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Abstract

In axisymmetric fusion reactors, the equilibrium magnetic configuration can be expressed in terms of the solution to
a semi-linear elliptic equation known as the Grad-Shafranov equation, the solution of which determines the poloidal
component of the magnetic field. When the geometry of the confinement region is known, the problem becomes an
interior Dirichlet boundary value problem. We propose a high order solver based on the Hybridizable Discontinuous
Galerkin method. The resulting algorithm (1) provides high order of convergence for the flux function and its gradient,
(2) incorporates a novel method for handling piecewise smooth geometries by extension from polygonal meshes, (3)
can handle geometries with non-smooth boundaries and x-points, and (4) deals with the semi-linearity through an
accelerated two-grid fixed-point iteration. The effectiveness of the algorithm is verified with computations for cases
where analytic solutions are known on configurations similar to those of actual devices (ITER with single null and
double null divertor, NSTX, ASDEX upgrade, and Field Reversed Configurations).

Keywords: Hybridizable Discontinuous Galerkin (HDG), Curved Boundary, Grad-Shafranov, Anderson
Acceleration, Plasma Equilibrium, Magnetohydrodynamics (MHD)
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1. Introduction

In the current work we are interested in the computational simulation of the static magnetic equilibrium config-
uration of a plasma in an axially symmetric magnetic confinement device. In an axisymmetric geometry with the
standard cylindrical coordinates denoted by (r, φ, z) along the unit direction vectors r̂, φ̂, and ẑ, the magnetic field B
can be written as

B =

 φ̂r
 × grad ψ(r, z) + g(ψ)

 φ̂r
 ,

where the function ψ is known as the poloidal flux function and g(ψ)/r is the toroidal field function [1, 2]. The latter
is also related to the net current flowing in the plasma and the external coils in the poloidal direction, Ip, through the
relation

Ip =
2π
µ0

g(ψ).

In every cross section φ = constant, the plasma will be confined to the region where the level sets of ψ are closed
curves. Since the magnetic field depends on ψ only through its gradient, with the introduction of an appropriate shift,
the boundary between the confinement and free regions can be made to correspond to the level set ψ = 0 and we will
assume so without loss of generality.

Under axisymmetry requirements, it can be shown that the equilibrium condition

grad p = J × B,
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between the force due to the kinetic pressure p in the plasma and that one produced by the effect of the magnetic field
B on the current density J can be expressed entirely in terms of ψ, p, and g. The resulting equivalent expression

− ∆∗ψ = µ0r2 dp
dψ

+ g
dg
dψ

(1)

was derived independently by Grad and Rubin, [3], Shafranov [4], and Lust and Schlüter [5] and is known as the
Grad-Shafranov equation. In the above expression, the magnetic permeability of vacuum µ0 is constant and the
toroidal operator ∆∗ is defined by

∆∗ψ := r2div
(

1
r2 grad ψ

)
= r∂r

(
1
r
∂rψ

)
+ ∂2

zψ = r∂r

(
1
r
∂rψ

)
+ r∂z

(
1
r
∂zψ

)
= r∇̃ ·

(
1
r
∇̃ψ

)
,

where the operator ∇̃ := (∂r, ∂z) acts formally like a vector of partial derivatives independent of the coordinate system.
The function g(ψ) and the pressure p(ψ) depend purely on ψ and the specific functional form of the dependence can
be considered to be user provided. In view of this, it is convenient to write (1) in the form

− ∇̃ ·

(
1
r
∇̃ψ

)
=

F(r, z, ψ)
r

, F(r, z, ψ) := µ0r2 dp
dψ

+ g
dg
dψ

, (2)

which highlights the semi-linear nature of the equation and leads naturally to a weak formulation. If the right hand
side is truly nonlinear as a function of ψ, the equation can be solved iteratively, as will be detailed in Section 3.3.

When the precise location of the plasma-vacuum region is known a priori, the problem of determining the flux
function in the plasma region becomes an interior Dirichlet boundary-value problem. In this case, the ψ = 0 level set is
of particular interest, for it becomes the boundary of the plasma domain, henceforth denoted Ω, where homogeneous
Dirichlet boundary conditions are imposed. This problem is often referred to as a fixed boundary problem and its
numerical solution will be the focus of the present work.

Depending on the location, number, and current intensity of the external coils, the level set ψ = 0 may become
a separatrix, presenting what is known as an x-point, as depicted in Figure 1. This kind of non-smooth geometry
often poses additional challenges for some numerical solvers but the presence of such a point is often a desirable
engineering feature and fusion reactors are frequently designed to produce such a configuration. One of the reasons
for this is that in the absence of the clear division between the vacuum and plasma regions provided by the separatrix,
a physical limiter must be introduced to prevent the plasma from touching the walls of the reactor. Since the limiter
is in direct contact with the plasma, this severely limits the range of temperatures attainable in experiments and may
introduce additional impurities in the plasma. Moreover, as the particles drift along the magnetic flux lines, the region
between the open ends of the separatrix provides the optimal placement location for the divertor, a device that removes
plasma impurities, extracts excess heat and protects the walls of the reactor [6, 7]. Therefore, methods that can handle
these kinds of geometries can prove to be advantageous.

Many different approaches for the solution of the Grad-Shafranov equation have been employed over the years a
very detailed –if dated– description of the different approaches can be found in the review by Takeda and Tokuda [2],
which is also a very complete reference on general aspects of plasma equilibrium. A concise discussion on plasma
equilibrium and some related numerical techniques can also be found in [1]. In what follows we briefly discuss only
some relevant recent efforts without attempting a comprehensive review.

The weak form associated to (2) is well suited for numerical computations and has been exploited in many com-
putational efforts, such as the widely used Finite Element codes CHEASE [8] and HELENA [9, 10] both of which use
bi-cubic Hermite elements, and in more recent works involving the use of high-order spectral elements on rectangular
geometries [11] or mimetic elements [12]. In recent works the free boundary problem has been addressed by em-
ploying a combination of boundary elements and finite elements [13], and mortar elements in overlapping grids [14].
Nevertheless, weak/variational treatments are by no means the only way to approach the solution and many different
alternatives have been employed.

The use of Multi-Grid methods can be traced back at least to the work of Braams [15] and have continued to attract
attention over time both for the fixed boundary problem [16] and the free boundary problem [17]. In recent years,
integral equation techniques combined with conformal mapping have been successfully employed to achieve fast and
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Figure 1: The plasma remains confined inside the region where the contour lines of the poloidal flux ψ are closed. For engineering purposes, reactors are often designed
so that the last closed flux surface has an x-point, below which a divertor is placed (left). When the contour lines do not present a separatrix, a limiter is required in
order to forcefully stop the plasma from getting in contact with the reactor walls (right). Fixed-boundary computations solve the interior boundary value problem in the
confinement region delimited by the level set ψ = 0.

high order algorithms that can provide accurate approximations for both the flux function and its derivatives [18], this
approach has been adopted in the flexible code ECOM [19].

Some other recent alternatives that have attracted attention include the hybrid approach EEC-ESC that couples
Hermite elements near the plasma edge with Fourier decomposition methods in the plasma core [20], the use of
meshless methods [21, 22], the use of approximate particular solutions [23], and the method of fundamental solutions
[24].

The references above do not focus on high order approximation of the derivatives of the flux function. However,
the quantity of physical relevance in the problem is the magnetic field B, therefore an important requirement for a
Grad-Shafranov solver is to be able to provide accurate approximations to the partial derivatives of the flux as well,
and some advanced post-processing techniques towards that goal have been developed lately [25].

The present work represents an intermediate stage in a wider effort that aims to build a robust and flexible solver,
in the spirit of ECOM, capable of dealing with direct equilibria in a wider variety of geometries and eventually
handling situations in which other physical quantities related to the current profile are provided as input instead
of g(ψ). The novelty, and strength, of our approach resides on the use of a high order Hybridizable Discontinuous
Galerkin (HDG) method combined with a technique for handling geometries with curved boundaries that preserves the
order of accuracy of the method. The result is a robust algorithm that is able to provide high order of accuracy for the
approximation of both the flux function and the magnetic field, offers good potential for parallel computations [26, 27],
and provides the flexibility of handling curved geometries (with or without x-points) relying only on polygonal meshes
[28].

This work will focus only on the algorithmic aspects of the method and the analytical parts will be dealt with in a
separate communication. The rest of the paper is structured as follows: In Section 2 we present the mixed formulation
of the Grad-Shafranov equation at the continuous level; Section 3 describes the solution algorithm starting with the
handling of curved boundaries by extension from a polygonal mesh and the HDG formulation is described afterwards.
The treatment of the non-linearity through an accelerated fixed-point iteration closes the description of the algorithm.
We then move on to the validation of the method in Section 4 where the analytic solutions used as benchmarks are
described and we present the results of the numerical experiments; concluding remarks and directions for future and
ongoing work are given in the final Section 5.

2. The continuous mixed formulation

In order to apply an HDG discretization, the interior problem for the Grad-Shafranov equation must be first recast
as a first order system. This is required since HDG methods include the gradient (or flux) as an additional unknown,
but the reformulation is also physically motivated, since the quantity of interest is the magnetic field as opposed to the
scalar poloidal flux.
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Consider the fixed-boundary problem for the Grad-Shafranov equation

−∇̃ ·

(
1
r
∇̃ψ

)
=

F
r

in Ω ⊂ R2, (3a)

ψ = 0 on ∂Ω, (3b)

where Ω is a cross section of the plasma region at constant toroidal angle. We consider a particular HDG method,
which is called the hybridizable local discontinuous Galerkin (LDG-H) method in [29], that requires us to formulate
the problem in mixed form through the introduction of the flux q := 1

r ∇̃ψ as an additional unknown. This addition
transforms (3) into the equivalent system

q −
1
r
∇̃ψ = 0 in Ω ⊂ R2, (4a)

−∇̃ · q =
F
r

in Ω ⊂ R2, (4b)

ψ = 0 on Γ := ∂Ω. (4c)

If we had a standard continuous Galerkin discretization in mind, at this point the above system would be transformed
into a weak formulation by the usual process of testing with arbitrary functions from appropriately chosen spaces.
However, the HDG method does not rely on a continuous weak formulation. Instead, the domain is tessellated first
and then a piecewise polynomial approximation is built by solving local weak problems defined over a polygonal
approximation of Ω. The strategy will be described in detail in Section 3.

3. The numerical method

The solution strategy that we propose consists of three main components: (a) An HDG solver for a linear elliptic
operator on polygonal domains, (b) a “transfer” algorithm that allows for the handling of curved geometries through
computation on polygonal sub-domains, and (c) an accelerated fixed point strategy that takes care of the semi-linearity
of the problem.

Since the HDG discretization is tied to the actual tessellation of the domain used for the computations, we start
with the construction of the simplified polygonal domain used to approximate the plasma region, we then describe
the method used to transfer Dirichlet data between the physical (curved) boundary and the computational (polygonal)
boundary, next we introduce the HDG method applied to (4) and we conclude the section describing the iterative
strategy used to treat the non-linearity and the eigenvalue problem.

3.1. The treatment of curved boundaries

In general, standard numerical methods are defined over polygonal or polyhedral domains that can be triangulated.
When dealing with domains having a curved boundary, fitted [30, 31] or unfitted [32, 33] methods can be considered.
In the former case, the boundary Γ is matched or “fitted” by the computational boundary Γh. For instance, Γh can be
constructed by interpolating Γ. On the other hand, unfitted methods approximate the domain by a polygonal domain
whose boundary Γh does not necessarily “fit” Γ. For example, this can be achieved by immersing Ω in a background
mesh and setting the computational domain to be the union of all the elements of the mesh that lie inside Ω. In both
approaches the boundary condition on Γh must be properly defined.

The boundary data can be easily imposed in the computational domain using fitted methods, which is one of their
main advantages. For a high order fitted method, Γh must approximate Γ with enough accuracy to be able to recover
a high order approximation of the solution. For instance, isoparametric finite elements can be used [30], where the
elements near the boundary have a curved side that locally interpolates Γ. This construction might be unpractical in
complicated geometries or evolving domains and that is why unfitted methods are preferred in these cases since the
computational mesh is not adjusted to Ω. However, the main drawback of standard unfitted methods is that only low
order approximations can be obtained due to the fact that the boundary data on the computational domain is imposed
“away” from the true boundary.
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Figure 2: Left: Domain Ω, background domain (square) and polygonal subdomain (shaded). Middle: Transferring path σt connecting x ∈ Γh to
x̄ ∈ Γ. Right: Transferring paths (segments with starting and ending points marked with ◦) associated to two points on each boundary edge.

Recently, an approach that combines the flexibility in the generation of the mesh characteristic of unfitted methods
with a technique to transfer the boundary data from Γ to Γh has been developed [28, 34]. This method proposes
an approximation of the boundary data by performing line integration along segments, called transferring paths,
connecting Γh to Γ. This strategy preserves the order of accuracy used for the approximation and has been our choice
for handling the curved boundary. We describe it in detail in what follows.

Computational domain. Let B be a background polygonal domain such that Ω ⊂ B and Th a triangulation of B
consisting of triangles K that are uniformly shape-regular as Figure 2 (left) shows. For a triangle K, we denote its
diameter by hK and its outward unit normal by nK , writing n instead of nK when there is no confusion. We assume
the triangulation does not have hanging nodes. Let Th be the set of triangles of Th that lie completely inside of Ω and
∂Th := {∂K : K ∈ Th}. Then, we define the computational domain Ωh := (

⋃
K∈Th

K
)◦ (shaded region in Figure 2). The

mesh size h is defined as maxK∈Th hK . The set of edges of Th is denoted by Eh and Eh = E◦h ∪ E
∂
h, where E◦h and E∂h

are the sets of interior and boundary edges, respectively. Finally, we denote by Γh the boundary of the computational
domain.

Transferring paths. Let x = (r, z) be a point of Γh to which we associate a point x̄ = (r̄, z̄) in Γ. We denote by σt(x)
the segment joining x and x̄ with unit tangent vector t(x) and length l(x) as depicted in Figure 2 (middle). We will
refer to σt(x) as the transferring path associated to x.

In principle, x̄ can be any point in Γ as long its distance to x is of order h. Given x ∈ Γh, we will use the algorithm
proposed in [28] to find x̄ ∈ Γ such that the following three conditions are satisfied: (1) σt(x) does not intersect
another transferring path before terminating at Γ, (2) it does not intersect the interior of the computational domain Ωh

and (3) the distance form x̄ to x is of order h. More details can be found in Section 2.4.1 of [28]. Figure 2 (right)
shows the transferring paths associated to two quadrature points on each boundary edge. For the computations, only
transferring paths associated to the quadrature points and vertices of a boundary edge are needed.

Extension from subdomains. Given a boundary edge e with vertices at y1 and y2, we define Ke
ext as the interior of the

region determined by e, the segments σt(y1) and σt(y2), and the arc of Γ connecting ȳ2 and ȳ1 as shown in Figure
3. By construction, Ke

ext does not intersect the corresponding region associated to a neighboring boundary edge. In
addition, we observe that the union of all the elements Ke

ext coincides with the complementary region Ω \Ωh as shown
in Figure 3. Hence, we define Ωh

ext := ∪e∈E∂h
Ke

ext and note that Ω = Ωh ∪Ωh
ext.

Finally, it is convenient at this point to define a local polynomial extrapolation that will be used in order to build
the approximation of the boundary data at Γh. More precisely, let e be the boundary edge that belongs to the triangle
Ke ∈ Th and is associated to the exterior region Ke

ext. For a polynomial function p defined on Ke, we denote by E(p)
the extrapolation from Ke to Ke

ext obtained by extending the domain of definition of p to Ke ∪ Ke
ext while keeping the

same polynomial form. Hence,

E(p) : Ke ∪ Ke
ext −→ R, E(p)(y) := p(y). (5)

This definition provides a systematic way to extend a polynomial function defined only in the computational domain
into the region Ωh

ext enclosed by the physical boundary Γ and the computational boundary Γh.
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ȳ1

ȳ2
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Figure 3: Left: A boundary edge e with corresponding element Ke and region Ke
ext . Right: Ωh

ext := ∪e∈E∂h
Ke

ext (white region).

Approximation of the boundary data. Let σt(x) be the transferring path from x = (r, z) ∈ Γh to x̄ = (r̄, z̄) ∈ Γ.
Multiplying (4a) by r, integrating along σt(x) and recalling that ψ(x̄) = 0, we obtain

ψ(x) = −

∫ l(x)

0
r q(x + t(x)s) · t(x) ds =: ϕ(x). (6)

In other words, ϕ is an exact representation of the boundary data at Γh that depends on the unknown q. Let us
emphasize that the numerical method will approximate the solution (q, ψ) in Ωh, however the integral in the definition
of ϕ is over a segment lying outside Ωh where q is still unknown. That is why, instead of considering the exact
boundary condition ϕ, we will use an approximation denoted by ϕh. To be more precise, if qh is the approximation of
q computed by the HDG method on Ke, then motivated by (6) we define

ϕh(x) := −
∫ l(x)

0
rE(qh)(x + t(x)s) · t(x) ds, (7)

where E(qh) is the extension of the polynomial qh|Ke to the neighboring exterior element Ke
ext defined in (5).

3.2. The Hybridizable Discontinuous Galerkin Method

The problem to solve in the computational domain is

q −
1
r
∇̃ψ = 0 in Ωh,

−∇̃ · q =
F
r

in Ωh,

ψ =ϕh on Γh,

where ϕh is given by (7). The above problem can be thought of as a set of local boundary value problems defined on
every element K ∈ Th. The local solutions are coupled through (a) the introduction of the hybrid unknown ψ̂ := ψ|Eh

that corresponds to the restriction of ψ to the skeleton of the mesh Eh, and (b) the requirement that for every pair of
elements K+ and K− sharing an edge e and with exterior normal vectors given by n+, n−, the normal component of
the flux be continuous across their interface [[q]] := q+ · n+ + q− · n− = 0. This equivalent form can be stated as

q −
1
r
∇̃ψ = 0 in K ∀K ∈ Th,

−∇̃ · q =
F
r

in K ∀K ∈ Th,

ψ = ψ̂ on ∂K ∀K ∈ Th,

[[q]] = 0 on e ∀e ∈ E◦h,

ψ =ϕh on Γh.
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The first three equations above define the local problems, while the last two define the global system that determines
the hybrid unknown ψ̂. The HDG method [26] seeks approximations (qh, ψh, ψ̂h) to the solutions (q, ψ, ψ|Eh ) in the
finite dimensional space Vh ×Wh × Mh given by

Vh = {v ∈ L2(Th) : v|K ∈ Pk(K) ∀K ∈ Th},

Wh = {w ∈ L2(Th) : w|K ∈ Pk(K) ∀K ∈ Th},

Mh = {µ ∈ L2(Eh) : µ|e ∈ Pk(e) ∀e ∈ Eh},

where Pk(K) is the space of polynomials of degree k defined on the triangle K, P(K) := [Pk(K)]2, and Pk(e) is the
space of polynomials of degree k defined on the edge e. Following the standard notation, we will denote by (·, ·)K and
〈·, ·〉∂K the L2 inner products on an element K and on its boundary ∂K respectively, and we will define

(·, ·)Th :=
∑
K∈Th

(·, ·)K 〈·, ·〉∂Th :=
∑
K∈Th

〈·, ·〉∂K .

The approximation (qh, ψh, ψ̂h) ∈ Vh ×Wh × Mh is the unique solution of

(rqh, v)Th + (ψh, ∇̃ · v)Th − 〈ψ̂h, v · n〉∂Th = 0, (8a)

(qh, ∇̃w)Th − 〈̂qh · n,w〉∂Th = (F/r,w)Th , (8b)
〈ψ̂h, µ〉Γh = 〈ϕh, µ〉Γh , (8c)

〈̂qh · n, µ〉∂Th\Γh = 0, (8d)

for all (v,w, µ) ∈ Vh ×Wh × Mh, where the numerical flux q̂h is defined as

q̂h · n := qh · n + τ(ψh − ψ̂h) on ∂Th, (8e)

and τ is a non-negative piecewise constant stabilization parameter defined on ∂Th. This simple choice for the numerical
flux has become somewhat standard, but it is by no means unique. One of the advantages of the definition (8e) is that it
keeps equations (8a) and (8b) completely in terms of local quantities (once the hybrid unknown has been determined).
It has been shown in the linear case (in [35] for polyhedral domains and in [34] for curved domains) that the method
achieves optimal convergence order when τ is kept of order one. In our computations the value of the stabilization
parameter was set to τ = 1.

Once the solution (qh, ψh) in Ωh is computed by solving (8), it can be extrapolated to the entire domain Ω using (5).
However, we can define a better approximation for ψ on the exterior domain by means of the transferring technique
(6). More precisely, consider y ∈ Ke

ext and let σt(y) be the transferring path from y = (r, z) ∈ Γh to ȳ = (r̄, z̄) ∈ Γ.
Then, recalling that ψ(ȳ) = 0, the approximation of ψ(y) is given by

ψh(y) := −
∫ l(y)

0
r qh(y + t(x)s) · t(y) ds. (9)

This approximation converges to ψ in Ωh
ext with an additional order as shown in [28, 34].

It is evident that HDG methods are related to the family of mixed methods, where the gradient of the scalar
potential is introduced as an additional unknown of the problem. This reformulation results in an increased number
of problem unknowns, but in return ensures that the order of accuracy provided by the discretization is the same for
the original unknown and its partial derivatives.

As a matter of fact, the mixed structure of the problem, together with the hybridization, also has positive con-
sequences from the computational point of view. For instance, the hybridization technique helps to overcome the
increment on the number of degrees of freedom usually associated to discontinuous Galerkin methods and the result-
ing matrices have the same sparsity and size as the ones resulting from the hybrid continuous mixed methods [36].
This contrasts with the tendency of Discontinuous Galerkin methods to “use too many unknowns”. Moreover, since
the only global unknown is the numerical trace that lies on the edges of the triangulation, once it is determined, the
other unknowns are locally computed in each element, allowing for parallelization.
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The reader familiar with mixed methods may object that this family imposes very tough restrictions on the possible
choices for the approximation spaces, but one can rest assured that yet another positive feature of HDG is providing
with ample flexibility for the spaces used. We refer the reader interested in the programming aspects of HDG methods
to [37], where a very detailed explanation and coding strategies and tools are given. Our own implementation is based
on the tools provided in that reference.

Computational complexity. One of the points that distinguish HDG from other variants of discontinuous Galerkin
methods, is its efficient use of degrees of freedom and the advantageous sparsity pattern of the matrices arising from
it. In order to see why this is the case, we will first briefly point out some of the main differences between traditional
continuous (CG) and discontinuous Galerkin (DG) methods.

As a byproduct of enforcing continuity of the discrete solution across element interfaces, CG methods use fewer
degrees of freedom when compared to DG methods and therefore result in comparatively smaller matrices. This is
due to the fact that those degrees of freedom located at the interfaces are shared by the neighboring elements in the
continuous setting, whereas in the discontinuous case they are independent of each other and thus have to be accounted
roughly once per every element that shares a face or a vertex. On the other hand, the sharing of information between
neighboring continuous elements gives rise to matrices with stronger coupling (i.e. bigger bandwidth) than those
stemming from discontinuous elements, where the interaction between adjacent elements is much weaker.

In the CG framework an effective technique for reducing the size of the global system has been known since at
least 1965 in the context of finite element methods [38] and mixed methods [39]. The technique, that has come to be
known as static condensation, described in the first reference amounts to a reorganization of the degrees of freedom
separating those defined on edges from those on the interior of the elements, which can then be eliminated from the
global system. In the mixed methods a similar result is attained by introducing a hybrid variable defined at the inter
element boundaries that approximates the trace (restriction) of the scalar unknown to the faces of the triangulation and
by requiring the continuity of the normal component of the flux across elements. In both cases, the size of the global
system that determines the unknowns on the edges of the triangulation is reduced, and the interior unknowns are then
recovered by a local post-processing.

From the above, and the description of HDG in the previous section, we can see that HDG strives to attain the
flexibility and reduced bandwidth of DG by solving local problems, and addresses the issue of the larger number of
degrees of freedom by static condensation through the introduction of a hybrid variable. The method thus combines
positive features of both continuous and discontinuous Galerkin. If the method is parallelized, the smaller bandwidth
of the global system reduces communication costs between different processors while the local solves are naturally
parallel.

Detailed comparative studies between HDG and CG (spectral elements) applied to linear elliptic equations have
been performed in [27] for 2D and in [40] for 3D. The authors there conclude that, whereas an iterative solver would in
general favor CG, for polynomial degrees beyond 3 the bandwidth of the global HDG system falls below the one from
the statically condensed CG. As a consequence, a parallel iterative solve would render both computations comparable
and a direct solve of the HDG system would be faster. This is particularly attractive for cases when the source term is
a non-linear function of the scalar unknown and the solution would potentially require multiple linear solves as will be
discussed in Section 3.3. All these features make HDG a very promising option with great potential for parallelization.

A remark on post-processing and superconvergence. One of the advantageous properties of HDG is the possibility of
devising local post-processing strategies for the scalar unknown, ψ in our case, that yield an approximation converging
with an additional order. The choice of discrete spaces and post-processing strategies that enable superconvergence
has been thoroughly analyzed in [41] within the context of HDG methods for linear elliptic problems.

In the current application however, our main focus is to obtain accurate approximations for the partial derivatives
of ψ (i.e. the components of rq), since the physical quantities of interest in magnetic confinement are related to the
magnetic field and not to the scalar potential. In view of this, we have not included a post-processing stage in our
implementation. Nevertheless, we present one such strategy here for the sake of completeness.

Once the approximations ψh and qh have been determined from the solution of (8), one now looks for a piecewise
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polynomial function ψ∗h such that

ψ∗h ∈ Pk+1(K) ∀K ∈ Th,

(∇ψ∗h,∇wh)K = (rqh,∇wh)K ∀wh ∈ Pk+1(K),
(ψ∗h, 1)K = (ψh, 1)K .

The solution to this auxiliary problem was shown in [35] to converge towards ψ with an additional order when k ≥ 1 .

3.3. Accelerated fixed-point iterations
In order to deal with the semi-linearity of the problem we will resort to an iterative strategy. Due to their simplicity

and effectiveness, straightforward fixed-point iterations (also known as a Picard iterations) of the style

−∆∗ψn = F(r, z, ψn−1)

have been preferred in many applications [11, 12, 17, 18, 19, 20, 22]. We choose to follow a similar strategy, but
enhance it with two simple yet effective acceleration methods.

The first method consists of a simple two-grid strategy that was already included in CHEASE [8] where the fixed-
point iteration is carried out in a coarse grid TH until convergence is achieved to a prescribed tolerance. The resulting
coarse-grid solution is then prolonged onto a finer grid Th where it is used as initial guess for a second round of
fixed-point iterations. The computations on the coarse grid are considerably less taxing and the resulting improved
initial guess decreases the number of iterations required on the fine grid. The convergence properties of this two-grid
fixed-point strategy have been analyzed in [42, 43], where rigorous conditions for optimal rates of convergence are
discussed.

The second strategy pertains to the fixed-point iteration itself and is an optimized variation of the popular back-
averaging method known as Anderson acceleration [44]. The idea is to use an optimized convex linear combination
of a predetermined number of previous iterates as input for the next update. If we denote by M(·) the mapping
whose fixed-point is being sought for and u0 the initial input then, in its simplest form, the acceleration algorithm
anderson

(
m, u0,M(·), ε

)
using m previous iterates can be described as follows:

Algorithm 1: anderson
(
m, u0,M(·), ε

)
Data:
m: Depth. u0: Initial guess. M : Mapping. ε: Stopping tolerance.
Result:
u∗: Approximate fixed-point of M.
begin

n = 0 , Res = 1;
ũ1 = M(u0);
G1 = ũ1 − u0;
u1 = ũ1;
while Res ≥ ε do

n = n + 1;
k = min{m, n};
ũn+1 = M(un);
Gn+1 = ũn+1 − un ;
Find: (α1, . . . , αk+1) ∈ Rk+1 such that

1.
∑k+1

j=1 α j = 1

2. (α1, . . . , αk+1) = argmin ‖
∑k+1

j=1 α jGn+ j−k‖

un =
∑k+1

j=1 α jũn+ j−k;
Res = ‖un − un−1‖/‖un‖;

end
u∗ = un;

end

9



It is clear that the algorithm of depth m = 0 coincides with the simple Picard iterative scheme. By including in-
formation from more than one of the previous updates in this way, the convergence can be dramatically improved.
Furthermore, in terms of the number of iterations needed to achieve a prescribed tolerance, the method can not do
worse than Picard and it often provides considerable improvement, as shown by Toth and Kelley [45]. In the same
work, the authors report that, although no results are available regarding the optimal depth m, empirically there is no
gain from choosing m ≥ 3. This was consistent with our own experiments and therefore we settled for an acceleration
of depth m = 2 in our implementation. A more elaborate version of the procedure allows for the mixing of previous
instances of both ũ and u [45, 46], but for our implementation we follow the simple procedure described above.

3.4. Summary of the solution method

Let S H,F be the operator that, for a given right hand side F, maps the initial guess ψ0 to the HDG approximation
(qH , ψH) computed on a mesh TH with parameter H, and Πh be a prolongation operator onto the finer grid Th. With
this notation we can summarize the solution strategy algorithmically as follows:

Algorithm 2: solveGS(F,TH ,Th, ε)
Data:
F: Right hand side. TH: Coarse triangulation. Th: Fine triangulation.
ε: Stopping tolerance.
Result:
(qh, ψh): Approximate HDG solutions.
begin

ψ0 ; // Non-trivial initial guess

(qH , ψH) = anderson
(
2, ψ0, S H,F , ε

)
; // Coarse grid

ψ0 = ΠhψH ; // Prolongation onto a fine grid

(qh, ψh) = anderson
(
2, ψ0, S h,F , ε

)
; // Fine grid

end

4. Numerical Experiments

The accuracy and convergence properties of the scheme are evaluated by comparing the approximations to the flux
function and its gradient to some existing analytical solutions briefly presented below. The geometries used for the
simulations are closely related to physically relevant configurations: the International Thermonuclear Experimental
Reactor (ITER), the National Spherical Toroidal Experiment (NSTX), the Axially Symmetric Divertor Experiment
(ASDEX upgrade), and Field Reversed Configurations (FRC). Additional experiments with non-linear source terms
are performed on ITER-like geometries: one with a double null divertor and a smooth D-shaped Miller parametriza-
tion. We measure error in the standard L2 norm, but also verify the performance “off the grid” in an L∞-related norm
by sampling on random non-grid points in the computational domain and considering the maximum discrepancy as
the error measure. Convergence as a function of the grid size and the polynomial degree are tested independently and
the results of the numerical experiments on the different geometries are presented at the end of the section.

4.1. Analytical solutions in free space

For particular pressure and poloidal current profiles some exact solutions have been derived. These profiles deter-
mine the right hand side of equation (3) that we recall here for convenience:

−∇̃ ·

(
1
r
∇̃ψ

)
=

F(r, z, ψ)
r

, F(r, z, ψ) := µ0r2 dp
dψ

+ g
dg
dψ

.

The concrete expressions of the solutions we use as benchmarks (and the right hand sides they give rise to) are
described briefly in what follows.
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Solov’ev profiles. These profiles for p(ψ) and g(ψ) arise when the terms on the right hand side of (1) are such that

µ0
dp
dψ

= −C , g
dg
dψ

= −A,

for some constant values A and C. If the flux is normalized so that A + C = 1 the right hand side function becomes

F(r, z, ψ) = −
(
(1 − A)r2 + A

)
. (10)

The solution of this equation can be split into a homogeneous part, ψH , and particular part ψP, so that ψ = ψH + ψP.
A particular solution is

ψP(r, z) =
r4

8
+ A

(
1
2

r2 ln r −
r4

8

)
, (11)

while the homogeneous solution can be a linear combination the terms:

ψ1 = 1, ψ7 = 8z6 − 140z4r2 + 75z2r4 − 15r6 ln r

ψ2 = r2, + 180r4z2 ln r − 120r2z4 ln r,

ψ3 = z2 − r2 ln r, ψ8 = z,

ψ4 = r4 − 4r2z2, ψ9 = zr2,

ψ5 = 2z4 − 9z2r2 + 3r4 ln r ψ10 = z3 − 3zr2 ln r,

− 12r2z2 ln r, ψ11 = 3zr4 − 4z3r2,

ψ6 = r6 − 12r4z2 + 8r2z4, ψ12 = 8z5 − 45zr4 − 80z3r2 ln r + 60zr4 ln r. (12)

Following the procedure carefully derived in [47] to choose the coefficients (c1, . . . , c12) corresponding to each of these
functions, the solution ψ can be written in terms of three free parameters (ε, δ, κ) that describe the cross section of the
configuration. By adjusting the values of ε, δ, and κ it is possible to obtain profiles that correspond to relevant physical
configurations. The interested reader is referred to the above reference for more details on the parametrization of the
plasma boundary.

Configurations with dissimilar source functions. If, as proposed in [48], the pressure and toroidal flux are set to

p =
S
µ0
ψ , g2 = Tψ2 + 2Uψ + g2

0

for some constants S ,T,U, and g0, the right hand side function of (1) becomes

F(r, z, ψ) = Tψ + S r2 + U. (13)

The solution to the Grad-Shafranov equation for these sources can be obtained by a similar procedure as before; by
splitting the solution into homogeneous and particular parts ψ = ψh + ψp where

ψh = −
1
T

(
U + S r2

)
and − ∆∗ψp = Tψp.

Eight different families of solutions ψp to the above eigenvalue problem are found in [48]. Here we will focus on one
particular linear combination of them that gives rise to the solution

ψ = c1 + c2r2 + rJ1(pr) (c3 + c4z) + c5 cos (pz) + c6 sin (pz)

+ r2 (c7 cos (pz) + c8 sin (pz)) + c9 cos
(
p
√

r2 + z2
)

+ c10 sin
(
p
√

r2 + z2
)

+ rJ1(νr) (c11 cos (qz) + c12 sin (qz)) + rJ1(qr) (c13 cos (νz) + c14 sin (νz))

+ rY1(νr) (c15 cos (qz) + c16 sin (qz)) + rY1(qr) (c17 cos (νz) + c18 sin (νz)) , (14)
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where p =
√

T , q = p/2, ν =
√

3/4p, and J1 (resp. Y1) is the Bessel function of the first (resp. second) kind. The
first two terms of the above expression correspond to the homogeneous solution ψh where we have set U = −c1T and
S = −c2T .

Other interesting analytic solutions with realistic physical properties, such as the family proposed in [49], have
been developed and constitute good benchmark problems. However, on the interest of brevity, for the numerical
experiments we will focus only on the solutions presented above alongside two examples with non-linear source
terms for which no analytic solution is known.

4.2. Convergence studies
Error measures. We consider two different error measures for both the poloidal flux ψ and its gradient ∇ψ. First, for
a function f and its HDG approximation fh we define the usual mean square error as

E2( f ) :=
(
‖ f − fh‖2L2(Ωh) + ‖ f − fh‖2L2(Ωh

ext)

)1/2
.

This expression includes the error contributions from the computational domain Ωh and from the corresponding exte-
rior region Ωh

ext– where the value of qh is defined by the extrapolation in (5) and the value of ψh by the transference
defined in (9).

In many applications, the output of a plasma equilibrium code is not the final result of a simulation, but only one
part of a much bigger calculation involving different physical processes simulated by several computational codes
coupled together. In these cases the approximation of the magnetic field obtained is sampled and used as input for the
computation of other physical processes of interest. The points where the approximation is evaluated may or may not
coincide with nodes of the original mesh and therefore it is important to have a measure of the point-wise convergence
of the approximation. As an estimate of the point-wise accuracy of the algorithm we sample the solution at random
points in the interior of Ω and consider the maximum discrepancy with the analytic solution as a measure of accuracy.
This leads to the definition

E∞( f ) := max
x∈S
| f (x) − fh(x)|,

where S is comprised of five random points from every element of the discretization of both Ωh and Ωh
ext.

Stopping criterion. In all the following examples the stopping criterion for the iterative algorithm was set to a relative
difference of 10−12 or below between two consecutive iterations. This effectively sets the maximum possible accuracy
of the algorithm.

Refinement strategies. In the numerical experiments both mesh and polynomial refinement (commonly referred to as
h and p refinements respectively) tests are considered. The computational grids are built following the steps given
in Section 3.1. Starting from a background shape-regular triangulation with diameter h, the associated computational
domain Ωh and the region Ωh

ext are determined for every geometry. Mesh refinement is performed by uniform subdi-
vision of the background mesh, which results in a finer mesh with diameter h/2; the computational domain and the
extension are updated accordingly. For the cases requiring two-grid iterations, the coarse and fine meshes correspond
to adjacent levels of refinements with diameters h/2n and h/2n+1. In the case of p-refinements, the grids mentioned
above were held fixed and the refinement was carried out by increasing the polynomial degree of the approximation
space.

On the convergence plots shown in Figures 4, 5, 6, 7, 8, and 9 the polynomial degree is varied along the horizontal
axis, while the convergence curves for meshes with different diameters are superimposed with a different color on the
same graph. The reader is referred to the electronic version of the paper for the color reference.

When the mesh is refined dyadically as in our experiments, the estimated convergence rate (e.c.r.) between two
successive levels of h-refinement can be estimated by

e.c.r ≈ log
(
Ek

j( f )/Ek+1
j ( f )

)
/ log (2),

where Ek
j( f ) corresponds to the error associated to the approximation of f in a mesh with diameter h/2k and the index

j ∈ {2,∞} denotes the mean square and maximum measures. Tables 1, 2, 3, 4, and 5 show the estimated convergence
rates for each of the experiments as computed by the above relation.
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Figure 4: Convergence plots for Example 1 (FRC) for successive refinements of the computational grid and increasingly higher polynomial degrees.
Left column: E2 (top) and E∞ (bottom) errors for the poloidal flux ψ. Center column: E2 (top) and E∞ (bottom) errors for ∇ψ. Right column:
Confinement region and sample grid corresponding to the second level of refinement (red curve in the convergence plot). The geometry is shown
on 1:1 scale on the right end to stress the elongation of the domain. The reader is referred to the on-line version of the manuscript for the color
scheme.

Solov’ev profiles in smooth geometries. We start by testing the performance of the method on a smooth geometry cor-
responding to a Field Reversed Configuration modeled using the parametrization given in [47]. The parametrization
of the plasma-vacuum boundary uses parameter values ε = 0.99, δ = 0.7, κ = 10, and A = 0 and the coarsest mesh for
this geometry is characterized by h = 1.25.

For this configuration, Example 1, the exact Solov’ev solution is a linear combination of the functions ψp from
equation (11) with A = 0 and ψ1, ψ2, and ψ4 from equation (12), yielding an up-down symmetric configuration which
is a bivariate polynomial of fourth degree. This explains the sharp drop of the L2 approximation error when the
polynomial degree reaches 4 (Figure 4).

Despite the smoothness of the geometry and the relative simplicity of the exact solution, configurations like this
can present challenges to solvers due two factors. The first one, and perhaps the most evident, is the proximity of the
plasma boundary to the origin, where the toroidal operator ∆∗ becomes singular. The second one is the high elongation
of the confinement region which can lead to overcrowding in the regions of high curvature for methods relying on
conformal mapping, or to meshes with elements that are either too large and resolve the geometry poorly, or too many
and result in large numbers of unknowns.

As it is shown in Figure 4, the algorithm performs remarkably well despite the geometrical challenges mentioned
above and the comparatively large mesh diameters. Moreover, Table 1 shows that the estimated convergence rate is of
order at least k + 1 (k < 4) for ψ and its gradient, which agrees with the theory in [34]. The estimated convergence rate
for k ≥ 4, in this case, does not provide any useful information because the exact solution is a polynomial of degree
four. For smooth geometries and Solov’ev profiles this kind of performance was also observed on other geometries
such as a Spheromak and ITER-like and NSTX-like configurations without an x-point; for the sake of conciseness
these examples were left out of the paper.

Solov’ev profiles on geometries with an x-point. The second set of test problems consists of Solov’ev profiles in
geometries that present an x-point. The geometries are up-down asymmetric with a downwards oriented x-point and
are modeled by the parametrization detailed in [47]. The exact solutions for these configurations involve all the terms
in equations (11) and (12) and are therefore more challenging tests not only from the geometrical point of view.

Example 2 corresponds to an ITER-like configuration with parameters ε = 0.32, δ = 0.33, κ = 2, and A = −0.115
the mesh on the computational domain has an initial diameter of h = 0.175 that is successively halved. Example 3
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E2(ψ) E2(∇ψ) E∞(ψ) E∞(∇ψ)
Degree h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8

1 2.75 2.40 2.13 2.67 2.12 1.98 1.32 2.40 1.65 1.41 1.77 1.69
2 3.44 3.442 3.143 3.159 3.318 3.252 2.888 3.228 2.449 2.741 3.056 1.98
3 6.86 4.99 4.44 6.42 4.31 3.78 4.55 4.46 4.16 5.92 3.38 4.48
4 9.90 0.96 0.68 8.46 -0.20 -0.54 5.96 -0.23 0.12 6.70 -0.87 -0.37
5 13.40 1.01 1.18 11.42 0.02 -0.24 9.74 -0.66 0.15 10.10 -0.70 -0.39

Table 1: Estimated h-convergence rates between two successive levels of refinement for Example 1 for polynomial orders ranging between 1 and 5.
Beyond this order, round-off error becomes significant as can be seen from the convergence plots. The coarsest level mesh had diameter h = 1.25.
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Figure 5: Convergence plots for Example 2 (ITER) for successive refinements of the computational grid and increasingly higher polynomial
degrees. Leftt column: E2 (top) and E∞ (bottom) errors for the poloidal flux ψ. Center column: E2 (top) and E∞ (bottom) errors for ∇ψ. Right
column: Confinement region and sample grid corresponding to the second level of refinement (red curve in the convergence plot). The reader is
referred to the on-line version of the manuscript for the color scheme.

corresponds to an NSTX-like configuration modeled using the values ε = 0.78, δ = 0.335, κ = 1.7, and A = −0.115.
In this case the coarsest computational mesh has diameter h = 0.5.

The presence of an x-point in these configurations makes the problem challenging for many available solvers,
nevertheless as can be seen in Figure 5 for the ITER geometry and Figure 6 for the NSTX configuration, our algorithm
performs satisfactorily both on and off the grid, with the NSTX geometry presenting a bigger challenge due to its larger
elongation and proximity to the origin as compared to the ITER configuration.

In addition, for both examples we also observe in Tables 2 and 3 optimal estimated convergence rate as predicted
by the theory in [34]. We point out that when k = 5 and the meshsize is h/4 or smaller, the errors are affected by
round-off errors and then computed convergence does not provide any useful information in this case.

Dissimilar source terms on geometries with an x-point. The test chosen for Example 4 is based on the model for the
ASDEX upgrade experiment discussed in [48] and described by equation (14). With the pressure and current profiles

E2(ψ) E2(∇ψ) E∞(ψ) E∞(∇ψ)
Degree h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8

1 1.91 1.96 1.98 1.98 2.30 2.06 1.91 1.18 1.81 0.99 2.03 0.56
2 3.16 3.07 3.04 2.88 3.74 3.22 2.28 3.86 2.16 1.44 4.12 1.93
3 4.28 4.56 4.49 4.19 4.68 4.37 3.64 4.75 4.17 2.83 4.70 3.24
4 5.95 5.85 5.69 5.27 5.83 5.28 5.57 5.75 5.34 4.01 5.83 4.49
5 6.09 7.12 0.62 5.80 6.98 -1.00 5.92 6.98 -2.39 4.78 6.31 -3.73

Table 2: Estimated h-convergence rates between two successive levels of refinement for Example 2 for polynomial orders ranging between 1 and
5. Beyond this order, round-off error becomes significant as can be seen from the convergence plots. The coarsest level mesh had diameter h = 0.5.
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Figure 6: Convergence plots for Example 3 (NSTX) for successive refinements of the computational grid and increasingly higher polynomialon-
clusion degrees. Left column: E2 (top) and E∞ (bottom) errors for the poloidal flux ψ. Center column: E2 (top) and E∞ (bottom) errors for ∇ψ.
Right column: Confinement region and sample grid corresponding to the second level of refinement (red curve in the convergence plot). The reader
is referred to the on-line version of the manuscript for the color scheme.

E2(ψ) E2(∇ψ) E∞(ψ) E∞(∇ψ)
Degree h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8

1 1.95 1.97 1.99 2.20 2.10 2.05 0.60 2.07 3.18 2.33 1.75 2.22
2 3.09 3.01 2.99 3.40 3.58 3.32 3.68 2.68 2.49 3.42 2.71 2.27
3 4.63 4.69 4.23 4.28 4.55 4.43 4.66 4.66 1.95 3.99 3.70 2.39
4 4.86 5.96 5.98 5.03 5.40 5.50 4.95 5.27 5.52 5.45 3.91 4.36
5 5.77 5.12 4.26 5.99 5.05 5.22 6.75 2.30 4.74 7.33 2.19 3.91

Table 3: Estimated h-convergence rates between two successive levels of refinement for Example 3 for polynomial orders ranging between 1 and
5. Beyond this order, round-off error becomes significant as can be seen from the convergence plots. The coarsest level mesh had diameter h = 0.5.

determined by this model, the source term of the Grad-Shafranov equation depends linearly on ψ. This kind of source
terms can be absorbed directly into a modified bilinear form and dealt with computationally by introducing a mass
matrix in the system. However, our goal is to provide a solver that relies only on the discretization of the toroidal
operator ∆∗ and allows the user to provide the source terms as problem data. In this framework, a general source term
is always dealt with iteratively.

The exact solution associated to this configuration of the ASDEX Upgrade experiment corresponds to equation
(14) with the set of coefficients given by:

c1 = 0.17795 c6 = −0.162 c11 = 1.5820 c16 = −0.4265
c2 =−0.03291 c7 = 0.3722 c12 =−0.009059 c17 = 0.8057
c3 = 1.4934 c8 = 0.07697 c13 = 2.2388 c18 =−0.004804
c4 = −0.4818 c9 = 1.2959 c14 = 0.4186 T = 17.8116.
c5 = −1.1759 c10 = 0.5881 c15 = 1.195

These values give rise to a configuration with an upwards-oriented x-point as shown in Figure 7. The background
mesh at the coarsest level of refinement had diameter h = 0.275. As confirmed by the convergence plots on Figure 7,
the iterative process performs well both in the point-wise and mean square senses. Moreover, the behavior of the rate
of convergence observed in Table 4 is similar to that of previous examples.

Non-linear source terms. Example 5 uses an up-down symmetric geometry with two x-points corresponding to a
double-null divertor. The parameters, ε = 0.32, δ = 0.33, κ = 1.7, and A = 0, as given in [47], are those of an
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Figure 7: Convergence plots for Example 4 (ASDEX upgrade with an upwards oriented x-point) for successive refinements of the computational
grid and increasingly higher polynomial degrees. Left column: E2 (top) and E∞ (bottom) errors for the poloidal flux ψ. Center column: E2 (top)
and E∞ (bottom) errors for ∇ψ. Right column: Confinement region and sample grid corresponding to the second level of refinement (red curve in
the convergence plot). The reader is referred to the on-line version of the manuscript for the color scheme.

E2(ψ) E2(∇ψ) E∞(ψ) E∞(∇ψ)
Degree h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8

1 3.14 2.62 2.40 3.14 2.60 2.55 2.99 2.43 2.09 2.67 2.47 1.56
2 4.97 3.53 3.18 4.15 3.53 3.70 4.47 2.60 2.98 3.26 3.05 3.08
3 5.42 4.91 5.21 5.11 4.57 4.73 5.32 4.83 4.96 4.65 4.46 3.95
4 7.32 5.77 7.47 6.06 5.42 5.90 7.21 5.73 6.22 5.86 4.18 5.10
5 7.03 7.28 3.46 5.96 6.94 4.26 7.03 7.27 3.54 4.61 6.97 2.28

Table 4: Estimated h-convergence rates between two successive levels of refinement for Example 4 for polynomial orders ranging between 1 and 5.
Beyond this order, round-off error becomes significant as can be seen from the convergence plots. The coarsest level mesh had diameter h = 0.275.

ITER-like equilibrium.
Analytic solutions for pressure and current profiles that result in non linear source terms as a function of ψ are not

available. Therefore to test this example we resorted to a manufactured solution. We opted for including a linear, a
quadratic and an exponential term as functions of ψ in the source, which was then complemented so that the function

ψ = sin
(
κr(r + r0)

)
cos

(
κzz

)
,

(
r0 = −0.5, κr = 1.15π, κz = 1.15

)
satisfies Equation (3). The effective source term was

F(r, z, ψ) := (κ2
r + κ2

z )ψ +
κr

r
cos

(
κr(r + r0)

)
cos

(
κzz

)
+ r

(
sin2 (

κr(r + r0)
)

cos2 (
κzz

)
− ψ2 + e− sin

(
κr(r+r0)

)
cos

(
κzz

)
− e−ψ

)
,

and non-homogeneous Dirichlet boundary conditions were imposed correspondingly.
With the parameters chosen as above, the imposed solution has similar qualitative behavior to what can be expected

from a flux function, with values close to zero near the boundary and a critical point on the interior. Due to the nature
of the source term, the problem requires the iterative treatment described in Section 3.3.

As in the previous examples, both h and p refinements were considered with satisfactory results, as presented in
Figure 8 for increasing polynomial degree. The estimated convergence rates with respect to successive refinements of
the spatial grid can be seen in Table 5, where we observe an estimated convergence rate of order at least k + 1 when
k ≤ 4. For k = 4, this rate is 1.68 from the first to the second mesh but it becomes 10.04 from the second to the third
mesh. In other words, a least squares fitting of the estimated convergence rate considering the three first meshes shows
a convergence rate of order k + 1 = 6. We emphasize that there are no theoretical estimates on the rate of convergence
when the source term is non-linear as it is in this example. We are currently working on the error analysis to cover
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Figure 8: Convergence plots for Example 5 (ITER with a double null divertor) for successive refinements of the computational grid and increasingly
higher polynomial degrees. Left column: E2 (top) and E∞ (bottom) errors for the poloidal flux ψ. Center column: E2 (top) and E∞ (bottom) errors
for ∇ψ. Right column: Confinement region and sample grid corresponding to the second level of refinement (red curve in the convergence plot).
The reader is referred to the on-line version of the manuscript for the color scheme.

E2(ψ) E2(∇ψ) E∞(ψ) E∞(∇ψ)
Degree h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8 h→ h/2 h/2→ h/4 h/4→ h/8

1 1.86 2.03 2.01 1.96 2.11 1.98 1.77 1.95 2.02 1.48 2.00 1.77
2 3.41 3.27 3.01 2.48 3.62 3.12 3.02 3.36 2.97 2.30 3.00 2.57
3 3.95 4.41 3.82 4.10 4.95 3.55 3.59 4.99 2.78 3.24 4.39 3.15
4 6.50 6.88 3.74 6.73 6.20 2.40 7.31 6.62 1.86 6.62 5.75 0.64
5 1.68 10.04 1.95 0.52 10.09 0.32 0.08 10.62 -0.50 -0.64 10.21 -2.23

Table 5: Estimated h-convergence rates between two successive levels of refinement for Example 5 for polynomial orders ranging between 1 and 5.
Beyond this order, round-off error becomes significant as can be seen from the convergence plots. The coarsest level mesh had diameter h = 0.1792.

this case. To close this section, the final Example 6 is set on a smooth D-shaped geometry. The (r, z) coordinates of
the boundary are given by a Miller parametrization [50] in terms of t ∈ [0, 2π) of the form

r(t) = 1 + ε cos
(
t + arcsin (δ sin (t))

)
, z(t) = εκ sin (t),

where ε = 0.32, δ = 0.33, and κ = 1.7, corresponding to an ITER-like configuration. In this instance the source term
has a polynomial non-linearity corresponding to

p =
ψ

2

(
1 +

2ψ2

3
−
ψ5

5

)
and g = 0,

which yield a source of the form

F(r, z, ψ) = r2
(
1 −

(1 − ψ2)2

2

)
.

For this final example we do not impose a manufactured solution; instead we set homogeneous boundary conditions
and estimate the convergence by measuring the maximum difference between two consecutive levels of refinement

∆k
j( f ) := ‖ f k

h − f k−1
h ‖ j.

Here as before, the super index refers to the k-th level of discretization, while the lower index j ∈ {2,∞} refers to
the norm being used. In this example, the background mesh had a parameter h = 0.1632 at the coarsest level of
refinement. With respect to the approximate convergence plots shown in Figure 9, we remark that even if the relative
difference between two successive approximations is a pessimistic estimate of the true error, the method still performs
satisfactorily.
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Figure 9: Convergence estimates for Example 6 for successive refinements of the computational grid and increasingly higher polynomial degrees.
The ∆2 and ∆∞ differences between levels of refinement for the poloidal flux ψ (left) and ∇ψ (center) are shown respectively along the top and
bottomm rows. The confinement region and sample grid corresponding to the second level of refinement (red curve in the convergence plot) is
shown on the right column. The reader is referred to the on-line version of the manuscript for the color scheme.

5. Discussion

We have presented a high order accurate solver for the Grad-Shafranov equation based on the Hybridizable Dis-
continuous Galerkin method. As the numerical examples show, the method is very robust with respect to the geomet-
rical properties of the confinement region and provides competitive convergence rates for the poloidal flux function
and, more importantly, for the magnetic field even for relatively coarse grids. As the numerical experiments con-
firm, the proposed Anderson-accelerated iterative strategy satisfactorily accommodates for source terms with linear
or non-linear dependence in ψ.

The use of HDG provides a framework with great potential for parallel computations, due to the fact that, once
the global hybrid unknown has been determined, the local problems decouple and can be solved independently from
each other, and that the associated global system has reduced bandwidth. This feature enhances the speed of the
calculations specially in fine grids with a large number of elements. The transferring path method used to enforce
Dirichlet boundary conditions on a polygonal subdomain gives the algorithm great geometric flexibility and avoids
the need for constant re-meshing if the geometry has to be adjusted, as it is often the case for real time monitoring or
free boundary applications. Moreover, the technique can be applied to both fitted and unfitted meshes.

On the downside, the extrapolation strategy used to define the approximation in the extension Ωh
ext may fail to

resolve possible boundary layers close to the separatrix. In order to address this possibility, the authors are currently
working on an adaptive mesh refinement strategy that when combined with the transferring technique can resolve the
fine-scale structure up to a prescribed tolerance without increasing the computational cost excessively.

Other areas of improvement include the implementation of a combined two-grid fixed-point + Newton step strat-
egy, where accelerated fixed point iterations are carried out on the coarse grid to generate a good initial guess which
is used as the starting point for a Newton iteration on the fine grid. This technique promises to dramatically decrease
the number of iterations required on the fine grid, speeding up the computation even further. All these enhancements
are the subject of ongoing work and will be implemented in a subsequent stage in order to enable the treatment of the
free boundary problem and other situations in which other quantities of physical relevance are provided as input in
combination with the pressure profile instead of the function g(ψ) appearing in the current application.
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