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ABSTRACT

We propose a machine-learning model, based on the random-forest method, to predict CO
adsorption in thiolate protected nanoclusters. Two phases of feature selection and training,
based initially on the Au.; nanocluster, are utilized in our model. One advantage to a machine-
learning approach is that correlations in defined features disentangle relationships among the
various structural parameters. For example, in Au.;, we find that features based on the
distribution of Ag atoms relative to the CO adsorption site are the most important in predicting
adsorption energies. Our machine-learning model is easily extended to other Au-based
nanoclusters and we demonstrate predictions about CO adsorption on Ag-alloyed Auss and Auigg

nanoclusters.

KEYWORDS: machine learning, CO adsorption, Ag-alloyed Au nanoclusters
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1. INTRODUCTION

Thiolated gold nanoclusters are one of the most widely studied systems in contemporary
research. The increased interest is attributed to several promising applications proven for
thiolated gold nanoclusters in a variety of fields including catalysis, sensing, electronics, and bio-
medicine.’~4 Given recent advancements in synthesis techniques, bimetallic counterparts of
these systems are also produced; thereby enabling further tuning of electrochemical properties
of Au-based nanoclusters and subsequently widening the scope of their applicability.415-17
Unfortunately, combinatorial barriers exist which prevent fast identification of correct cluster
compositions for chosen applications; subsequently, the enormity of the number of alloyed
systems provides challenges for characterization. Furthermore, no theoretical methods exist to
explore all combinatorically-possible alloyed configurations within a practically sensible time
frame. For example, the number of bimetallic configurations for the smallest known thiolated
nanocluster, Au;5(SR).3, is combinatorically over 32,000 which yields a significant
computational challenge to characterize all potential structures. The existence of over thirty
different thiolated nanoclusters composed of 15 to 144 Au atoms increases the importance for

developing smart approaches capable of making reasonable property predictions.!8

Several researchers have presented reports where they have successfully employed modern
machine-learning models to predict many electrochemical properties, including electrophilicity
parameters, atomization energies, dielectric constants, condensed Fukui indices, atomic
charges, band gaps, gas adsorption, and HOMO/LUMO energies in various nano-systems.19-26
The basic workflow of these models are to: (1) energetically relax the molecular/crystalline
systems, (2) create a dataset containing the target property and a set of numerical fingerprints of
these systems, and (3) train and test machine learning algorithms on these datasets to arrive at
predictions. A major drawback of these approaches is the difficulty to deal with large systems.
Energetically relaxing thiolated gold nanocluster systems is computationally challenging which

compromises the advantages of machine learning.

In recent years, different approaches of defining coordination numbers were proposed to predict
adsorption properties in metal nanoclusters without ligand passivation.27-3t However, the
presence of ligands containing different non-metallic atoms and oriented in different directions
gives rise to extra complexity in the adsorbent-adsorbate interactions. This complexity is
difficult to capture with coordination numbers alone. In this work, we propose an efficient
machine-learning model aided by a fast ab-initio density functional theory (DFT) approach to

accomplish adsorption energy predictions in alloyed thiolated nanoclusters. In our model, we
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use only the structural properties of the un-adsorbed, non-relaxed systems. We do not use the
knowledge on adsorbent-adsorbate interactions or structural/electronic properties of the
optimized configurations (which requires performing many additional DFT calculations). While
this can affect the prediction accuracy, our model can serve as a very fast technique to filter out a
set of candidates for further testing. We demonstrate performance of the model by predicting
CO adsorption energies in Ag alloyed Au.5(SR):s. CO oxidation has long been the preferred
reaction to study the catalytic properties of Au-based systems.24.32-34 Also, catalytic CO
oxidation has been tested as a mechanism to remove poisonous CO from H, in fuel cells.” In our
recent work, we found that CO-adsorption on Ag alloyed Au.; is sensitive to the number of
dopants and the adsorption energies do not have a predictable trend.3¢ To the best of our

knowledge, this is the first machine-learning study done for thiolated Au-based nanoclusters.

2. COMPUTATIONAL METHODS

The success of any machine learning method depends on the quality of the numerical
representation of the system under study. Such representations, realized as a collection of
numerical fingerprints, are commonly called features. The features in our case fall into four
main categories based on (1) the distance between atoms, (ii) the atomic-bonding counting, (iii)

the graphical representation of the cluster, and (iv) the volume enclosed by atoms.

We begin our investigation by examining the Au.; structure which consists of a core of 13 Au
atoms surrounded by six SR-Au-SR-Au-SR staple-like units, where SR stands for thiolate
ligands (see Fig. S1 for a detailed illustration of the Au25 structure). The main adsorption sites
in thiolated nanoclusters are the Au atoms on the surface and the facets formed by surface Au
atoms.33237:38 Qur features are applicable to any adsorption site. For the demonstration of our
method, we only considered adsorption on Au atoms on the surface of Au,; (Blue atoms in Fig.
1). Since there are 12 Au sites in the staple units, the number of CO-adsorbed structures
considered were 12x25x15. All these CO-adsorbed structures were energetically relaxed using
the same force tolerance used for adsorbate-free Au,; structures to facilitate adsorption energy

calculation.
The distance between Ag atoms and the adsorbent site (|rys_ag| = |rag — T'as|) forms the basis

of defining the distance features (see Fig. 1). The mean and standard deviation of |rA5_ Ag| form

two simply-defined features (d1, d2). And, the features labeled d3 - d7 are based on the centroid

position of the Ag atoms relative to the adsorbent site as discussed in the Supporting
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Information. By identifying the atoms as belonging to different layers based on their distance to
the adsorbent site, we define another class of features. As marked by the red-dashed curves in
Fig. 1, boundaries of each layer are defined as concentric circles having radii equivalent to the
distance between the adsorbent site and neighbors nearest to the adsorbent site. Basic building
blocks of a nanocluster are atoms. We can also define higher order building blocks such as A-B
bonds (bonds connecting A and B atoms), or A-B-C and A-B-C-D fragments in each layer ‘I’;
accordingly, for Au.;, we have created 81 atomic-bonding features. For each feature, we can
subsequently make a normalized count. For example, if a particular layer contains six C, three H
and five S atoms, normalized counts are 6/(6+3+5), 3/(6+3+5) and 5/(6+3+5) for C, H and S,

respectively.

A molecule can also be defined via graphical representation. Atoms and bonds in the molecule
become nodes and edges of a graph. Using this type of representation, the following features
were defined: (1) number of Ag atoms within a path length of three units from AS (g1), (2) total
number of atoms within a path length of two units from AS (g2), (3) number of edges connecting
two metal atoms within a path length of three units from AS (g3), (4) shortest path lengths
between AS and the eight nearest neighbor Au or Ag atoms (g4-g11). We add a constant to the
path length when the metal atom is Ag. This gives a sequence of numbers representing the
metallic environment and the relative AS-metallic atom distance. Volumetric features include
the volume enclosed by AS and fifteen of its nearest neighbors (v1) and the volume enclosed by
the AS and all the Ag sites (v2).

Now that we have defined a set of features to describe the Au-based nanocluster and the
absorbent site, we generate data from DFT calculations to discover correlations between
different features and the absorbent site. Of course, machine-driven algorithms are only feasible
when very large datasets are available; small datasets increase statistical anomalies. To prepare
the dataset, we generated AgiAu.s.« nanoclusters with x ranging from 1 to 25. We created at least
500 isomers with random Ag sites for each alloy case x=4-21. For the remaining alloying levels
(x=1-3 and x=22-25), we created all possible Ag-alloyed configurations. All the calculations
presented in this work were performed using a local-orbital density functional theory code,
called FIREBALL.39 We chose Becke4 exchange with Lee-Yang-Parr correlation functional4
(BLYP) to perform structural relaxations. The basis set is made of optimized numerical local
atomic orbitals which were confined to regions limited by the corresponding cutoff radii r.. The
r. values used for our study are given in the Supporting information. The chosen basis set and
the DFT functional as implemented in FIREBALL have been successfully validated by several

previous studies on Au nanoparticle systems.3¢-42-45 The adsorbate-free Ag-alloyed structures
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were energetically relaxed until the root-mean-square error of the force on the atoms was less
than 0.05 eV/A.

An inspection of structural energies of AgiAu.s.« revealed jumps in the energy profiles around
the 15t lowest energy for most of the alloying levels (see Fig. S2 and S3 for energy profiles of
alloying levels 1-24). These jumps will be hereafter referred to as ‘gaps’ in the energy profiles. It
is likely that the higher energy structures above these energy gaps have a low probability to exist.
This assumption is based on the experimental studies of 1-Ag alloyed Au.s, which have shown
that preferable Ag sites are on the surface of Au,; core.4647 Interestingly, all the structures with a
Ag atom on the surface of the Au,; core are the ones having energies below the gap in Fig. S2 (a).
Therefore, a statistically meaningful dataset may consist of structures with energies less than the
energy corresponding to the gap. However, such a selection criteria results in poor
representation from alloying levels having low-lying energy gaps. This lack of representation
reduces the generalizability of the model. Hence, to maximize the number of data points, while
avoiding the effect from the high energy structures, we selected fifteen lowest energy structures

from every alloying level to determine the CO adsorption-energy data.

We should note that lowest-energy adsorbate-free Au.; may not always be associated with
lowest-energy CO-adsorbed structures. However, we did not restrict the number of CO-adsorbed
structures based on their energies. This is because, when a reaction takes place, only the most
energetically favorable Au.; have the likelihood to exist and CO gets adsorbed on these stable
Au,;. Removing the higher energy CO-adsorbed data from the model results in our model being
applicable only to a small niche of adsorbate-free Au.; associated with low energy CO-adsorbed
Augs. Such limitations reduce the practical importance and the generalizability of our model as it

will fail to predict the adsorption energies of most of the experimentally synthesized Au.s.

The adsorption energy is calculated according to (E = Eco/ag, au,s_, — Eag au,s_, — Eco) for CO

binding at the Ag/Au sites (at the outer shell of the nanocluster). The final dataset is a (number-
of-configurations) x (number-of-features+1) matrix, with each row corresponding to a different
calculated Ag alloyed configuration. One of the columns contains the adsorption energies and

the rest of the columns correspond to different features.

3. RESULTS AND DISCUSSION
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A distribution of our calculated adsorption energies is shown in Fig. 2. These energies have a
mean of -0.72 eV and a skewness of 0.99. The positive skewness indicates the presence of values
deviated from the mean towards the positive energies. Machine-learning algorithms generally
prefer normal distributions. Thus we transformed all the adsorption energies according to In(E
+ constant). Here, the constant has to be chosen so that the skewness of the distribution is
minimized. We found that a minimum skewness of -0.002 results when 2.5 is chosen as this

constant.

Developing and testing our model consists of two phases. In the first phase, we evaluate the
performance of different machine learning algorithms using all the defined features. Tree
ensemble methods like random forests48:49 and xgboosts° performed better than neural networks
and other regression methods like linear, ridge, kernel ridge and support vector regression. For
this study, we chose random forests as implemented in Scikit-learn Python library (discussed in
the Supporting Information).5' Random forests is a supervised learning algorithm containing a

forest of decision trees. The final prediction is a weighted average of predictions of all the trees.

In the first phase, prior to feeding the features to the random forest algorithm, each feature was
scaled such that each had a zero mean and unit variance. This is to ensure that no single feature
will dominate the objective function of the algorithm, ignoring the effects of other features with
lower variance. Next, we randomly split the whole dataset as training and testing sets according
to the 80:20 ratio. Using a random forest with 100 trees, the data in the training set was used
with five-fold cross validation. We used the built-in feature ranking method in random forests to
determine the best features based on their contribution to the prediction accuracy. Fig. 3 shows
the top 10 features along with their Pearson correlation coefficient and mutual information
values with respect to the adsorption energy. The Pearson correlation coefficient quantifies the
linear dependence between two variables while mutual information is a measure of both linear
and non-linear dependence. The top 10 features have decent linear dependencies with
adsorption energy, even though our features are based on the geometric properties of non-
relaxed structures. As the adsorption energies were calculated using DFT-relaxed structures,
these correlation values indicate that our features are likely related to the local chemical
environment at the vicinity of adsorbent sites of the synthesized structures. Not surprisingly, the
simplest possible feature for an alloyed system, the number of dopant Ag atoms (nAg) has the
greatest effect on the prediction accuracy. However, as will be shown, nAg alone is not enough to
achieve the maximum accuracy. It is also worth noting that all the distance-based features are

among the top 10 features.
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The feature-feature correlations in Fig. 4 indicate that the number of dopant Ag atoms has the
greatest correlation to the other top 14 features (the feature v2 has the next highest correlation
to the other features). One interesting aspect is that Ag dependency is directly inherent in many
of the defined features, particularly features based on centroids and bonding information.
However, the number of dopant Ag atoms are not directly defined within the feature HCH1
which corresponds to the normalized number of H-C-H fragments in the 1st layer of neighbors
nearest to the adsorbent site as it is independent of the number of dopant Ag atoms.
Surprisingly, despite the lack of defined dependency between the two features nAg and HCH1;
there is a strong correlation between these two features (value of 0.68) as indicated in the

correlation map of Fig. 4.

The features specifically designed to measure the clustering of the Ag (d5, d6 and d7) are among
the top 5 features. It is surprising to find that d6 and d7 contain almost the same information on
linear dependence (correlation coefficient of 0.99), even though they are based on different
centroids. This strong correlation indicates that Ag atoms are clustered around a similar central
position. Despite the close relationship between d6 and d7, random forests has considered both as
highly important. Even though d5 has the lowest correlation values compared with the top 5, it
has been ranked as the second most important feature. This could be due to d5 having
interactions with the other features. Even v2 is an indirect measure of the clustering, as the
volume enclosed by the adsorbent site and the Ag atoms decreases with Ag atoms being

clustered within a proximity to each other.

The counts of building blocks were previously shown to be effective in other systems and we
were inspired to add these as features for our investigation;2:-23 however, we note relatively poor
scores for building block features with one exception. The occurrence of HCH1 (number of HCH
units in layer 1) as one of the important features (seen in Fig. 3) show that orientation of ligands
also plays a significant role in predicting the adsorption energies. This is because H-C-H units

are only found in the ligands which are more readily located near CO adsorption sites.

There is no strong agreement between the trends in Pearson correlation and mutual information
with that of the feature importance, even though for features between nAg and d1 in Fig. 3, high
mutual information values are generally associated with high feature importance. This was
further confirmed by constructing an extended correlation map by considering more features
(for example, see Fig. S4 in Supporting Information). We notice that the features d5-d7 and v2
are among the highest scoring mutual information values, but not among the features with

highest Pearson correlation coefficients. This may indicate that non-linear relationships
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between the adsorption energy and the features that an important role in the prediction. We also
note that the features having a negative linear correlation with adsorption energy (for example,
AgAuAu1 and AuAgAu2) have low effect on the prediction.

Inside the cross validation loop, we train a second random forest model (also with 100 trees) with
the first n top features to determine optimum n as discussed in the Supporting Information.
Determination of the new top n features marks the end of the first phase for training our model.
Using the new set of features selected in the cross validation, we create additional features in the
second phase - known as feature engineering. These features were created by taking the square
root, raising them to power two and three and taking the log of the selected features as discussed
in the Supporting Information. Creating more complicated features, like adding and multiplying
features in 2 or 3 feature combinations and calculating the Euclidian distance between feature
values and their cluster centers, did not result in improvement of the prediction accuracy.
Following the same approach as the first phase, the best features were filtered out from the ones
selected in the first phase and those engineered based on them. Additionally, parameter tuning
of the random forest method was also performed to determine the optimal parameters of the
final model. However, no significant gain in the accuracy was obtained with different

parameters. Therefore, the final model contains only 100 trees with default parameters.

The features in the final model are the ones of the best cross validation step. These are nAg,
nAg2, nAgs, d6, d63. This result shows that adsorption energies in Au.; can be predicted with
only two features along with their non-linear counterparts. This model was then trained once
with the whole training set and tested with the testing set to arrive at the final prediction

accuracy.

The accuracy of our model prediction is shown in the prediction performance plot (log
transformed), Fig. 5(a) with the distribution of residual error shown in Fig. 5(b). Prediction
accuracies of the log transformed data are, R2 = 0.77869, MAE = 0.13196 and RMSE = 0.17348.
The higher the residual error, the more erroneous the result. For negative and positive
adsorption energies, the mean of the absolute residual errors are 0.20 €V and 0.44 €V,
respectively. Predicted values corresponding to positive adsorption energies have more
deviation from the actual values compared to the negative adsorption energies (see Fig. S6).
Positive adsorption energies correspond to weak CO/Au.; attraction. The potential energy
surface consists of many local minima with similar energies which results in structurally
different CO adsorbed isomers having similar adsorption energies. Shallow potential energy

surfaces do make it difficult for the learning algorithm to accurately predict positive adsorption
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energies. Another major factor affecting the accuracy of our model may be that the ligands are
oriented in different directions. Ligands create a complex chemical environment for adsorbate
molecules. As shown in Fig. 3 and Fig. 4, adsorption energies are mainly affected by the location
of Ag atoms and the H-C-H fragments closest to the adsorption site. To capture the combined
effect of ligands and dopants, we fed our model with compound features created by multiplying
features. However, these new features did not result in improvements for the model accuracy.
Further, the use of non-relaxed isomers to generate features is also detrimental to the prediction
accuracy. This is because the presence of dopants significantly affects bonding and atom-atom
distances of a relaxed structure may be highly deviated from those of the non-relaxed one. Our
model was unable to learn without ambiguity; however, there is a definite relationship between
the positive adsorption energies and structural parameters. We also tried to build two models
for positive and negative adsorption energies. However, this did not result in an increased

accuracy, which could be due to the reduced number of data points in each sample.

We extend our model to Auss(SR).4 and Au,33(SR)s. nanoclusters; thereby demonstrating the
versatility of our model. For Auss(SR).4, we used only 1360 isomers having either 1, 2, 3, 6, 9, 12,
13, 18, or 24 of Ag atoms. At the second phase of feature selection, the best features were found
to be d7, d73, HC12, d72, HC1, HC13 which gave accuracies of 0.65388 (R2), 0.21582 (RMSE) and
0.1856 (MAE) for predictions (prediction performance plot shown in Fig. 6(a)). These accuracies
are encouraging, given the less symmetric geometry of Ause in comparison to Au.; and the
smaller sample size used for the training. As Augs is relatively a small cluster, the number of
samples can be increased easily to achieve a possible increase in the prediction accuracy. These
accuracies also show that the features defined based on the nearly spherical Au.; cluster can be
readily used for the clusters like Augs which have different symmetries. The Aui33(SR)s52
nanocluster is the largest thiolated nanocluster of which the crystal structure has been verified.
This nanocluster contains 393 atoms with -SCHj as the ligand. We generated 1898 CO adsorbed
isomers having 5, 10, 15, 20, 30, 48, 80 and 120 Ag atoms. Even with a small number of samples
we were able to achieve accuracies of 0.75063 (R2), 0.17128 (RMSE) and 0.11882 (MAE) for
predictions (prediction performance plot shown in Fig. 6(b)). This shows that our model may be
well suited for spherical-like clusters. The best features selected at the second phase of feature
selection were, nAgs, nAg, nAg2, ds, d52, d53, d63, d62, d6, d73, d7, d72, v2, g33, g32, g3, d12, g22,

v22, d22,

Interestingly, in Augs, features based on the orientation of the ligands have a significant effect on

the prediction accuracy, whereas in Au.; and Au,33, only the dopant-based features have the
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strongest influence. We hypothesize that this is due to the ligands in Ause causing a higher steric
hindrance than the ligands in either Au,; or Au,s;. To test this hypothesis, we can use the feature
HC1, the normalized count of H-C bonds within ten nearest neighbors of the adsorbent sites.
The higher the number of H-C bonds close to the adsorbent site, the larger is the steric
hindrance. For each adsorbate-free nanocluster, we calculated the average of HC1 over all the
adsorbent sites. The averages obtained for Au.s, Auss, and Au,s; are 0.10, 0.14, and 0.09
respectively. Thus, there are more H-C bonds closer to the adsorbent sites in Auss compared to
other two nanoclusters, resulting in greater steric hindrance to approaching CO adsorbates. The
steric hindrance from H-C bonds is likely related to the sphericitys2 of the core of the
nanoclusters. The closer the value of sphericity to 1, the more spherical is the cluster. More
spherical surfaces tend to cause less steric hindrance as illustrated in Fig. S8. As shown in Fig.
S9 (a), the core of Auge consists of planar-like surfaces with a sphericity of 0.735. Sphericities of

Au,; and Au,g; cores are 0.940 and 0.943 respectively.

4. CONCLUSION

Overall, we have developed a machine-learning model based on the random forest method to
predict CO adsorption energies for Au-based nanoclusters, starting by training our model with
the Au.; nanocluster alloyed with Ag. We have defined approximately 100 features to model
nanoclusters as numerical representations. Over 2,000 data points are contained in our model.
Using a two-step feature-selection process, and features engineering approaches, we predicted
the adsorption energies with accuracies of 0.78 (R2) and 0.17 (RMSE). Our chosen features are
based merely on the structural properties of the unoptimized adsorbate system (to enable rapid
prediction); our model is an excellent filtering tool to select first round candidates for further,
more accurate, analysis. The validity of our model was also tested by predicting CO adsorption
energies in the less symmetric Auss nanocluster and the larger Au,;; nanocluster, using the same
defined features as the Au.; model, with prediction accuracies (R2) of 0.65 and 0.75,

respectively.

Supporting Information

More details on the computational methodology and additional calculations
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Figures and Tables:

@ SurfaceAu/Ag S @O

() Core Au/Ag ®c H
Figure 1. The CO/Au,; system (A detailed description on the structure of Au.; is given in Fig.
S1). Hypothetical boundaries of two nearest-neighbor layers are shown with dashed red curves.

AS stands for the CO adsorbent site. Adsorbent Au/Ag atomic sites on the surface are colored in

blue. Orange is used for Au/Ag sites in the core inaccessible for CO due to steric hindrance.
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Figure 4. Feature-feature correlation map of the top features.
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