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ABSTRACT

We perform quantum optimal control simulations, based on the Time-Dependent Hartree (TDH) approximation, for systems of three to five
dipole-dipole coupled OCS rotors. A control electric field is used to steer all of the individual rotors, arranged in chains and regular polygons
in a plane, toward either identical or unique objectives. The goal is to explore the utility of the TDH approximation to model the field-induced
dynamics of multiple interacting rotors in the weak dipole-dipole coupling regime. A stochastic hill climbing approach is employed to seek
an optimal control field that achieves the desired objectives at a specified target time. We first show that multiple rotors in chain and polygon
geometries can be identically oriented in the same direction; these cases do not significantly depend on the presence of the dipole-dipole
interaction. Additionally, in particular geometrical arrangements, we demonstrate that individual rotors can be uniquely manipulated toward
different objectives with the same field. Specifically, it is shown that for a three rotor chain, the two end rotors can be identically oriented in
a specific direction while keeping the middle rotor in its ground state, and for an equilateral triangle, two rotors can be identically oriented
in a specific direction while the third rotor is oriented in the opposite direction. These multirotor unique objective cases exploit the shape
of the field in coordination with dipole-dipole coupling between the rotors. Comparisons to numerically exact calculations, utilizing the
TDH-determined fields, are given for all optimal control studies involving systems of three rotors.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091520

. INTRODUCTION explore the utility of the Time-Dependent Hartree (TDH) approx-

imation”"’ for modeling the field-induced dynamics of interacting

There is significant interest in the ability to steer the dynam-
ics of a quantum system in a desired way using optimally shaped
fields. One approach for designing these fields is quantum opti-
mal control." There are growing numbers of applications of quan-
tum optimal control methods including high harmonic generation,”
quantum information processing,” the control of selective vibra-
tional mode excitation,” and the control of chemical reactions.®®
However, while a significant body of literature concerning quan-
tum control has been developed in recent decades,' only a small
fraction of theoretical work considers the control of systems with
many interacting degrees of freedom. The goal of this paper is
to make a contribution in this important area. To this end, we

molecular rotors in the weak dipole-dipole coupling regime, in com-
bination with a derivative-free stochastic hill climbing approach'""”
for seeking optimal control fields that achieve the desired
objectives.

Various theoretical and computational methods have been
developed to address the many-body molecular control challenge.
Early efforts in the weak field regime involved Gaussian wave-
packet approaches'” as well as applications of the TDH approxi-
mation”'” to model the control of the dynamics of I, coupled to
a bath. Later, the Multiconfigurational Time-Dependent Hartree
(MCTDH) approach, which improves upon TDH at increased com-
putational expense (see Sec. II B), was also combined with optimal
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control theory'” (e.g., to simulate the control of the vibrational
dynamics of pyrazine'”). Outside the realm of control, early stud-
ies applied TDH to nuclear physics problems (e.g., modeling the
dynamics of heavy ion collisions'®'”). In the domain of quantum
molecular dynamics without control, TDH has been used to model
numerous processes including dissociation dynamics of van der
Waals complexes' '’ and gas phase collisions.”"”’

In quantum control studies, the problem of finding an optimal
control field &(¢), t € [0, T] to reach a desired target, defined by the
expectation value of an observable O at the terminal time, may be
cast as the following optimization problem:

1181('51))(1[T,8(')]> M

where the cost functional J[T, &(-)] =(y(T)|O|y(T)) and the sys-
tem state |y(T)) is generally a nonlinear functional of the control
field &(). In practice, J[T, €(-)] can also include additional penalty
terms in order to give preference to certain field characteristics
(e.g., smoothness and low fluence). The optimal field (¢) that max-
imizes the objective functional is usually found iteratively, with var-
ious local optimization methods developed for this purpose.””
These local optimization methods typically require the calculation
of the gradient of the objective functional with respect to the field,

i %:‘;t()')] , and then move along the latter direction of steepest ascent

until the gradient becomes virtually zero (i.e., at the optimum).
The resultant field £(¢) is taken as an optimal control for the given
objective.

A direct application of gradient-based algorithms consistent
with the TDH approximation is computationally expensive because
[Te()]

de(t)

to the presence of the nonlinear mean-field potential in the TDH
equations as well as in the general MCTDH context. Although the
exact gradient expression (i.e., arising from the original many-body
Schrodinger equation) can be utilized for computing an approx-
imate TDH gradient, the performance of the method can suffer
due to the inconsistency in the underlying optimal control formula-
tion.”® In our work, we apply a stochastic hill climbing optimization
approach'"'” that does not require the evaluation of the TDH gra-
dient, but the technique is fully consistent with the TDH dynamical
equations.

The systems we consider consist of multiple dipole-dipole cou-
pled molecular rotors in a plane, and we seek optimal control fields
to mainly manipulate the individual orientation of the rotors such
that their dipoles point in particular directions at a specific time
t = T. The orientation of molecules is important for applications
including high harmonic generation”’ and chemical reactions.”* "’
The orientation of dipole-dipole coupled rotors in lattices has also
been studied in the context of quantum phase transitions.”’ Quan-
tum control of molecular rotor orientation has been the subject of
prior work, where numerically exact models of one to two rotors
were considered.” *” By invoking the TDH approximation, we are
able to extend the study of rotor orientation control to systems con-
sisting of three to five dipole-dipole coupled rotors, which opens
the opportunity to consider complex rotor geometries and control
objectives. These latter objectives include cases where the goal is
either the same for each rotor or uniquely specified for different
rotors. The calculations are performed within the regime of validity

the associated gradient

is a complicated expression due
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of the TDH approximation, which is characterized by a rotor-rotor
coupling parameter. Additionally, the TDH and exact wave func-
tions are compared using the TDH-determined control fields for
cases of three coupled rotors.

The remainder of the paper is organized as follows. Sec. 1I
presents the formulation for quantum control of multirotor systems.
We begin by providing a model of dipole-dipole coupled rotors, and
the TDH approximation is then presented, followed by a summary
of the stochastic hill climbing method'"'* adopted to the present
control fleld optimization procedure. Section I1I provides details of
the numerical studies, and we close in Sec. [V with conclusions and
an outlook on future work.

Il. METHODOLOGY
A. Theoretical description

We consider multiple dipole-dipole coupled linear OCS rigid
rotors in the weak dipole-dipole coupling regime arranged in either
chain or regular polygon configurations in a plane under the influ-
ence of a linearly polarized microwave electric field parallel to the
plane. The cases shown are illustrative, amongst other multiro-
tor simulations performed, demonstrating the utility of the TDH
approximation within its regime of validity. In the laboratory, planar
rotor systems, such as those examined here, could be constructed
by adsorbing the molecules onto a cold surface or trapping them
in a so-called optical lattice created using the interference of suit-
able laser beams. It has been shown that optical lattices can form
arrays of hundreds of microtraps, which would enable the confine-
ment of molecular rotors in two dimensional geometries such as
those we consider.” Shaped microwave control fields can be created
experimentally by modulating the field using an arbitrary waveform
generator.””"’

Within the electric dipole approximation, the total Hamilto-
nian for N planar rotors in the presence of a linearly polarized
control field &(¢) is given as

Hpn oot Ry} (03) = 10 [Hilp) = pe(t) cos

Sons {R 1 {051), ()

where ¢; € [0, 27r) denotes the rotational angle of the dipole moment
of the ith rotor with respect to the direction of the control field &(¢),
linearly polarized along the %-axis, Hi(¢;) is the corresponding field-
free, single-rotor Hamiltonian of the ith rotor, y is the magnitude of
the permanent single rotor dipole moment, and V (@1, . . ., n; {Rjj},
{0;}) is the dipolar interaction between the rotors. In addition, Rjj is
the separation vector between the ith and jth rotors, Ry < R;; < 00, R;
= |Rjj|, 1 < i <j < N, where Ry is twice the center of mass radius of
an individual OCS rotor and 0j = R;; - X/R;; is the angle between the
vector R;; and the X-axis (see Fig. 1).
The field-free, single-rotor Hamiltonian for the ith rotor is

+ V((pl, ..

n o
Hi(pi) = -5 55> 3)
21 Dg?
where I is the moment of inertia of the rotor, while the interaction
describing the dipole-dipole coupling between rotors can be written

as
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FIG. 1. Diagrams of planar rigid rotors in chain and equilateral triangle configura-
tions. These diagrams will be generalized for other configurations shown later in
Sec. Il The rotors point in the directions denoted by ¢; from the x-axis, while the
vector connecting the center of mass of rotors j and j with respect to the x-axis is
denoted 6;. The control field £(t) points along the x-axis. The molecules are OCS
where the color denotes oxygen (red), carbon (gray), and sulfur (yellow).

V(pr - s {Ry}, {65).)
u ,

) 1 —3cos” 05;) cos ¢; cos @;

15;;9\] 47T€0R§J'. {( ]) [ @

+ (1 - 3sin” 6;) sin ¢; sin @; — 3 sin 6 cos 6

x (cos g; sin @; + sin @; cos (pj)}, 4)

where ¢ is the vacuum permittivity. The dipole moment of OCS is

Y =2.36x 107 Cm,"" and its moment of inertia is I = %, with the

)

rotational constant B = 4.03 x 10724 7.
Each coupled rotor system is studied in the basis of the field-
free, single-rotor Hamiltonian eigenstates, denoted |m;), satisfying
the eigenvalue equation
H,'|m,») = Bm?|m1‘), (5)
where mj = -M, -M +1,...,-1,0,1, ..., M — 1, M. Here and
later, we consider a suitably large integer M for each rotor to assure
converged results. The eigenstates |m;) can be expanded as

m = [ o adm)de, ©
where
1 imo
{gilmi) = \/;e v )
noting that f |9i)(@ildpi = 1. In this basis, the matrix elements of

cos @; and sin ¢; can be, respectively, written as

<m1|C05§01|mz - {8m1m+1+6mm 1} (8)
and
e

(Sm,»,m"—l } (9)
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The state |y(¢)) describing the dynamics of the rotors is governed by
the time-dependent Schrodinger equation

"‘%WW =H(pr,..oon.Dlw(8), |y(0)) = |yo),  (10a)

which can be re-expressed as the following coupled equations:

mN\H(t)\mimf\])}cm;mfw,

7]
zhacml...mN(t) =Dy {(m1

(10b)
after expanding |y(t)) as
ly(1)) = Z Z Cmy-my (£)|m1) ... [m) (10¢)
my=—M my=—M
where H(@1, . . ., @n, t) is given in Eq. (2).

B. Time-dependent Hartree approximation

For a quantum system composed of N weakly interacting
rotors, the TDH approximation can serve as an effective method
for improving the speed and scalability of the calculations to evolve
the wave function. Rather than solvin ng the full problem given in
Eq. (10b), whose dimension (2M + 1)" scales exponentially in the
number of rotors N, the TDH approximation instead solves a set of
N coupled single rotor problems and thus scales linearly in the num-
ber of rotors, i.e., of the dimension (2M + 1)N. The TDH equations
of motion can be derived by imposing the ansatz

() ~ [y ()y2(0)) - - [yn(8)) (11)

which assumes that the full state |y/(¢)) can be written as a product
of single rotor states |y;(t)), i = 1, ..., N. The MCTDH approach
goes beyond this single product formulation by considering multiple
coupled products, at the expense of exchanging the linear scaling
behavior of TDH for a cost that scales exponentially in the number
of degrees of freedom. In this work, the TDH approximation was
chosen for N interacting rotors in the weak dipole-dipole coupled
regime.

The TDH ansatz in Eq. (11) and the system’s Hamiltonian in
Eq. (2) can be substituted into the Dirac-Frenkel time-dependent
variational principle"”" to yield the equations of motion for the
single rotor states

Olyi
ih% :(H,-(q),-) — pe(t) cos @;
+(d>,-(t)|V(<p1,...,(pN;{RU},{&y})ld)i(t)))lwi(t)),
(12)
where |®i(t)) = Tk=ilye(t)) and (O;(H)|V (@1, ..., @n; {Ry}

{0;1)|®:(t)) is the mean-field potential acting on the ith rotor. 15,46

The validity of the TDH approximation for control simula-
tions of coupled rotors depends on a number of factors, includ-
ing the strength of the coupling between rotors, the intensity and
pulse length of the control field, the separability of the control
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objective, and the number of rotors. In our studies, we character-
ize the strength of coupling between rotors using a dimensionless
parameter

1Y 42
I'=max{Ii=— #73 R
i B j=1 47T€0Rij
i

i:l,...,N}, (13)

where I'; describes the ratio between the magnitude of the total
dipole-dipole potential experienced by rotor i and the rotational
constant B, which signifies the energy difference between the ground
and the first excited rotational levels of the rotor. The constant I’
can be viewed as the dimensionless characteristic coupling strength
over a set of rotors under control. Because the coupling between
rotors is given by mean-field potentials, the application of the
TDH approximation should work best for systems with weak cou-
pling, characterized by I « 1 (ie., it is exact in the limit of
I' = 0). As such, in the present work, all simulations are per-
formed using I' = 0.1 unless otherwise stated. For systems with
stronger coupling, it was found that the TDH mean-field poten-
tials often fail to adequately capture the significant, distinct effects
of individual couplings between each pair of rotors upon the system
dynamics.

In addition, the difference between the true system Hamilto-
nian and the TDH approximate Hamiltonian can be considered as a
perturbation in the TDH mean-field. Since the error in the solution
associated with this perturbation will generally grow with time," the
TDH approximation performs best for short control pulses.

Furthermore, the TDH approximation is most useful for ana-
lyzing separable control objectives associated with the individual
rotors, for example the operator cos(¢; + «) for rotor i seeking orien-
tation along an angle « € [0, 27r) with respect to the %-axis. This paper
considers single rotor objectives such that the objective functional
for the full system can always be decomposed as J(T) = >.;Ji(T) for
i=1,..., N; however, the dipole-dipole coupling between the rotors
can significantly influence J(T). To this end, we analyze two distinct
classes of goals: (i) identical objectives, where each rotor is steered
toward the same target (i.e., the expectation values are sought to
satisfy Ji(T) = J;(T) for all §, j), and (ii) unique objectives, where indi-
vidual rotors are steered toward different targets (i.e., we desire Ji(T)
# J;(T) for at least one pair i, j). In examining the evolving dynamics,
we will also consider plots of Ji(¢) for ¢ € [0, T].

C. Stochastic hill climbing

In order to design the control fields, we apply a gradient-free
stochastic hill climbing optimization approach.''” The trial field
£o(t) used to initialize the stochastic hill climbing procedure in all
of the optimal control simulations is given as

eo(t) = f(£)g(1), (14)

where f(t) is a Gaussian envelope function, i.e.,

f(t)=exp[—(t_T/T3/2)2], (15)

and g(t) is

g(t) = a0(0.2cos(wit) + 0.3 cos(wat) + 0.5 cos(wst)), (16)

ARTICLE scitation.org/journalljcp

where ag = 4.26 x 103% and w; = B/h, w, = 3B/h, and ws = 5B/h
are the first three transition frequencies of the field-free, single-rotor
Hamiltonian. The Gaussian envelope f(t) is only imposed on the
trial field.

We update the control field at each optimization iteration by
stochastically introducing a small perturbation d¢(t) (i.e., discretized
over time, where the variation d¢(t;) in the ith time step is an inde-
pendent random variable) into the control field and accept the per-
turbation only if it increases the value of the objective functional
such that J[T, € + 8¢] > J[T, €]. The perturbations {Je(¢;)} are drawn
from a uniform distribution around &(¢;) Vi, and the width of the
distribution decreases linearly with the distance from the maximum
of J(T). Due to the random noise that arises from these stochastic
perturbations, we also apply a third order low-pass Butterworth fil-
ter with a cutoff frequency of 96 GHz to the control field at each
optimization iteration. Finally, we remark that for the first class of
identical objectives, it is beneficial to initially optimize a field for ori-
enting a single free rotor (FR) and to then use the resultant field
as the trial field for the I = 0.1 field optimizations for all config-
urations. This procedure was found to accelerate the optimization
process by ~2 orders of magnitude for every configuration compared
with starting from the trial field given in Eq. (14).

lll. ILLUSTRATIVE SIMULATIONS

The results presented here will demonstrate that individual
rotors (i.e., in systems of N interacting rotors, where N = 3, 4, 5,
arranged in either chain or regular polygon geometries) can be suc-
cessfully steered to identical as well as unique objectives. The iden-
tical objective cases in Sec. III A exhibit relatively simple behavior
with weak dipole-dipole coupling. These latter cases also serve as an
important point of comparison for the unique objective cases that
follow in Sec. III B where, despite the dipolar coupling being the
same as in Sec. [1] A, it is shown that suitable fields can be designed
to uniquely drive the dynamics of individual rotors.

In all cases, the objective is reached with acceptable quality
using a particular control field with a pulse length of T = 50h/B
~ 1.305 ns. The total time T is discretized into 1000 equally spaced
time points which provided sufficient resolution for the dynamics.
The single rotor states are modeled using the basis m; = -8, ..., -1,
0,1, ..., 8 which is suitable (i.e., convergence was achieved) for all
cases, and each rotor always is initialized in the ground state |0) of
its field-free, single-rotor Hamiltonian.

A. Identical objectives

The cases in this subsection involve driving all rotors toward
the same orientation in a particular direction. This corresponds
to the simultaneous maximization of the expectation values of the
individual rotor orientations defined as

Ji(T) = (yi(T)| cos(gi + a)|yi(T)),

where it is understood that the expectation value entails integrat-
ing over @; and «a is the target orientation angle with respect to the
X-axis. For our studies, we choose & = 0.

We remark that although the rotors are all driven toward the
same objective, depending on their particular spatial arrangement,
the rotors themselves are not all identical. For example, for three

i=1,...,N, (17)
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rotors in a chain with equal spacing between adjacent rotors, the
two end rotors will always be oriented identically with respect to the
X-axis due to the symmetry of the chain, while the middle rotor will
be physically different; these distinctions arise from the particular
location of a rotor with respect to its neighbors and the resultant
impact this has on the dipolar couplings involved. The examples
below will illustrate three cases of identical rotor objectives.

1. Case 1: Three rotors in a chain
with identical objectives

We begin by considering a chain of three rotors (see Fig. 2).
The control field shown in Fig. 2(a) simultaneously maximizes the
expectation values of the orientations of three rotors in a chain
spaced evenly by R = 6.29 nm, corresponding to I' = 0.1. Each sin-
gle rotor objective reaches Ji(T) = (yi(T)|cos(@:)|yi(T)) > 0.98 for
i=1, 2, 3, which requires the involvement of many eigenstates of the
field-free, single rotor Hamiltonians (see Fig. 4). This is reflected in
Fig. 2(b), where toward the end of the control interval, the expecta-
tion value Ji(t) = (yi(t)|cos(@i)|yi(t)) displays a distinctive recur-
rence of sharp peaks and troughs, with peak-to-peak separation
equal to the rotational period 271/B ~ 0.164 ns.

In Fig. 2(b), the TDH mean-field dynamics (solid black curve)
are compared against the corresponding exact dynamics with the
TDH-determined field (dashed-dotted red curve), and the agree-
ment between them is excellent (with a root mean squared error

of \/ o0 w = 0.027) over the course of the entire
pulse. In pamcular, at the terminal time t = T, the field gives

. x104 Control field
E ; :
—~
2
(]
<
3
2
E
< :
Time (ns)
Dynamics

0 0.2 0.4 0.6 0.8 1 1.2
Time (ns)

FIG. 2. (a) The optimal control field is shown that orients a chain of three rotors
placed along the x-axis to point in the +x direction, as indicated pictorially. (b) The
expectation value as a function of time for the sum over all three rotors, i.e., J(¢)
= % 3 (wi(t)] cos(e:)|wi(t)), taken out to the target time T. The evolution of
J(t) modeled in the TDH approximation (solid black curve) is compared with the
evolution when the control field is applied to a free rotor (FR) model (dotted black
curve) as well as a numerically exact model (dashed-dotted red curve). In these
latter two cases (and for similar tests in the paper), the field was determined from
the TDH optimization process. The similarity to the free rotor case (dotted black
curve) is not surprising, given the rotor center of mass separation of 6.29 nm.
However, we will see later that even in such cases, the dipole-dipole interaction
can play a crucial role when nonidentical individual rotor goals break the symmetry
of the objective.
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Jrou(T) = 0.98 and Jexact(T) = 0.88, respectively. Moreover, a com-
parison to a free rotor (FR) model (which neglects all interac-
tions between rotors) shows slightly poorer agreement (with a root
mean squared error of 0.053) between the FR dynamics (dotted
black curve) and the exact dynamics, especially apparent at early
times, although at the terminal time, the FR model reaches Jrr(T)
= 0.98. These collective findings demonstrate the expected utility
of the TDH method to satisfactorily model the dynamics when the
dipole-dipole interaction between rotors is weak.

The field shown in Fig. 2(a) is composed of many free rotor
transition frequencies. To this end, it is found that after initializ-
ing each of the rotors in the ground state |0), we see a ladderlike
progression toward higher energy levels as J(T) increases.” This is
shown in Fig. 3, where the power spectrum of the control field is
plotted at different J(T) values during the optimization. Each of the
spectral peaks occurs centered at or very close to a free rotor tran-
sition frequency (denoted by the dotted lines), indicating that to
achieve J(T) = 0.94, the dynamics only draws upon the transitions
[0) = |£1) — |£2) — |£3) — |+4). To achieve even higher J(T) val-
ues, more transition frequencies involving higher rotational levels
appear in the control field. For example, seven transition frequen-
cies are present in the control field for J(T) = 0.98, indicating the
involvement of the 15 lowest free rotor states |0), [£1), .. .,|+7). This
behavior is also evident in Fig. 4, which illustrates how the rotational
state populations evolve in time, culminating with the maximally
oriented single rotor states formed by |m) = |0), ..., |£7) at the
terminal time T = 1.305 ns. We remark that for a given M, the corre-
sponding maximum expectation value of the individual orientation
operator cos ¢; can be readily calculated exactly with the expression
max J;(M) = cos BT +2,“’ where max refers to the maximum eigen-
value of cos @; when evaluated in the (2M + 1)-dimensional space
spanned by the free rotor basis states |-M), ..., |0), ..., |M); for
example, max Ji(4) = 0.95 and max J;(7) = 0.98, which are consistent
with our findings.

In addition to the case described above, the same target given
in Eq. (17) was used for a three rotor chain with a stronger dipole-
dipole coupling of I = 0.2, corresponding to a spacing of R = 5.0 nm.
A field was optimized to reach Ji(T) = (yi(T)|cos(¢:)|yi(T)) > 0.95,
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FIG. 3. Power spectrum of evolving control field in units of V2/(cm? Hz), plotted at
the indicated J(T) values during the stochastic hill climbing process.
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FIG. 4. Time evolution of rotational state populations (averaged over the three
rotors) under the influence of the control field given in Fig. 2(a).

for i = 1, 2, and 3. For this stronger coupling case, the TDH
approximation resembles the I' = 0.1 dynamics at early times, but
its performance deteriorates significantly over time, resulting in a
smaller exact value Jexact(T) = 0.64 at the target time T, compared to
Jexact(T) = 0.88 for the case shown earlier with T = 0.1. It is evident
that the stronger interactions cause the quality of the TDH approxi-
mation to deteriorate. This deterioration in the performance of TDH
continues with increasing I', and this motivated the choice of I'= 0.1
coupling for the remainder of examples in the paper.

2. Case 2: Three to five rotors in regular polygons
with identical objectives

Here we consider coupled rotors arranged in regular polygon
geometries, as depicted in Fig. 5(a), which also includes the opti-
mal control fields designed to steer all rotors to the same objec-
tive given in Eq. (17), where N = 3, 4, 5, such that all rotors are
ideally identically oriented identically in the +& direction at time
t = T. The rotor spacings for the equilateral triangle, square, and
regular pentagon are R = 6.29 nm, R = 6.64 nm, and R = 6.76 nm,
respectively, all corresponding to I' = 0.1. Note that despite the sym-
metry of the structures in Fig. 5(a), in some cases, the desired ori-
entations make the rotors inequivalent physically; the scalar dipole-
dipole coupling strength index I' does not include these subtle dis-
tinctions. The objective value achieved for each geometry was J;(T)
= (yi(T)|cos(gi)|yi(T)) > 0.95 for all i; see Fig. 5(b).

We found that the power spectra (not shown) of these control
fields all qualitatively resemble that shown in Fig. 3 for J(T) = 0.94,
indicating that the fields are composed of the resonant transition
frequencies linking the states |0), |£1), |+2), |£3), and |+4). Inter-
estingly, although in Fig. 5(b), we found different J(t) behavior at
early times depending on the field and geometry, all of the dynamics
exhibit the same distinctive recurrence pattern of sharp peaks and
troughs at later times, as also found in Fig. 2(b). Finally, when any
field in Figs. 5(a) and 2(a), optimized for a given rotor configuration,
is applied to one of the other rotor configurations shown pictorially
in Figs. 5(a) and 2(a), it still performs remarkably well. In particular,
we find that applying the field optimized for the pentagon config-
uration to the square configuration, and vice versa, results in no
drop-off in the objective. On the other hand, the fields optimized for
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FIG. 5. (a) Each optimal control field (denoted by color) determined to orient
all rotors in the +& direction arranged correspondingly in either equilateral trian-
gle, square, or regular pentagon configurations. Along with the control fields, the
associated control targets are shown pictorially. (b) The expectation values of the

N rotors, ie., J(t) = % ST (wi(t)] cos(gi)|wi(t)), are shown for each

configuration in (a) with the same color scheme.

polygon configurations were found to perform less satisfactorily in
the three rotor chain configuration, with the greatest drop-off occur-
ring when the field optimized to achieve J;(T) > 0.95 in the pentagon
is tested against the chain, resulting in J>(T) = 0.92 for the middle
rotor.

B. Unique objectives

Here we show two cases that highlight the capability of an opti-
mal control field to achieve multiple unique single rotor objectives
simultaneously, which can only be attained by the control working
“cooperatively” with the dipole-dipole interaction potentials. Thus,
these cases behave quite distinctly from those in Sec. IIT A where the
dipole-dipole coupling evidently played a small role.

In the first case, the rotors are arranged in a chain, as in Fig. 2,
and in the second case, the rotors are arranged in a triangle, as in the
first case of Fig. 5. Reiterating the remark above, although the dipole-
dipole coupling is weak in both cases, its presence is the key factor
enabling the applied field to have a different control outcome over
the individual rotors (i.e., a noninteracting free rotor model would
not permit distinct objectives for the different rotors).

1. Case 1: Three rotors in a chain
with unique objectives

We seek to identically orient the two end rotors in a chain of
three rotors in the +& direction while keeping the middle rotor in its
ground state |0) at the terminal time ¢ = T (see Fig. 6). The objec-
tive for this control target is to maximize the joint expectation value
defined as

J. Chem. Phys. 150, 164303 (2019); doi: 10.1063/1.5091520
Published under license by AIP Publishing

150, 164303-6


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

—~  x10* Control field
g 9 : ‘
o
~
E/ 0
3 20 @O )
E -4
g 0 0.2 0.4 0.6 0.8 1 12
o) Time (ns)
1 Dynamics, rotors 1and 3
-1 I . I P . .
0 0.2 0.4 0.6 0.8 1 1.2
Time (ns)
1 ' DynaH}iCS, roto‘r 2 ‘
0.5 ,( C) ....... s -~
S
\—TDH -------- FR —-— Exact‘
O T T T 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2

Time (ns)

FIG. 6. (a) The optimal control field is shown that seeks to orient the two end rotors
in a chain of three in the +& direction, while the middle rotor is targeted to be in its
ground state |0) at { = T. The associated control objective is also shown pictorially.
In (b) and (c), the evolution of the orientation expectation value J1 (1) is plotted
for rotors 1 and 3 and the population in the ground state J,(t) is plotted for rotor
2, respectively. The evolution of J1 3(t) and J(t) for the overall system modeled
in the TDH approximation (solid black curve) is compared with the evolution when
the control field is applied to a free rotor (FR) model (dotted black curve) as well
as an exact model (dashed-dotted red curve).

J(T) = {y1(T)| cos(1)[y1(T)) + (y2(T)[0)(0fy=(T))
+ (y3(T)| cos(g3)|y3(T))
:]1(T)+]2(T)+]3(T) (18)

Figure 6(a) shows the optimal control field, and Fig. 6(b) shows
how the orientation of rotors 1 and 3 evolves toward J13(T) = J1(T)
= J3(T), while the evolution of the population in the state |0) for
rotor 2 is shown in Fig. 6(c). It was found that for rotors 1 and 3,
the field gives Ji,3ou(T) = 0.93, J13; exact(T) = 0.66, and J15;rr(T)
= 0.35, while for rotor 2, the field gives J2; tou(T) = 0.93, J2; exact(T)
= 0.75, and J;rr(T) = 0.90. At the terminal time ¢ = T, rotor 2 was
primarily lying in the desired state |0), but at intermediate times,
rotational states |+1) and |+2) were also occupied, reflecting the
interplay between rotor 2 and rotors 1 and 3 in order for them
all to reach their respective targets. Furthermore, rotors 1 and 3,
whose orientation is sought, oscillate over time in Fig. 6(b) with
a beating structure quite different from that of the linear chain in
Fig. 2(b).

This example shows that the control field is able to uniquely
address the end rotors and the middle rotor by exploiting the small,
but still significant, difference in the dipolar interactions felt by the
individual rotors. However, because of the weak dipolar interaction,
this control scenario took considerably more optimization iterations
(i.e,, 1 to 2 orders of magnitude more) than its analog in Fig. 2

ARTICLE scitation.org/journalljcp

where all three rotors are asked to point in the same direction. Natu-
rally, in the present case, three free rotors under the field in Fig. 6(a)
would behave identically, rather than as desired; however, J1 3(¢) will
be distinct from J,(f) due to the different associated operators in
Eq. (18).

2. Case 2: Three rotors in a triangle
with unique objectives

For a system of three coupled rotors arranged in a triangle, we
seek optimal fields to steer a certain rotor to point in the oppo-
site direction from the other rotors [see the molecular diagram in
Fig. 7(a)]. Just as in the prior example involving unique objectives
for three rotors in a chain, this was also a challenging control goal to
reach. To this end, we have obtained a control field to render J;(T) >
0.64 for i = 1, 2, 3 for maximizing the following objective:

J(T) = (y1(T)[ cos(g1 + m)|y1(T)) + (y2(T)| cos(92)[2(T))
+(y3(T)| cos(gs +m)|y3(T))
=Ji(T)+ (T) +J5(T), (19)
with rotor spacing R = 6.29 nm, where rotors 1 and 3 are placed along
the X-axis and rotor 2 is placed above them to form an equilateral
triangle [see Fig. 7(a)].
As shown in Figs. 7(a)-7(c), the control field is able to success-

fully drive the rotors to opposing orientations at t = T. Specifically,
rotors 1 and 3 are oriented in the —& direction [Fig. 7(b)] and rotor 2
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&« 0
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FIG. 7. (a) The optimal control field for orienting rotors arranged in a triangle con-
figuration is shown, where the goal is for rotor 2 (the top rotor) to point in the +&
direction while rotors 1 and 3 (the bottom rotors) point in the —& direction at time
t = T. The associated control target is also shown pictorially. In (b) and (c), the
evolution of the orientation observable expectation value J1 3(f) is plotted for rotors
1-and 3 and J,({) for rotor 2, respectively. The evolution of J 2 3(f) for the overall
system modeled in the TDH approximation (solid black curve) is compared with
the evolution when the control field is applied to a free rotor (FR) model (dotted
black curve) as well as an exact model (dashed-dotted red curve).
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is oriented in the +& direction [Fig. 7(c)]. It was found that for rotors
1 and 3, the field gives J13,1pu(T) = 0.64, J1,3; exact(T) = 0.41, and
J1,3,r(T) = —0.23, while for rotor 2, the field gives J», tou(T) = 0.65,
J2; exact(T) = 0.41, and J»; pr(T) = 0.23. We remark that the objective
values of J1 3,rpu(T) and Jo;rpu(T) for this control scenario are qual-
itatively satisfactory but do not approach the optimal value of 1 since
the corresponding control objective deals with the demanding phys-
ical circumstance of driving very similar rotors toward completely
opposite orientations.

The comparison of the TDH dynamics with the corresponding
exact dynamics [Figs. 7(b) and 7(c)] reveals that although there is
significant deviation present, the behavior of the expectation values
J1,2,3(t) drawn from the TDH approximation (solid black curves) is
semiquantitatively correct. This is seen in the exact model (dashed-
dotted red curves) showing that at t = T, the top rotor dominantly
points along the +& direction, while the bottom two rotors are
oriented in the —% direction. We also see that the unique objec-
tive dynamical evolution is quite distinct from the corresponding
triangular case in Fig. 5(b) for the analogous rotors 1 and 3.

Achieving unique objectives for the three rotors was possible
because the linearly polarized control field along the %-axis breaks
the symmetry of the dipole-dipole interaction in the rotors’ equilat-
eral triangle geometry such that in the presence of the field, rotor
2 feels a different interaction than rotors 1 and 3. However, since
the total interaction strength is small (I' = 0.1), optimizing a field
to exploit this asymmetry proved to be a challenge, with a power
spectrum given below in Fig. 8(d) which contains many peaks over
a broad spectral range, with most of these peaks shifted away from
the free rotor transition frequencies (vertical dotted lines). This is in
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sharp contrast to the ladderlike power spectrum of a much weaker
control field optimized to achieve identical orientations [see Fig. 8(b)
and a like situation with three rotors in Figs. 3 and 8(a)].

Finally, as for the identical objective cases, we applied the field
optimized for achieving unique objectives in a three rotor chain
[Fig. 6(a)], with Ji(T) > 0.93 to a triangle, to test whether the
same unique objectives (i.e., the two end/bottom rotors point in
the +& direction, while the middle/top rotor is in the ground state)
could be reached. It was found that the triangle reaches only J13(T)
= (y1,3(T)| cos(@1,3)|y1,3(T)) = 0.57, indicating a significant drop-off
in the expected orientation of the bottom rotors in the +4 direction;
only a slightly lowered ground state population probability of J>(T)
= (y2(T)|0)(0]y2(T)) = 0.90 was found for the top rotor. Moreover,
applying the field optimized for achieving opposite orientations in
a three rotor triangle [Fig. 7(a)] with J;(T) > 0.64) to a three rotor
chain was found to cause the orientations of all three rotors in the
chain to point in the same —% direction with J13(T) = (y1,3(T)|
cos(p1s + m|y13(T)) = 0.85 and Jo(T) = (ya2(T)|cos(@2)|y2(T))
= —0.84. These findings show that for the unique objective control
cases, differences in the configuration of the rotors can lead to quite
different behavior of the field-induced dynamics, thereby demon-
strating the significant role played by the dipole-dipole coupling in
the spatially distinct configurations.

C. Overall analysis

1. Power spectrum

Figure 8 shows the power spectra associated with the fields
designed to achieve identical and nonidentical objectives in systems

Triangle, identical objectives

o

0.004

0.002

50 100

Frequency (GHz)

100

Frequency (GHz)

FIG. 8. Power spectra of the optimal control fields designed for systems of three coupled rotors, where the molecular diagram with each spectrum indicates the target that
the associated control field aims to achieve. (a) The power spectrum of the field given in Fig. 2 corresponds to the goal of driving three rotors in a chain to point in the +&
direction. (b) The power spectrum of the field shown in Fig. 5 is presented with the goal to drive all rotors in a triangle to a + orientation. (c) The power spectrum of the field
given in Fig. 6 for driving three rotors arranged in a chain to distinct targets (i.e., the two end rotors are targeted to be oriented in the +x direction while the middle rotor is in
its ground state |0)). (d) The power spectrum of the field given in Fig. 7 designed to orient three rotors arranged in a triangle such that the top rotor points in the +x direction,
while the bottom two rotors point in the —4 direction. All rotor configurations have a spacing of R = 6.29 nm. The dotted lines correspond to the transition frequencies of the

field-free, single rotor Hamiltonian. The power spectra are given in units of V2/(cm? Hz).
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of three coupled rotors arranged in either a chain or a triangle with a
rotor spacing of R = 6.29 nm (see Figs. 2 and 5 for the fields to iden-
tically orient a chain and a triangle of three rotors, respectively, and
Figs. 6 and 7 for the fields to achieve unique objectives in a chain and
triangle of three rotors, respectively). The molecular diagrams with
each power spectrum indicate the target that the associated control
field aims to achieve. Both fields associated with reaching identical
objectives have relatively clean power spectra, with peaks situated
at or very close to the field-free, single rotor transition frequencies
(dotted lines). By contrast, the fields associated with unique objec-
tives have numerous off-resonant peaks, and the field whose power
spectrum is given in Fig. 8(d) is also notably stronger than the other
three.

2. Comparison of TDH and exact wave functions

Here we compare, respectively, the TDH wave functions of
three interacting rotors arranged (i) in a chain and (ii) in a trian-
gle with their exact counterparts (i.e., utilizing the TDH-determined
fields) to assess the faithfulness of the TDH approximation to an
exact numerical simulation. Specifically, the magnitude of the over-
lap between the TDH and exact wave functions, as well as the overlap
between the free rotor and exact wave functions, is plotted as a func-
tion of time for the four cases considered. For both chains and tri-
angles, we analyze cases involving driving all rotors toward identical
(orientation) objectives as well as driving all rotors toward unique
objectives.

Figure 9(a) shows that the agreement between the TDH and
the exact wave function overlaps at the final time for the identical
objectives with the chain is [{Wexact(T)|yrou(T))| = 0.96 and with
the triangle is |(Wexact(T)|wror(T))| = 0.86. The overlap between the
free rotor and exact wave functions is lower: |[(¥exact(T)|wer(T))|
= 0.87 for the chain and |[(Yexact(T)|wer(T))| = 0.81 for the triangle.
For the cases with unique objectives in Fig. 9(b), the overlap between
the TDH and exact wave functions generally drops more quickly
over time such that the overlap is [{Wexact(T)|wrou(T))| = 0.82 for
the chain and |(Yexact(T) |y ror(T))| = 0.86 for the triangle. Likewise,
the overlap between the free rotor and exact wave functions drops

Identical control target Nonidentical control target

1
(a)
=09
=
= ®0:0
> 0.8 VA
=07 00:0- 880600 | 07| €0:0—|0)—ee=0 |
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FIG. 9. (a) The overlap is shown between the exact and TDH wave functions (solid
lines) as well as the overlap between the exact and free rotor wave functions (dot-
ted lines of corresponding color) for the triangle and the three rotor chain cases
when control fields are designed to orient all rotors identically, in the +x direc-
tion. (b) The overlap between the exact and TDH wave functions (solid lines) as
well as the overlap between the exact and free rotor wave functions (dotted lines)
for the triangle and three rotor chain cases when control fields are designed to
achieve unique control objectives. The pictorial molecular schematics show the
control objectives.
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to |{Wexact (T)|wer(T))| = 0.74 for the chain and |{Wexact (T)|yer(T))|
=0.73 for the triangle.

Despite the increasing discrepancies over time, the behavior of
the TDH wave functions generally mimics that of the exact ones,
even for the unique objective cases. This behavior demonstrates
that although TDH introduces a distinct level of error, the approx-
imation is able to capture the asymmetric dipolar interaction well
enough to design a field capable of addressing rotors individually in
a desired manner. Furthermore, as expected, the free rotor approxi-
mation fares far worse than the TDH for all four cases shown, with
the most significant discrepancies appearing for the unique control
objectives.

IV. CONCLUSIONS

We have shown the utility of the TDH approximation to design
fields capable of controlling three to five rotors arranged in chain and
polygon configurations in the weak dipole-dipole coupling regime.
The TDH approximation was successful in modeling the dynam-
ics of multiple interacting rotors and performing the corresponding
optimal control simulations in a computationally tractable manner.
The first class of illustrations considered orienting all rotors iden-
tically, and we found that the search for an optimal field was more
challenging for the polygon configurations than for the chain config-
uration in terms of the number of optimization iterations required.
This behavior indicates that, in addition to the coupling strength T’
utilized in this work, the geometry of the rotors is also important for
characterizing the dipole-dipole coupling. We also noted that over
the course of the stochastic hill climbing field optimization proce-
dure, the field amplitude increased as ] rose, accompanied by the
emergence of peaks at or close to the free rotor transition frequencies
in the power spectra of the optimal fields.

Each of the fields given in Figs. 2(a) and 5(a), optimized to
achieve identical objectives in systems of rotors arranged in a three
rotor chain, triangle, square, and pentagon, was applied to all rotor
arrangements in order to test how well they could orient rotors
arranged in geometries other than the one they were specifically
optimized for. Due to the weak dipolar coupling, we found that each
of the fields performed remarkably well across all geometries con-
sidered in this paper. Despite the fields appearing quite distinct over
these cases, this outcome indicates a clear degree of robustness of the
fields against changes in rotor geometry. Furthermore, all of these
fields also did a fair job orienting a single free rotor. This indicates
that when high accuracy is not required, fields to attain identical
objectives in systems of sufficiently weakly coupled rotors could be
designed with less computational effort by first considering simpler
systems of fewer rotors to determine a good trial field for the desired
full set of coupled rotors (e.g., simple chain geometries were found
to require fewer field optimization iterations compared with polygon
geometries).

We then considered the second class of cases involving simul-
taneously steering individual rotors toward unique objectives in sys-
tems of three coupled rotors. Specifically, we sought to control the
orientation of the two end rotors in a chain of three while keeping
the middle rotor in its ground rotational state at the final time. In
addition, we sought to drive rotors arranged in a triangle geometry
to finally have members pointing in opposite orientations. In both
cases, we showed that the control field was capable of addressing the
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rotors individually, as specified, illustrating the potential for opti-
mally designed pulses to attain complicated objectives that require
discrimination between rotors whose Hamiltonians are very sim-
ilar. The presence of the dipole-dipole coupling term was utilized
by the field to reach the discriminatory objectives. Furthermore, we
found that the field optimized for achieving unique objectives in
a particular rotor configuration (here a three-rotor chain/triangle)
generally did not lead to the same or even similar unique objective
when the original control field was applied to an analogous dif-
ferent rotor configuration (here a three-rotor triangle/chain). This
finding indicates that there is a strong dependence of the system
dynamics on the dipole-dipole coupling expressed through the geo-
metrical arrangement of the rotors for the case of unique objective
control.

Our work here involving coupled rotor systems serves as a
proof of concept for many body quantum control simulations based
on a simple TDH approximation within its realm of validity, and we
hope that the findings can serve as the basis for future research. In
such studies, different control objectives as well as quantum dynam-
ics approximations beyond TDH could be considered. For exam-
ple, controlling arrays of trapped, dipole-dipole coupled molecular
rotors for quantum computing applications’’ "’ could be studied
in this context, where quantum dynamics approximations such as
TDH could be leveraged to optimize control pulses for implement-
ing quantum logic gates at modest computational expense. These
pulses could later serve as trial fields in subsequent optimizations
(with an exact model, or directly in the laboratory using learn-
ing control) with the goal of efficiently reaching high gate fideli-
ties. Other potential extensions of this work include studies of the
controlled orientation of OCS or other linear molecular rotors in
novel 3D arrangements,” as well as the 3D orientation of systems
of weakly coupled symmetric top and asymmetric top molecular
rotors. The control of nonidentical rotors could also be examined
systematically, as well as nonrotor cases.
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