducing Structural 
Sensitivity into Adsorption�Energy Scaling Relations by Means of Coordination Numbers. 
���������������� +0�-, %, 403. 

(29)  Federico, C.�V.; I, M. J.; M, G.�L. J.; Philippe, S.; David, L. Fast Prediction of Adsorption 
Properties for Platinum Nanocatalysts with Generalized Coordination Numbers. 
��)�0��
����������-�����������
�1
����� +0�,, .� (32), 8316–8319. 

(30)  Calle�Vallejo, F.; Tymoczko, J.; Colic, V.; Vu, Q. H.; Pohl, M. D.; Morgenstern, K.; 
Loffreda, D.; Sautet, P.; Schuhmann, W.; Bandarenka, A. S. Finding Optimal Surface Sites 
on Heterogeneous Catalysts by Counting Nearest Neighbors. ������� +0�-, �." (6257), 
185–189. 

(31)  Ma, X.; Xin, H. Orbitalwise Coordination Number for Predicting Adsorption Properties of 
Metal Nanocatalysts.  ������
�'�	��0�$������ +0�1, ��* (3), 036101. 

(32)  Wu, Z.; Jiang, D.; Mann, A. K. P.; Mullins, D. R.; Qiao, Z.�A.; Allard, L. F.; Zeng, C.; Jin, 
R.; Overbury, S. H. Thiolate Ligands as a Double�Edged Sword for CO Oxidation on CeO2 
Supported Au25(SCH2CH2Ph)18 Nanoclusters. �#���#�����#����# +0�,, ��� (16), 6111–
6122. 

(33)  Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel Gold Catalysts for the Oxidation 
of Carbon Monoxide at a Temperature Far Below 0 °C. ����������$������ �231, �� (2), 
405–408. 

Page 20 of 22

ACS Paragon Plus Environment

Journal of the American Chemical Society

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



21 

 

(34)  Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T. Spectroscopic Observation of Dual 
Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst. ������� +0��, ��� (6043), 
736. 

(35)  Gao, F.; Wood, T. E.; Goodman, D. W. The Effects of Water on CO Oxidation over TiO2 
Supported Au Catalysts. ����
�����$������ +0�0, ��� (1), 9–12. 

(36)  Panapitiya, G.; Wang, H.; Chen, Y.; Hussain, E.; Jin, R.; Lewis, J. P. Structural and 
Catalytic Properties of the Au25−xAgx(SCH3)18 (x = 6, 7, 8) Nanocluster.  ���#�����#�����#�
 ���# +0�3, !" (20), 13747–13756. 

(37)  Li, G.; Jiang, D.; Liu, C.; Yu, C.; Jin, R. Oxide�Supported Atomically Precise Gold 
Nanocluster for Catalyzing Sonogashira Cross�Coupling. ������
��������
���� +0��, �"�, 
177–183. 

(38)  Xu, W. W.; Gao, Y.; Zeng, X. C. Unraveling Structures of Protection Ligands on Gold 
Nanoparticle Au68(SH)32. �����
	 +0�-, � (3). 

(39)  Lewis, J. P.; Jelínek, P.; Ortega, J.; Demkov, A. A.; Trabada, D. G.; Haycock, B.; Wang, H. 
H.; Adams, G.; Tomfohr, J. K.; Abad, E.; et al. Advances and Applications in the 
FIREBALL Ab Initio Tight�Binding Molecular�Dynamics Formalism. �����������������
�
��
234 +0��, !�* (9), 1989–2007. 

(40)  Becke, A. D. Density�Functional Exchange�Energy Approximation with Correct 
Asymptotic Behavior.  ���#�'�	#�� �233, �* (6), 3098–3100. 

(41)  Lee, C.; Yang, W.; Parr, R. G. Development of the Colle�Salvetti Correlation�Energy 
Formula into a Functional of the Electron Density.  ���#�'�	#�+ �233, �% (2), 785–789. 

(42)  Jin, R.; Zhao, S.; Liu, C.; Zhou, M.; Panapitiya, G.; Xing, Y.; Rosi, N. L.; Lewis, J. P.; Jin, 
R. Controlling Ag�Doping in [AgxAu25−x(SC6H11)18]− Nanoclusters: Cryogenic Optical, 
Electronic and Electrocatalytic Properties. �������
� +0�1, & (48), 19183–19190. 

(43)  Karki, I.; Wang, H.; Geise, N. R.; Wilson, B. W.; Lewis, J. P.; Gullion, T. Tripeptides on 
Gold Nanoparticles: Structural Differences between Two Reverse Sequences as 
Determined by Solid�State NMR and DFT Calculations. �#� ���#�����#�+ +0�-, ��& (36), 
11998–12006. 

(44)  Ranasingha, O.; Wang, H.; Zobač, V.; Jelínek, P.; Panapitiya, G.; Neukirch, A. J.; Prezhdo, 
O. V.; Lewis, J. P. Slow Relaxation of Surface Plasmon Excitations in Au55: The Key to 
Efficient Plasmonic Heating in Au/TiO2. �#� ���#�����#�$���# +0�., % (8), 1563–1569. 

(45)  Carr, J. A.; Wang, H.; Abraham, A.; Gullion, T.; Lewis, J. P. L�Cysteine Interaction with 
Au55 Nanoparticle. �#� ���#�����#�� +0�+, ��� (49), 25816–25823. 

(46)  Kumara, C.; Aikens, C. M.; Dass, A. X�Ray Crystal Structure and Theoretical Analysis of 
Au25�xAgx(SCH2CH2Ph)18

(�) Alloy. ����������
���� ������
�����������$������ +0�,, . (3), 
461–466. 

(47)  Gottlieb, E.; Qian, H.; Jin, R. Atomic�Level Alloying and de�Alloying in Doped Gold 
Nanoparticles. ����������25�����������
���+��)�������6�7������4 +0��, �& (13), 
4238–4243. 

(48)  Breiman, L. Random Forests. ,�������$������) +00�, �. (1), 5–32. 
(49)  Ho, T. K. The Random Subspace Method for Constructing Decision Forests. -111�

���������������� ����������
�������
�,�������-���

�)���� �223, !" (8), 832–844. 
(50)  Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. ��8�	9��"�#"!%.��:��; 

+0�., 785–794. 
(51)  Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, 
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; 
Brucher, M.; Perrot, M.; Duchesnay, E. Scikit�Learn: Machine Learning in Python. ������
����
,�������$������)�'������� +0��, �!, 2825–2830. 

(52)  Wadell, H. Volume, Shape, and Roundness of Quartz Particles. ����������
����7��
�)� 
�2�-, �� (3), 250–280. 

Page 21 of 22

ACS Paragon Plus Environment

Journal of the American Chemical Society

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



22 

 

 

 

Page 22 of 22

ACS Paragon Plus Environment

Journal of the American Chemical Society

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60


