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ABSTRACT

Sierra/SD provides a massively parallel implementation of structural dynamics finite
element analysis, required for high fidelity, validated models used in modal, vibration,
static and shock analysis of structural systems. This manual describes the theory behind
many of the constructs in Sierra/SD. For a more detailed description of how to use
Sierra/SD, we refer the reader to Sierra/SD, User’s Notes.

Many of the constructs in Sierra/SD are pulled directly from published material. Where
possible, these materials are referenced herein. However, certain functions in Sierra/SD
are specific to our implementation. We try to be far more complete in those areas.

The theory manual was developed from several sources including general notes, a
programmer__notes manual, the user’s notes and of course the material in the open
literature.
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2. SOLUTIONS

One thing which makes Sierra/SD somewhat unique among the many mechanics codes
developed at Sandia National Labs is that Sierra/SD combines a variety of different
solution procedures. These range from modal superposition based solutions to nonlinear
transient. As described in the User’s Notes, these solutions can be combined (or chained)
in solution cases. This section of the manual describes the theory behind these individual
solutions. For details about particular finite elements, see section 4.

2.1. Linear transient analysis

For linear and nonlinear transient dynamics, the time integrator in Sierra/SD is either
the Newmark-Beta method or the generalized alpha method."

Linear structural analysis finite element discretization of the momentum equation, with
external load F, leads to the differential equation

Ma(t)+Cu(t)+ Kd(t) = F*'(t), v=d, a=d,

where damping matrix C=C+aM+ BK is the is the sum of the standard damping
matrix C' (say from a dashpot) and proportional damping terms. In the generalized alpha
method the state at the n+ 1st time step is determined from

M[(1— am)an+1+aman] + i [(1 —0f)Ung1+ ozfvn} + 2.1)
K| —af)dnyi+agdn] = (1—ap)Fe(tns1)+apFert(t,)
The parameters oy and oy, are constrained to achieve second-order accuracy and maintain
unconditional stability,
am < ary < %
Tn=3 - amtay
Bn > i"‘%(af_am)
By specifying the input parameter 0 < p <1, the user selects parameters satisfying these
constraints

—_

a; = p/(1+p)

am = (20—1)/(14p)

Bn = (I—am+oayp)-(1—am+ay)/d

Yo = 1/2—am+ay
In the mazimally damped, p = 0, note that ay =0 and a;, = —1. The undamped case is
p=1, at which ay = oy, = %, which yields 3,, = i, and vy, = % just as in the undamped
Newmark-beta method. For later use, we also define

Fﬁf_tl_,_af = (1—Cvf)Femt(tn+1)—i—OéfFemt(tn) (2.2)

! The Hilbert-Hughes-Taylor (HHT) method is a subset of the generalized alpha method.



There are two options for evaluating Fﬁff_tl +ag More will be given on this in section 2.2.

While the displacements and velocities resulting from the generalized alpha method are
second-order accurate, accelerations are only first order accurate. 2 Fortunately,
second-order accuracy can be obtained for accelerations through an observation that,

t
apab®st + (1 > af) ab%l = aman + (1 — aum) ang 1, (2.3)
where aP%%! is the second-order accurate postprocesed acceleration. The above equation is
implemented by storing the additional vector ak®** so that the updated a2’ can be
computed and output by the code.

Sierra/SD uses the undamped Newmark-beta method if no damping parameter is
specified (in the input file),

1 1 R
Qf = Qm = 0, = 177 = 9’ Mapi1+Cvopg1 + Kdpy1 = Fext<tn+1)-
In terms of the Newmark parameters 3, and ~,, the time integration scheme is
At?

(2.4)
Un+1 = Un+At[(1 _'Yn)an+7nan+1]
To derive the displacement-based implementation, first solve these equations for the
acceleration and velocity in terms of displacement,
p+1 = —BnlAt2 [dns1—dn — v At] — —1555" an

Un+l = Un+At[(1 _7n)an+7nan+1] (2-5)
= Upt+AL [(1 = ’Yn)an + ﬁ [dn—|-1 —dp— UnAt] —Tn 1;;5” an}

Substitute equation (2.5) into equation (2.1) and collect terms to obtain for the undamped
Newmark-beta method

[M—ﬁnlAtQ o C”—V—ﬂngt 1L K} dpp1 = Fe3t+
—C [Un + At(1 — yp)ap — ﬁ [dn + Atvy] — —W”Ag(}),;m") an] +
+M [—%Z > [dn +vn At] + 155571 an]

or for the generalized alpha method,

[M (/13;&23) +O(1- af)gia +K(1- O‘f)] dpy1=

A _ 2.6
—C{ozfvnjt(l—af) {vn%—At(l—'yn)an%—%[—dn—Atvn]—an” (2:6)
+M [—aman + é;gﬁ [dn ‘f‘UnAt] + (1 - O‘m) 1;[35” an}

There are three matrix-vector products on the right hand side of this equation, one for
each of the system matrices M, K, and C.

2see AlphaStudy.doc in Sierra/SD documentation, for details on convergence and postprocessing discussed
here.



2.1.1. Predictor Corrector Adjustment

The linear system in 2.6 can be solved using high-performance linear iterative solvers such
as GDSW. In this context, it would be beneficial to take the initial iterate closer to the
expected solution to increase the efficiency of the solver. Thus, the system, which is of the
form Ad,+1 =r,+1, can be solved using the following steps:

2
degt = dp+Atvy+ ATtana
? rpt1— Adesy,
Ad = T
dn-‘rl = d+deg.

(2.7)

In the above d¢,; is the initial estimate of d,, 1, obtained using Taylor series extrapolation
(essentially assuming that the acceleration remains unchanged in the current time step).
We noticed that the above predictor-corrector implementation 2.7 is crucial to ensure that
accurate results are obtained for realistic relative solver tolerances (direct implementation
of 2.6 could result in high-frequency oscillations that can pollute the solution even after
applying filters). Naturally, the approach 2.7 also results in accelerated convergence of the
GDSW solver resulting in computational savings.

Unfortunately, the predictor-corrector implementation in 2.7 resulted in an undesirable side
effect, namely growth in error in the constraint equations. The relative error for
displacement constraints appear to grow as n'®, where n is the number of time steps, but
the reason is not clear at this time. However, a simple modification of the predictor
expression by eliminating the velocity and acceleration terms appear to make the growth
milder, proportional to y/n, and is thus employed in the code:

dext = dn
E_' = rn—l—l_Adexta
Ad = = 2.5

Y

dn+1 = a + dea:t-

2.2. Prescribed Accelerations

Prescribed accelerations can be applied in Sierra/SD to nodesets or sidesets, as described
in the users manual. Here we give a brief description of the theory behind the
implementation.

To simplify matters, we consider the case when the acceleration of a single degree of
freedom is prescribed as a,f(t), where a, is the amplitude, and f(t) is the function
describing the time dependence. The extension to multiply prescribed degrees of freedom is
simply a matter of an external loop.



Given f(t), we compute two numerical integrals as follows.

a(t) = aof(t)
t t
ot) = vt [ a(t):vo—l—/o Gof (t)dt = vo + ao(if (t))

dt) = do+/0tv(t)dt:do+v0t+/0t/0taof(t)dt:do+v0t+ao(iz'f(t))
(2.9)

where we have defined if(t) and iif(t) to denote the first and second integrals of the
function f(t), and dp and v denote the initial displacement and velocity. i f(t) and iif(t)
are computed numerically in Sierra/SD.

Given these functions, we can statically condense the prescribed degrees of freedom, and
bring the resulting terms to the right hand side. First, we define m; to be the column of
the mass matrix associated with the prescribed dof, and ¢; and k; are similarly defined for
the damping and stiffness matrices. We first write the Gset version of equation 2.1. We put
subscripts of g on the system matrices and right hand side to denote that they do not yet
have prescribed BCs condensed out (hence are Gset).

Ky[(1=ap)dnii+apds| = (1—ap)F (tns1) +apFe (tn)
(2.10)

Next, we condense out the prescribed degrees of freedom and move the contributions to the
right hand side. We note that degrees of freedom that are fixed do not contribute to the
right hand side. After this process, we remove the subscripts from the system matrices,
since they are now in Aset form. We also condense the right hand side terms, so that
everything is Aset.

M[(1—am)ant1 +aman] + é[(l—af>vn+1+&f7jn:|+
K {(1—Ozf)dn+1 +afdn}
= (1—ap)F(tnt1) +asF (L)
— (A—ay)ao [f(tns1)mi+if (tns1)ci +iif (tna)ki]

— apao [f(tn)mi+if (tn)c + i f (tn)ki
(2.11)

This shows that prescribed accelerations result in a contribution to the right hand side that
consists of products of the time function f(¢) with the column from the mass matrix
corresponding to the prescribed dof, and products of the first and second integrals of f(t)
with the corresponding columns from the damping and stiffness matrices. For statics
problems, this procedure reduces to only a contribution from the stiffness matrix, and this
is also included in Sierra/SD.



2.3. Nonlinear transient analysis

This section follows closely the nonlinear transient procedure given by Belytschko et al,?
with the modification of using the generalized alpha integrator rather than the
Newmark-beta approach. In the case of a nonlinear transient analysis, the equation of
motion is

M[(1—am)ant1+aman] + C {(1 —af)Uny1 +afvn] “+
(I—ap) " +apFi = (1—ap)Fdyi1) + o FNdy,)
(2.12)

where F/%, and F™ are the internal forces at the current and previous time steps,
respectively. Note that we have written the external loads as functions of displacement,
since in the most general case they could be follower loads.

Before proceeding, we note that there are two possible approaches for implementing the
generalized alpha method, and in equation 2.12 we have taken one of these approaches.
The difference lies in the treatment of the internal and external forces. The first approach
is to evaluate them as follows

Foliga, = F™((1—ag)dni1 +aydy)
Frt o, = F (1~ ap)dpsr +aydy)

(2.13)
and the second is to evaluate two separate terms
Fg—fl—i—af = (1 - @f)Fint(dn—i—l) + amet(dn)
Fepay = (L= ag) P (dnyn) + 0 F(dy)
(2.14)

When both F* and F are linear functions, the two approaches are identical. For
nonlinear problems, both F** and F* could be nonlinear functions, and thus the two
procedures are different. In the limit of very small time steps, these nonlinear functions
effectively linearize and the two approaches again become the same. Thus the limiting
behavior of the two approaches is the same.

We note that in most cases, the external load F! is treated as a piece-wise linear function
of time, and in those cases the two approaches yield the same result for the external load,
though a couple of exceptions are worth mentioning. First, if two consecutive time steps lie
within two different linear segments, then the two approaches above yield different loads.
Second, although they are seldom used, polynomial and loglog interpolation functions are
available in Sierra/SD in addition to the commonly used linear interpolation, and in those
cases different load vectors result from the above procedures. For problems with very large
time steps and involving polynomial interpolation, different results are to be expected.



In Sierra/SD we have chosen the second option, which evaluates both the internal force
and external force at both times of interest, and forms a linear combination of the two.
Comparisons have shown little difference in the results on simple test problems.

Using the tangent stiffness method, we replace F'™; as

Fimt = F™ 4 K Ad (2.15)

n

where K; is the tangent stiffness matrix, defined as K; = 0F™ JOu, and Ad = dy+1 — dy.
Also, we use equations 2.5, which are the same as in the linear case.

First, we substitute equations 2.5 and 2.15 into equation 2.12. This results in the following
equations, which are almost identical to the ones from the linear case

1—apy, A
I:Mw—f—C(l Oéf) i +Kt(1—04f) Op1 =

BrAt? BnAt

Fif oy —ap P = (1= ay) [ = Kidy

n

. ” nAt(1—205,
—-C [afvn—l— (1—ay) lvn—i-At(l —Yn)an + ﬁ [—dp, — Atvy] — L (2571 b )anH

" dy + v At + (1 — o)

1-2
+M [_aman Pe an]

5nA B2 2fn

Finally, we want the unknown to be Ad = d,+1 — cz, where d is the current iterate of
displacement. To accomplish this, we subtract the appropriate terms from both sides,
which yields, after collecting terms

(1—am) Yn B
[M 3. At 2 +C(1 af)ﬁnAt —I—Kt(l Oéf) Ad =
Fsicl—tl—l—af (1_af)ﬁmt_afF7iLnt_C[(1_af)@+afvn}

—M[(1— am)ad+ aman) (2.16)

where again hats denote current iterates of acceleration, velocity, etc. Note that we have
re-defined Ad = dp4+1 —d, which is different than the previous definition that was given.
Also, we note that F™t = Fint 4 K,(d—dy,).

Upon using the Newmark-beta time integrator (v, = %, By, = i, af = amy =0, equation 2.16
reduces to 4
t  fint & ~
MAt2+CAt+Kt Ad=F —F"™ -Cto—Ma (2.17)

which is the same equation given by Belytschko et al.?



We note that equation 2.16 can be written as
AAd =res (2.18)

where A is the dynamic matrix, Ad is the change in displacement from the previous
Newton iteration to the current Newton iteration, and res is the residual, i.e. the amount
by which the equations of motion (equation 2.12) are not satisfied by the current iterate.
The residual can be written from the previous equations as

res = FS% — Bt Cp— Ma (2.19)
2.3.1. Nonlinear Transient Analysis with Constraints

In the previous section, the assumption was made that there were no multi-point constraint
equations. These extra equations introduce Lagrange multipliers that need to be included
in the nonlinear equations. In this section, we will describe how to include constraint
equations into the nonlinear solution method based on Newton’s method.

Equation 2.18 is correct if there are no constraint equations in the problem. When
constraint equations are involved, we will show that this generalizes to the following

FHIFRE

where now, the residual is defined with an additional term due to the constraints

res :Fﬁﬁtl—ﬁint—C@—M&—GTS\ (2.21)

where G is the matrix representation of the constraint equations, )\ is the current Newton
iterate of the Lagrange multipliers, and GTH represents a force due to constraints. Note
that when the problem has no constraint equations, equations 2.20 and 2.21 reduce to
equations 2.18 and 2.19.

We can arrive at equations 2.20 through some simple arguments similar to the
unconstrained case. The second equation

GAd=Gdpi1 —Gd=0 (2.22)

is a simple argument that the linear solver always returns solutions that satisfy Gd = 0,
and thus the difference Gd,,+1 — Gd must also be zero.

The first equation can be deduced simply by including an additional constraint force term
into the residual equation. We will work with the Newmark method, i.e. v, = %, iy = %,
af =y =0 in order to keep the discussion simple. The case with the generalized alpha
method is a simple extension of what follows. We write the total internal force, including

constraint force terms, as
Fiot(d,X) = F™(d) + Ma+Co+GT A (2.23)

9



The incremented total force is given by

OF;
+ tot

~ < OF

Frot(dns1,Mns1) = Fror(d, )+ agtAd 5 AN (2.24)
= Fio(d,\) + AAd+GT AN (2.25)
2.26)

The force balance says that
F2h = Frot(dng1, Ant) (2.27)

Simplifying, we obtain

AAd+GTAN=F& — ™ _ Cp— Ma—GT A (2.28)

which corresponds to the first equation in the system of equations given by equation 2.20.

2.3.2. Damping in Nonlinear Solutions

A number of sources of damping in the solution of linear and nonlinear solutions have been
identified. It is useful to list them for comparison, as in Table 2-1. Note in particular, that
proportional damping, common in linear systems, requires a slightly different definition in
nonlinear systems, and will also require explicit formation of a damping matrix.

10



Damping Source

Discussion

linear dashpots

proportional damping

linear viscoelasticity

nonlinear energy loss

nonlinear material

numerical damping

Contributes directly to the C' matrix described in
equation 2.1. The matrix is constant.

Also known as Rayleigh damping,
aM,+ BK,

The damping is proportional to velocity. Note that
the effective damping matrix is constant. Damping
is not proportional to the tangent matrix, Kj.

Determined by material parameters.

Many nonlinear elements contribute to this form of
damping. It does not generate a damping matrix
term, and often moves energy from lower frequen-
cies to higher frequencies. An example is the Iwan
element.

Similar to nonlinear elements.
No damping matrix is generated. Most of the energy

loss is at frequencies above the Nyquist frequency.
Controlled by parameter RHO.

Table 2-1. Sources of Damping in the Solution
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2.4. Time integration with viscoelastic materials

Here we describe the integration of viscoelastic structures using the generalized alpha
method. For the proper choice of the parameters of the generalized alpha method, the
results below reduce to those corresponding to the Newmark-beta method.

24.1. Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

up—V-o=f(z,t) Q
u(z,t)=0 ze€lp
o(z,t)=g(z,t) z€ly

where u = (ug,uy,u;) is the vector of displacements, o is the stress tensor, and f(x,t) is the
body force. The boundary of €2 is divided into Dirchlet I'p and Neumann I'y subregions.

The Dirichlet conditions lead to the space of admissible functions

V=[ve H(Q),v(z) =0,z € Ip] (2.33)

The equation of motion, along with boundary conditions, is cast into the weak form in the
standard way

/utt-v+/a-vsvda::/f(a:,t)-vdm—I—/ g(x,t)-vds YveV (2.34)
0 Jo Q Ty

where an integration by parts has been carried out on the middle term, and
V= %(V + V7T denotes the symmetric part of the gradient operator.

2.4.2. Constitutive equations

The representation of the time-dependent moduli for a viscoelastic material is commonly
written in the form of a Prony series

G(t) = Gint + (Go — Gint)¢a (1) (2.35)
Ca(t) =2 cie ™ (2.36)

where Gy is the glassy modulus, Gi,f is the rubbery modulus, and ¢;, s; are coefficients used
to fit the Prony series representation to the experimentally measured relaxation curve. A
similar expression holds for K(t), with different values for the constants, and possibly a
different number of terms in the series. Assuming an isotropic viscoelastic constitutive law,
we only need to consider two rate-dependent material properties. In this presentation, we

12



will work in terms of the bulk K and shear G moduli, since experimental data is typically
given in terms of these two parameters.

The constitutive model for an elastic material can be written in terms of the shear and
bulk moduli
0 =De=(KDg+GDg)e (2.37)

where K, G are the scalar bulk and shear moduli, and as is shown in equation 9.4.7 in,?

CoOO R~
cCo o R R
o Rl e Rl o J S G
cooooo
cooocoo
cooooo

4/3 —2/3 —2/3 0 0 0
—2/3 4/3 —-2/3 0 0 0
—2/3 —2/3 4/3 0 0 0
D= 0 0 0 00 0
0 0 0 000

0 0 0 00 0,

This constitutive law can be generalized to a linear viscoelastic material as follows

t
o(2,1) = (Go—Gun) D [ Gt t =712 i 4 G D, 1)+ (2.33)
t Oe(x,T)
(KO_Kmf)DK/O Cr(z,t—1) o dr + KintDgce(x,t)

The above expression is then used to represent the stress in the weak form of the equations
of motion, 2.34.

Given a finite dimensional subspace V}, C V', we represent the approximate solution in the
standard way

n
up(x,t) =Y di(x)ni(t) (2.39)
i=1
where Vj, = span(¢;), and n(t) represents the unknown time dependence. We also denote

®(x) = [¢i(z)] as the matrix having ¢; as the i'® column. Inserting this into the equations
of motion, and rearranging, we obtain

Mi(t) + (Go — Gant) K [ Colt—mhi(r)dr +
(o~ )1 | Gelt—m)ifr)ar+ Kon(®) = £ (2.40)

where

M= /Q p(2)®7 (2)®(z)d (2.41)

13



is the mass matrix,
K1=(Go— Ging) /Q BT DgBda + (Ko — King) /Q BT Dy Bda (2.42)
B =Gy /Q BT DgBdz + King /Q BT Dy Bda (2.43)
are the stiffness matrices, and
_ /Q F(z,1) v(@)dz+ /F o) vla)ds (2.44)

is the right hand side. The corresponding element matrices are defined simply by breaking
the integrals into element wise contributions.

Equation 2.40 represents a system of Volterra integro-differential equations. Without the
inertial term, 2.40 represents a system of Volterra integral equations of the first kind. We
now consider implicit schemes for integrating these equations in time. The goal is to reduce
the system of equations 2.40 to a system in standard form

Mij(t) +Cr(t) + Kn(t) = f (1) (2.45)

where C'is a constant damping matrix, and f (t) is a modified right hand side that will
include a portion of the viscoelastic convolution term. We demand that C' be independent
of time, since this will eliminate the need for refactoring the left hand side at each time
step. The damping (integral) term in equation 2.40 is certainly time-dependent. However,
we will show that it is possible to split this integral term into a time-dependent and a
time-independent part. The time-independent parts remain on the left hand side and
become the damping matrix, whereas the time-dependent parts can be carried to the right
hand side, since they are known quantities. Once the equations 2.40 are reduced to the
system 2.45, the standard time integrators for structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The results for more
terms can be obtained by adding together the results for a single term. The integral in
equation 2.40 can be split into two parts (considering only a single Prony series term)

/Otet_sfﬁ(T)dT = /0 d7'+/ e a 77 (2.46)

glt—T
:esoeen d7+/

(2.47)

where the first term is a loading history term that is known at time t;. Consequently, it can
be treated as an additional load and brought to the right hand side. The remaining term
can be split into two terms, one containing coefficients of 7, and the other containing
coefficients of 7j;. The former is unknown and thus becomes C7r, whereas the latter is
known and thus also contributes to the right hand side.

In order to evaluate the term

/tjet?ﬁ(f)df (2.48)

we first need a representation for the velocity n(T) in the interval 7 € [t;,t]. We present two
choices, both of which are second order accurate.

14



2.4.3. Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant
acceleration within the time step. With this assumption, the velocity must vary linearly
within the time step. Thus,

n(t) =n(t) + T gy (2.49)
where 7j is the (unknown) acceleration at current time ¢, and 7(#;) is the previous
acceleration. Although equation 2.49 is the correct representation for velocity, it is
inconvenient in that it would lead to (after inserting into equation 2.48) a contribution to
the mass matrix. This is undesirable, since it would interfere with the use of a lumped
mass matrix. Thus, we re-write the velocity distribution in an equivalent form

n(t) =n(t:) + ”_T”t(t?)

We note that equations 2.49 and 2.50 are equivalent representations of the velocity. By
inserting equation 2.50 into equation 2.48 we obtain

t s s2 ( at . —at s —at\] .
/t-e s n(r)dr = [s—FE(es —1)]7)—1—[—56 s —l—E(l—e s )]m (2.51)

(2

(t—t;) (2.50)

The first term involves a coefficient times the unknown 7, which is the unknown velocity at
the current time, and thus it must remain on the left hand side as a damping term
contribution. The damping matrix implied by this term is

2 7At 2 7At
C = cx(sk+ %(ev —1))BTDkB + ca(s + %(ew ~1))BTD¢B (2.52)

The second term is known, and thus it can be added to the load vector.

2.4.4. Midpoint Representation of Velocity

A second implicit scheme can be derived simply by using the midpoint rule on the velocity
in the viscoelastic term. The only difference from the linear approach described above is in
equation 2.51.

(2.53)
This leads to

t g
/t e ﬁ(T)def(1—e%>ﬁ+%<1—6%>ﬁi (2.54)

In the same way as for the linear velocity approach, we use the term involving 7 to
construct a damping matrix, and the remaining known terms are carried to the right hand
side.
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It should be noted that the midpoint scheme is inconsistent in that a different
discretization scheme is used for the viscoelastic term than was used for the overall time
integration. The linear representation of velocity is a consistent scheme. However, both
approaches are second order accurate.

2.5. Inverse Methods

Currently Sierra/SD supports 4 types of inverse methods.
 load identification in direct frequency response.
 load identification in direct transient analysis.
« material identification in direct frequency response.
 material identification in modal (eigenvalue) space.
The theory behind these methods is documented in recent SAND reports.?©

In material identification, Sierra/SD supports not only isotropic elastic and viscoelastic
material properties, but also orthotropic elastic properties. While on the outset, it appears
that orthotropic inversion merely involves estimating more material parameters, the issue
of material stability needs to be carefully addressed. During inversion iterations, some of
the predicted material properties may violate material stability condition, i.e. positive
definiteness of the modulus tensor. This could in turn lead to numerical problems with the
forward model, which could become an impediment to the inversion process. Sierra/SD
tackles this issue through special parametrization of the modulus tensor, followed by the
imposition of the material stability condition which takes the form of several bound
constraints followed by single inequality constraint.

2.5.1. Eigenvector Material-1D

Adjoint-based optimization has the advantage of fast sensitivity calculations, but presents
the challenge of deriving and solving the relevant adjoint problem. In this section we
present a gradient-based optimization formulation for the generalized eigenvalue problem.
We derive gradients of the reduced objective function with respect to the unknown
parameters using an adjoint-based formulation, and discuss the challenges that are
encountered along with proposed solutions.

16



2.5.1.1. Eigenvalue Problem
The discretized eigenvalue problem for a linear structure is to find the lowest m eigenvalues
{A\i}i™, and corresponding eigenvectors {u;}i", such that

K’U,Z' = )\ZMu, (255)

The stiffness and mass matrices are K € R x R” and M € R" x R", respectively. The set
of eigenvectors is u = {u;} € R¥, where k =n x m is the product of the dimension of the

stiffness matrix and the number of modes. The vector containing the eigenvalues is denoted
as A={\} eR™.

We define the discretized PDE operator g(A,u,p) :={gi(\i,ui, pi)} as
gi(/\i,ui,p):K(p)ui—)\iM'u,i, i:1,...,m. (2.56)

We only consider parameters that effect the stiffness matrix and not the mass matrix, as is
identified with the explicit parameter dependence K (p). However, the formulation is
general in that the unknown parameters could also be mass density, interfaces, contact
constraints, etc.

When solving the forward eigenvalue problem (2.55), the eigenvectors u; can be scaled by
any arbitrary factor. We choose to work with mass-normalized eigenvectors, and thus we
consider the additional constraints b := {b;(u;)} = 0, where

bi(w;) = ul Mu; —1, i=1,...,m. (2.57)

2.5.1.2. Inverse Problem Formulation
We consider the discretized PDE-constrained optimization problem

minimize J(\,u,p)

subject to g(A,u,p) =
b(u) =0,
P<Pp<Dp,

where p € R® is the parameter vector, p € R® and p € R®, p <P, are the vectors of

element-wise lower and upper bounds, respectively, J : R x R¥ x R® — R is the objective
function and g : R x R" x R® — R"™ and b : R" — R represent the discretized governing PDE
and additional constraint equation.

To derive the optimality conditions, we define a Lagrangian functional as
n
L(w,p,w,n) = J+Y_{w"g+7-b} (2.58)
i=i

where w = {w;} is the Lagrange multiplier corresponding to the PDE operator g, and 7 is
the Lagrange multiplier corresponding to the orthonormality constraint b.
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The objective function for the eigenvalue problem depends on the eigenvalues, eigenvectors,
and parameters. Given a set of experimentally measured eigenvalues {\,; }, and
corresponding experimentally measured eigenvectors {u,,;}, we have

- 2
2 Bi f A — Amg i |les — s
Toup) =3 [ﬁ <_> L rillwi—umillg

+ R(p). 2.59
i—1 2 Ami 2 “U’mZHQ ( ) ( )

The first term of the summation represents the relative misfit in the i eigenvalue, the
second term is the misfit in the i** eigenvector, and R is a regularization.

The observation norm
lvllg :=v"Qu (2.60)

is defined with respect to the observation matrix @, which is a diagonal matrix such that

(2.61)

0ij ith degree of freedom is measured,
Qij = :
0  otherwise.

where 0;; is the Kronecker delta. It is imperative that the measurement locations are
selected such that it is possible to identify each mode from the experimental data. This
becomes particularly critical in regards to tracking mode shape between inverse iterations.
In practice, it is important that each misfit term makes comparable contributions to the
objective function. Otherwise, if one term is disproportionately larger than the other,
optimization algorithms tend to focus on the larger terms and ignore the contributions
from the smaller terms. The coefficients §; and k; are selected at the first objective
function evaluation to ensure both terms are of the same order of magnitude.

To solve this problem numerically, we minimize the reduced objective

J(p) = J(A(p),u(p).p),

where under suitable assumptions (A(p),w(p)) solve the original eigenvalue problem for a
fixed parameter p, subject to the bound constraints, i.e.,

minimize J(p) subject to Pp<p<Dp (2.62)

The adjoint variables w; and 7; are found by differentiating the Lagrangian with respect to
the forward variables \; and u;

Ly, = Jy—ul Mw;=0, (2.63)

X2

i.e. the stationarity condition of the Lagrangian with respect to the state variables. We
must solve these equations for the adjoint variables to be able to compute the reduced
gradient. Equations (2.63) and (2.64) can be written in block form as

Do ag ][]

_ J/\i
(K- \M) Mu; || n ‘l—Jull’ (2.65)
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where we assume symmetry in K, M, and where the definitions of the PDE operator
(2.56) and eigenvector orthonormality (2.57) have been used. The dimension of the adjoint
system defined in (2.65) is the same as the dimension of the forward problem (2.55) where
in the latter case both eigenvalues and eigenvectors are the unknowns. As expected, even
though the forward problem is an eigenvalue problem, the adjoint calculation involves
simply the solution of a linear system of equations.

The second equation in (2.65) can be rewritten as
(K — )\ZM)’LUZ = —Jui — Mum,-. (266)

The linear system defined by (2.66) is singular, which can be seen by realizing that \; is a
known eigenvalue of the original PDE operator. Existence of a solution to a singular
system requires the right hand side be orthogonal to the null space. As such, we must
make the right hand side orthogonal to the eigenvector w;. Premultiplying the right hand
side of equation (2.66) by u;”, and setting to zero, and using the fact that the modes are
orthonormal (2.57), we find

= _’u’zTJuz (267)

This gives us an explicit expression for 7; which ensures that a solution of equation (2.66)
exists. Substituting (2.67) into (2.66), we have

(K =\ M)w; = —Jy, + Muul Jy,

2.68
= [Muf — 1] Ju,. (2.68)
Due to the singular matrix, the solution w; of (2.68) could be offset by any linear
combination of the vectors in the null space and remain a valid solution. As such, we
consider an orthogonal decomposition
w; = we; +YiW; (2.69)

for each i € [1,m]. wy; is orthogonal to the nullspace vector u; (that is, ul Mwo; = 0),
and is determined by the solve of equation (2.68).

Substituting (2.69) into (2.63) and using the orthogonality of the vectors, we find
Jri=v=0 (2.70)
Thus, w; is simply a scaled version of the eigenvector u; plus an offset,

w; = wo; + JInui. (2.71)

Using these results, we can compute a reduced gradient as follows
VJ(p) = Jp+g,w. (2.72)
Given the reduced gradient (2.72), a variety of gradient-based optimization algorithms can

be used to compute a parameter, p, that minimizes the objective function subject to the
relevant constraints.
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2.5.1.3. Repeated Mode Separation via Projection An eigenvalue problem is said to
have ‘repeated modes’ if there exists two or more eigenvectors that have the same
eigenvalue \; = A\;. Any linear combination of these modes results in a valid solution to the
eigenvalue problem. While it is not clear a priori if repeated modes will occur in a
structure, we found that many eigenvalue optimization problems have the potential to
include repeated eigenvalues at individual optimization steps. In the event that the finite
element model has geometric symmetry, the solution can result in one or more repeated
eigenvalues, and mixed eigenvectors.

For the case of two repeated modes, we see that u = au; + fu; is a valid solution of the

eigenvalue problem:
K(aui+5uj) =\M (aui—I—ﬁuj). (273)

We say that such a mode is ‘mixed.

Repeated eigenvalues and mixed eigenvectors result in a non-unique eigenvalue solution,
which implies that the objective function term that depends on eigenvectors could take on
multiple values depending on various linear combinations of the computed mode shapes.
This non-uniqueness could result in an ill-posed gradient-based optimization strategy. That
is, the value of the objective function is dependent on which two orthogonal eigenvectors
are picked to represent the pair of repeated eigenvectors. To compensate for this effect, we
present a Mode Separation via Projection method, where each mode shape in a set of
repeated modes can be orthogonalized against one of the experimentally measured modes,
and then re-normalized with respect to the mass matrix as

;= (1_ (i, g1 >u,-, (2.74)
(Wmj, Umj) MQ

where the inner product
(w,v) g = u' MQu (2.75)

is defined with respect to application of the observation matrix (2.61) and the mass matrix.
By identifying each mixed mode with a measured mode, we are essentially ‘unmixing’ the
computed modes in a way that ensures uniqueness, continuity, and differentiability of the
objective function. The ‘unmixed’ modes are then used in the objective function and
gradient calculations for each inverse iteration. Note that the unmixing only occurs at
degrees of freedom with experimental data, however the objective function is only
evaluated at points where the experimental data exists.

Figure 2-1 shows the simplest mixed mode example. A single symmetrical hex element is
fixed on the right side, so the first two modes have the same eigenfrequency. Table 2-2
shows the first four eigenmodes of the hex element. It can be seen that modes 1 and 2 have
the same eigenvalue to numerical precision.

2.5.1.4. Adjoint Computation via Modal Superposition with Truncation
Augmentation If the computed eigenvalues of a structure are ordered from smallest to
largest, the ordering of mode shapes will typically change as the material parameters are
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A =0.2575 A=0.2575

Figure 2-1. A single hexahedral element with two distinct eigen-
vectors for the same frequency.

Table 2-2. Eigenvalues for Symmetric One Hex Problem

Mode Number | Eigenvalue
1 0.2575
2 0.2575
3 0.3698
4 0.5563

varied. This also causes non-differentiability in the objective function, which causes
difficulties in gradient-based optimization. Mode tracking refers to maintaining a
correspondence of eigenpairs (eigenvalue and eigenvectors) between an original and an
updated system throughout changes in the eigenproblem. The ability to keep this
correspondence is essential to ensure differentiabiliy of the reduced objective, where
computed modes must be compared to the correct measured mode.

Measured data is often incomplete, having only a few measured data points (physical
accelerometer locations) on a model with millions of degrees of freedom. An incorrect mode
swap results in a discontinuity in the slope of the objective function. We present a novel
approach to the mode tracking problem using an Injective Mode Ordering Metric. This
approach was developed as a simple strategy to maintain monotonicity of the objective
function and eliminate divergence in the optimization algorithm due to incorrect mode
swaps.

We developed the novel Injective Mode Ordering Metric as a way to determine
correspondence between computed and measured modes while ensuring that the objective
function does not spuriously increase with a mode crossing. The method creates a
one-to-one (injective) mapping between measured and computed modes such that (nearly)
any other mapping would result in an increase in the objective function.

The eigenvector misfit term of the objective function (2.59) for computed mode i and
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measured mode 7 is
_ K [lui —umjllg

By 1= (2.76)
Y2 umlle
and the corresponding eigenvalue misfit term is
2
Bi [ Ai— Amyj
A =22(22 M) 2.
The total misfit is
Jij = Aij +O;5. (2.78)

Let T : uy,, — u be the linear map between computed and measured modes defined as
g v=T(Wmy) for4,j st Jy= mk@anj. (2.79)

This mapping guarantees that each measured mode is mapped to a computed mode,
although the dimension of the range of T' is not necessarily the number of computed
modes. Hence, the mapping (2.79) is not injective and would introduce numerical problems
in an optimization algorithm. Furthermore, it makes physical sense that two separately
measured modes represent distinct computed modes.

Let G, := {T(umj)}jj\il be the set of all computed modes in the range of 7. When more
than one measured mode is mapped to a single computed mode, we choose the one that
minimizes the misfit to be the correctly mapped mode. Mathematically, we define this
subset of measured modes as

G = {tmj|t € Ge, By = Inkin Oir} (2.80)
As such, we have that
v = T(’Umj), V’Umj € Gm,vi € Ge. (2.81)
The remaining unmapped measured eigenvectors are
Vi, = Wi, \ G (2.82)

and the available (non-matched) computed eigenvectors are

v:=u\G.. (2.83)

Our goal is to now compute an injective mapping between elements in (2.82) and (2.83).
Qualitatively, we can do this by considering each measured eigenvector sequentially and
map it to the available computed eigenvector that minimizes the misfit (2.76). This
corresponds to constructing the mapping 7™ according to

{vi} ={T"(vmj)|vm; € VU {’umq}g;%,vi cvU {T*(vmj)}g;%, and ©;; = mkin O} (2.84)

We can extend this definition of 7™ by requiring 7" =T Vv,,; € Gy, such that the domain
of T* is u,,. Note that, by construction, the linear map T* is injective and each measured
mode is mapped to a distinct computed mode.
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2.5.1.5. Adjoint Computation via Modal Superposition with Truncation
Augmentation The system of equations in (2.66) is singular due to the fact that the
eigenvector u; is in the kernel of the coefficient matrix. In order for a solution to exist, the
right hand side must be orthogonal to w;. Additionally, if rigid body modes (A =0) or
repeated modes are present, components of the corresponding eigenvectors must also be
removed from the right hand side before the solve. Even when this is done, however, the
resulting system of equations is singular and a Helmholtz (indefinite) problem, which
presents significant computational cost and robustness challenges for iterative linear
solvers.

We describe here an Adjoint Computation via Modal Superposition with Truncation
Augmentation strategy for solving equations (2.66), which avoids dealing with an indefinite
linear system. Fortuitously, in evaluating the forward problem, we have already obtained
the eigenvalues and eigenvectors of the system up to \,,. As an alternative to solving the
singular system, we first use modal superposition to approximate the adjoint. The system
of interest is:

(K—\M)u=f (2.85)

we define the modal superposition approximation as 4 = ®q, where ® is the matrix of m
calculated eigenvectors in the system. Our system of equations becomes

(K—\M)dg=f. (2.86)
Premultiplying (2.86) by ®7 gives
T (K — )\ M) dg =T f (2.87)
where ®T K ® is the diagonal A, ®T M® = I, and our system becomes:
(A-X\I)g=0Tf (2.88)

The diagonal linear system in (2.88) can be solved for g and the approximate solution @
then obtained. Notice that row i of g can be set to zero since row ¢ of the right hand side is
also zero.

The adjoint truncation error is the residual r := f — (K — AM)a. The approximate adjoint
@ is in the space spanned by the eigenvectors {u;},. The truncation error r is in the
space spanned by the non-retained eigenvectors {u; }i>m, which do not contain the known
singularity. With this knowledge, we construct a preconditioner for solving the singular

system:
(K —\M)Au=r, (2.89)

where Aw is the truncation augmentation of the modal superposition solution . Modal
Superposition with Truncation Augmentation is then used to construct the ezact adjoint
solution as

u=1u+Au. (2.90)

A related solution method that takes advantage of the calculated eigenvectors is given in.”

The direct solution strategy proposed there would not allow for parallel scalability, and
which motivated the domain-decomposition strategy proposed herein.
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One way to reduce the initial size of the residual = in (2.89) is to calculate extra modes
when solving the forward problem, which provides more eigenvectors to the superposition
approach. For the problems in the results section of this paper, we solved the forward
problem for 10-15 more modes than in the experimental data to ensure that the truncation
augmentation was performed quickly and robustly. Additionally, it is essential that the
solver tolerance for the forward problem be tighter than the solver tolerance for the inverse
problem. That is, when solving the singular system, it is necessary to resolve the nullspace
of the matrix to tighter numerical precision than the desired solution tolerance. A more
complete description of this solution approach for the singular system will be provided in a
subsequent publication.

2.6. Eigenvalue Problems

The eigen solution method computes a user-specified number of the lowest-frequency
modes of
(K —w?M)¢=0. (2.91)

The eigenvalue (or mode) w? and eigenvector (or mode shape) ¢ correspond to the solution
u(t) = ¢! with frequency w/(27). The frequency and the mode shape are reported to the
user. The mode shapes are mass orthogonal, i.e., gzﬁl-TM ¢j = 0;5. The default diagnostic
output, including the residual norms ||(K —w?M)g||, are labeled by eigenvalue w?.

A number of approaches can be used to solve this system, and their relative merits are
well-understood (see 8). For very large systems, direct (or dense) methods such as the QR
algorithm or Jacobi transformations are tremendously more expensive than the methods
used in Sierra/SD. In Sierra/SD, we rely on the shifted and inverted Lanczos algorithm
as implemented in ARPACK?). A detailed scalability study is available in SAND
2019-1217.10

Different solution methods are available for many of the different eigenvalue problems.
Note that Rayleigh damping, C'= aM + SK, does not change the mode shapes and
changes the mode frequencies as in a single-degree-of-freedom problem.

The shift (¢) and invert transform leads to a problem whose largest modes are the modes
of interest. The result of subtracting oM ¢ from both sides of equation (2.91) is

(K —oM)p=Mo(w?—0o). (2.92)

The eigenvalue problem exposed to ARPACK emerges by multiplying both sides of (2.92) by
(K —oM) Hw?—0)1:

(K—oM) 1 M¢p=(w?—0)"to. (2.93)
For example, users are expected to understand that the shift corresponding to the
frequency f is 42 f2.

The linear solvers available with the eigen solution case all require positive-definite
systems. For this reason, the shift must be negative. Generally speaking, increasing the
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magnitude of the shift makes solving the linear systems easier and solving the eigenvalue
problem harder. In theory, using the Helmholtz linear solver, the capability could be

implemented to determine the modes nearest to an arbitrary positive user-specified shift.
The demand for this capability has never justified the risk and expense of implemenation.

Structural dynamics eigenvalue problems have some unique features all revolving around
the challenging nature of the corresponding linear systems. Results are typically insensitive
to the linear solver relative residual norm threshold (the default is 107%). One exception is
the case of computing many (thousands) of modes, in which case it is necessary to start
out with a smaller tolerance (say 107'2) to avoid convergence problems at the higher
frequencies.

2.6.1. Constraints and infinite modes

Constraints (in §4.20) modify equation (2.91) to an eigenvalue problem

AM]:B[‘H& (2.94)
a-[59] 82 0]

The modes and mode shapes and modes satisfy the equation
Ké+CTA = M¢w?, (2.95)

Like superelements, Lagrange multipliers A are not part of the finite element mesh
interface. Lagrange multipliers are not exposed to users. When an eigenvalue problem is
restarted, the Lagrange multipliers for the modes in the restart file are all set to zero.
Another unresolved issue is that for buckling problems, constraints do not work.

The remainder of this section discusses a very technical issue that, every once in a while,
developers need to understand. If constraints are present then there are infinite modes

HRE

Approximate solutions of the constrained eigenvalue problem can be misleading if the
infinite modes are not deflated. The deflation technique is due to Hans Weinberger.
Fortunately in Sierra/SD, the deflation matches the Lagrange multiplier methods used to
solve the linear systems,'1? and is handled, for the most part, behind the scenes.
Sometimes however, such as during debugging, it is necessary to know exactly
how this works, and this section is included to address that case.

But before diving in, let’s go over what the the constrained eigenvalue problem, equation
(2.94), has in common with equation (2.91). Multiplying ¢” and row one of equation
(2.94),

Ko+ CT A= M¢pw?,
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brings us to the unconstrained equation

T K=o Mpw?.
The standard normalization

¢ (K. M)¢ = (A1)

is used here too. Although
C¢ =0,

note that
[0, AJ"

K CT
a0 ] =[TC,0£0
is the force maintaining the constraints.

The elimination of the redundant constraints uses the partition (or more precisely
reordering) C' = [Cy, C;] so that C; square and non-singular. This is done by the linear
solver. The corresponding partition of ¢ into dependent and independent vectors is

_| P
¢ |> q ‘| ‘
The constraint equation is Cy p+C;q =0, or C; lCcup+qg=0or

F=C7'Cy, q=—Fp. (2.96)

The dimension of ¢ equals the dimension of A\. The partition also induces a change in the
eigenvalue problem.

Ku Ka Cj ]; _ | Mag Mai || p |,
Ky Ki CF 3 My My || g
To eliminate q,
Kgq— Kg; F Cg p| [ Myg—MyF
[ Kiy—KyF CF M| | My — MuF PA (2.97)

And finally to eliminate ), in equation (2.97) subtract from row one F'" times row two. For
S defined by
S(K) = Kga— KgiF = F' Kiq+ F Kii F,

the reduced eigenvalue problem is
S(K)p=S(M)pA
Given p and A, equation (2.96) determines ¢. And X is determined by

A=C7 T (Migh— My FA— Kig+ KiiF)p

7

26



2.7. Random Vibration

Details of random vibration analysis are presented in several papers®. These few
paragraphs document what was implemented.

2.7.1. Algorithm

Initially a model decomposition is determined, K® = M ®? normalized so that
OTMP =1I. For j = +/—1, the modal frequency response is,

1 w

ailf) = w? — w2 + 2jww;y;’ /= 2r

Note that if other damping (such as mass and stiffness proportional damping) is used, then
the effective ; is used here. For the ath load and the ith mode shape, define

Zt =" ¢ Ff = (¢, F*).
k

Z = ®T'F contains the spatial contributions from the mode shapes and is also frequency
independent. The number of rows in Z is the number of modes, and the number of
columns in Z is the number of loads.

Sab(f) is the (a,b) entry of the Hermitian cross-correlation matrix between loads. Letting
Z; denote row ¢ of Z,

i =q(Z:S(f)Z] Va6 f,
or

I = diag(¢*)ZS(f)Z" diag(q)d f

For each mode shape,¢, each element, there is a displacement with a corresponding element
stress, ©. The (4,7) pair of modes contributes %T Av;I';; to the von Mises stress. The
velocity and acceleration contributes similar terms to the second and fourth moments of
von Mises stress, respectively.

2.7.2. Power Spectral Density

The displacement power spectral output may also be written as follows,

CGon() = N6 (Naj(f)bimbjnZiS™ ()2, (2.98)

1,7 a,a’

Note that there is no ¢ f coefficient here.

3see for example, reference 13.
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If the output displacement degrees of freedom are restricted to a single node, the subscripts
m and n are applicable to the 3 degrees of freedom at a single location. Because the
response directions may not be independent, the matrix may not be diagonal.

By summing over the loads we may reduce the power spectral expression to a sum on
modal contributions.

Gmn(f) - Z¢zm¢]ngz]<f) (2'99)

]

where

Gij()=q (f ZZZ ZJ gaa’ (f) (2.100)

Note that with the exception of the Z¢ (which may be computed only once and are a fairly
small matrix), all the terms in equation 2.100 are completely known on each subdomain.

At each frequency, f, there is a 3 by 3 complex Hermitian output displacement spectal
density matrix G as well as an output acceleration spectral density matrix, Gw?.

2.7.3. Tensor Transformations of PSD

The output PSD is a Hermitian tensor, AT = A*. The output PSD is defined as the
correlation of the acceleration, i.e.

Apsp(w) = a(w)a(w), (2.101)

where a(w) is the complex acceleration vector. On a single node, A is a 3x3 complex
tensor. The tensor rotation can be derived from the rotation of the vectors. Let a = Ra be
the acceleration expressed in a new coordinate frame and computed from the acceleration
in the basic frame multiplied by an orthogonal transformation matrix R. Because
R™1=R" we have a = RTa. See section 4.26 for a discussion of coordinate systems and
vector transformations.

Apsp = aal (2.102)
= RTa(RTa)t (2.103)

= RTad'R (2.104)
RTApspR (2.105)

Therefore, Apgp = R ApspRT.
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2.7.4. RMS Output

The RMS output for degree of freedom m is given by,
ers = /Gmm(f)df
- J [ 3 bimbimGis (s
1,J

= D ¢imPjmIly; (2.106)
i,J

where I';; = [Gi;(f)df.

2.7.4.1. Truncation. Note that equation 2.106 involves a summation over modes
weighted by I';;. This summation is an order N 2 operation which can adversely affect
performance when there are a large number of modes. Often many of the terms in I' are
very small. Rows and columns of the sum may be eliminated with no impact on the overall
solution of Xie

2.7.4.2. Parallelization. The parallel result can be arrived at by computing Z! on each
subdomain, and then summing the contributions of each subdomain. Note that Z!
contains the spatial contribution of the input force. At boundaries that interface force
must be properly normalized just as an applied force is normalized for statics or transient
dynamics by dividing by the cardinality of the node. Once Z has been summed, I';; may
be computed redundantly on each subdomain. The only communication required is the
sum on Z (a matrix dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is just Gyum(w)w®. Subsection 4.27.5 provides
details about transforming power spectra to an output coordinate system.

2.7.4.3. Displacement Interference. A common requirement is understanding the
probability of interference of two nodes. The difference displacement spectrum of a degree
of freedom on two different points is a similar expression.

Xir(f) = (Xe(f) = Xo(HD)(Xk(f) = X0(f)” (2.107)
= Xx()Xg(N+Xo(HXL(f) =X (f)XL(f) = Xo(f) XK (f) (2.108)
= Grr(f)+Gro(f)—Grr(f)—Gri(f) (2.109)

4 A similar truncation can be performed if the quantity of interest is acceleration rather than displacement.
In that case, truncation may be performed on Fijw?w?.
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Likewise, the RMS value may be computed.

(Xxn)™ = | [ X¢rdf (2.110)

= /> (cbiKeij + i ¢;jL — Gik P — ¢iL¢jK> L (2.111)

1,J

As with the displacement spectrum, when the different coordinate directions are not
independent, off diagonal contributions can be very important. This development must be
extended to all the dependent degrees of freedom.

2.7.5. RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is included in
the reference at the beginning of this chapter. Two methods are available, but both use the
integrated modal contribution I';; as the basis for their computation. The more complete
method relies on a singular value decomposition. Portions of that method are touched on
below

2.7.6. Matrix properties for RMS stress

Since S(f) is Hermitian, it follows that Iy, is also necessarily Hermitian. It will not in
general be real. Therefore, the svd() must be computed using complex arithmetic. We use
the zgesvd routine from ARPACK. The results from the svd of an Hermitian matrix are real
eigenvalues (stored in X ), and complex vectors, stored in Q.

At the element level another svd must be performed. In this case we are computing the
singular values of the matrix C'.

C=XQ'BQX

where,

B=vTAv

Obviously, B is symmetric. It can be shown that QT BQ is Hermitian. If we examine a
single element of C' we can see that it contains the sum over all the terms in an Hermitian
matrix. That sum is necessarily real, since it can be computed by adding the lower half
with it’s transpose and then summing the diagonal. Let,

Ay =" @i BrnmGng =Y i
m,n m,n
But,

m,n m,n m,n

We therefore only need use the real svd routines to compute the results at each output
location.
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The svd calculations provide the information needed to truncate or reduce the model. As
the size of the model grows, the number of modes required for an analysis tends also to
grow. However, the computational time for computing the svd is proportional to matrix
dimension cubed. On the other hand, the svd(I") is only computed once. However, the
computation of each decomposition of C' occurs at each output location and can
significantly affect performance. In the model problem where the dimension of C' was
allowed to remain the same as the number of modes, increasing the number of modes from
20 to 100 changed the time for the analysis by factor of more than 100 (close to the
predicted 5%). Unfortunately the desired models may have many hundreds of modes.

The svd(I') provides important information about the number of independent processes.
Note that C' includes the svd values from this calculation. We truncate by computing all
the nmodes x nmodes terms in B, but only retaining Cdim columns of (), where Cdim is
chosen so the values of X are not too small. Thus, X[(Cdim)]/X[0] > 10~!*. This restricts
the dimension of C' to a fairly small number, while retaining all components that
contribute significantly to its value. As a result, the entire calculation appears to scale
approximately linearly with the number of modes.

2.8. Modal Frequency Response Methods

The Sierra/SD implementation of the modal acceleration method is described in this
section. Separate cases are considered when the structure does and does not have rigid
body modes.

2.8.1. No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.
(—w?M+ juC+K)a=f (2.112)
Consider the modal approximation N
i = Z:1¢iQi (2.113)
i=

where N is the number of retained modes, ¢; is the i’th mode shape, and ¢; is the i'th
modal dof. For modal damping, one obtains the uncoupled equations

(—mei + jwe; +k‘¢)qi = qbin (2.114)
fort=1,..., N where
mi = ¢ M (2.115)
¢ = ¢ Co; (2.116)
ki = ¢ Ko (2.117)
(2.118)



are the modal mass, modal damping, and modal stiffness of the i’th mode. Solving
equation 2.114 for ¢; leads to

g = (07 F) /(—wPm; + jwei + k) (2.119)

Replacing (—w?M + jwC)a in equation 2.112 with the modal approximation

N
(—w?M +jwC) Y dig; (2.120)
=1
leads to
. N
Ki = f+ (WM - jwC) Y ¢igi (2.121)
=1

Recall that the mode shapes satisfy the eigenproblem
Ko; = w? M (2.122)
where wj is the circular frequency of the i’th mode. Provided w; # 0, one obtains
K 1M¢; = ¢ Ju? (2.123)
In addition, see Eq. (18.14) of Craig, the damping matrix C' can be expressed as

QCZ("}Z

C= Z( )M@)(M@) (2.124)

where (; is the damping ratio of the i’th mode. Substituting equations 2.123 and 2.124 into
equation 2.121 and solving for @ leads to

A

N
_1f—|—Z(w2/wi2—2@jw/wi)¢i% (2.125)

=1

=5

The acceleration frequency response, a, can be obtained by multiplying equation 2.125 by

—w2.

2.8.2. Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be used in
the case when the structure has rigid body modes. The main difference between the
approach presented here and Craig’s method!® (pp. 368-371) is in the way that the flexible
response is computed using the singular stiffness matrix. Craig removes the rigid body
modes from the stiffness matrix using constraints. In our approach, we first orthogonalize
the right hand side with respect to the rigid body modes, and then use an iterative solver
such as FETI to solve the singular system directly. Although the two methods are
equivalent the latter is much more convenient from the implementation point of view.
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Note, however, that the implementation is likely to fail on a single processor since the
direct solvers in Sierra/SD are unable to manage a singular stiffness matrix.

The equations of interest are the frequency domain equations of motion
—w?Mu+ jwCu+Ku=f (2.126)

Since the stiffness matrix may be singular, we first split the solution into a rigid body part
and a flexible part.

u(lw) = ugp(w)+ug(w) (2.127)
= Pperw)+Ppep(w) (2.128)

where the subscript R refers to rigid body mode contributions, and E refers to
contributions from flexible modes. We define NV as the total number of degrees of freedom,
Npg as the number of rigid body modes and Ng the number of flexible modes, where

N = Np+ Ng. Then, &g is an Nz Nk matrix of rigid body eigenvectors, g is an NxNg
matrix of flexible eigenvectors, qg is a vector of dimension Ng, and qg is a vector of
dimension Ng. We assume mass normalized eigenvectors.

We now substitute equation 2.128 into equation 2.126, and premultiply both sides by ®£
and (I%. This yields two sets of equations, after using orthogonality and the fact that
Kop=0.

—w?qr+ jwCrqp = O f (2.129)
—w*qp+ jwCrpqs+ Kpqp = L f (2.130)

where Cr,Cp are diagonal matrices containing the modal damping contributions, and Kg
is a diagonal matrix containing the eigenvalues. In particular, the ith diagonal entry of Cp
is 2w;(E;, and the ith diagonal entry of Cg is 2w;(g,. For most applications, Cg is null.
Solving these equations we obtain the component-wise values of the coefficients

oF f
= M 2.131
q%_ f

—w? + jwCg, + w%i

qB; = (2.132)

Equation 2.130 can be solved for ¢, and substituting this into equation 2.128, we obtain

U= <I)RqR+q)EKglq)gf+w2q)EKglqE —jwchKElCEqE (2.133)

The first term in equation 2.133 is known. The third and fourth terms of equation 2.133
can be computed by modal truncation, and in fact these are the same as the second and
third terms of equation 2.125. The second term in equation 2.133 is the static correction,
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and is not readily computable in the present form since all of the flexible modes would have
to be known to compute it.

In order to compute the second term in equation 2.133, we note that the matrix

ap=%® EK51<D:§ is the inverse of the elastic stiffness matrix, that is, the stiffness matrix
without the rigid body components. Craig gives a procedure of constraining the rigid body
modes in the stiffness matrix in order to compute the product ag f. This procedure would
require re-sizing the global stiffness matrix midway through the modalfrf solution
procedure, and this is tedious from the code development standpoint.

A more convenient approach is to use FETI to solve the system Ku = fg, where fg is
obtained by orthogonalizing the right hand side f with respect to the rigid body modes,
via Gram Schmidt. We note that FETI can solve problems of the form Ku = f even if K is
singular, provided that the right hand side f is orthogonal to the rigid body modes.

The procedure is to first apply Gram Schmidt orthogonalization to obtain fg. Then, we
use FETT to solve the system Kug = fg, where K is singular. Finally, to be sure ug is
orthogonal to the rigid body modes, we apply Gram Schmidt one more time to ug.
Though in theory upg is already orthogonal to the rigid body modes after the FETT solve,
numerical round-off may result in a small loss of orthogonality (especially if the solver
tolerance is loose), and thus we apply this final orthogonalization to ug to be on the safe
side. The resulting solution we again denote by ug. Then,

up =PpKy %L f (2.134)

and thus all of the terms in equation 2.133 are known. Thus the modal frequency response
can be computed using equation 2.133.

We note that the orthogonalizations referred to above involve only the standard dot
products. That is, in order to make f orthogonal to one rigid body mode ¢;, the Gram
Schmidt factor is

T
o= j} qi (2.135)
and then
fe=f—a¢ (2.136)

The dot products appearing in these expressions do not involve the mass matrix. They are
the standard dot products.

2.8.3. Example

Finally, we present an example of the performance of this method as compared to the
standard modal displacement method. The example is a beam composed of 320 hex8
elements. The beam is free-free, so that all rigid body modes are present. The frequency
response is computed up to 9000 Hz, and 15 modes are used in the modal expansions. The
15th mode had a frequency of 11362 Hz. In Figure 2-2, the two methods are compared
with the direct frequency response approach. It is seen that the modal acceleration method
gives a significantly improved performance over the modal displacement method.
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Figure 2-2. A comparison of the modal displacement, modal ac-
celeration, and direct frequency response approaches. The modal
acceleration method gives a better approximation to the direct
approach than the modal displacement method.
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2.9. Fast Modal Solutions

Because modal based solutions such as modaltransient do not require a linear solve, they
can greatly accelerate the solution of linear problems. However, in the standard approach,
these solutions may not show the performance that could be achieved. This is because the
standard approach manipulates a lot of data when the model size is large, see Figure 2-3.
We here address a method for much higher performance provided that output is required
on a very limited data set and that the force is simple.
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1. Compute the full eigen problem, (K —AM)® =0

2. Compute the applied load (in modal coordinates) at each
time. fl = Zk (I)kiF]gxt

3. Compute the modal system response from equation 2.140.
4. Expand from modal to full physical space.
Nmodes

L ‘
Xpp1= Z qiz+1q)ki
i

5. Collapse the physical space to the output degrees of free-
dom.

T = subset(X)

The parallel data (matrices
and vectors ® and X) are
partitioned by processor.

Num DOFS

proc n

Nmodes

Figure 2-3. Standard Modal Transient Algorithm. Note that while
the output is required on only a small part of the model, a cal-
culation of data on all degrees of freedom is performed first, and
results are then collapsed back to the reduced model.
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2.9.1. Modal Solution Summary

Using the trapezoidal rule, Newmark-Beta integrator® equation 2.6 may be condensed to,

4 2 A ¢ A 2 4 4
M+ C 4 K| sy = 3t +C [vn+ thn} M [@dn +tntan|  (2137)
Also,
2
4 4
ap+1 = —ap + @(dn+1 — dn) — Evn (2139)

With the usual modal transformation, di =3; Priq, \i = q)iTKCDZ-, and ®TM® = I, we may
write the equivalent modal equations.

@ity 1=dp+ frp1 + I (2.140)
where

Azt AT

72.1—1—1 - Z Dy F) /cemt
k
I 4 . 4 ) 2
F'o= it (gt xpn ) T (dn+ 5pn
Vi is the modal damping

These equations are now uncoupled, i.e. the solution for each modal coordinate is
independent of any other.

2.9.2. Parallel Fast Modal

In many cases the analyst is interested only in the data in a very reduced set (such as data
in the history file). In these cases, large amounts of data are processed, only to reduce the
data at each time step to a the reduced system. The parallel computer processing is being
expended to process large vectors that are not really needed, and for which no useful
output is provided. If the reduced set may easily fit on a single processor, and if the modal
force may be adequately determined, then a streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 2-4 for transient dynamics, and in Figure 2-5 for
modal frequency response. The same set of equations are now solved, but since the entire
physical model exists on all processors, we can compute the sum of terms in parallel.

® This implies that oy, = af =0, 8, =1/4, and v, = 1/2.
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. Begin with eigenvalues, A\, and reduced eigenvectors, ¢. We
also need the generalized components of modal force, (f(w) =

S PriFE (W)

. Compute the time response of the modal system response in par-
allel. Each processor gets only a subset of modes, and solves
equation 2.140 independently.

. Compute the response on the physical space using the sum of
modes as a sum across processors. NOTE: this is restricted to
the reduced physical space.

Nproc Nmodesproc

Fp= ). > kit
P ;

Figure 2-4. Fast Modal Transient Algorithm

. Begin with eigenvalues, A\, and reduced eigenvectors, ¢. We
also need the generalized components of modal force, (f(w) =

S PriFP (W)

. Compute the frequency response of the modal system response in
parallel. Each processor gets only a subset of modes, and solves
the following equation independently.

fi(w)

2 .
w? — w3 — 2jyww;

gi(w) =

where w = +/)\; and j = /1.

. Compute the response on the physical space using the sum of
modes as a sum across processors. NOTE: this is restricted to
the reduced physical space.

Nproec Nmodesproc

Br= 3 > kit
P i

Alternatively, each processor may be assigned the computation
of a frequency range, and compute all the modal contributions
to that range. A processor sum would gather all the results for
output.

Figure 2-5. Fast Modal Frequency Response Algorithm
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2.9.3. Determination of Modal Force

The fast algorithm outlined in the previous section depends on determination of the modal
force vector, f*(t). But, the physical loads may be applied to degrees of freedom other than
those in the limited output set, so that the eigenvector, ® of the full system would be
required.

However, in most cases,% the force in the physical coordinates is computed as a sum of
spatial and temporal terms.”

Nsets

Fel(z,t)= Y FS(x)6%(t)

Typically each spatial function F's is determined by a nodeset, sideset or body load input,
while the temporal term, §°(t), is a multiplier defined in a FUNCTION section. We may thus
write,

Fit) = Y0P (ay t) (2.141)
’ Nsets R
= > O ) Fi(z)0°(t)
k s
Nsets
= > (51 (2.142)
where, .
(L=} (2.143)
k

Thus, a necessary part of the preparation for a fast modal solution includes calculation of
the generalized components of force, (.

2.10. Complex Eigen Analysis - Modal Analysis of Damped
Structures

2.10.1. Modal Analysis of Damped Structures

Sierra/SD will solve the eigenvalue problems for structures with some types of damping.
The algorithms are designed for internally damped structures such as from viscoelastic
materials. The package is called Ceigen, and the parameters to be aware of are eig_tol,
nmodes, and viscofreq. The first two parameters, eig_tol and nmodes will be familiar to
Sierra/SD users that solve eigenvalue problem for undamped structures. eig_tol is the

6 If user defined functions of space are included, this situation is violated, and the fast algorithm cannot
be used.

7 What is described here for time applies equally well for functions in the frequency domain. They are
products of spatial and frequency components.

40



convergence tolerance for the eigenvalues, and nmodes is the number of requested
eigenvalues. viscofreq approximates the first flexible mode of the structure. The default
value for eig_tol is l.e — 8.

The complex eigenvalue problem which we solve is also known as the quadratic eigenvalue
equation.

K+AD+XNM|¢=0 (2.144)
where,
= the stiffness matrix

the damping matrix

= the mass matrix

s RO
I

the complex frequency.

All of the matrices are independent of frequency. Note that we are solving for A\ = iw 4+,
not w?.

2.10.2.  Input File Specification

The Sierra/SD input file specification is similar to the specification for transient
simulations. To change a working Sierra/SD input file for a transient problem into a
Sierra/SD input file for Ceigen, change the Solution and Parameters blocks. The example
below illustrates how the Solution and Parameter blocks are modified for modal analyses.

SOLUTION

case ceig

ceigen nmodes 20
viscofreq=1.e+4
END

PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was was needed for the transient
simulation, and is still needed for modal analyses.

2.10.3.  Output File Format

The output is very similar to the output for the undamped eigenvalue problem. The results
file contains any requested data. Supplemental information is written to the screen that is
useful for algorithm development.
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The Results file foo.rslt tabulates the values A/(27) for (A;) that solve equation (2.145).
Pure real eigenvalues are not written to the Results file.® If \; has been found with 4 in the
range, 1 <i < 24,27 <4 < 34, then the missing eigenvalues (\;)25<i<26 are real eigenvalues
that are omitted. The number of eigenvalues written in the Results file is less than or equal
to nmodes.

As is the case with the undamped eigenvalue problem, Sierra/SD will print a table to the
screen. The table is titled “Ritz values (Real, Imag) and direct residuals', and has four
columns of real numbers. The number of eigenvalues that are actually computed may be
larger or smaller than the number requested. Some real eigenvalues may appear among the
converged eigenvalues. The table will contain any converged real eigenvalues (zero in
column two). Columns three and four are two different residual norms for each eigenvalue.
Eigenvalues with large residual norms are not converged. The residual norm in the third
column is less sensitive to the linear system relative residual norm bound than the residual
norm in the fourth column is After each implicit restart, all the approximate eigenvalues
are printed to the screen.

2.10.4. Some Back Ground

The eigenvalue problem for an undamped structure
K& =M®0%, o"M® =1,

) = @,wj, has been discussed elsewhere in this document. Sierra/SD returns the
frequencies w/(2m). Ceigen solves a similar problem. Ceigen solves the quadratic

eigenvalue problem
MAN2+DA+KJu=0, ulu=1. (2.145)

In the undamped case, D =0, A\ =w.

A second order linear differential equation is the same as a first order system. Similarly a
quadratic eigenvalue problem is the same as a matrix eigenvalue problem of twice the
size.

Linear problems such as matrix eigenvalue problems are solvable in that it is possible to
find all of the solutions. For matrix eigenvalue problems the key idea is deflation. One big
subspace is used to compute all of the eigenvalues. Small eigenvalues tend to be computed
early and are deflated from the problem. The reward for deflation is that the gravest
remaining eigenvalues are much more likely to be computed next. For general nonlinear
eigenvalue problems on the other hand, no robust algorithms are known to the author.

8Real modes correspond to an overdamped mode with no oscillatory component. These are usually gener-
ated from numerical artifacts discussed below, and are seldom of practical value
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2.10.5. Viscoelasticity

The eigenvalue problem for viscoelastic problems®® in the most simple case (one term

Prony series) has the form
[Ms? +D(s)s + K]u=0. (2.146)

K=BFE, D(s)s=B(E;— Ex)f(5),
fls)=s/(s+a)=1~(s/a+1)"".

Prony series damping in the time domain creates a frequency domain problem with real
eigenvalues that are not physical.'> Some care is needed to avoid the real eigenvalues in
computations.

Here is a sketch of justification that the Prony series problem has real eigenvalues. The
eigenvalue problem has a closed form solution in terms of the eigenvalues of the undamped
problem. The one term Prony series damping increases the degree of the characteristic
equation from two to three, and the third root must be real.

2.10.6. Viscofreq

The eigenvalue problem in equation (2.146) is not a quadratic eigenvalue problem

(M, D,K). The obvious approximation is to evaluate D(s) at some fixed s, near to the
wanted eigenvalues. The user parameter viscofreq= w is a real number such that s, = iw.
In a later release s, = r+iw for some internally computed value r.

Using a value of viscofreq that is much too small may degrade performance. As
viscofreq increases, the eigenvalues do change, and Sierra/SD converges more quickly.
The cluster of real eigenvalues moves left, away from zero, and it becomes possible to
compute more of the complex eigenvalues. Over-estimates of viscofreq are safer than
underestimates.

Suppose that s, = r +iw. A different quadratic eigenvalue problem is used.' Both D and
K are modified. The approximation is more accurate for problems in which r is much more
accurate than w. Also (M, D, K) are all real matrices. The eigenvalues and eigenvectors
come in complex conjugate pairs.

Important to be aware that no constant damping matrix inherits the property of D(s)
that
lim D(s) =0.

Cimde el

Physically, this means that the eigenvalues in equation (2.145) that are far from viscofreq
are over-damped. If for a given mode shape, s, is closer to the real eigenvalue of

equation (2.146) than either complex conjugate pair, then Ceigen may return the real
eigenvalue. For example equation (2.146) has many real eigenvalues clustered left of —a.
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2.10.7. Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergence criteria in the
ARPACK package use a trust region. CEigen will compute the right-most eigenvalues of
the eigenvalue problem in equation (eq:qep). If the k-th mode does not satisfy the
convergence tolerance, and k <nmodes, then ARPACK is not converged, no matter how
many other eigenvalues are converged.

The authors have gone to great lengths to filter out real eigenvalues. Nonetheless in
problems with a cluster of real eigenvalues among the right-most eigenvalues, it is very
difficult to compute eigenvalues high into the frequency range. If such a problem arises,
increase eig_tol (multiply by ten), increase nmodes (add ten), and most importantly
increase viscofreq (double).

2.10.8. ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent of frequency. However,
the damping and stiffness matrices can be functions of frequency, depending on the
formulation. There are two possible formulations. The first one results in a complex,
frequency dependent damping matrix, and a real-valued, frequency independent stiffness
matrix. The second results in a frequency- dependent, real-valued damping matrix and a
frequency-dependent, real valued stiffness matrix. We chose the second formulation since
the complex-valued damping matrix is somewhat difficult to deal with in quadratic
eigensolvers. The two formulations are the same up to the order of the linearization error.

Consider the simplest possible viscoelastic material, characterized by a single term of the
Prony series. The equation of motion for a 1D system with this material is given below.
The full 3D case is similar, except that it has separate terms for the bulk and shear
components.

[KOO+SD(S)—S2M]u:f(S) (2.147)

Here, s is the Laplace transform frequency, f(s) is the frequency dependent force, and the
damping matrix is now a function of frequency.

1

D(s) = (Eg — Eoo)m

(2.148)
with Ey, the Young’s modulus for high frequencies, F¢ the modulus for low (or glassy)
frequencies, 7 is the Prony series relaxation time, and K., = E, B is the stiffness at high
frequencies.

We now return to equation 2.147, and consider different ways of linearizing the relation,
since for the quadratic eigenvalue problem, we may only solve equations of the form in
equation 2.144, i.e. quadratic in A or s.
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2.10.8.1. User Specified frequency of linearization We define viscofreq, w and
S, = r 41w, which is the complex number about which the linearization takes place. In the
current methodology, r is zero.

First, we split D(s,,) into its real and imaginary components by multiplying by m%
D(s) = (Eg—FEx) L (2.149)
8= G el 1/7 '
&
= (Bg—EBx)——F— 2.150
(Ea Oo)iw7—|—(r7+1) ( )
T((r7+1) —iwT)
Ec—Ex)B 2.151
(r7+1)2 + w272 (Ec o0) ( )
Then we also temporarily replace the s in front of sD(s) with s,,. This gives,
sD(s) = (iw+r)D(iw+r) (2.152)
T(iw +1) +w?r? +r27?
Eq—Ey)B 2.153
(r4+1)2 + w272 (B = Ex) ( )

Finally, we replace iw+r with s to go back to the quadratic eigenvalue problem. This
results in a contribution to the the stiffness matrix, and a real damping matrix.

w27'2+7‘272 T
E Eo—E B Eo—Ex)B+s*M| ¢ =
l( o+ (Ea oo>(r+1)2+w27_2> +S<(r—}—1)2—|—w272>( G~ Ex)B+s 1@5 0
(2.154)

Thus we see that the damping matrix is purely real, but the stiffness matrix gets an
additional (positive) real contribution.

Practically of course, the systems are far more complex. Typically there is more than one
material, and that material has a number of Prony terms. Equation 2.154 is modified, but
the overall effect is the same, i.e. the stiffness matrix is increased by a viscoelastic term,
and the damping term is also modified. Effectively we have the following.

K(r+iw) =Y Keem(r +iw) (2.155)

elem

where K., is the modified stiffness matrix.

Kelem (T + Z.W) = Kelem + imag<Delem<r + Zw))

Likewise,

Dejem (1 +iw) = real(D(r +iw)) (2.156)

We now solve the linearized eigenvalue equation for A,

(K (r+iw) +iAD(r +iw) = M| ¢ =0 (2.157)
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2.10.8.2. A Simple Error Estimate This question is now how well the eigenvalues
computed from equation 2.154 approximate the true eigenvalues of equation 2.147.

First, we define the distance from a given computed eigenvalue, s., to the point of
linearization, s, as 9.
0 =S¢ — Sy (2.158)

Note that § is a complex-valued quantity.

Next, we define the residual as the vector resulting from inserting s. and the corresponding
computed eigenvalue, ¢, into equation 2.147.

(ng +scD(sc) + K) b =TeSs (2.159)

The residual, as defined in equation 2.159, is a computable quantity. Obviously, if the
residual is large, then the error in the computed eigenvalue and eigenvector is large.
However, the more interesting question from the analyst’s perspective is how large may ¢
be for one to expect accurate eigenvalues.

2.11. SA_eigen

The quadratic eigenvalue problem which we address in this solution method is given by the
equation below.
(K+AC+XM)¢=0 (2.160)

where, K is the stiffness matrix,
C is a damping and coupling matrix, and
M is a mass matrix.

More specifically, for a structural acoustic system.

K, 0 Cs L 2| Ms 0 bs | _
([ 0 K, ] +A [ —paIT C, ] +A 0 M, 6o | = 0 (2.161)
Here the subscripts refer to structural or acoustic domains, p, is the density of the fluid and

L is a coupling matrix. Note that for this formulation, ¢, represents the acoustic velocity
potential, which relates to the time derivative of the acoustic pressure, ¢, = Vii,.

The matrix C' will be completely asymmetric if it contains only coupling terms. In this
case it is called gyroscopic, and it can be shown that the system is Hermitian, and has real
eigenvalues. However, if there is additional damping in the system, as from pC' damping on
the acoustic domain, then C' is of mixed symmetry, and the eigenvalues and eigenvectors
are complex. The stiffness matrix is symmetric positive semi-definite, while the mass
matrix is symmetric positive definite.
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Table 2-3. Potential Basis Functions for Subdomain Reduction

Name Basis Function

Free-Free modes | The unconstrained eigenvectors of each subdomain
are computed and used as the columns of 7. When
the number of columns in 7" equals the number of

rows, this basis is complete.
Craig-Bampton | The eigenvectors of each subdomain are computed

with the interface fixed. These eigenvectors are
supplemented with constraint modes computed by
fixing all the interface degrees of freedom except
one. That dof receives a unit static deformation.
This method has been shown to converge near op-
timally for structure/structure interactions.

While various methods are available for solving the generalized, linear eigenvalue problem,’
solution of the quadratic eigenvalue problem is more challenging. The approach followed
here is to transform the problem into a reduced space, solve the corresponding dense
matrix system completely, and project back out to the original space. The challenge, of
course, is to properly choose that space.

In general, if the eigenvector, ¢, can be written in terms of generalized coordinates, ¢, then
this approach may be taken. For a given transformation matrix, 7', which determines ¢
given ¢, we have the following.

¢ = Tq (2.162)
TTHK+XC+XNM)Tq = 0 (2.163)
(F+Aé+Mm)q = 0 (2.164)

Note that the only restriction on 7' is that we may adequately write ¢ =Tq. In other
words, T" must span the space of the eigenvectors. In particular, 7' need not be unitary or
even orthogonal. However for the transformation to be useful for a model reduction, there
must be many fewer columns than rows in 7. Note that T is the transpose, complex
conjugate of T', and that the left and right eigenvectors of equation 2.161 are complex
conjugates of each other.

The structural /acoustics problem may be viewed as a two subdomain problem.'® There are
a variety of basis functions that have been examined for connecting such subdomains. Two
common sets are listed in Table 2-3.

We here investigate only the free-free method. Though this method has proved to converge
rather slowly for structure/structure problems, the coupling between the structural and
acoustic domains is often rather weak, so this may be adequate. For the problems of

9The generalized linear eigenvalue problem is (K — AM )¢ = 0.
10T here is no requirement that each of these subdomains be topologically connected in any special way.
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interest, a full Craig-Bampton type solution is almost certainly overkill, and will result in a
dense matrix too large for standard solution methods. We may find it advantageous to
augment the free-free modes by adding basis functions near the surface. Some thoughts
that have been considered include the following.

e A uniform pressure mode could be added to both the acoustic and structural
responses.

o We could consider the static acoustic modes that are generated by the deformations
of the structural eigen analysis. We anticipate that the structural deformations will
have a larger control over acoustic modes, so we may not need to be as concerned
about the impact of the acoustic pressures on the structure, but we may want to
include some of these as well. Perhaps some methods could be used to identify a
subset of modes that would best aid in model completeness and convergence.

» Spline or boundary expansions are possible.

2.12.  Quadratic Modal Superposition

Consider the system
Mi+Cu+ Ku= f(t) (2.165)

where M, C, and K are the mass, damping, and stiffness matrices. Standard methods may
be used to solve the eigenvalue equation derived from 2.165 only in the case where the
eigenvectors of K and M also diagonalize C' (as in proportional damping for example).
Unfortunately, such cases are usually not physical, and are rare in practice. For a general
damping matrix, no procedures are available to directly solve the eigen equation. For an
excellent survey article on quadratic eigenvalue systems, see the article by Tisseur.!

However, the second order system may be transformed to a larger, first order system which
does have a known solution. We [inearize the system as follows. Define,

i — [ u ] (2.166)

U

If we consider the eigenvalue problem corresponding to equation 2.165, we would set the
right hand side f(t) to zero. Then, there are many options for the linearization, but the

one chosen for QEVP is
M 0 0o M |.
lo K]w:[—M _O]w (2.167)

We assume a solution of the form w = ¢e, and arrive at the eigenvalue problem,

Ap=AB¢ (2.168)
where -
0
A:[ - K]’ (2.169)
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and

B= l By _]g} (2.170)

Equation 2.168 yields the “right” eigenvectors. As is seen later, we also need the “left”
eigenvectors, which correspond to the eigenvalue problem,

YTA= B (2.171)

We denote the left eigenvectors as 1; to distinguish them from the right eigenvectors ¢;.

2.12.1. Diagonalization and Modal Superposition

Symmetric system matrices are always diagonalizable, using the matrix formed by their
eigenvectors. However, when nonsymmetric matrices, such as those of equation 2.167, may
be impossible to diagonalize. This has significant implications for modal superposition
techniques, since if A and B cannot be diagonalized by pre and post multiplying by
matrices of eigenvectors, then the reduced (modal) equations of motion will be coupled.
The primary advantages of modal superposition would be lost.

As discussed in the literature,'® 18 one case where the matrices A and B are diagonalizable

is if all of the eigenvalues are distinct. If there are repeated eigenvalues, then the matrix is
still diagonalizable, as long as the eigenvectors corresponding to repeated eigenvalues are
linearly independent. This can be summarized by the theory of geometric and algebraic
multiplicities of eigenvalues, as follows:'”

o The algebraic multiplicity of an eigenvalue is defined as the number of times that this
eigenvalue is repeated in the list of eigenvalues of the matrix.

o The geometric multiplicity of an eigenvalue is the dimension of the space spanned by
its eigenvectors. Thus, for an eigenvalue with an algebraic multiplicity of 2, the
geometric multiplicity would be 2 if the corresponding eigenvectors are linearly
independent, and 1 if they are linearly dependent.

e An n xn matrix is diagonalizable if and only if the geometric multiplicity is equal to
the algebraic multiplicity for every eigenvalue .

In short, for the matrix to be diagonalizable, the eigenvectors corresponding to repeated
eigenvalues must be linearly independent. If the eigenvalues are all distinct, then the
matrix is always diagonalizable.

It is also interesting to discuss the circumstances under which the eigenvalues and
eigenvectors of A and B come in complex conjugate pairs. When this is the case,
significant savings in storage and computational time can be achieved. The general rule is
quite simple to prove.?? If the entries in a matrix are all real-valued, then any complex
eigenvalues or eigenvectors that arise must come in complex conjugate pairs. In order to
prove this, we note that for a matrix with all real- valued entries, the determinant must be
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a real number. On the other hand, the determinant is also equal to the product of the
eigenvalues. Thus, if some of the eigenvalues are complex, the only way that the product

det(A) =M.\ (2.172)

can be a real number is if all complex eigenvalues have a conjugate pair. For example, if A\,
and \,+1 are complex conjugates, then we have
) ) .12
Andngr = (O, 4+ 3X5) * (A, — %) = r]? + [ AL (2.173)

The last expression after the equal sign is a real number. We can also conclude that if a
matrix has any complex entries, then the eigenvalues and eigenvectors are not necessarily
complex conjugates.

To diagonalize A and B, we define a matrix corresponding to the right-eigenvectors that
are computed from equation 2.168.

W = [¢1¢2...02m] (2.174)

We can also define a matrix corresponding to the left-eigenvectors from equation 2.171.

U = [{1a.. o] (2.175)

Representing the solution as w = 21221 zi¢;, and the loading as,

g(t) = l f@) ] (2.176)

we have!6

— () + Biit) = vl g(t) (2.177)

where «o; = w;r Ag; and B; = 1/)3 B¢;. When modes are mass normalized, 3; =1 and a; = ;.
We note that the  symbol represents a conjugate transpose, and not just a transpose. This
is a complex-valued uncoupled scalar equation for each degree of freedom in the system,
which can be integrated in time. We note that this is a first order system in time, rather
than second order, and thus different methods are required for the numerical integration
than are used for real-valued modal superposition. Superposition must be performed on
the linearized system, as we have no general solution of the original second order system.

Time Domain Superposition

Equation 2.177 can be integrated numerically, using first-order time integrators. However,
another approach is to use the analytical solution.

zi(t) = /0 t rg(r)e M) dr (2.178)
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Finally, given the solution for each z;(t), we compute w = Y7, z;¢;, and extract the
solution wu(t) from the upper half of w(t). We note that in the time domain, the final
solution w(t) must be real-valued, even though both ¢; and z; are, in general complex. It is
easy to show that this is the case. First, as noted earlier, we recall that the eigenvectors ¢;
come in complex conjugate pairs. Equation 2.177 implies that z; also comes in conjugate
pairs. We note that

2n n
w=> zipi=) {Zi@' + Z_zﬁgz] (2.179)
i=1

i=1
Noting that z;¢; + Z;¢; is a real number, we see that the total summation is also a real
number.

Frequency Domain Superposition

For the frequency domain solution, we assume a time-harmonic loading and response.

g(t) = goe™e=" (2.180)
zi(t) = ze™est (2.181)
(2.182)

where we, is the frequency of the external excitation, and gg is a spatial vector of loadings
at that frequency. Substituting these relations into equation 2.177, we obtain the equations
for complex modal frequency response

[—ai +iwBi] z = ¥l g0 (2.183)
This can also be written as,
Ylg0
=1t 2.184
s —a; +iwp; ( )

We note that the denominator will go to zero if a; = iwpf;, as is expected, in the case of
resonance. A standard approach?! of stabilizing the solution near resonances is to add a
small amount of modal damping. In state space, this corresponds to a adding a real-valued
term in the denominator of equation 2.184. Thus, when a; = iw/f; this additional term
would prevent a singular response. This additional real term takes the form

%-T 90

_ 2.185
;i — oy + iw; ( )

Zp =

where ~; is the modal damping, and is a real number.

As before, the solution of the displacement degrees of freedom is a superposition of modal
solutions.

ww) = gzi(w)d)i (2.186)

=1
_ % @'%Tgo

_ 2.187
i—1 Vi T & + Zwﬁl ( )
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2.12.2. Theory for modal superposition with sa_eigen

In the case of the sa__eigen solution case, the eigenvalue problem is solved in a reduced
space. Recalling equation 2.165, and the transformation v = TG, we can transform
equation 2.165 into a reduced space as

i+ e+ ki = f (2.188)

where m=TTMT, ¢ =TTCT, k= TTKT, and f =TT f. We note that the superscript "is
used from here on to denote the reduced space. If we then define

|

As was done for the full system for the QEVP method, we project this into the first order

o2

1 (2.189)

<>

systemu.
AG—Bj=g(t) (2.190)
where
A 0 I
A= [ 3 _@] (2.191)
A I 0
H= l 0 " ] (2.192)
0
0= " 2.193
o= 2199

Assuming a solution of the form § = qge’\t, we arrive at the eigenvalue problem

Aj = AB¢ (2.194)
where we emphasize that g5 is in the state-space form of the reduced problem. This
eigenvalue problem is solved with the DGGEV algorithm from LAPACK.

Once the eigenvalue problem 2.194 is solved, methods of the previous section can be
applied for solution of the scalar modal equations of the linearized system and projection
back to the reduced space and finally to physical space.

We transform equation 2.190 into the frequency domain.

AG—iwey Bj = §(w) (2.195)

11 also known as a state space solution
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where we, is the frequency of the external excitation. We assume that the solution can be
represented as § = Y74 zlaﬁl Substituting this into equation 2.195, and premultiplying by
the left eigenvectors Q/}Z, we obtain

A A At
Ay — LPwents = (2.196)

where @; = @/jflgzgl and BZ = z@jégﬁz This scalar equation, 2.196 can be solved for Z;. The
solution in reduced space, ¢ can be obtained from § = 2?21 z}@ Given ¢, @ can be
extracted from the upper half of ¢, as per equation 2.189. Finally, once @ is known, the
original solution u can be computed from the relation u = T.

2.12.3.  Discussion of Eigenvectors and Superposition

There are several important points to consider for the eigenvectors of this problem.

o The left and the right eigenvectors of the linearized system diagonalize the
characteristic matrices A and B. However, the eigenvectors do not diagonalize the
matrices of the original second order equation, 2.165. This means that the modal
equations are coupled in the second order system, and most simplifications for
superposition are available only on the linearized, first order system.

o The left eigenvectors can be computed from the solution of the transposed equation.
Thus, for symmetric systems, left and right eigenvectors are identical.

o Eigenvectors of the linearized, nonsymmetric systems are often not normalized as
expected. In many cases the eigenvectors are not even completely orthogonal, even
when they may be linearly independent.

2.12.4. Notes on Implementation

We now discuss some details regarding the implementation of the superposition algorithm.
In particular, we consider the following questions with regard to the specific linearizations
used in the Anasazi and sa__eigen solvers

1. Can the state-space left and/or right eigenvectors be decomposed into a vector in one
half and then that same vector multiplied by the eigenvalue in the other half?

2. Does the nonzero part of the state-space force vector occupy the top or bottom half
of the vector, and does it have a minus sign in front of it?

3. Under what circumstances are there relations between the left and right eigenvectors,

.I.
such as Qrefr = Gright OF Preft = (¢right) ?
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The answers to any of these questions depends on the specific linearization of interest.
Here we examine only 2 linearizations, which have been considered earlier, and which will
be repeated here for convenience.

[]\04 [O(]wzkl_ﬂg _]\é]w (2.197)
[_OK _IC]w:)\|é ]\Hw (2.198)

For the first question, we consider the right and left eigenvectors separately. For the right
eigenvectors, a simple substitution reveals that the right eigenvector for equation 2.197 can
be decomposed as

w= l Al 1 (2.199)

u

whereas the second linearization (equation 2.198) has right eigenvectors that decompose in
the opposite way.

w= [ A“u 1 (2.200)

For the left eigenvectors, we write the equations corresponding to the left eigenvectors as

wrof][ s %] =rldad]| L ] 220
| I B | I 2200

Multiplying out the terms in equation 2.201, we find that
wl M = wl M (2.203)

which, for nonsingular M, yields
wy = Awy, (2.204)

Thus, for the linearization in equation 2.197, the left eigenvectors can be decomposed in a
similar manner as the right eigenvectors when the mass matrix is nonsingular.

Multiplying out the terms in equation 2.202, we find that

wi K = Mol (2.205)
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Or, for symmetric K,
Kuwy = \wy (2.206)

Thus, for the linearization described by equation 2.198, the left eigenvectors cannot be
decomposed as the right eigenvectors were.

When forces are present in the system, we can rewrite equations 2.197 and 2.198 as

Hf fﬂw_[—f\g —]\g]w:[?] (2.207)

[_OK _[Clw—[é ]\Hw:[_ﬂ (2.208)

Thus, for both linearizations 2.197 and 2.198 the state-space force vector has a zero top
half, and for linearization 2.197 the non-zero bottom half is multiplied by a negative sign.
This answers the second question above.

In order to answer the third question, we first consider the results given in Table 1.1 of.!6
In this table, relationships between the left and right eigenvectors are given for various
symmetry relations of M, C', and K. In particular, property P7 from this table states that
if M, K are Hermitian, C' = —C" is skew-Hermitian, and M is positive definite, then if = is
a right eigenvector of \, then x is also a left eigenvector of —Af. Since we only consider
real-valued matrices, we expect the eigenvalues of the systems of interest to be purely
imaginary, and thus —AT = \. Thus, property P7 simply states that the left and right
eigenvectors of A\ are the same. The results in this table define the left and right
eigenvectors as follows

MMu+ACu+Ku=0 (2.209)

wINPM +wiAC+wlK =0 (2.210)

for right and left eigenvectors u and w, respectively. By taking the conjugate transpose of
equation 2.209, and noting that C' = —CT and —\f, we obtain

W NEM +uTAC+uTK =0 (2.211)
from which the result P7 from Table 1.1 in'® is obtained.

We note that the results from Table 1.1'0 are with respect to the quadratic eigenvalue
problem, rather than the linearized versions. Since equations 2.209 and 2.210 could be
linearized in a number of ways, we would expect the conclusions to change when we go to
the linearized problem. For example, we again consider the case when M, K are
Hermitian, C' = —CT is skew-Hermitian, and M is positive definite. With these conditions
on M, K, and C, we consider the linearizations given by equations 2.197 and 2.198, which
can be written concisely as

Au = ABu (2.212)

In the case of equation 2.197, we have that A is symmetric, whereas B is skew-symmetric.
In the case of equation 2.198, we have that A is nonsymmetric, and B is symmetric. If we
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take the conjugate transpose of equation 2.212, we have the corresponding equation for the
left eigenvectors
ul AT = uf\TBT (2.213)

For linearization 2.197, we have AT = A, Bt = —B, and A\f = —\. This gives
u'A=u'\B (2.214)

which implies that the left and right eigenvectors of linearization 2.197 coincide.

In the case of equation 2.198, we have that A is nonsymmetric and B is symmetric. Thus,
when we take the conjugate of equation 2.212, we have

ul AT = T \TBT (2.215)
which, from symmetry conditions, reduces to
ul AT = —\u'B (2.216)

Thus, since A is nonsymmetric, no relation can be deduced between the left and right
eigenvectors.

Similar conclusions can be drawn about a slightly different version of equation 2.197. If we
multiply the lower equation by —1, we obtain

M 0 0 M
lo —K]w:)\[]\/f C]w (2.217)

or simply Aw = ABw. Since C'= —C", the matrix B is nonsymmetric. Then, taking
conjugate transposes of both sides of equation 2.217, we see that we cannot draw
conclusions about relations between the left and right eigenvectors. This is the same
problem seen in equation 2.216.

2.12.5. Complex Eigenvector Orthogonalization

When the eigenvalues of a system are redundant, the eigenvectors are not fully defined, but
can be arbitrary linear combinations. Some solvers, such as DGGEV don’t guarantee
orthogonality of these vectors. If such orthogonalization is required, the procedure in
Figure 2-6 may be followed to orthogonalize two eigenvectors with a common eigenvalue.
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Given two modes with a common eigenvalue, A\, and with left
and right eigenvectors, ¢; and ¢;, we orthogonalize with respect
to a matrix B.

IBop1 = pn (2.218)
YiBgy = P (2.219)
YiBor = P (2.220)

We modify 12 and ¢2 to ensure that S12 = 21 = 0. Let g@ be
the corrected eigenvector.

o =y — ety
We require that @;B@ = 0. Then,

0 = JIBo (2.221)
= (Y2 —e1) Bey (2.222)
= fa1—e€bn (2.223)
Thus,
thy = by — @% (2.224)
B
For the right eigenvector,
o = o — %@ (2.225)
11

Figure 2-6. Complex EigenVector orthogonalization
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2.13. Component Mode Synthesis

Component mode synthesis (CMS) in Sierra/SD follows the Craig-Bampton method. In
this method the model is reduced using fixed interface modes and constraint modes. The
method is outlined in some detail in Craig (reference 14 Chapter 19). It is summarized
below. Note that in Sierra/SD we do not permit any flexibility in the interface boundary
options. Only fixed interface modes are supported.

CMS is typically applied to eigenvalue analysis, but it may be used in other solution
methods as well. Here we describe only the eigen analysis application. Within Sierra/SD
only a subset of the standard CMS method is available. Sierra/SD may reduce an entire
model to a set of interface degrees of freedom with the corresponding system matrices and
transformed matrices. Sierra/SD may also read in a reduced system for solution within
its framework.

CMS by these methods is always a linear model, with support for linear elasticity only.
The reduction is based on an eigen reduction and linear superposition.

2.13.1.  Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degrees of freedom and
generalized degrees of freedom associated with internal modes of vibration. Consider the
general eigenvalue problem, with the system matrices partitioned into interface degrees of
freedom, C', and the complement, the vibration modes, V.

Ky Kye My, My Uy
—A =0 2.226
<chv ch} lMcv Mcc])[uc] ( )
Within Sierra/SD we consider only the cases where K, is nonsingular (i.e. positive

definite). For the Craig-Bampton method clamping the interface degrees of freedom must
remove all of the zero energy modes of the structure.

The Craig-Bampton method reduces the physical degrees of freedom, u, to generalized
coordinates, p, using a set of preselected component modes, W.

uw="Up (2.227)

The component modes, ¥ = [®,1)], are the eigen-modes @, the fixed interface problem,
vaq) = Mvvq)Avv

and the constraint modes 1. In the fixed interface eigenvalue problem homogeneous
Dirichlet boundary conditions are imposed on the interface, i.e. ®.=0 . We retain only a
(user specified) subset of the modes in the fixed interface problem. Additionally the
constraint modes, 1, are the static condensation of the problem. Each column of v is the
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solution of the static problem where one interface degree of freedom has unit displacement,
and all other interface degrees of freedom are fixed. As shown in the reference Craig (14),

Yp=—K 1K, (2.228)

Note that our requirement that K, is positive definite implies that these solutions are well
defined.

Reduced System

In terms of the transformation matrix

T— l %’ @ID ] (2.229)

the reduced system is =TT MT and k=TT KT. The reduced system matrices can be
written as follows.

— Mk Hkc ]
= 2.230
a | Hek  Hee | ( )
and,
ko= | TRk ke (2.231)
| Rek  Kee |
where,
ik = Ik
Hike = ,Uz;{; = ¢T<Mvvw + Mvc) (2-232)
= ngMvquZ) + (Mcv¢)T
Hee = wT(Mm;w“‘Mvc) +Mcv¢+Mcc
= wTszvw+(Mcv¢)T+Mcv¢+Mcc
and,
Kee = Mgk
Rke = Kek = 0 (2.233)
Ree = ch_Kchv_levc
= ch + Kcvw

Note that the coupling between the modal and interface portion of the system matrix
occurs only in the mass matrix.
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Parallelization Issues

The discussion above applies simply for direct solvers for which a system matrix is
generated. Parallelization issues are straightforward, and cover 3 main areas 1)
computation of fixed interface modes, 2) computation of constraint modes, and 3) matrix
vector products.

60

1. Fixed Interface Modes. Since the process of computation of the eigensystem is
independent of the particular solver, there are no parallelization issues with respect
to the eigenvalue problem. It is easily shown that parallel solvers result in the same
eigen pairs as serial solvers. There is no reason to expect that any finite precision
issues would be more important here than in other modal based solutions.

Constraint Modes. The constraint modes are different, in that we do not currently
have a capability to compute enforced displacement in parallel. Recall that the

constraint mode is the displacement on space “V” that is computed when a unit
displacement is applied to a single degree of freedom on the interface. The serial

equations are as follows.
Ky Kye Uy 0
= 2.234
k)] =L R] 2230

Equation 2.228 uses the first of these only to solve for u, = . For a domain
decomposition problem, the system matrices are written differently. We examine a
two subdomain problem for clarity.

KIUU Klvc 0 0 011;} Uty 0

Kigy Kig 0 0 C{c Ule 0
0 0 Kow Kowe CI || uz |=]0 (2.235)

0 0 Kocy Koce CQTC U2¢ 0

Clv Clc 0211 OQC 0 o R

We extract only the first and third rows to arrive at,
Uty
Klvv 0 Clj;; _ fl

0 Ko C3, u;v | fe (2.236)

Here f; = Kjycuie. This system is the standard system of equations that is solved by
the domain decomposition solver. The RHS is just the sum of the individual
subdomain terms.

3. Matrix Vector Products. There are two primary issues involved in the matrix
vector products computed in parallel. First, there is the issue of duplication of some
nodal quantities on the subdomain interfaces. Second, there is the issue of multipoint
constraint handling.



The products required in computing the reduced matrices of equations 2.230 through
2.233 are all of the form, a’ Be, where a and ¢ are vectors and B is a matrix. These
are equivalent to element by element summations like those used in computing the
total energy. Thus, the quantities must be summed on the interface. There is no need
to divide by the number of shared interface degrees of freedom.

The issue of multipoint constraints is a little trickier. The system is now divided
using Lagrange multipliers, y. Equation 2.226 may be so expressed.

Ky Kye Cg Myy My 0 Uy
Koy Kee CT | =X| Moy Mg 0 U | =0 (2.237)
Cy C. 0 0 0 X

where x are the Lagrange multipliers. But, we want these multipliers to be reduced
out of the system (i.e. they should be in the “V” space), so it is useful to reorder the
rows and columns of this equation.

va f(vc Mvv Mvc Uy
~ - A ~ =0 2.238
([Kcv K06:| lMcv Mcc‘|>[uc‘| ( )
where,
. [ K,, CT
K — VU v ,
VU i Cv O
5 K
ch = _ C?c 5
- [ My, 0
M’U’U = OUU O }
and,
Gy = | ]
’ X

The matrix products are readily computed.

Myptiy = Mty
MCUU'IJ = MC'U“'U

Keglly = Kcvuv"‘CCTX

Thus, all of the mass products are simple — they do not require any special Lagrange
multiplier treatment, but the stiffness product may require some such contribution.
Note that if C, is zero (as occurs if there is no constraint tied to the superelement
interface) then the stiffness terms are likewise unchanged.

. Reduced transient problems and the inertia tensor. CMS methods are often
applied to the differential equation Ku+ M1 = f. Ideally the problem has a solution
of the form u(t) = T'q(t), using the transformation matrix defined in equation (2.229).
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These solutions can usually be computed from the reduced problem kg + pug=T7 f.
For a discretization of a floating structure, with rigid body modes R such that
KR =0, the solution satisfies the consistency condition RT Mii = RT f.

One way to impose the consistency condition uses the inertia matrix I,, = TTR.
Suppose that there exists an S such that R =TS+ E has a solution, and the error £
is negligible. Then the reduced consistency condition is just S”ug = R” f. We use the
solution S minimizing the norm of the error, £, and characterized by TTE =0. If T
has full rank, then S = (TTT)~'1,,. It is worthwhile to check that T is full rank and
that x and p do not have common null spaces.

. Accuracy Issues. The accuracy of the null space is determined by the sum of two

large quantities (see equation 2.233). With iterative solvers, this may not be
determined accurately enough to ensure stability of subsequent time history
integration. Even unconditionally stable integration schemes like the trapezoidal
Newmark-beta methods can become unstable if the stiffness matrix is indefinite.

Our experience has shown that inaccurate solves lead to corruption of the zero energy
modes with little impact on the remaining elastic modes. Thus, it seems reasonable
to eliminate the error in a post processing step. Two methods are used. The simpler
method removes negative modes from the reduced matrix without affecting the
eigenvector basis of the matrix. However, if the eigenvectors can be accurately
determined using geometric means, then a better approach uses these known
eigenvectors to correct both the eigenvalues and eigenvectors of the reduced matrix.

To correct eigenvalues alone, we use the following algorithm, which is also detailed in
section 4.30.

a) We extract the interface portion of the reduced system matrix, ... Note that
the portion of the matrix associated with generalized degrees of freedom (i.e.
the fixed interface modes) should be positive definite.

b) We perform an eigen analysis of this matrix.
ke =VAVT

where Vji is the eigenvector, and A; is the eigenvalue of mode 4.

c) We determine a corrected matrix,

negative modes
~ T
Femrem S VY,
J

To correct both eigenvalues and eigenvectors of the corrupted null space, the
algorithm is a little more involved. Details of the algorithm are presented in Figure
2-7. Most of the operations in the algorithm operate on matrices of order 12 or
smaller, so the computational cost is fairly minimal. The method does require very
accurate determination of the zero energy modes.



10.
11.

12.

. Determine rigid body modes, R, of the interface. This is done geo-

metrically. These are normalized so that RT R = I. Typically there
are 6 such vectors.

. Let, A= RTk..R.

Compute a error vector, U = k..R — RA. Note that RTU =0

. Perform a QR factorization of the error vector. U = SB. Matrix S

has orthonormal columns.

. Define @ = [R 5]

Compute the norm of the matrix composed of A and B.

=151

Compute the eigenspectrum of A.

(A=A)pg=0
Compute G = p?I — 2.
W = ¢.VGgT
D=-BW-tAw-1BT
define, .
(5 %)

note that ||H|| = pu.

Compute the correction,

Kee = Kee — QHQT

Figure 2-7. Eigenvalue and Eigenvector corrections of Craig-

Bampton reduced models
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2.13.2.  CBR Sensitivity Analysis

Sierra/SD may compute the sensitivity of the reduced mass and stiffness matrices to
design variables. In term of the transformation matrix (see equation (2.229))

k=TTKT (2.239)

Sensitivity of the matrix to variations in a parameter may be obtained by differentiating
this equation. There are several approaches to that operation.

Constant Vector The transformation matrix 7, is treated as a constant. Thus, the
original model and its derivative are transformed into the modal space of the original
structure. If there are sufficient modes to span the space, this operation is exact. We
designate T, as the transformation matrix for that original modal space, and use
forward differences to write the derivative.

s T) (K(p+Ap) = K(p)) To
dp Ap

(2.240)

In the limit as Ap approaches zero, this should approach the exact solution provided
that T, spans the space.

However, practically we truncate the modal space spanned by T,. In many real world
cases, that truncation is unable to accurately represent the derivatives.

Finite Difference In this approach, we recompute the entire model, including the
transformation matrix, at both the nominal and perturbed state. Thus,
Ky =K(p+Ap) and T =T(p+ Ap). Using forward differences,

T K (p+ Ap)Ty — TY K (p)T,
de Ty K(p+Ap)Th — T, K(p) (2.241)
dp Ap

The finite difference method accurately represents the state at both the nominal and
perturbed states. In the limit as Ap approaches zero, the method converges to the
true solution.

However, problems will be encountered if there are closely spaced (or repeated)
modes.???3 Consider the reduced matrices, which have both physical and generalized
degrees of freedom. If a closely spaced mode changes sort order in the matrix, the
derivative is meaningless. With repeated modes, the issue is even more difficult as
the eigenvectors of repeated modes may be linearly combined. Also, any eigenvector
has an arbitrary sign. To help diagnose these problems, we output the mass cross

orthogonality matrix.
Aij = ¢ M; (2.242)

Product Rule We usually consider a finite difference method to be something of a truth
solution. However, in the case of CB reduction, the changes in eigenvectors make the

64



method complicated. Another approach would be to completely differentiate
equation 2.239 using the product rule.

d dTT dK dT
MY kT TR

g 2.24
dp dp dp dp ( B}

Several means?? 26 are available to determine the derivatives of the fixed interface

modes, ¢, and constraint modes, 1, which are the components of the transformation
matrix. This approach blends the best features of both previous methods, but is
more complex to develop.

This method is currently unimplemented.

2.14.  Eigen Sensitivity Analysis

Within Sierra/SD semi-analytic sensitivities may be computed for eigenvalues and
eigenvectors. A rudimentary capability for sensitivity to linear transient response is also
available, but has not found much practical value because the cost of the analysis is not
significantly better than the cost of computing the response using finite differences. For
details of the transient analysis formulation, see Alvin’s paper, 7.

For eigenvalue sensitivity, we begin with linear eigenvalue equation.
(K—=AM)¢p=0 (2.244)

The equation is differentiated with respect to a sensitivity parameter, p, and we consider
the solution for a single eigen pair.

(dK —d\;M — XdM) ¢ + (K —\iM)dp; = 0 (2.245)
¢f (K —d\M —XdM)¢; = 0 (2.246)

where we use the fact that ¢! (K — \;M) is zero. We note that ¢* M¢ is the identity to
solve for the sensitivity.

d\; = ¢f AK ¢ — iy AM o, (2.247)

The method is “semi-analytic” in that the matrices dK and dM are found by finite
differences but then are applied to the analytic expression above. Because there are no
linear solves required, the solution is straightforward and accurate.

The algorithm used for the solution of eigenvalue sensitivity is as follows.
1. Perform nominal eigenvalue solution.
2. Loop through parameters P, and modify as needed.
3. On an element by element basis compute,

kK = (K+dK)¢
= (M+dM)¢
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4. compute the sensitivity, dA = ¢T k — AT .

This element by element method conserves memory and is efficient. It has been
implemented successfully for all parallel solvers. It has not been implemented for the
sparsepak solver when MPCs are included in the model. The transformations required for
multipoint constraints complicate the element by element calculation.

Eigenvector sensitivity is more involved, and several approaches can be used. Nelson’s
method has been applied for years (see 25). In this approach, the eigenvector sensitivity
may be written,
(K = AiM)do; = fi (2.248)
where,
fi=—(dK —  \idM — d\; M) (2.249)

Nelson’s method requires one linear solve per eigenvector sensitivity. It also suffers from
singularity issues with redundant modes and from accuracy limitations when only part of
the modes are extracted. Other methods (such as Fox 24) can also be employed.

To obtain the best iterative performance, we consistently apply a preconditioned conjugate
gradient algorithm (PCG) to solve,

(K - )\ZM)UJZ = fz - (K - /\ZM)CI)CZ (2.250)

Because this operator is indefinite, we redefine the problem as,
(UL (K = N M)YW)a; = T (fi — (K — A\ M) D) (2.251)

where w; = Wx;. Now the operator (U7 (K — \;M)¥) is positive definite as long as mode i
and all modes below mode ¢ are contained in ®.

Sensitivity of linear transient dynamics solutions was performed, but not found very useful.
For details on sensitivity on the reduction of superelements see section 2.13.2.

2.15. A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for a posteriori error
estimation of eigen analysis. The first is an explicit error estimator,?”,?® and the second is
a quantity of interest approach.?? The explicit approaches are described in chapter 2 of,?°
and the quantity of interest approaches are described in chapter 8 of the same book.
However, since we are interested in the eigenvalue problem, the methodologies are
somewhat different than the approaches described in,?? though there are many similarities.
Both the explicit and the quantity of interest approaches have the same goal - to use the
computed solution to compute upper and lower bounds on the discretization error for the
eigenvalues and eigenvectors. A drawback to the explicit approach is that unknown
constants are present in the bounds, making final determination of the error more difficult.
Because of this, explicit estimators are more frequently used as element indicators to drive
adaptivity algorithms, rather than as error estimators. The quantity of interest approach
avoids the unknown constants, but is more work in terms of implementation.
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2.15.1. Preliminaries

We seek a posteriori bounds on the error of the finite element solution of the eigenvalue
problem for elasticity

—phu= (A4 p)V(V-u) +pViu=V-o(u) (2.252)

Ay (u) = —AAz(u) (2.253)

where where Aj(u) and Ag(u) are the partial differential operators implied by equation
2.252; X and u are the unknown eigenvector and eigenvalue, and A and p are the Lamé
elasticity constants. We note that the right hand side of equation 2.252 can be written
either in terms of displacement, as in the first representation, or in terms of stress, as in the
second representation of the right hand side of the equation. The weak formulation of
equation 2.252 is constructed by multiplying by a test function, and integrating by parts,
with homogeneous boundary conditions. This leads to the weak formulation: Find

(A, u) € V x R such that

B(u,v) = AM(u,v) YveV (2.254)
where
B(u,v) = /Qd(u)e(v)dx (2.255)
and
M(u,v) = /quvdm (2.256)

After defining a finite element discretization, this reduces to: Find (up,Ap) such that
Ku=AMu (2.257)

where (up,Ap) are the finite element approximations of the eigenvector and eigenvalue, and
K, M, are the assembled stiffness and mass matrices.

2.15.2.  Approach | - explicit error estimator

In Larsen®” and Rannacher,*® two independently derived error estimates are presented for
the Laplace equation. While the two estimates differ slightly, both incorporate an unknown
constant, C', an element diameter term, h., and an element residual function, p. In what
follows we extend these estimates to the elasticity problem. The following two error
estimates are given in?’ and®® respectively. In what follows we use Larsen’s results
(equation 2.258) exclusively. 12

12Equation 2.258 applies to elements with linear shape functions. The more general expression may be found
in equation 2.308 or the reference.
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N. 2
A= An] < cACep (Z e p(un, )\h)Q) (2.258)

e=1

Ne
X=Xl < Co > h2p(un, An)? (2.259)
e=1

where h, is the element diameter, and
2
pluns )? = [ (1Avun+ MnAzun| + Ry d% (2.260)

The first term on the right hand side is the interior element residual, which is the
differential stiffness operator A;, defined in equation 2.253, applied to the computed
element displacement combined with the computed eigenvalue times the differential mass
operator As, also defined in equation 2.253, applied to the computed element displacement.
This term is computed by representing the eigenvector as a summation

N
up(ay =Y eV (m) (2.261)
i=1

where a; is the i*" entry in the eigenvector, and N;i(x) is the ith shape function, and then
simply applying the gradient and divergence operators from equation 2.252 to the
summation in equation 2.261.

We note that the quantity Ajup + A Asuy, is expressed in the strong form, and thus is not
the same as Kup — A Muy, though both expressions are on the element level. The
difference can be seen by observing the first term Ajuy,

Arup, =V -o(up) (2.262)

That is, Ajuy, is the divergence of the stress (which is computed from the finite element
displacement wuy). This is not the same as Kuy, since Kuy, is in the weak form, and has
been evaluated by integrating over the element against a test function. For example, if we
consider linear elements, we have Ajuyp =V -o(up) =0, since the stress is constant over the
element. On the other hand, Kuy, is not zero.

The second term is the boundary or flux residual.

1/2
} (2.263)

Rptu = (hevol(e)) ™ | [ B2dr.

It has two different integrands depending on whether the face in question lies on a part of
the boundary where traction or pressure boundary conditions are applied, or whether it is
an interior face. When it lies on a boundary loaded face,

R:g—aijnj (2.264)
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where g is the applied traction or pressure load. Note that g =0 for eigen problems. When
the face is an interior face,
R= [aijnj] = U%Hj — U%nj (2.265)

where ¢ and o® are the stress tensors in the two adjacent elements, element ’a’ and
element ’b’. Note that because the integrand is squared, computing the flux residual in
parallel requires parallel communication.

We note the intuitive nature of the upper bound in equation 2.258. As the element size h,
tends to zero, the right hand sides of the estimate goes to zero, due to the multiplication
by the element sizes h.. Keep in mind also that the p term includes an integral over a
volume and that Y, ||const| is a constant.

There are two important issues in applying the results in Larsen’s reference to general
elasticity problems. The first of these is the extension to elasticity. The second is the
extension to multiple materials. These are covered in the following sections.

2.15.3.  Extension of Estimators to Elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling the
Laplace equation to the elasticity problem. It addresses issues of both mass and stiffness
scaling. A similar development was provided by Clark Dohrmann. The development herein
builds upon Larsen’s development 27, and uses quantities defined there.

We consider the eigenvalue problem

—pAu—(A+p)V(V-u)=—-V-o(u) = fpu inQ (2.266)
u =20 on 0f) (2.267)

where the Lamé constants A and p satisfy

vE E

A= =0 2.268
I+ni-22) "7 2+ (2.268)
We define also a weak formulation: find (u,0) € VxR
a(u,v) = 60b(u,v), VveV (2.269)
b(u,u) = 1 (2.270)
where
a(u,v) = /Q o(u) - e(v)da (2.271)
and
b(u,v) = /Q,ou-vdx (2.272)

We follow the approach in the paper by M. Larson to derive a posteriori error estimators.
We use most of his notation.
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Residual

The definition (3.7) for the residual becomes, on a triangle 7,

R(up,0p)|, = %IV'U(%) +Onpuyl +J h Q}Oll(T) /af\asz (n' l(;(;%)b2

Note that we have
R(Uh,eh) = R(uh?ehapv B, V)

and that R satisfies the following scaling properties

up Hh 1
R %R oo Bv) = =R(up,6h,p,E
<\/a7a705p7 7V) aR<uh7 hy Py 7V)

R(up, 00y, p,aE,v) = aR(uy,bh,p,E,v)

Stability estimates

The equation (3.10) becomes

1+s/2 1+s/2
2+sy _—1 ST v _—1 -0 v
1D <ce,st((pv ) <>,(pv ) <>)

Note that 5

I
A —|— o y = = ]. — 2
P=o0 v i—2v) ° A+u .
Then, we get
(1+s)/2

Cog=c—t
€,s <A+M)(2+s)/2

Note that we have
Ce,s = e,s(p7E7V)

and that C, , satisfies the following scaling properties

Oejs(apaEaV) = a(1+5)/2C€,S(p>E7V)

1
Ces(p,aE,v) = ch,s(P,Eﬂ/)

A posteriori estimates

We make also the assumption (2.6) : there are 0 < ¢ < 1 and hg > 0 such that

0, — 0

<4 2« §
5—6|=0 |Qeun||” <

max
0,40
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(2.275)
(2.276)

(2.277)

(2.278)

(2.279)

(2.280)

(2.281)
(2.282)

(2.283)



for all meshes such that maxh(x) < hg. Using p=1, k=2, Sy =0, and 5 = 1, the final
estimate on the eigenvalues becomes
(9h —0 Cc

= mc€70\/ﬁ||h2R(uh79h)|| (2.284)

The estimates on the error in the discrete eigenvector are now

c 0 9
< — —_— .
beonce) < 5Cuall+ s ) VAR )] (2.255)
c\/p 06!/>
< VP ke M- .
a(eg,eq) < 1— 5(Cc+0670 lgllé%( 0, — 0] himaz)||R B (up, 0p)|| (2.286)

where C. is related to the coercivity constant

[|Dv|| < Cer/a(v,v) (2.287)

In Ciarlet’s book (“The finite element method for elliptic problems”), the coercivity

constant is given
c
a(v.v) 2 2lDv|| = Ce=

(2.288)

s

2.15.4.  Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit error estimator to
multiple materials. We don’t believe that there are significant issues, and present the
approach used in Sierra/SD here. There are two main constraints from the explicit error
estimator formulations that must be maintained.

1. The eigenvectors, up must be unit normalized, i.e.||uy|| = 1. This is important for
mass scaling so that a change of units does not change the fractional error in the
solution. It is an essential part of both Larsen’s development and Ulrich’s extension
to elasticity. See equation 2.270.

2. The extensions must maintain finite element consistency so that as h goes to zero
there is no inconsistency.

The second of these can be evaluated by examination of the residuals (as in equation
2.260). Both the internal and the flux terms of the residuals are unchanged by most scaling
operations provided that materials remain constant within an element. Note that the
evaluation of the flux jump (equation 2.263) is insensitive to multiple materials since the
normal component of stress discontinuity should go to zero even for disparate materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors computed
in Sierra/SD are mass normalized, i.e. u’ Mu = I. We renormalize for error estimation in
the following manner.

1. A unitless mass matrix, M is computed using unit density material.
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2. We compute a scale factor B
Mo = ul Mu (2.289)

3. The eigenvectors are renormalized as u <— u/ /M.

In addition to eigenvector renormalization, we move the evaluation of the scaling constant,
Ce, s, from equation 2.279 inside the summation of equation 2.258. This maintains the
proper scaling with respect the element stiffness terms.

A recent paper by Bernardi and Verfurth®' has shown that explicit estimators can be used
in the presence of multiple materials. For static Laplace equation, he derived multiplicative
constants for the interior and flux contributions that make the multiplicative constant in
front of the estimator independent of jumps in material properties. In what follows we
extend this approach to the eigenvalue problem, and to elasticity problems. We will follow
the same approach as in that paper, i.e. first constructing the lower bound, and then the
upper bound. The proper choices for the coefficients will result from the upper and lower
bound estimates.

First, we note a commonly used form for explicit estimators.

1
2

H%—wm@ZQWM%ﬁM% +Jﬂ%(”mmm)
K
(2.290)

where R;(up,0,) = |V -o(up)+6npupl, [on(up)] is the jump in stress across the element
boundary 0K, and ||-||4 is the energy norm. This estimator can be shown to give both an
upper and a lower bound on the error. As written, this estimator does not fully account for
discontinuous material properties, since the constant ¢ in front of the estimator would
depend on the jumps in material properties.

We note that the estimator, written in this form, is essentially the same as the one
proposed by Larson. For example, by writing the boundary term as an integral of a
constant function, scaled by the volume of the element, then we can write equation 2.290 in
the form

VE [oatu)ls )’
122k

lun —ulla < c; (HhRi(“h’@h) TVaE 2
(2.291)

which is the same expression given by Larson in the case of linear elements. We note that
this estimator is in terms of the energy norm, whereas Larson gives his results in terms of
the L? norm. This results in the difference of one power of h in equation 2.291.

The approach in Bernardi is to replace the estimator in equation 2.290 by

n%um@§@mmmmmz+mﬁLﬂmwf

(2.292)
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where px and pe are chosen in such a way that the resulting estimator is both an upper
and lower bound on the error, and the constant c is independent of the jumps in material
properties.

Before beginning, we redefine the original PDE as follows

VI gy (2.293)
p
the corresponding bilinear forms as
(wv)= [ Lo e(v)d
a = [ —o(u)-e(v)dx
? Q p

b(u,v):/ﬁu-vdx

and the corresponding interior residual as

_ |V'O'(llh)

Ri(up,0h) +0puy| (2.294)

By dividing through by p, we include the density in the energy norm. This will be
important later on when the coeflicients in equation 2.292 are selected.

As in Bernardi, we need the following identities, which follow from equation 2.254

a(u—up,v) = 0b(u,v)—a(uy,v) (2.295)

0b(u,v) —a(up,v) = Z/

1
<0u+ -V a(uh)> vdx —
vk P

> /e [%Un(uh>1 -vdr (2.206)

€

where the summation Y-, is over all edges (in 2D) or over all faces (in 3D). We also use
equations 2.11 in Bernardi’s paper.

The lower bound will be considered first. We set wx = Vi R;(up,0p,), where Vg comes
from equation 2.11 in Bernardi’s paper. We will also make use of the following inequality
for the bilinear form

a(u,v)g < lufla/[v]a (2.297)
< agllulfl[v]l (2.298)

where ag = C—g, and Ck is the maximum eigenvalue of the material property matrix, and
pK is the density of the element.
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For the interior part of the residual, we have

1
HRi(uh,eh)H%Q(K) < ’Y%/K [;V-U(uh)-i-@huh} - WK dX

1
2 2
= = —o(up)-€(Wk )dx + / Opun - WK

- V%G(u—umWK)K—W%Q/KU‘WKdXJrW%@h/Kuh-WKdX

IA

1
o {Hu — uplo(x) 120K O + 1|0hun — UQHLQ(K)}

X | Ri(un, O) | L2k (2.299)
where we note that, since W is a bubble function, the boundary terms vanish in the

integration by parts on the second line of the above equation.

This implies that

1
I BiCunOllagrey < 7 [I1a =l 12 g + 1B — w6l 20

or, multiplying through by ug,
1
il Ri(un, On)llaxy < 7 [Hu — up||a(rykr V2 O + pirc || Opun — U—HHLQ(K)}

Now is where a critical assumption comes into play. We assume here that the computed
eigenvalue 6, and eigenvector uy are closer to the exact solution # and u than any other
eigenvalue/eigenvector pair. This assumption is also made by Larson, in equation 2.6.
With this assumption, the term |[0p,un —uf|| 2k is a higher order term compared with
[u—un|lo(x), and thus will decay to zero at a faster rate. This was also shown in the

paper by Duran.?? Thus, we select px based on the term ||u—uy|| r2(x) only. If we select

_1
pK = hiog” then the right hand side is independent of the jumps in material properties.

For the boundary term, we first choose w, = ¥, [%an(uh)], where again ¥, comes from
equation 2.11 in Bernardi. Then, using equation 2.299 we have
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I Sontn)| s < 23 Eanmh)] il
= 732/ ( —o(uy +9huh> —%%Za(u—umwe)

K
+ ’YSZ/K 9u—9huh - We
K

IN

1 _1 1
Y3 (Z%h? | Ri(up, 0r)l| L2 (xc) + D vahe 2afe[[u—upla
K K

1
T shd S 0 — undh 2 )H[ an<uh>] 2o
K
9 1 1 1
< o Zhe2Oéf(|!u—uh||a+zh3||9huh—9u||L2(K)
K

- [ an<uh>] Loz (2.300)

where in the above equation, > x denotes a summation over elements, but only those
elements that border the edge e. Also, in the previous estimate we collected constants
involving v and combine with the constant ¢, where possible.

This implies that
9 1 T 1
W2l [panmh)] Loz < exdud |3 Ak u—unlla+ S A Onn — u 2
K K

We see that if we choose po = he max (« K17aK2)_1, where subscripts 1 and 2 denotes the
two neighboring elements that contain the edge or face e, then the right hand side
(neglecting the higher order term) is independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that will be needed
along the way.

/Q (%V-o(uh) —|—9u> (Ww—wp) = —a(up, w—wp) +

Ze: [%Un(uh)] (W —wp) + /Q u(w —wy)

(2.301)
This implies that

(g, W —wp) =3 Eanmh)] (w—wp)

Jr/QGu-(w—wh)—/Q <%V'U(uh)+90u> (W —wp) (2.302)
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We will use the previous result in the upper bound on the energy norm of the error. Let
w=u—uyp. Then

Hu—uhHi =a(u—up,w) =a(u—up, w—wy) (2.303)

where the last equality follows from Galerkin orthogonality. Breaking the previous
expression into element-wise quantities, and using equation 2.302, we obtain

lu—uy|? = ;a(u—uh,W—Wh) (2.304)
= ;a(uaw_wh> —Z E%(uh)] (W —wp)

— Z/ fu- (w—wp +Z/< —Uuh +9u)-(W—Wh)
- Z/( %Juh—f-@u)W Wh — Z[anuh] W — Wh)

1 N
< ZMKHV : ;U(uh) +0ul| g2 gy W — w2

' zueu[ ” uh>] Loz 1w —wall 2o

1
2

1
< Z/LKHV J ;O’(uh) +911||%2(K) +Z,ue|| [;Un(uh)] ||2L2(6)]
% e

3
X ;M%QHW —Wh||%2(}() +ZM;1||W—Wh||%2(e)}
e

We now use equation 2.16 in Bernardi’s paper, which shows that

2

[Z PR IW = W[ Fagge) + D e lw = WhH%Q(e)] < cflwlla (2.305)
K e

With this result, we have

lu—uplla <e

1 2
> pklv- ;a(uh) +0pul|2 +Zue|| [ on(up ] ||§2(e)] (2.306)
K

which is the desired upper bound. We note that we would also obtain higher order terms in
the above expression by adding and subtracting terms of the kind [ 0pundz, but the same
argument could be made as before.

2.15.5.  Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the following
steps. These steps have to be carried out for each eigenvalue separately.
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1. Renormalize the eigenvectors as in section 2.15.4, equation 2.289.

2. Loop through all elements in the mesh. Compute the surface flux residuals for each
face. Share that residual vector at each surface gauss point with neighboring elements
to determine the stress jump 2.265. Integrate over all faces (by summing at surface
gauss points) to determine Ry, (eq 2.263).

3. Loop through all elements in the mesh. At each interior gauss point of each element,

a) Compute the interior residual,

a1 = ‘Al (uh) —+ )\hAQ(uh)|

b) Compute the integrand,
(a1+ Rfiua)?

Note that Ry, is a constant over the element.

¢) Sum at gauss points to obtain the element contribution,

P = /Q(a1+Rflux)2dQe

Ngauss

~ Y wiai(zi) + Rpe)?

i

4. Compute the global contribution to the error. For elements with linear shape
functions, this may be written,

1

A=A s 242 :

e[S cono?) (2.307)
e=1

Where (as shown in section 2.15.3, equation 2.279),

02 _ p
O (A+pp?

and p, A and p are the material density and the Lamé constants respectively. The
more general expression for elements of order p is,

A=Al .- (p+1) =2 ’
o7z < ¢ | 22 (Cepthd™0)* | (2.308)
e=1

We note that although the constant, ¢, in equation 2.307 is not known completely, it
is usually estimated to be of order 1. The constant depends on the details of the
mesh, and in particular on the minimum angle in the elements.
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2.15.6. Approach Il - quantity of interest estimator

In,?? an error estimator is derived for the elasticity equation, using the eigenvalues as the
quantity of interest. The estimate is of the form

nﬁpp = _77l20w (2310)

where nl’\ow is a lower bound on A — Ay, and népp is an upper bound on A — ). Note that

both quantities are necessarily negative,'3 since the computed eigenvalues are always larger
than the exact ones.

The quantities 7yp, and 74, are computed using the so-called element residual method.
This method involves solving a small linear system on each element to obtain an error
representation for that element, and then the element contributions are accumulated to
obtain the total errors. The element residual method involves solving the following linear
system on each element

_ B(®x,v) = R(v,0) +/8K9%de$ Vo € W (2.311)

or
Kya=f (2.312)

where a is the vector of coefficients that represent the function ®x. In other words,

b = vazslhap Coubble o N;, where Nj is the i bubble shape function. The left hand side K},
is the element stiffness matrix, but evaluated using bubble functions rather than the
standard element shape functions. This is necessary since the standard element stiffness
matrix is singular and thus equation 2.312 would otherwise not be solvable. The right hand
side consists of two terms, an interior residual term for the interior of the element, and a
stress jump term on the element boundary. This is similar to the interior and boundary
residual terms that were encountered in the explicit error estimator, though the exact
formulas for these terms are somewhat different. The first term is simply

R(v,0) = B(up,v) — My M (up,v) (2.313)

Equation 2.313 can be most efficiently evaluated using the following method.?? We
evaluate the first term first.

B(up,v) = /K BY o0 (x)d (2.314)

where B;;Fubbl . is the standard 'B’ matrix, or the matrix of derivatives of the element shape
functions, except that it is using the bubble shape functions rather than the standard
shape functions. Note that the result of equation 2.314 is a vector of length

Bfor consistent mass only.
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3z N shapepyppie, Where N shapep,ppie is the number of bubble shape functions. We note that
the routine ForceFromStress in IsoSolid.C already performs the computation needed for
equation 2.314, with the only change being the use of the matrix Bg;bble rather than the
standard BT, and thus this code could be re-used.

The second term can be evaluated in a similar way.
M (up,v) = /Kuh(x)v(x)dx (2.315)

Note that up(z) is a known function. This term is also a vector of length 3z N shapepyppie-
The three entries corresponding to the " bubble shape function are as follows

J un(@)oi(x)da (2:316)
/K wop (2) i () dez (2.317)
/K s ()i () d (2.318)

(2.319)

where uy},, ugp, and usy, are the x, y, and z components of uy, and ¢; is the i*" bubble
shape function.

The boundary term consists of the following. g, i is simply the traction on the element
boundary, or

/aKg'y,KUdS = /8K[Uijnj]vds (2.320)

where [0;jn;] denotes the averaged stress on the element faces. For two adjacent elements,
element ’a’ and element 'b’; it is the average of their stress traction vectors.

% (ofimj+olmy) (2.321)
Again, the test (shape) function in this case, 'v’ is the bubble function rather than the
standard element shape function. We note that the boundary integral term in equation
2.311 and equation 2.320 is over all faces of the element in question. Thus, if the
implementation of this term proceeds one face at a time, then there will be a nodal
summation step to get the complete right hand side vector corresponding to the boundary
integral term. We could also write this term as

[oijn;] =

Nfaces
vds = / vds 2.322
/E)K Ak Z; ox, TK ( )

where 0Kj is the it face of element 'K’. Note that the test functions, v become the element
shape functions when restricted to an element. Thus, for a given element bubble shape
function ¢pypie, and a given face, we can write the previous equation as

/E)Ki 9y, K Poubbleds (2.323)
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Note that g, i is a 3-vector, and so for a given bubble shape function, and a given face,
Joxc, 97,5 Poubbleds is also a 3-vector. We then take this 3-vector and project it into the
element right hand side. After looping through all faces and all bubble shape functions, we
end up with a vector that is of length 3% Nshapep,ppie-

Once the linear systems 2.312 are solved on each element, the upper bound, 7, from
equation 2.310 can be computed as follows

Thupp = \/%:B(@K,(DK) (2.324)

This equation can also be written as follows. If we represent the function ®x as a
summation of coefficients multiplied by the bubble shape functions,
N shapepybple
=D al; (2.325)
i=1

then

Nupp = [ Bk, Pr) = [ alKya (2.326)
K K
Finally, using equation 2.310, we have an upper bound on the error in the eigenvalue.

A lower bound on the error in the eigenvalue can also be computed. This is described in
detail in,?? and we summarize here.

First, we define a function y € V, which we will define shortly. Once the function y is
defined, the lower bound can be computed as follows

Niow = M (2327)

B(x,x)

The quantities in both the numerator and denominator can be computed by looping
through all elements and computing the corresponding element-wise quantities (using
equation 2.313), and then summing globally.

Summarizing, in order to implement the quantity of interest approach for eigenvalue error
estimation, we have the following steps. These must be carried out for each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix, K} in equation 2.312,
in the same way that standard element stiffness matrix is constructed, but using the
bubble shape functions.

2. Loop over all elements. Construct the right hand side of equation 2.312. This
consists of the interior part, equation 2.313, and the boundary part, equation 2.320.

3. Loop over all elements and solve the linear systems 2.312; to obtain the error
functions & k.

4. Compute the upper bound on the error in the eigenvalue using equation 2.326.

5. Compute the lower bound on the error in the eigenvalue using equation 2.327.
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2.16. Nonlinear Distributed Damping using Modal Masing
Formulation

This provides a method for implementing nonlinear distributed damping into a subsystem
with a nonlinear transient solution. This is a method developed to model the nonlinear
damping response of a subsystem. It implements the damping in a nonlinear manner with
the use of an internal force term. The damping is modeled by an Iwan model and
distributed to the subsystem by a modal expansion. This method augments the internal
force vector through a modal masing formulation.

2.16.1.  Subsystem Distributed Damping Formulation with Ilwan Model

Given a system that contains a subsystem exhibiting nonlinear damping behavior, the
equation of motion for the subsystem, denoted by B, can be written in typical finite

element form as:
Mgiig + Cplp + Kpug = Fg + F, (2.328)

where Mp, Cg, Kg are the mass, damping, and stiffness matrices of the subsystem B
derived from a low-load response, ug is the discretized nodal displacements, a superposed
dot denotes time differentiation, Fg represents the external forces, and F% is a distribution
of internal nonlinear damping forces to be discussed later.

A modal expansion is used to distribute the damping to the subsystem; therefore, the
problem is formulated in modal coordinates. Let ®p be the matrix whose columns are the
eigenvectors of the (Mp, Kp) system and define modal coordinates in subsystem body B

up = Ppqs, (2.329)

where qp is a vector of modal coordinates. It is assumed that the eigenvectors are mass
normalized. Pre-multiplying Eq. (2.328), by ®%, yields

[®LMp®gis + [PECePr|ds + [PLKp®s]qs = PLFp + PLFE, (2.330)

In order to derive a nonlinear distributed damping system, the force term <I>TFB is
modeled by a four parameter Iwan model:3% 35

OhFh —Fhp— - [ diag(p(6))[a(t) - B(t.0)do, (2.331)

where p is the population density of Jenkins elements of strength ¢ (not to be confused
with the eigenvectors), and [(t,¢) is the current modal displacements of the sliders in the
Iwan model.?® This force term is actually solved in a discretized form with the integration
from zero to Gmaz:>>

Fip = Z Fim 5(t) + Koq(t), (2.332)
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where the integral in Eq. (2.331) is numerically integrated with intervals, A¢,,, such that,

N
Y- Adm = dmas, (2.333)
m=1

with ¢, being the midpoint of each interval A¢g,, in the numerical integration. The, term,
Fpu(t) is derived as:®

2+x ¢2+X

Faty = | S o) =801 1€ 14800 =i -

R la(t) = B(®)] if || q(£) = B(t) [|< ém

with ¢, and ¢; ,,, being the right and left side of each subinterval, A¢,,, and R and x are
a parameters of the Iwan model. The term, Fj(t), is found:3

_ J Sla(t) = B(@)] if [g(t) = B(#)] < dm
Fs(t) = { SPmazsgnlq(t) — B(t)] otherwise (2.335)

where S is an Twan parameter. The final term, Kyq(¢) in Eq. (2.332), is an elastic restoring
force in the ITwan model that is included in the F,,(¢) term, but also in the overall
subsystem stiffness matrix, Kg. Therefore, it needs to be subtracted, so as not to include
the elastic force twice. The term Ky is the stiffness of the Iwan model under small applied
loads (where slip is infinitesimal). This is calculated from the Iwan parameters as

R¢x+1 R¢x+1
K —Ma% 4 Q= TMaT(] 2.336
0= 11 1 — (1 +8) ( )

Transferring back to physical degrees of freedom provides the following for the equation of
motion:
Mgiig + Cpup + Kpup = Fg + @5 Fgp (2.337)

To avoid the possibility of an ill-conditioned and difficult pseudo-inversions, recognize that
Mp®p = ®57, yielding:
Mgiig + Cpup + Kpup = Fg + Mp®pF}p (2.338)

Given the above EOM, a typical nonlinear analysis can be performed, recognizing that the
force term Mp ‘I'BFZ})B is a function of the displacement. However, care must be exercised
in the implementation, as the modal displacement will need to be passed to the Iwan
function for updating internal forces.

2.16.2.  Subsystem Distributed Damping with a Linear Damper

It is possible to derive the same basic formulation as above, but for a linear damping. This
provides a check into the formulation as the results should be the same as a model with a
modal damping parameter.

82



The only required change from the above derivation is in the nonlinear internal force term,
F;},B. This term will need to be appropriate for a viscous damper; thus, a function of the
modal velocity. A formulation can be found as the following:

Fip = Fapi = —25wids, (2.339)

where subscript ¢ represents the mode, ¢; is the damping ratio for mode 7, w; is the
frequency for mode 7, and ¢ is the modal velocity. Here I am trying to see how many
subscripts I can possibly add.

2.16.3. Reduced Model

In order to reduce computational demand, a reduced set of eigenvectors (<I>§) can be
calculated for the subsystem and used in place of the total subsystem eigenvector, ®p.

2.16.4.  Full System Model

Implementation of the full system with nodal degrees of freedom, u, is accomplished with a
typical projection matrix, P, from the full system to the subsystem.

up =Py (2.340)
Thus, the EOM, now becomes

Mii+ Cu+Ku=F +PTMp®BFi, (2.341)

2.17. Damping of Flexible Modes Only

Here we outline the method used in Sierra/SD to ensure that various damping models do
not affect the rigid body response of a structure. 4. A more detailed explanation of the
theory which involves less restrictive assumptions and describes connections with the
present approach can be found in the document dampFlezMode.tex, which appears in the
Sierra/SD documents repository. The sensitivity of this approach to errors in the K is
discussed in filterrbm__error.tex.

Consider the standard equilibrium equations given by
Mi+Ci+Kx=f, (2.342)

where M is the mass matrix, C' is the damping matrix, K is the stiffness matrix, x is the
response vector, and f is the applied force vector. Let the columns of the matrix &, span
the rigid body modes of the structure. That is,

K®, =0. (2.343)

14 The technique is also known as filtering the rigid body modes, hence the name filterRBM
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Typically there are six rigid body modes (3 translational and 3 rotational), and it is
assumed this is the case. Consider next a proportional damping model in which

C=aK+pM, (2.344)

where a and f are non-negative constants. Since the mass matrix M is nonsingular, we
will have C'®,. # 0 for mass proportional damping when 5 > 0. Thus, the damping model
will dissipate the energy of the rigid body modes. Some analysts would like to include mass
proportional damping, but only have it damp the flexible modes.

We may express the response vector x as
7= Brgo+ D, (2.345)

where ¢, and ¢y are vectors of generalized coordinates associated with the rigid body and
flexible modes, respectively. Further,

7 M, =0. (2.346)
Substituting (2.345) into (2.342), using (2.343), and setting
Cd, =0 (2.347)

gives us

M(®rGr + Ppir) + CPrgr + KPpqp = f. (2.348)

Let us assume for now that C' and K are symmetric. We then find from (2.343) and
(2.347) that
ol'c=0, ®I'K=0, (2.349)

Premultiplying (2.348) by ®! and substitution of (2.346) and (2.349) gives us
I M®,.G, = o f. (2.350)
If the rigid body modes are M-orthonormal, i.e. @zM@r = I, we then obtain
Gr =L f. (2.351)
Substituting (2.351) back into (2.348) and using the notation x; = ®qs gives us
Mip+Cip+Krp=(I—M®®I)f. (2.352)
From (2.345) we see that the total response is given by
z=®rq+ay, (2.353)

where the dynamics associated with ¢. and x are governed by (2.351) and (2.352).

Notice that the dynamics for the flexible part of the response, i.e. (2.352), is simply the
original equilibrium equations in (2.342) with a modified force vector. This modified for
vector can be calculated efficiently as

(I— M0 f = f— M(®. (D] f)). (2.354)
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The rigid body response governed by (2.351) can be numerically integrated using the same
scheme as for the flexible response.

If f is a known force vector that does not depend on the response, then we do not need to
concern ourselves with stability issues since all we’ve done is modified the force vector in a
stable manner. If, however, the force vector depends on the response, then stability issues
could arise. It should be mentioned though that these potential issues could arise even in
our existing capabilities for coupling Sierra/SD to other simulation codes that do not use
the present damping approach.

Usability Question Certain expedient spatial discretizations of floating structures lead to
a stiffness matrix K with the nonphysical property K® £ 0. We can think of M, C, K and
f determining 2. If, moreover, the rigid body modes ® are undamped, we get a solution y.
Is y “better" than 7 A relatively cumbersome discretization determines K such that

'K =0, K&, =0. (2.355)

In practice K = K — VV7T the matrices differ by a symmetric low rank perturbation, and
VVT is sparse.

Our fundamental tool is
P=1—3,dl M.

In general neither PTK nor K P satisfies equation (2). It turns out that PTf( = KPif
there exists H such that K& = M®H. Using filterrbm is like transforming K to

PTKP =K+ PTVVTP. This has the advantage of projecting out the rigid body modes
from V.

2.18.  FSI for Sigma/CFD Sierra/SD Coupling

Coupling algorithms have been developed for coupled Fluid Structure Interactions (FSI)
between the fluid code “Sigma CFD” and Sierra/SD. Sigma CFD provides a high mach
number solution for large eddy simulation (LES) of hypersonic vehicles. While most of the
documentation is still to be published, some discussion of Sigma can be found in references
36, 37 and 38. The coupling interactions (both one-way and two-way) are described

below.

2.18.1.  One Way FSI coupling with Sigma

The one-way coupling algorithm between Sigma/CFD and Sierra/SD is outlined in Figure
2-8. This one-way algorithm provides a starting point for the two-way approach.
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1. The Sigma/CFD and Sierra/SD are started simultaneously using
MPI.

2. During the initialization phase, structural nodes and time step
information is communicated from the Sierra/SD to Sigma/CFD.
o Sierra/SD sends time step to Sigma.

o Sierra/SD identifies nodes on the fluid/structure interface
where pressures are required, and sends to Sigma.

o Sigma establishes a map between CFD wetted patches and
structural nodes.

 Sigma/CFD sends initial pressure loads to Sierra/SD.

3. Main loop starts. At each SD time step:
o Send continue/terminate signal from Sigma to Sierra.
o if continuing:
a) Sigma/CFD interpolates the pressures (in both time and
space), and sends nodal pressures to Sierra/SD. Sig-
ma/CFEFD uses a bilinear interpolation of pressures from

CFED cell centers to the projected nodes. Alternatively,
the user may request interpolation to the nearest node.

b) Sigma/CFD communicates those pressures to the struc-
ture.

¢) All communications are passed through the root proces-
sors, i.e. processor zero of each application.

4. CFD code proceeds to next steps while Sierra/SD runs for 1 time
step. Typically the CFD analysis will have many time steps before
the next communication with Sierra.

5. Sigma/CFD is ready to send next load in time to Sierra/SD but
waits until last message has been delivered.

6. Repeat main loop until Sigma/CFD sends “terminate” message
to Sierra/SD.
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2.18.2. Two Way FSI coupling with Sigma

This section describes

1.
2.
3.

The algorithm used in SIGMA CFD to perform calculations with moving meshes
How this would be leveraged to carry out two-way coupled FSI calculations.

How this can be implemented by building upon the one-way coupled FSI
implementation.

Current Moving Mesh Algorithm in SIGMA CFD

The following steps describe the moving mesh algorithm used presently in SIGMA CFD to
advance the solution from time level n to n+ 1. For purposes of this document, it is
assumed that the surface motion (nodal displacements, velocities) of a chosen set of
surfaces (referred to as moving bodies here) is known at time level n and n+1 - either
prescribed or otherwise computed.

1.

Given motion of moving bodies and new surface coordinates at time level n+1,
propagate motion through the mesh.

Currently this is done through an inverse distance weighted algorithm. The closest
surface patch on each moving body is computed. The motion of that patch is
decomposed into translation and rotation. The translation and rotation of any point
in the mesh due to each body is computed using a function that varies inversely with
distance from the body. The contribution due to each body is summed to obtain the
net motion of the grid point. The geometric conservation law (GCL) (and see3%49)
states essentially that volume is conserved.

Compute the face flux through each face in the mesh.
Compute the new volumes for each cell in the mesh.
These two calculations are done in a manner that implicitly satisfies the GCL.

Using the computed volumes and face fluxes due to mesh motion, update the solution
by solving the Navier-Stokes equations with mesh motion.

This step typically involves Newton iterations due to the approximate linearization
used in the discretization.

The above algorithm can be used to perform two-way coupled FSI calculations, if the
motion of the moving bodies is computed using a computational structural dynamics (CSD)
solver and transferred to SIGMA CFD. This algorithm can be described as follows:

1.

Transfer initial pressures at time level n from CFD to CSD code.

2. Compute the motion of moving bodies using CSD code to obtain nodal coordinates

and velocities for the moving bodies at time level n+ 1.
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Transfer motion of moving bodies at level n+1 from CSD code to CFD code.

Given motion of moving bodies and new surface coordinates at time level n+1,
propagate motion through mesh.

a) Currently this is done through an inverse distance weighted algorithm. The
closest surface patch on each moving body is computed. The motion of that
patch is decomposed into translation and rotation. The translation and rotation
of any point in the mesh due to each body is computed using a function that
varies inversely with distance from the body. The contribution due to each body
is summed to obtain net motion of grid point.

Compute the face flux through each face in the mesh.
Compute the new volumes for each cell in the mesh.
a) These two calculations are done in a manner that implicitly satisfies the GCL.

Using the computed volumes and face fluxes due to mesh motion, update the solution
by solving the NS equations with mesh motion.

a) This step typically involves Newton iterations due to approximate linearization
used in the discretization.

Note that this algorithm is identical to the Conventional Serial Staggered (CSS) algorithm
described in,*! a reference that builds on.*? Also see section 4.2 of that paper, a General
Serial Staggered procedure (GSS) is proposed in which the steps above are modified as
follows :

1.
2
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Transfer pressures at time level n from CFD code to CSD code.

Compute a prediction of the motion at time level n+1 of the moving bodies using
CSD code to obtain nodal coordinates and velocities for the moving bodies.

Transfer predicted motion of moving bodies at level n+1 from CSD code to CFD
code.

. Compute face fluxes through each face in the mesh and new volumes for each cell in

the mesh.

Using the computed volumes and face fluxes due to mesh motion, update the solution
by solving the NS equations with mesh motion.

Compute a correction to the loads based on pressures at two time levels, n and n+1
and transfer to CSD code.

a) Update motion of the bodies using corrected loads.



Note that in this algorithm, the corrected body motion is not transferred back to the CFD
code, a potential sub-iteration algorithm can be used here to iterate this loop to
convergence. In,*! it is shown that without the sub-iteration, this is still second order.
Whether we use the CSS or GSS algorithm, its implementation within the current FSI
framework should be identical (without the last mentioned sub-iterations). The one-way
algorithm is outlined in Figure 2-8 and provides a baseline for the two-way coupling.

2.19. TWO-WAY Coupled FSI Implementation

A two-way coupling algorithm building upon the above implementation of the one-way
algorithm is outlined here. The new steps to augment the existing implementation are
marked in red. The fluid mesh never changes the structural mesh.

1. Transfer a Flag to denote one-way or two-way coupling mode from SIGMA CFD to
Sierra/SD.

2. Get the requested time step size from SIGMA CFD and from from Sierra/SD, and
tell both codes to use the minimum of the two time step sizes. In practice the
SIGMA CFD time step size is the largest time step size known with sub-cycling on
the fluid side.

3. Transfer number of wetted surface nodes and nodal coordinates from Sierra/SD to
SIGMA CFD.

4. Transfer initial time from Sierra/SD to SIGMA CFD.

a) Setup a map between the CFD wetted patches (identified through input) in
SIGMA CFD and the structural nodes obtained from Sierra/SD.

5. If Two-way mode, transfer number of wetted CFD Nodes and Nodal coordinates from

SIGMA CFD to Sierra/SD.

a) Setup a map between the CSD wetted surface and the CFD nodes obtained
from SIGMA CFD.

6. Transfer initial Pressure loads from SIGMA CFD to Sierra/SD.

7. At each step of time marching scheme in SIGMA CFD:
a) Send continue/terminate signal from SIGMA CFD to Sierra/SD.
b) If continuing,

i. Transfer displacements and nodal velocities on CFD wetted surface from

Sierra/SD to SIGMA CFD.
ii. Update moving mesh SIGMA CFD solution.
iii. Send Updated pressure loads to Sierra/SD.
iv. GSS: Update CSD solution using updated pressures.
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c¢) Determine if done or continuing, exit if done.
8. Send terminate signal to Sierra/SD.
9. Exit.
The above description holds for the CSS algorithm as implemented.

The pressures loads transferred from SIGMA CFD to Sierra/SD in Step 7(b)iii above,
“Send updated pressure loads to Sierra/SD,” will use one of the formulae given in equation
28 in reference 41. In this case, Sierra/SD would have to be modified to a
predictor-corrector scheme as described in 41.

2.20. High Cycle Fatigue and Damage

The theory for fatigue analysis is developed from “Random Vibrations, theory and
practice”.*3 From equation WPO:10.58, the wideband damage is a correction to the

narrowband damage.
D=MDyp

For Narrow Band damage, A is simply 1, but other damage models (such as that proposed
by Wirsching and Light), use A as a modifier to adapt Narrow Band damage to Wide Band
processes. Narrow Band damage is defined as:

+
Dyp = ”O—IJ(ﬁasts)mr <% 3 1) (2.356)

Note that this equation assumes that the value of A used in the material’s S-N curve is
based on peak stress. If it is calculated based on stress range, narrowband damage is

instead express as:

+
Vo T

m
Dnp = ’ (2v20,Fgg5)™T (5 + 1)
Both practices are common in material data. We use the definition in equation (2.356) in
this work. The Fatigue Stress Scale (Fgg) is a parameter to convert stress units from the
simulation’s unit system to the unit system of the material. Here,

m  negative of slope of S-N curve, default=3.
vl rate of crossings

7 is the exposure time (or duration)

A strength coefficient of material

os RMS stress
Fgg Fatigue Stress Scale

The rate of zero crossings may be computed as, v = /My /My from equation WPO:6.24.
Here M; is a stress moment, which is readily computed in Sierra/SD. Within the modal
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random vibration module, RMS stress moments are computed. These are simply related to
the stress moments.

My = (Vrus/(2m))’ (2.357)

My = (VRMS2/(27r)2)2 (2.358)

My = (Vausa/(2r)?)" (2.359)
Therefore,

Vg = Vrmsa2/(2m-Vrus) (2.360)

The RMS stress is the primary output of the modal random vibration analysis.

Material and random loads must be provided as user input, and the other quantities are
readily determined from the analysis. Dyp is well defined. There are various methods of
computing the correction factor A. A few are outlined below.

2.20.1. Sensitivity to Stress
The narrow band damage parameter (eq. 2.356), is very nonlinear in the stress. Effectively,
Dy x ¢™. Thus doubling the stress when m = 3 results in an 8 fold increase in damage

rate. However, m may be as high as 14 for many real materials. Doubling the stress
increases the damage rate by 2'4 = 16384.

2.20.2. Competing Damage Models

Wirsching and Light: applies equation WPQO:10.60. This is described in [44]. Compute:

a(m) = 0.926—-0.033m (2.361)
b(m) = 1.587m—2.323 (2.362)
vy = \/My/Ms (2.363)
a = £ (2.364)

Vp
e = y1—a? (2.365)
A = a(m)+[1—a(m)](1—e)b0m (2.366)

Ortiz, Chen and Perng: applies equation WPO:10.62.

k = 2/m (2.367)
B My My,

=\ (2.368)

A = Bla (2.369)
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Lutes and Larsen: applies equation WPO:10.68.

(M)

+
VO

A:

(2.370)

Steinberg: The Steinberg approach for calculating fatigue can be useful as a simple check

of fatigue failure. The Steinberg approach uses the assumption that the RMS of the
stress is representative of a 1o event, and that the peak stress of any given cycle is a
random value. As such, it calculates a cumulative damage as the summation:

D= i L (2.371)
i=1 Ni
Where:
n; =v, T erf <\;§> (2.372)
and A
i = AR (2.373)

The Steinberg approach is ideally suited to loads that operate at exactly one
frequency, or a very narrowband of frequencies. There is also the problem of choosing
an acceptable number of terms to calculate. Eventually, the magnitude of the stress
becomes great enough to cause low-cycle failure, and the equations for high-cycle
fatigue break down. To avoid this, and to make the calculation inexpensive, it is
common to limit ourselves to only the first 3 terms of the series.

Dirlik: This method is described in Mrsnik (45). Define,
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g = —F—
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G — (fim ;12)
_'_CKQ
R, — ag—xm—G%z
1—a2—G1+G1
Gy — 1—o; G1+G?
1-Ry

G3 = 1-G1—G2
1.25(ag — G3 — G2 Ry)
G1

Then,

D= c—lpr§ Gh@*T(1+ k) + (vV2)*T (1 + g) (G2| Ryl +G3)]



Typically these correction methods provide similar results. The Ortiz and Lutes methods
require the moment Mp,, which could vary by material block, and is relatively expensive to
compute. The Wirsching method is somewhat simpler, and will be followed as a first
development.

2.21. Shock Response Spectra

Theory for computation of a shock response spectrum may be found in the papers by
Smallwood.?6:47 The theory is not repeated here. Many analysts use the matlab scripts
developed by Smallwood to perform this analysis. Matlab provides a nice, interactive
environment for this analysis once the time integration has been performed in Sierra/SD.
Sierra/SD performs exactly the same calculations.

2.22. Superposition for Superelement Recovery

A Craig-Bampton reduction generates a transformation matrix consisting of a combined set
of fixed interface and constraint modes. These modes may be stored in an exodus file. We
call this “se-base.exo”. A netcdf file containing the reduced order model, “se.ncf” is also
created at this time. Subsequently, this reduced model is inserted into a residual model for
superelement analysis, say a transient analysis. That analysis outputs the standard exodus
results, “resid-out.exo” and results on the netcdf file, “se-out.ncf”. The point is to
recover the response on the original interior degrees of freedom of the superelement.

The transient response on the interior degrees of freedom is,

nmodes nconstraint
up(tn) = D qiltn)da+ Y. wi(tn)¥sk (2.374)
i J
where,
ug(t,) = is the displacement at interior dof k

t, = is the time step

q¢; = is the amplitude of a generalized dof for mode ¢
¢i = 1is the fixed interface mode 7 at dof k

w; = is the amplitude of interface dof j
Y = is the constraint mode j at dof &k

The amplitudes ¢; and w; are found in “se-out.ncf”, while the mode shapes, ¢;; and v,
are found in “se-base.exo”. The “superposition” solution simply combines these results
and writes a new output file containing the results.
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2.23. Waterline Determination

We develop the approach for solution of a rigid body floating in a fluid. When the ship is
treated as a rigid body, its equilibrium equations simplify to six equations in six unknowns
that involve force and moment balances in three coordinate directions. However, from
symmetry considerations we may assume that the displacements of the ship are zero in the
plane of the waterline. Further, we assume that the angular rotation of the ship about an
axis normal to the waterline is also zero. Thus, the six equilibrium equations can be
reduced to three. For convenience, we take the ship to be fixed in space while the
orientation of the waterline plane is described by in-plane rotations ¢; and 5. The position
of the ship mass center above and perpendicular to the waterline is denoted by the
coordinate z. Additional details on the coordinate z and the angles #; and 0y are provided
in section 2.23.1.

Since the three equilibrium equations are nonlinear in the angles 61 and 62, we employ
Newton’s method for their solution. The Newton step that is associated with the three
equilibrium equations is obtained from the solution of the linear system

Az F3
Kr| Aoy | =—| My |, (2.375)
Ao My

where K is the tangent stiffness matrix. The terms Az, Af;, and Afs are incremental
updates to the coordinate z and the two angles #; and 62. The terms on the right hand
side of (2.375) involve the net force and moments acting about the ship center of mass due
to buoyancy forces (pressure loads from water) and gravity. Again, more details are
provided later on the precise form of these terms. Additional details on the implementation
of Newton’s method are provided in § 2.23.5

2.23.1. Reference Frames

The position vector of a node n in a fixed reference frame A can be expressed as
Pn = ZTn,1@1 + Ty 202 + Ty 303, (2.376)

where (zy,1,%n,2,7,,3) are the coordinates of the node and a1, as,as are unit vectors
aligned with coordinate directions X1, X2, X3. We note in the present context that
(n1,%n,2,Tn3) are simply the coordinates of the node in the Exodus finite element model
used by Sierra-SD. Further, we take as to be directed vertically upward.

Consider a rigid body B with attached unit vectors by, bo, bg that are initially aligned with
ai,as,a3. A rotation of B by #; about the a; direction results in

bi =a;, by=cosbiasz+sinfiaz, bs=cosbiasz—sinbias. (2.377)
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Next, consider a rigid body C' with attached unit vectors ¢1,c2,c3 that are initially aligned
with b1, bo,b3. A rotation of C' by 62 about the by direction gives us

c1 = cosboby —sinfhbs, co =by, c3=cosbobs+sinbsb. (2.378)

Combining (2.377) and (2.378), we find

c1 = cosbhaq +sinfysinfias —sinfs cosbras, (2.379)
cy = cosfias +sinbias, (2.380)
c3 = sinfhaq — cosbysinfas + cosbs cosbras. (2.381)

For purposes of convenience, we choose unit vector e3 to be in the direction normal to the
waterline and directed away from the water. Similarly, unit vectors ¢; and ¢z are also
attached to the waterline frame. Using summation notation, (2.379-2.381) can be expressed
concisely as

C; = Ci;Qay, (2.382)
where the scalar coefficient ¢;; = ¢; - a; and appears as the entry in row ¢ and column j of
the direction cosine matrix

cosfy sinfisinfly  —cosbisinby
D= 0 cos 0 sin 64
sinfly —sinfcosfy cosbicosby

We note that the columns of D are orthonormal, i.e., D~! = DT,

The origin O of the waterline frame is chosen as the point of intersection of the line in
direction e3 passing through the ship mass center with the plane of the water (see
Figure 2-9). Thus, the position vector of the center of mass of the ship relative to O can be
expressed simply as

pcm/o = ZCs3. (2.383)
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Figure 2-9. Sketch showing ship, origin O of waterline frame, co-
ordinate z, and angle 0;.

2.23.2. Pressure at a Node

We would like to express the position vector of a node as in (2.376), but now relative to O
rather than the origin of reference frame A. To this end, let the position vector of the
center of mass of the ship relative to the origin of A be expressed as

Pem = Tem, 101 + Tem 202 + Tem, 303. (2384)

We note the coordinates (Zem,1,%em,2, Tem,3) are readily available from Sierra-SD. Next, let
the position vector of O relative to the origin of A be expressed as

PO = 20,101 +T0 202 + 10 303. (2.385)
Since Pem = PO + Pemyo, it follows from the previous three equations and (2.382) that

Lo, =Temj—2c3; J=1,2,3. (2.386)
The pressure at node n depends on its depth below the waterline. Specifically,

p(n) = —pg(pPn —PoO) - €3
= —pg((xn1 —r0,1)c13+ (Tn2 —20,2)c23 + (Tn,3 — £0,3)C33), (2.387)

where p is the density of water and g is the acceleration of gravity. If the pressure
calculated from (2.387) is negative, this indicates the node is above the waterline and we
set p(n) = 0.

2.23.3.  Waterline Plane Specification

Recall that three non-collinear points t1,%s,t3 are specified in the Solution block to define
an initial guess for the plane of the waterline. Defining

vy:i=1ty—1t1, wvy:=t3—1t,
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the unit normal to this plane is given by

v XV
TP Lol B niai +nsas +nzas. (2.388)
v X g
If n-a3 =n3 <0, then we simply multiply n by -1 so that n points out of the water rather
than into it.

We next show how to relate the waterline plane to the variables 67, 63 and z. Since n = ¢,
we find from (2.381) and (2.388) that

sinflyp =nq, —sinficosfy =n9, cosbicosby =ng, (2.389)

from which follows
0o = arcsin(ny), 6 =arctan(—nay/ng). (2.390)

We will print a warning message if either |0;| or |03| is greater than 7/4 (45 degrees). Since
the origin O is in the plane of the waterline, n = ¢3, and po = Pem — Pem/o, We find from
(2.383) and (2.384) that

2= (Pem —P0O) M
= (xcm,l - 370,1)”1 =+ (xcm,Q - -1'0,2)”2 =+ (~77cm,3 - mO,i’>)77{”- (2-391)

We note in the previous expression that po may be replaced by either ¢;, t2 or t3 since
these three points are also in the waterline plane.

As described later, Newton’s method is used to solve one force and two equilibrium
equations in terms of the coordinate z and the angles 61 and 6. After a converged solution
is obtained, it is important for the analyst to confirm that the sideset used for the problem
specification includes all element faces of the outer ship surface which contain one or more
nodes below the waterline.

2.23.4. Net Force and Moment Calculation

With equation (2.387) in hand, Sierra-SD can be used to calculate and assemble the water
pressure loads into equivalent nodal loads. This process involves the interpolation of nodal
pressures to Gauss points and numerical integration. The equivalent nodal loads can then
be used to determine the net force and moment acting on the ship. We outline a procedure
for doing this calculation in the following paragraphs.

Let f; denote the load vector for subdomain (processor) i resulting from water pressure
loads. We note each row of f; corresponds to a load for a particular degree of freedom. For
example, row 7 of f; may correspond to a force at a specific node in coordinate direction 3.
The vector f; is associated with a set N; of nodes in subdomain i. Further, we note that
the force vector f, and the moment vector m,, at node n € N; can be extracted directly
from f;.
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Let 7, := p,, — Pem denote the position vector from the ship center of mass to node n.
Summing contributions from all the nodes in N;, we find that the net force and moment

contribution from subdomain i is given by

Fi: Z .fn»
ne./\fi

Mi = Z T X fn
nEM

(2.392)

(2.393)

Summing contributions from all N subdomains, the net force and moment about the mass

center of the ship is given by
N
F, = Z-Fz = F5,1a1+Fs72a2+Fs,3a3
=1

N
M, => M, = M;i1a1+ Msas+ M, 3as.
i=1

Returning to (2.375), we have

F3=Fs-c3—msg=c31Fs1+c32Fs2+c33Fs3—msg,
My=M;-cr=c11Ms1+c12Ms2+c13M;3,
Mo = My -cy=co1Ms1+cooMso+c23Ms3,

where mg is the mass of the ship.

2.23.5.  Algorithms

Newton’s Method

(2.394)

(2.395)

(2.396)
(2.397)
(2.398)

The initial solution of the nonlinear equations applies Newton’s method directly on the
non-symmetric Kp. The matrix K7 will in general be non-symmetric due to follower

contributions. If convergence issues arise, we may be regularized using a variety of

approaches.

The method can be summarized as follows.

1. Let f(p) represent the force balance, with p, the parameters equal to z, 61, and 6s.

2. Let Kp(p) =df(p)/dp represent the tangent stiffness matrix obtained by
differentiating the force balance with respect to the input parameters.

3. For each iteration, Newton’s method estimates a new parameter set,

Pn+1=DPn — Kflf(pn)

4. Tteration continues until the force balance approaches zero.
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Tangent Matrix

We apply finite differences together with (2.396-2.398) to calculate the tangent matrix,
K. We use a finite difference step size of 0.001 for the dimensionless variables 6; and 62,
while the step size for z is 0.001 times a characteristic length of the ship.

2.24. Wet Modes or Added Mass

Analysts want to compute the structural normal modes for a structure partially submerged
in a fluid. In appropriate approximations, this may be analyzed as a real eigen problem of
the structure with added mass on the wetted surface.

Fluid loading of the real eigenvalue problem is performed by separating the solution
domain into structural and acoustic regions. A real eigen analysis is performed on the
acoustic domain which generates a mass loading correction for a subsequent real eigen
analysis of the structure.

2.24.1. Case | - matching meshes at wet interface

After finite element discretization, a fully submerged coupled structural acoustic system
obeys the following discrete formulation.

L0 g Lo a5
—W —1 ww  L—

|5 3 ][] ] @59

where M, Cs, and K, denote the mass, damping, and stiffness matrices for the solid,'®
My, Cy, and K denote the same for the fluid, fs and f, denote loadings on the structure
and fluid, and u and ¢ are the structural displacement and acoustic velocity potential,
respectively. The coupling matrices are denoted by L and LT. C + usually represents a
nonreflecting boundary condition on the exterior of the fluid. Coupling between fluid and
structure is accounted for by the matrices L and LY. Due to the presence of the damping
terms, this eigenvalue problem is quadratic and thus requires a complex eigensolver. In the
special case Cs = C'y = 0, the system is referred to as gyroscopic since all of the eigenvalues
are real valued, even though a damping matrix is present. However, even in that case a
complex eigensolver is needed to solve the system.

The goal of the added mass approach is to simplify equation (2.399) by considering only
the incompressible limit. This can be achieved by taking the limit ¢y — oo, where ¢y is the

15 In a ship floating in water, the structural stiffness matrix, K, will typically contain 6 zero energy modes.
Addition of buoyancy terms converts three of these to bounce, roll and pitch modes, but three singularities
typically remain.
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speed of sound in the fluid. The latter condition implies an incompressible fluid, which has
infinite sound speed. It is important to note that these limits are only applied to the
acoustic equation in the system (2.399), and not the structural equation. Since we are only
interested in eigen analysis, we set fs = f, = 0 for the remainder of this note.

If we consider the limiting condition ¢y — oo applied to the second equation in the

system (2.399), we see that the term ‘;—;M 7@ will vanish, since the acoustic mass matrix
2
M has a factor of (é) built into it.

Similarly, as ¢y — oo the fluid damping, due to either an exterior boundary condition or
infinite elements, vanishes. For absorbing boundaries, this can be seen by considering the
corresponding damping matrix

1
Cry = 3 N;N;dS2, (2.400)

where the integral is evaluated over the exterior boundary d€)., and N;, N; are the
standard finite element shape functions evaluated over €).. Thus, the term C has a factor
of % built in, which implies that it can also be neglected. Physically, this implies that an

incompressible fluid provides no radiation damping. For infinite elements, the damping
matrix is different than absorbing boundaries, but it is still premultiplied by %

1
Criy==— ), DNiViu-VN; = NiN;V DV~ DN;VN; - VpudV (2.401)
Qe

where N;, i, and D are components of infinite element shape functions, and here the
integral extends over the entire exterior domain €2, instead of being on the boundary.
Again, due to the premultiplication of %, we can neglect the infinite element damping

matrix for incompressible fluids.

Additionally, we neglect structural damping and set Cs = 0. Applying all of these
simplifications to the second equation in the system (2.399) yields the following result

¢=iwpy K LT (2.402)

This also implies that
iwg = —w?pr Ky Ll u (2.403)

If we define A = w?, and substitute the previous results into the first equation in the
system (2.399), we obtain

~ A M+ pp LK LT | ut Ku=0 (2.404)

The added mass matrix is
My =psLK; LT (2.405)
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To make the acoustic stiffness matrix Ky invertible, practitioners usually assign Dirichlet
boundary conditions p =0 on the exterior surface.'® Also, standard practice is to mesh the
fluid to the extent of one or two structural diameters away from the structure. Obviously,
as one takes more and more fluid, the eigenvalues should converge to fixed values (although
not precisely the same values as would be obtained from a full complex eigen solution).

As an alternative to the Dirichlet boundary condition, one can use the spherical absorbing
condition, rather than the plane wave condition from equation 2.400. The spherical
condition is more accurate, and since it contributes an extra term to the stiffness matrix, it
eliminates the need for the Dirichlet boundary condition. This term takes the form

!
Ksphericalij = E/@Q NideQe (2406)

where R is the radius of curvature of the absorbing domain, and Nj; is a shape function on
the exterior (absorbing) boundary of the surface. This term would then get appended to
the acoustic stiffness matrix Ky, rendering it nonsingular, without the need for the
Dirichlet boundary condition.

Equation (2.404) is an eigenvalue problem in terms of structural unknowns only. For both
absorbing boundaries and infinite elements, the matrix M, is real-valued, and independent
of frequency. In the case of either absorbing boundaries or simple Dirichlet boundary
conditions, it is also symmetric, and thus is in the form of a standard eigenvalue problem
that will yield real-valued modes. The eigen solver typically requires an SPD capacitance
matrix, M. The linear solver must still address issues with singular Kj.

For infinite elements, however, K is nonsymmetric, and thus the matrix M, is also
nonsymmetric. In general, this will lead to complex modes, which are undesirable for
added mass calculations. Thus, a symmetrization of Ky may be needed if infinite elements
are to be used with added mass. This may be important, as the Dirichlet boundary
condition approach may require a rather large acoustic mesh to obtain converged wet
modes, whereas infinite elements typically allow for a much smaller (ellipsoidal) mesh.

2.24.2. Modal Solution of Acoustic Domain

The above procedure requires a solution of the acoustic domain at each step of the system
eigen problem. This may be simplified by use of a modal expansion of the acoustic domain.
We begin with the coupled system of equations, simplified by the limits of infinite acoustic
velocity. The eigen equation may be summarized.

2 Ms 0 . 0 L Ks 0 u .
(—w [ 0 Oi|+lwlLT 0]%—[ 0 ;_;Kf]>l¢]—0 (2.407)

We now consider a modal solution of the acoustic domain which diagonalizes the acoustic
stiffness matrix. Specifically, we define ¢ = 1)q such that T K ¥ = Ay, a diagonal matrix.

16 Throughout further discussions, we assume that K t is symmetric, positive definite.
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Substituting into the lower equation of (2.407), we have,

K
iwLTy = p—;wq (2.408)

We premultiply by 7, and solve for q.
g= iwpfAfleLTu (2.409)

Substitution of ¢ in the top equation of (2.407) results in a simplified expression for the
mass loaded structural eigen problem.

(—w?[My+ M)+ K5) u=0 (2.410)

where,

My = psLpAf 9" LT (2.411)

The eigenvalue problem above is real. The mass matrix contribution is clearly real and
symmetric. However, as in the physical solution above, the mass matrix is full on the wet
surface boundary, and is not typically assembled. The modal solution does not require a
linear solve at each iteration of the eigen solver, but by not assembling the mass matrix we
cannot utilize the shift-invert strategies available in ARPACK.

Decomposition Issues

The linear solver depends on effective decompositions for accurate, robust, high
performance solutions. In these methods, care must be taken for effective load balance.
Rebalancing may be useful. It may be possible to require the linear solver to rebalance.
Alternatively, we may want a decomposition that is completely independent in the fluid
and structural domains.

Modal Truncation

The methods in this section are useful only if a reasonable modal truncation can be
developed for the acoustic domain. The only requirement on the basis is that the
eigenvectors diagonalize K ;. Thus, we could solve the standard eigenvalue problem,
(K¢ — M)y =0, the generalized eigen problem with the fluid mass matrix,

(K¢ —AM;y) =0, or use any other capacitance matrix. It is not clear which of these
solutions would provide the best model for modal truncation. We also do not have any
experience on the number of modes needed for effective truncation.
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2.24.3. Case Il - mismatched meshes at wet interface

When the meshes are mismatched at the wet interface, extra acoustic degrees of freedom
are created on the structural side of the wet interface, and these degrees of freedom have
zero stiffness. Also, the coupling matrix L is only active on the virtual acoustic degrees of
freedom on the structural side of the wet interface. However, because of the manner in
which linear constraint equations are handled in GDSW, the issue of virtual vs physical
acoustic dofs does not impact the necessary algorithm development for the added mass
mat-vec product.

2.24.4.  Element Matrix Approximations

In the limits of infinite acoustic velocity, the contributions to the mass and damping
matrices for the fluid go to zero. We consider here the stiffness matrix for an element in
volumetric domain and for an infinite element. The infinite element formulation is
described in equation (3.69) of the infinite element section (3.3.3). As shown in this
section, the infinite element is not a function of either w or ¢,, and thus is unchanged in the
infinite velocity approximation. Likewise, the volumetric stiffness is defined in equation
(3.20) of section 3. It is also independent of frequency or acoustic velocity. Standard
element formulations apply for both stiffness matrix contributions in the limits of infinite
acoustic velocity.

2.25. Linear Buckling

Buckling is a nonlinear phenomenon whereby structures under load exhibit catastrophic
failure at a specific load case. Linear Buckling is an approximation to that solution which

applies well to a number of load environments. There are many good texts on the subject,
3
e.g., Cook.

In linear buckling analysis, a sample load is applied to the structure. The material and
geometric stiffness matrices are computed, and an eigenvalue problem is used to determine
under what load the total stiffness becomes singular. More specifically,

Kt - Krnat +ngom7

and
(Kmat - )\ngom) P =0 (2.412)

Determination of the eigenvalue A provides the scale factor that multiplies the sample load
to determine the buckling load. The eigenvector ¢ is an arbitrarily-normalized shape of the
buckling deformation.
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2.25.1.  Eigen Problem Methods for Buckling

Note that (2.412) has the same form as equation (2.91) for the vibrational eigenvalue
problem, with M being replaced by Kgeom. For this reason, the numerical methods used to
solve these problems are closely related, and it is recommended that the reader begin by
reviewing Section 2.6.

The buckling problem is solved using a shift /invert strategy similar to that used in
dynamics. The operator solved for buckling is,

(Kmat _O'ngom)_leaﬁ (2'413)

c.f. (2.93). The main issue for the user is how to select an appropriate shift o.

Some challenges arise in computing the solution because, unlike M, the matrix Kgeom
typically is not positive definite:

1. Because Kgeom is not positive definite, we orthogonalize and normalize the vectors
with respect to the Kiat.

2. When K¢ is singular, the solution method can fail or give unexpected results. Most
buckling problems clamp one end of the structure, so that is rarely a problem.

3. There are solutions possible when K., is singular, such as a piano wire that is
singular until tensioned. We don’t address these problems with our software, but
encourage the analyst to explore that space.

4. For 0 =0, the operator in (2.413) no longer contains the buckling matrix. Selection
of an appropriate value for the shift becomes quite important. Some principles may
be applied.

a) The matrix A = Kpat — 0 Kgeom is key.

b) o should scale Kgeom so it is large enough to modify Kpa.
c) The eigenvalue solver will find solutions near the shift.
)

d) A good value of o would make A near singular. However, if A is actually
singular, our linear solvers will fail.

e) The sign of o is important. Typically, loads that put the structure in
compression should apply a positive value for o.

5. For buckling, a negative or a positive shift o may be appropriate depending upon the
sign of the load. It is easy to get this wrong and converge to something other than
the first buckling mode, or not to converge at all.

104



2.25.2. Geometric Stiffness

The geometric stiffness matrix, Kgeom, may be computed in one of two ways.

Stress: The SIERRA transfer process uses stress as the variable to compute the tangent
stiffness matrix. Stress is ideal in this case because the SIERRA transfer also modifies
the base coordinates of the nodes to match the deformed location. The stress is the
only remaining variable in this formulation. It is important because we don’t need
the stress history (which could involve plasticity or other nonlinearity) to compute
that tangent matrix.

Displacement: When Sierra/SD does its own nonlinear update, the tangent matrices are
computed from the existing displacement variables. Element stress is not used at all.

These two methods of computation are equivalent in the small strain, small displacement
world that is appropriate for a linear buckling calculation. The stress method is utilized for
isoparametric solids. However, this method is not available for shells and beams. With
these elements the geometric stiffness matrix uses a displacement based method.

2.25.2.1. lIsosolid Elements. The family of isogeometric continuum elements apply the
following algorithms.

K geom = / (o:T)JdV (2.414)
elem
where,
7. _ AN dN; dNj dN;
Y=gz dz 0\ de )"\ dz

Here sym(y) is the symmetric part of the matrix, the : represents a tensor product, dN/dx
is the spatial derivative of the element shape function, and J is the Jacobian.

2.25.2.2. Corotational Shells. The geometric stiffness contributions for corotational
shells uses a formulation by Bjgrn Haugen (48). Details are needed.

105



This page intentionally left blank.

106



3. ACOUSTICS AND STRUCTURAL ACOUSTICS

In this section, we discuss the partial differential equations behind the acoustic
formulations used in Sierra Structural Dynamics. We also discuss discretization procedures,
mesh matching conditions on the wet surface, exterior boundary conditions, and various
loading scenarios including scattering. As the first step, we show how to derive the acoustic
wave equation from the fluid dynamics equations. This will then lead into a discussion of
the coupled equations of motion.

3.1. Derivation of Acoustic Wave Equation

Under certain assumptions, fluid motion can be approximated as small-amplitude linear
wave propagation. We give a short background on the assumptions that go into the
derivation of the acoustic wave equation. In the most general case the fluid motion is
governed by the compressible Navier Stokes equations. In the case of small-amplitude wave
propagation, viscosity is typically neglected, and a polytropic relationship is assumed
between pressure and density in the fluid. In this case, the fluid motion is described by the
nonlinear Euler equations

%—FV-(pv):q (3.1)

ov

P ot
where equations (3.1) and (3.2) represent mass and momentum conservation, respectively,
and p, p and v represent the fluid pressure, density, and velocity. The right-hand side terms
consist of mass injection ¢ (density per unit time) and body force f (force per unit
volume). Note that these are both nonlinear equations, and thus allow for both fluid
convection and wave propagation. In addition, we note that a nonlinear pressure-density
relation exists for a given fluid

+pv-Vo+Vp=f (3.2)

p=p(p). (3.3)

Equations (3.1), (3.2), and (3.3) are fully nonlinear, but they can be linearized under the
assumptions of small fluid motion. First, we decompose the field variables into ambient
(background) values plus small perturbations:

p =po +0p
p=po+dp (3.4)
v =0+ dv.

We say that all of the perturbations dp, dp, and dv are O(d). Since the background velocity
is equal to zero, v itself is also O(6).

Next, we insert equations (3.4) into equations (3.1), (3.2), and (3.3), and in keeping with
the linearization process we neglect terms that involve products of perturbations. This
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yields the following:

dp
q= g + V- (pv)
0
= 5; (Po+0p) +V - ((po+0p)ov)
0 06 )
:ﬂ+—p+pov-5v+5pv-5v+5vv-5p (3-5)
Gt ot
> =0(6%)
aép
~ o +poV - dv
ov
f —pa—FpU-Vv—kVp
dov
= (po+3p) ==+ (po+0p)dv- Vov+V (po + 6p)
2o o)
= 00 22% 1+ 5p22% 4 (po + 8p)0v - Vv + Vpo +Vp (3.6)
ot ot S
o) =0(s?) =0
v
M P05 + Vop
dp
p(p) =po+ 8—p(po)5p+ oy (3.7)

where we have linearized the pressure-density relation (3.7) by taking only the first term in
a Taylor series expansion. This implies that to first order,

dp
op = — op. 3.8
P ap(ﬂo) P (3.8)
It is useful to make the definition 9
2_ 0Op
= ) 3.9
=) 3.9

That ¢ is in fact the speed of acoustic wave propagation follows below.

Combining equations (3.5), (3.6), and (3.8), we arrive at the linear Euler equations

106

5 ap+p0v 5o =g
t&s (3.10)
e +Viop=f

Taking the time derivative of the first of equations (3.10), and the divergence of the second
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of equations (3.10), we arrive at the linear wave equation

8q B 1 85p odv
T V-f= ( oRETS +poV - (52}) V-( B —I—V5p>
1 82(5p 8 oov
:C_2 8152 a V 5v—p0V 8——A(5p (3'11)
=0
1 9%6p

It is often useful to employ a formulation of the acoustic wave equation based on a velocity
potential ¥ rather than the acoustic pressure dp. This approach can simplify the
formulation of problems in structural acoustics, and can also yield symmetric rather than
unsymmetric linear systems. There are a variety of definitions that can be employed. As
the name velocity potential implies, among the most well-known choices is:

v = Vip. (3.12)

Let us consider the implications of this choice vis-a-vis equation (3.10). Plugging
equation (3.12) into equation (3.10) and reordering derivatives, we obtain

oV
0=pyp—0— L4 +Vp
ot
aw (3.13)
= V( 05, —|—(5p>
Therefore, we have
oY
=—po—. 14
0p=—pop, (3.14)

With the definition in equation (3.14), time integration of the velocity potential 1 is
necessary in order to recover the physical pressure. The fluid density pgp must also be
available to perform this conversion, which may create some bookkeeping headaches. An
alternative choice for the velocity potential is to make the definition

0
dp = a—qf (3.15)

In this case, it follows from equation (3.10) that
Vi) = —podv, (3.16)

i.e., we have removed pg from the relation between pressure and the velocity potential but
made it appear in relating the velocity potential to V.

In either case, a derivation similar to that employed above for the pressure-based wave
equation can be used to show that the velocity potential also satisfies a wave equation®’

1 0%
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We use this fact later on for coupled system of equations.

In the following sections, we find it convenient to drop the ds and simply write v,p to
indicate the perturbations dv,0p.

3.2. Coupled Structural Acoustics

In this subsection, we present the coupling of the acoustic wave equation derived in the
previous section with the structural dynamic equations of an elastic structure. Excellent
review articles®®°! have been written on the subject. In this section we focus on the details
relevant to the Sierra/SD implementation.

3.2.1. Discussion of Matching vs Non-Matching Meshes on Wet Surface

Having the same mesh density in the acoustic fluid and solid may be very inefficient, since
the two domains typically require significantly different mesh densities to achieve a given
level of discretization accuracy. Perhaps more importantly, it is also impractical in many
applications since the mesh generation process may be performed separately for the two
domains. Generating conforming meshes on the wet interface may be very difficult, if not
impossible, even given the most sophisticated mesh generation software. Illustrative
examples include the hull of a ship, or the skin of an aircraft. In these cases, the structural
and fluid meshes are typically created independently, and have very different mesh density
requirements. Joining them into a single, monolithic mesh is often impractical.

Although methods for joining dissimilar meshes are well-known in structural
mechanics,’? % very few papers exist in the area of dissimilar structural acoustic meshes.
Mandel®® considered parallel domain decomposition techniques for structural acoustics in
the frequency domain, on mismatched fluid/solid meshes. Nonconforming discretizations
on the wet interface were handled by duplicating acoustic and structural degrees of
freedom on either side of the wet interface, and imposing coupling equations that enforce
continuity of pressure and displacement. The duplicated degrees of freedom were then
included in a dual-primal, parallel domain decomposition strategy. Only two-dimensional,
frequency-domain problems were considered. Flemisch et al.’” studied both fluid-fluid and
structure-fluid coupling on mismatched meshes. For fluid-fluid coupling, a mortar approach
was taken, whereas for structural acoustic coupling, the coupling matrices were assembled
in normal fashion and used across the wet interface to coupled the fluid-solid responses.
Only time-domain, serial solutions were considered.

Several recent references considered a displacement-based acoustic formulation, which was
then coupled to an elasticity formulation on mismatched fluid/solid meshes. Alonzo®® used
an adaptive method with error estimation to refine the fluid/solid meshes accordingly. The
error estimator demanded different mesh densities on the fluid and solid interface, as
expected. Bermudez®? also considered a displacement-based acoustic formulation, but used
an integral constraint on the wet interface, along with a static condensation procedure to
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eliminate the acoustic degrees of freedom. In both of the preceding references,
Raviart-Thomas elements were needed to avoid spurious modes in the fluid. These modes
would have been automatically eliminated with the use of a potential formulation in the
fluid.

In the following sections, a new technique is presented for structural acoustic analysis in
the case of nonconforming fluid/solid interface meshes. We first construct a simple method
for coupling mismatched fluid /fluid meshes, based on a set of linear constraint equations.
Using static condensation, we show how these constraint equations can be eliminated from
the final system of equations. We then demonstrate that the same approach can be taken
to couple mismatched fluid/solid meshes, provided that the coupling matrices that are
typically used for conforming fluid /solid meshes are calculated at a set of nodes with both
structural and acoustic degrees of freedom, and that extra (“ghost”) degrees of freedom are
introduced to couple the structural or acoustic terms to the other side of the interface.
With this arrangement, the structural acoustic coupling resembles a conforming method
with like degrees of freedom linked across the interface via MPC equations. Then the
conforming structure to acoustic coupling operators ensure a weak continuity of particle
velocity and stress between the structural degrees of freedom and collocated acoustic
degrees of freedom on the shared side of the interface. Note either the structural degrees of
freedom can be ghosted to the acoustic side of the interface or the acoustic degrees of
freedom can be ghosted to the structural side of the interface. Either arrangement may be
more appropriate depending on the mesh density of the two regions.

In the case that the fluid/solid meshes are conforming, our approach reduces to standard
methods for conformal structural acoustic coupling.

3.2.2. The Coupled Equations and Their Discretizations

In this section, we review the governing equations of acoustics and structural acoustics,
along with their corresponding weak formulations, and then we present our approach for
the nonconforming discretization. We begin with the case when all meshes are fully
conforming, and then we extend this to the nonconforming case.

3.2.2.1. The SierraSD Velocity Potential Formulation There are several common
formulations for acoustics and structural acoustics. Some of these details are outlined
briefly here. Table 3-4 summarizes the formulations used in Sierra/SD.

3.2.2.2. Conforming Structural Acoustics We begin by constructing a weak formulation
of the linear acoustic wave equation for conforming meshes. Subsequently, we consider
conforming structural acoustics. In this section, we will use the relation (3.15) between
pressure and the velocity potential ¢, but write py instead of pg as the density of the fluid
in order to use ps for the solid density. Surface normal vectors are denoted by 7.
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Problem Space Formulation
Acoustics. Source Loading Velocity Potential: (3.15)
Acoustics. Enforced Acceleration Pressure

Structural Acoustics. Loading must be
through source loading only.

Negative Velocity Potential: (3.15) but
multiplied by -1 to maintain symmetry.

Acoustics or structural acoustics with in-
finite elements

Velocity Potential: (3.15). The infinite
elements are not symmetric.

Table 3-4. Acoustic Formulations

Recall that the linear acoustic wave equation (3.17) is given by

1 0%

2gp A=

(3.18)
Note that this implies that we do not include volume (body) forces on the fluid. A weak
formulation of equation (3.18) can be constructed by multiplying with a test function and
integrating by parts. We denote the fluid domain by {2, and its boundary by

00 = 092, |JOSY4, where the subscripts n and d refer to the portions of the boundary where
Neumann and Dirichlet boundary conditions are applied. We also assume that the fluid is
initially at rest, i.e. 1(x,0) = 0y)(x,0) = 0, which is sufficient for most applications.

Denoting by V;(€2f) the function space for the fluid, the weak formulation can be written
as follows. Find the velocity potential ¢ : [0,T] — V() such that

170%
2 Ja Ot?

dot | V- Vode= [ 6y-nds=— [ fid 3.19
gdot [ Vo-Vode= [ oVy-nds=—[ prov-nds (319
V¢ € Vi(€2f), where the fluid velocity v is prescribed on the Neumann portion of the fluid

boundary, €.

Inserting a finite element discretization ¢(z) = SV ¢ N;(x) into equation (3.19) results in
the system of equations )

My + K1 = fa,
where N is the vector of shape functions, M = [, ; C%N NTdx is the mass matrix,

K= fo VN -VNTdz is the stiffness matrix, and f, = — Jaq, Prv- ANTdz is the external
forcing vector from Neumann boundary conditions.

(3.20)

For structural acoustics, the second order equations of motion for the solid and the wave
equation for the fluid are

1 6%

2op ~v=0

(3.21)

Here u = (ug,uy,u;) corresponds to the displacement of the structure, o is the structural
stress tensor, ps is the density in the solid, and f denotes the body forces on the solid.
Subsequently, the subscripts s and f will refer to solid and fluid, respectively.
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The fluid/solid or wet interface is designated by 9Qye;. The normal to 9y points from
solid into the fluid. In linear acoustics the boundary conditions on 0€,e: are
0
Vi-n=—propu-, U-ﬁ:—(,;fﬁ. (3.22)
These boundary conditions correspond to continuity of velocity and stress at the wet
interface respectively.

The weak formulation of the coupled problem is constructed by multiplying the two partial
differential equations in equation (3.21) by test functions and integrating by parts.
Denoting by Vi(€2) and V¢ (€2s) the function spaces for the solid and fluid, respectively, we
have the following weak formulation.

Find the mapping (v,9) : [0,7] — Vi(§2s) X V¢(€2f) such that

2
/Qs ps%wdz+/ﬂso : szdx—/BQwEt(o-ﬁ)wds:/Qs fwdx—l—/aQn(a-ﬁ)wds,
1 &%
02 Qf 8t2

wet

gbdx+/9f w}-wdm/m (V- A)gds
= [ (Vy-)gds

-~ Joan
(3.23)

Vuw € Vi(Qs) and Vo € Vi(§2f), where 09, is the portion of the solid and fluid boundaries
that has applied loads, and f is used to denote body forces on the solid. Also,

V= —% (V + VT> is the symmetric part of the gradient operator. If Dirichlet boundary
conditions were applied to part of the structure, or if the fluid had a portion of its boundary
subjected to Dirichlet conditions, then the Sobolev spaces Vi(£2s) and Vf(€2) would be
modified accordingly to correspond to spaces that have those same boundary conditions.
Recall that the normal is defined to be positive going from solid into the fluid.

Next, we insert the boundary conditions from equation (3.22), and we define o -7 = g on the
solid portion of 9y, and V-7 = —prdyu-n on the fluid portion of 92,. This leads to the
following weak formulation. Find the mapping (v,) [0,7] — Vi(Qs) x V¢(€2f) such that

/ a—%wdm—i»/ o: Viwdx+ 8—wﬁwals—/ fwdx+/ wds
0." o2 Qs Oper O -~ Ja, o0,
1 0%

2 oy gEtte fo, Ve s [, (O-R)ods=

wet

y /8 , @u-i)ods  (324)

Vuw € Vs(Qs) and Vi € Vi(Qy).

Assuming a linear constitutive model for the solid, and inserting the spatial discretizations
U= (Ug, Uy, Uz) = (X Uz, Ni, YUy Ni, >z, N;) and ¢ = Y- ¢;N; into equation (3.24) yields
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the following semidiscrete system of linear ordinary differential equations in time

v JLE e L]
0 Mg || | —pfLT Cf || ¥

AN 52

where Mg, Cs, and K denote the mass, damping, and stiffness matrices for the solid, and
M;, C jf’ and Ky denote the same for the fluid. The coupling matrices are denoted by L
and L*. Coupling between fluid and structure, as well as any damping in the fluid or solid
separately, is accounted for by the damping matrices. The quantities fs and f; denote the
external forces on the solid and fluid, respectively.

3.2.2.3. Nonconforming Structural Acoustics In the case of nonconforming fluid/solid
discretizations, equations (3.23) and (3.24) contain some extra technicalities. In this
section we first describe a simple procedure for coupling two acoustic domains which share
a common boundary, but with nonconforming discretizations. This method serves as a
stepping stone to the case of nonconforming structural acoustics.

In order to enforce continuity of appropriate field variables between the two different
surfaces, the degrees of freedom and element surfaces involved in the coupling need to be
known a priori. Given the surface meshes of the fluid and solid, this information is
non-trivial to obtain, especially in parallel, since adjacent element surfaces may reside on
different processors.

The ACME and Dash package®’ have been developed as tools to determine surface contact
conditions between general surfaces in three dimensions. These surfaces can take the form
of boundaries of finite element discretizations, as in our case, or they can be analytic
surfaces. In either case, search algorithms are employed to determine node-to-face
interactions between the opposing surfaces, based on search tolerances. A given node is
determined to be in contact with a given face of the adjacent surface if the distance from
the node to the adjacent element face is within the defined search tolerance. The contact
package can compute contact conditions between most of the standard three-dimensional
finite elements, including hexahedral, tetrahedral, and prismatic elements. Once these
interactions are defined, one can devise enforcement algorithms to enforce continuity of the
appropriate field variables. Once surface constraints are known, we derive our own
enforcement algorithms, as explained below.

We consider the situation shown in Figure (3-10). Here there are 2 interacting acoustic
domains, and two contact surfaces. We adopt a master-slave approach, where one of the
two interacting surfaces is designated as a master, and the other as the slave. We denote
surface 1 as master, and surface 2 as slave. For a transient acoustic simulation involving
the two meshes shown in Figure (3-10), we would have to solve the system of equations
given in (3.20), which would involve degrees of freedom from both acoustic domains,
subject to the constraint that the velocity potential is continuous across the nonconforming
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interface. The extra equations corresponding to this constraint can be derived from a
simple consideration of the contact geometry.

Acoustic Domain 1 / & Acoustic Domain 2

Surface 1 Surface 2

Figure 3-10. Two interacting acoustic domains, with nonconform-
ing meshes at the common interface. In this case surface 1 is
defined to be the master surface, and surface 2 is the slave.

In Figure (3-11), node x from surface 1 is impinging on element face y of surface 2.

If contact determines that the distance from node x to element face y is within the
user-defined search tolerance, a constraint relation will be needed to enforce continuity of
velocity potential. The constraint relation for this interaction can be written in the form

4
=3 el (3.26)
=1

where 1)® is the velocity potential at node = on surface 1, and 1/1%’ are the velocity potentials
at the four nodes of element face y on surface 2. The coefficients ¢; are determined from
the position of node z relative to the positions of the nodes on element face y on surface 2.
More precisely, ¢; = N;(£,n) are the values of the surface shape functions corresponding to
the nodes on the surface of element y in Figure (3-11), and ¢ and 7 are the dimensionless
surface coordinates of the location of node x on the surface of element y. Thus, the velocity
potential at node x is constrained to be equal to the value that would be predicted by a
finite element interpolation on the surface of element y.

For example, in the special case that face y is square and node z lies at the center of the
face y, the coefficients ¢; would all be equal to i, indicating that the constraint is simply an
average. This can be seen by considering the surface shape functions corresponding to a
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Surface 2 = Surface 1
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Figure 3-11. A node-face interaction on the structural acoustic

interface.

plane bilinear element on a square £ = —1,1, n=—1,1.

Ni= (-9 -n)

Ny = (1481 -)

Ny = ;(1+6)(1+n)

Ny=(1-§)(1+n)

(3.27)

If node x were at the center of element y, then £ =71 =0, and all coefficients would be %. If
x were off-center, these coefficients would change accordingly. If the surface of element y
were a triangle instead of a square, (indicating a tetrahedral element instead of a

hexahedral), the procedure would be the same, except the shape functions in
equation (3.27) would be different.

We use this approach, sometimes referred to as standard node collocation or inconsistent
tied contact,”® for all of the nodes/elements on the interacting surfaces. This results in a

set of linear constraints that enforces continuity of velocity potential at discrete points
between the two acoustic meshes.

It is well known that inconsistent tied contact results in constraints which do not fully
meet convergence criteria for finite elements. In particular, meshes which rely on these
methods do not always pass the static patch test for structures.®* 56562 Other methods
such as mortar methods, provide more accurate, but more complex approaches.
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Fundamentally, these methods are very similar to those presented here, as the concepts of
tying the acoustic degrees of freedom through a system of constraint equations apply.

These constraint equations can be expressed ag®?
CP=0, (3.28)

where C' is a matrix that contains all of the constraint coefficients from all of the node-face
interactions, and vector ® contains all degrees of freedom for the problem. The vector ®
can be partitioned as

d = [ Om } , (3.29)

where @, contains all slave acoustic degrees of freedom. With this partition,
equation (3.28) can be written as

Con®pm + Cs®y = 0. (3.30)

We note that the matrix Cs is diagonal either for the constraint enforcement approach used
here or for a dual mortar method.?® %2 If the constraint equations are linearly independent
(assuming there are no redundant constraints), then the matrix Cj is also nonsingular. The
slave degrees of freedom can now be condensed from the stiffness matrix by using

&, = CrpsPr, where we define Cp,s = —C5 LC,,. Additional details are provided later.

Next, we examine the dimensions of the constraint matrices defined above, and their
relation with the number of acoustic and structural nodes on the wet interface. We define
ns as the number of nodes on the structural side of the wet surface, and n the total number
of degrees of freedom for the problem. The dimensions of Cy is then seen to be ns by ng,
while the dimensions of (), is ng by n —ns. For example, consider the mesh shown in
Figure (3-10). If we assume that the domain on the right is a structural domain (instead of
acoustic), we would have ng = 7. In addition, only 5 columns of C), would have nonzero
entries.

Following,% we have
B = B+ B Orgier+ O Koy + 0 Kot i (3.31)

Similar condensation expressions hold for the mass and damping matrices. While static
condensation does generate non-diagonal matrices, it does not significantly effect the
sparsity of K or M, since these are local constraint equations that involve only a few
degrees of freedom. After condensing out the slave acoustic degrees of freedom in
equation (3.20), we obtain a modified system of equations

M+ Ky = fo, (3.32)

where the tilde superscripts indicate that the slave constraints have been condensed out.
Note that the vector ¢» now only contains the interior degrees of freedom (corresponding to
nodes that are not on the interacting surfaces), and the master degrees of freedom on the
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contact surface, since the slave degrees of freedom have been eliminated. Equations (3.32)
can also be solved in the frequency domain, as follows

M + K| ¢ = fa, (3.33)
where s is the frequency parameter that comes from the Laplace transform.

In the case of structural acoustics, the algorithm just described for the nonconforming
fluid /fluid meshes can be used as a stepping stone to the nonconforming solid /fluid meshes.
In this approach ghost structural or acoustic degrees of freedom are added to one side of
the wet interface. Due to the ghost degrees of freedom collocated structural and acoustic
degrees of freedom are present one one side of the wet interface (e.g. three displacement
and one velocity potential degree of freedom). Two surface integrals in equation (3.24), i.e.
Joq,.; Orvnwds and py [50. . Opu-figds, are evaluated to couple the structural acoustic
coupling terms at these collocated degrees of freedom. Across the interface the like degrees
of freedom (the “true” degrees of freedom and their ghost counterparts) are tied together
using the same set of linear constraint equations that were developed for the
nonconforming structure/structure case.

In addition to equations (3.25), we have a set of linear constraint equations that couple
shared degrees of freedom across the wet interface. As in the structure/structure case,
these constraint equations represent the relations between the master and slave degrees of
freedom, and they take the same form given by equation (3.28). Upon condensing these
constraints out of the system of equations, (3.25), we obtain a modified system of
equations

5 812l G LS 2[5 o

where again the tilde superscripts represent the matrices with constraints condensed out.
Note that, in this case, the structural matrices (and coupling matrices) must be modified
during the constraint removal process. This is because of the coupling matrices L and L”
involve uncondensed degrees of freedom. To solve this system of equations, we use the
generalized alpha time integration method,% which is a generalization of the
Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advantage of our
coupling procedure is that it can be applied equally well to nonconforming structural
acoustic problems for both eigenvalue analysis, and frequency domain analysis. The
coupling terms lead to a quadratic eigenvalue problem.

q[g _K(J)”/pflﬂl% —éf/ﬂf]HQlﬂgs —M(jf/prw]:O (3.85)

In the case of zero damping, this is a gyroscopic system with purely imaginary eigenvalues,
and complex eigenvectors.

The frequency domain equation can be obtained by a Fourier transform of the time domain
equation. This results in following complex-valued system of equations.
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In the next section on numerical results, we present results from all cases, including time
domain, frequency domain, and eigenvalue analysis simulations.

Our method can be summarized by the diagram in Figure (3-12). In the shown example
the structural nodes on the wet interface are augmented with the acoustic degree of
freedom. Consequently, these nodes each have four degrees of freedom. In this example the
acoustic degrees of freedom are constrained across the interface via an acoustic-to-acoustic
MPC. The structure to acoustic coupling is enforced on the structure side of the interface
which has conforming structural and acoustic degrees of freedom.

One case that requires special care for structural acoustic coupling is double wetted shells
(a structural shell sandwhiched between two acoustic domains.) For this case the structural
velocities at the shell and the two acoustic domains should be identical. However, the
acoustic pressure potentials at the two acoustic domains are not identical. To correctly run
this case the structural degrees of freedom should be MPCd across the three domains and
the structure-to-acoustic coupling terms be evaluated on the acoustic domains. This
enables two seperate and potentially disjoint acoustic degrees of freedom to be present at
the interface. The proper setup for this case is shown in Figure (3-13).

We note that the recently introduced dual mortar method® %2 generates a similar set of
constraint equations as the ones described above.
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Acoustic subdomain Solid subdomain
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Constraint equations join acoustic degrees of
freedom on both sides of wet interface

O 1 degree of freedom per node

. 4 degrees of freedom per node

{1 3 degrees of freedom per node

Figure 3-12. lllustration of our method for structural acoustic
meshes with nonconforming interfaces. Ghost acoustic degrees
of freedom are added to the structural side of the wet interface,
and then connected to the adjacent acoustic surface with con-
straint equations. The resulting nodes in the mesh can then have
either one acoustic degree of freedom (shown by a circle), three
displacement degrees of freedom (shown by a dashed circle), or
one acoustic degree of freedom and three displacement degrees of
freedom (shown by a black-filled circle).



Acoustic Structural Acoustic
Subdomain Shell Subdomain

@ © ®-

Figure 3-13. Nonconformal Structural Acoustic Tying for Doubled
Wetted Shell

3.3. Acoustic and Structural Acoustic Boundary Conditions

In this section, we describe the various boundary conditions available in Sierra/SD for
acoustics and structural-acoustics. In each case we discuss the governing equations and
discretization approaches.

3.3.1. Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with solid bodies which
are immersed in an infinite acoustic fluid. The plane waves are assumed to originate from
infinity, and after impinging on the solid body, they continue to propagate to infinity. In
scattering simulations, the velocity potential is decomposed into a sum of the incident
potential, and scattered potential

wtot _ wm _*_wsc (337)

where 1% is the total potential, 1)’ is the incident potential, and *¢ is the scattered
potential. The incident potential is a known quantity, and the scattered potential is
unknown. Thus, in the final formulation, the incident potential becomes part of the right
hand side forcing function, and the scattered potential remains on the left hand side as an
unknown.

We recall that the linear wave equation in terms of the total velocity potential is given by

1 =
C_2¢t0t _ A,l?z)tot -0 (338)
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Decomposing this into incident and scattered fields, we have
1 .. ) 1 .
97— A+ |- Age] =0 (3.39)
c ¢

Since the incident wave is assumed to satisfy the wave equation, the first part of the
expression can be dropped, and we are left with

1 .
6_21/,80 — AP =0 (3.40)
This implies that we can solve for the scattered potential directly. The effect of the

incident field is then accounted for in the boundary conditions on the wet surface.

For scattering in the context of the coupled structural acoustic problem, it is most
convenient to solve for the scattered acoustic potential in the fluid and the total
displacement field in the structure. With that assumption, we have the following partial
differential equations

psult —V -0 =F,
1.
U= MY =0=0,
(3.41)

Here 4! corresponds to the total displacement of the structure, o is the structural stress

tensor, ps is the density in the solid, and F' denotes body forces on the solid. Subsequently,
subscripts s and f refer to solid and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet
interface, which is designated by 0€Qe¢), are

tot
agn = —pyiy (3.42)
Op = _¢totf\ _ [wm +¢Sc} % (343)

where py is the density of the fluid, and 7 is the surface normal vector. These boundary
conditions correspond to continuity of velocity and stress at the wet interface. For
equation (3.42), we note that we rearrange the terms for convenience

8tot ain s
P oy +¢

on  On on
= —psuy"
(3.44)
Rearranging, we have
awsc . awm
on = TP = (3.45)
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Equations (3.45) and (3.43) are in the form that we can insert them directly into the
variational formulation (3.23), with the recognition that the unknowns are the total
structural displacement and scattered velocity potential. Carrying this through, and
assuming a linear constitutive model for both the solid and fluid, the time domain
equations of motion can be represented by the following semi-discrete system of linear
ordinary differential equations

Ms 0 ,dtot Cs L utot Ks 0 utot fs
e R e kS S
(3.46)
where My, Cs, and K denote the mass, damping, and stiffness matrices for the solid, M,,
C,, K, denote the same for the acoustic fluid, p, is the density of the acoustic fluid, and u
and 1 denote the structural displacement and fluid velocity potential. The coupling
matrices are denoted by L and LT. Coupling between fluid and structure, as well as any

damping in the fluid or solid separately, is accounted for by the damping matrices. The
quantities fs and f, denote the external forces on the solid and fluid, respectively.

The acoustic load f, for the scattering problem can be written in the form

B 32ﬁm
Ja=— /0 g Bn ¢ds (3.47)

where again ¢ is a test function. Since 8(39/; — is a known quantity, we can integrate

equation (3.47) to obtain the loading on the fluid side of the wet interface.

The expression for loading on the structure due to scattering loads is given by
= Mwds 3.48
fo= [, ¥ (3.48)

where w is a test function for the structural discretization. Since 1) is a known quantity,
the force on the solid body can be computed from equation (3.48). Note that

equations (3.47) and (3.48) require the spatial and temporal derivatives of the incident
field, '™, Thus, even if ¥ is known, methods for computing its spatial and temporal
derivatives are also required.

Inserting the expressions for f, and fs from equations (3.47) and (3.48) into equations
(3.46), we can solve for the responses of the acoustic fluid and solid body to incident
acoustic waves. The only requirement on ¥ is that it satisfies the acoustic wave equation.
Note that the solution to equations (3.46) will give the scattered acoustic potential. In
order to compute the total acoustic potential, we would need to add the incident and
scattered potentials together, as in equation (3.37). Also, we note that the loads from
equations (3.47) and (3.48) are generated by a single incident wave. For multiple incident
waves (as in the case of a diffuse field), the right hand side of equations (3.34) involve a
simple superposition of all of the incident waves.
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3.3.1.1. Frequency Domain scattering. The incident potential satisfies the wave
equation, and for a plane wave takes the form

win _ Aei[k-x—wt] (349)

where w = 27 f is the circular frequency of the wave, f is the frequency in Hz, k is the
vector wave number, and x is the vector coordinates of a point in space. The vector wave
number has three components, k = (k;, ky,k.), which define the direction of propagation of
the wave. For example, for a wave propagating strictly in the x direction, we would have
k= (kz,0,0), where k; = % would be the standard wave number from one-dimensional wave
propagation. The parameter A is a scalar constant that defines the magnitude of the wave.
Although A can be made to vary with frequency, we will only consider the case where A is
a scalar constant. This simply implies that all incoming plane waves have the same
amplitude (but different frequencies). In the frequency domain, the time portion of the
expression in equation (3.49) drops out, and we are left with

win _ Aeik~x (3‘50)

We consider a three-dimensional elastic body, which is immersed in an infinite acoustic
fluid, and subjected to impinging plane waves from infinity in the frequency domain. The
equations of motion of the coupled system are given by

o MS 9 wtot i C~'5~ {*J utot N f(s 9 utot B f~s~
0 Ma wsc _prT Cf wsc 0 Ka wsc - ;_alfa A
(3.51)
We recall that the portion of the acoustic load f, that comes from Neumann boundary
conditions can be computed from equation (3.47). Given equation (3.50), we define
n = (ngz,ny,n.) to be the surface normal of the solid body. We also let

k = 2 (diry,diry,dir,), where (diry,diry,dir,) define the direction cosines of the direction of
propagation of the incident plane wave. Then, we have

on

= Vi = i [ngdirg +nydiry +nadirs] Ae® (3.52)
C

Inserting this expression into equation (3.47), and integrating, we obtain the loading on the
acoustic fluid due to scattering.

For the loading on the structure, we recall the expression for loading on the structure due
to Neumann boundary conditions in equation (3.48). In the frequency domain case,

On = np™ = inw™ = inwAe!**)  Inserting this expression into equation (3.48), and
integrating, we obtain the loading on the solid body due to scattering.

Finally, we examine the complex-valued loads presented in equations (3.47) and (3.48). We
make two observations regarding these loads.
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1. These loads have real and imaginary parts, and thus even for a single plane wave,
they cannot be combined into a single vector, even though they have the same
multiplication factor A. Currently, Sierra/SD combines load vectors that have the
same time function into a single array. For the case of complex loads in the frequency
domain, this translates into combining the real and imaginary parts into a single
array if they have the same “time" function, which in this case corresponds to the
multiplication factor A. A temporary work-around is to use distinct time functions
for the real and imaginary parts in the input deck. (even if the time functions
themselves are identical). Otherwise, if the same time function is used, the real and
imaginary parts would be combined into a single vector in Sierra/SD.

2. We have considered the case where the coefficient A is a scalar constant, but we could
also consider the case where A = A(w) is a function of frequency. This would
correspond to multiple plane waves of different amplitudes impinging on the
structure. Since the spatial parts of these loads varies with frequency, they could not
be computed by adding the spatial parts together before multiplying by the
coefficient A(w). Thus, we would have an inconsistency with the current approach in
Sierra/SD of adding the spatial parts together before multiplying by the time
function (which in this case would be A(w)).

3.3.2. Absorbing Boundaries

The need to truncate acoustic domains arises in exterior problems, where the fluid or solid
domain is infinite or semi-infinite. In these cases, the domain could be truncated either
with infinite elements, or absorbing boundary conditions. We describe below the simple
absorbing boundary conditions that have been implemented in Sierra/SD. Infinite
elements (see section (3.3.3)) are also implemented in Sierra/SD. We describe the cases of
an acoustic space and an elastic space separately.

3.3.2.1. Acoustic Space The implementation of absorbing boundary conditions begins
by considering the weak formulation of the equations of motion, in equations (3.23). On an
absorbing boundary, one needs to consider the term

oY
/(9 ds (3.53)

Q, On
which arises from the integration by parts on the acoustic space. Absorbing boundary
conditions are typically derived by applying impedance matching conditions to
equation (3.53), in such a way that the boundary absorbs waves of a given form exactly. For

example, the simplest absorbing boundary conditions consist of plane wave and spherical
wave conditions,®! which are either the zero-th order accurate Sommerfeld condition

ov_—100

on = o i (3.54)

125



or the first order accurate Bayliss-Turkel condition

oYy =10y 1
—=——— 3.5
on ¢y Ot sz (3:55)
where R is the radius of the absorbing spherical boundary.

Inserting equation (3.54) into equation (3.53), we obtain a term proportional to v, which
becomes a damping matrix. Inserting equation (3.55) into equation (3.53), we obtain two
matrix terms, one that contributes to the damping matrix, and another that contributes to
the stiffness matrix. Note that in the limit of large R, the spherical wave condition reduces
to the plane wave condition, since for large enough radius, the spherical wave begins to
resemble a plane wave.

Both conditions (3.54) and (3.55) are implemented in Sierra/SD.

3.3.2.2. Elastic Space In the case of an elastic space, very similar absorbing boundary
conditions can be applied as were in the acoustic space, except now the boundary has to
absorb both pressure and shear waves. In the case of an acoustic medium, only pressure

waves are of interest. Thus, the elastic space is slightly more complicated.

The equation of motion for an elastic space can be written as
,O’LLtt—V~U == f (356)

where p is the material density, us; is the second time derivative of displacement, ¢ is the
stress, and f is the forcing. A weak formulation of this equation can be constructed by
multiplying with a test function and integrating by parts.

/ puttde—i—/ U:deV—/ O’S’LUdS:/ frwdV (3.57)
|4 1% oV Vv

where w is the test function, and oy is the traction vector on 9V, the boundary of volume
V. The absorbing boundary condition is imposed on the portions of V' that point into the
infinite space. In this derivation, we assume that this includes the entire boundary 9V. If
only part of the boundary pointed into the infinite space, the derivation would be exactly
the same.

Considering the term

/ oswdS (3.58)
ov

we note that the traction vector o can be decomposed into its normal and tangential
components, i.e. 05 =0y, + 0. Then, we apply the conditions

On = —pPCLUp (3.59)

O¢ = —pCrt

where ¢y, and cp are the longitudinal and shear wave speeds in the medium, and v,,, v; are
the normal and tangential components of velocity vectors on the surface. Inserting these
relations into equation (3.58) yields two absorbing boundary matrices. Since these matrices
involve the velocities, they become part of the overall damping matrix of the structure.
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3.3.3. Infinite Elements for Acoustics

Infinite elements have been around since the mid 1970’s. Excellent review articles can be

found in,%°.66

In the early formulations, only frequency-domain formulations were considered, and system
matrices were developed that depended on frequency in a nonlinear manner. Though these
formulations worked well in the frequency domain, there was no clear approach for
transforming them back to the time domain. As a result, time domain formulations for
infinite elements were delayed for some time. The unconjugated formulations® %7 in the
time domain formulation involved convolution integrals that could be used with the
frequency-dependent system matrices, but storing the time histories for the convolution
integrals would be a significant burden for a time-domain code.

In the early 1990’s, Astley®® 0 derived a conjugated formulation that resulted in system
matrices that were independent of frequency. This allowed the frequency domain
formulation to be readily transformed to the time domain, in the same way that is
typically done in linear structural dynamics. He also derived a scheme for post-processing
the infinite element degrees of freedom to compute the far-field response at points outside
of the acoustic mesh. This approach followed simply from a time-shift applied to the
infinite element degrees of freedom.

The exterior acoustic problem consists of finding a solution p, outside of some bounded
region €2;. We refer to Figure (3-14) for a description of the geometry. We have an interior
domain €2;, and an exterior domain €2, and a boundary I'" that separates the inner and
outer domains. We wish to find the acoustic pressure p in €).. In the exterior domain 2.,
the acoustic pressure must satisfy the acoustic wave equation

1

—p—Ap=0 3.60

2P =P (3.60)
a Neumann boundary condition on I'

dp

— = t 3.61

and the Sommerfeld radiation condition at infinity

dp 1op 1

as r — Q.

We note that the weight and test functions are chosen such that the Sommerfeld condition
is satisfied identically. Then, the weak formulation reads as follows

1
= Byt VeV de/ ds 3.63
/Qeczpcﬁ p-Vq 94 (3.63)
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Figure 3-14. Domains (); and (). and interface I' for the exterior
acoustic problem.

In the frequency domain, the counterpart to equation (3.63) is as follows

—/cZ/Q pqu—l—/Q Vp~quV:/ngdS (3.64)

where k£ = %

We will focus on conjugated infinite element formulations, which implies specific choices for
the trial and weight functions for the infinite elements. For the trial functions, we have

$j(x,w) = Pj(x)e ) (3.65)
and for the weight functions, we have
¥i(x,w) = D(x) P(x)e*#@) (3.66)

where P(z), D(z), and pu(z) are as yet undefined functions of x, and k = % is the
wavenumber. The choice of these functions will determine the particular infinite element
approach. In our case, the exponential in the weight functions involves a conjugate of the
exponential in the trial functions. This results in the exponential canceling out in the
system matrices, thus rendering the matrices independent of frequency.
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Given these trial functions, the solution p(x,w) can be written in an expansion

N
p(z,w) = qu(x,w)¢j(x,w) (3.67)
i=1

Substituting these expressions for trial and weight functions into equation (3.64), we obtain
for following expression

/Q (PZVD + DVPZ + Zk?DPZV,u) : (VP] - ikPjV,u) q; — kQDPinqidV (368)

Separating out terms of w, we obtain the following expressions for the stiffness, mass and
damping matrices

o= /Q (PYD+DVP,)-VF;dV (3.69)
|
Gy =~ /Q DPVu-VPj— PP,V D-Vyu— DP;VE-VudV (3.70)
1
My; = 2/9 DPP;i(1— V- Vu)dV (3.71)

We now discuss the phase function u(x) in more detail. First, we note that the series
expansions for the trial functions (the i term is given by equation (3.65)), assume an
outwardly propagating wave. The exact solution from which these trial functions are
derived involves a source point for the wave. We denote the distance from that source
point to a point on the base surface by a. The phase function is then defined by

plx)=r—a (3.72)

In spherical coordinates, the gradient of a function is equal to

Of 10f, 1 9f,

Ve, g = "or ¥ oo rsin(p) 86 (3.73)
Since the expression for p(z) depends only on r, we have
Vu(z) =7+ (3.74)

Thus, Vu(z)-Vu(z) = 1. This implies that when the boundary defining the infinite
elements is a spherical surface, the mass matrix from equation (3.71) is identically zero.
This makes sense, since it ensures that the modes are purely outgoing, and that there are
no standing waves. Since a numerical integration of equation (3.71) will never come out
identically zero, the question then becomes whether to include this numerical mass in the
time integration, or whether to neglect it completely from the outset. This has important
implications in the stability of the time integration, as outlined in.”!

In terms of discretizing the infinite domain, infinite elements can be classified into 2 main
approaches: the separable approach, and the mapped approach. In the separable approach,
the exterior domain is assumed to be in a separable coordinate system, such as spherical or
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spheroidal. In the mapped approach, the nodes on the exterior boundary are mapped into
parent elements using a special mapping functions that map the infinite domain into a
finite master element domain. The mapped approach is advantageous because it allows a
more arbitrary placement of nodes on the exterior surface. The separable approach requires
the exterior nodes to conform to a specific boundary, and thus this approach places more
restrictions on the mesh generation process.

3.3.3.1. Infinite Element Shape Functions In our work, we have chosen the mapped
approach due to its flexibility in mesh generation. The integrals in equations (3.69), (3.71),
and (3.70) are over an infinite domain, .. In order to perform numerical integration of
these integrals, we first must map onto a unit master element, as in standard finite
elements. The mapping is as follows

N
z="> M;(s,tv)z; (3.75)
j=1

where x is a point in the infinite domain, x; are the coordinates of the mapping points, s,t
define the master coordinates of the base plane of the infinite element (which lies on the
exterior surface of the acoustic mesh), and v is the master coordinate in the infinite
direction. If we consider a point on the exterior surface, and its radial point a;, then the
master coordinate along the radial edge emanating from this point is given by,

v, = 1-— QCLZ'/?“Z‘ (3.76)
Equivalently, iy
Vs
ri—a; = a; —1 — Ui (3.77)

Where r; is a radial distance from a virtual source point (or virtual origin). Each node on
the infinite element boundary may have a source point, as illustrated in Figure (3-15).
Generally, the source point is positioned to ensure that rays are normal to the surface.
The mapping ensures that as the element coordinate v approaches 1, the physical radial
coordinate, r approaches infinity; thus mapping an infinite space onto a unit element.

68,72

The virtual source point can provide an orthogonal basis in the radial direction. For
non-spherical meshes, one virtual source point is needed for each point on the infinite
element boundary to ensure that the radial expansions are normal to the surface and
orthogonal to the surface shape functions, S;(s,t). This permit writing the mapping
function as a product of spatially separated terms, M;(s,t,v) = S;(s,t)R;(v). This
orthogonality is also necessary to ensure that the mass matrix remains positive
semi-definite. The mass matrix (from equation (3.71)) includes the term 1 —Vyu-Vu. The
magnitude of the gradient term, V, is exactly 1.0 when the source is normal to the
surface. It is greater than one otherwise, which leads to an indefinite matrix, and can
produce instability in dynamic integration.

Various methods can be used to generate the source point location. Two methods are used
in Sierra/SD. The simplest travels down the normal vector by a fixed distance b, where b
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Figure 3-15. Infinite Element Radial Mapping. Each node on the
infinite element boundary may have an origin, O;, (called a virtual
source point) and an effective nominal radius, a;. The source
point is chosen to ensure that rays are normal to the surface. For
a spherical boundary, all virtual source points are at the center of
the sphere.

is the dimension of the minor axis. The second method provides an offset that intersect a
plane normal to the vector and passing through the origin of the ellipsoid. These two
methods are illustrated in Figure (3-16).

Figure 3-16. Methods of Locating Source Point. On the left, the
source point is located on the surface normal, a distance b into
the structure, where b is the minor axis dimension. On the right,
the source point is located along the surface normal such that it
intersects a plane normal to the vector, and containing the ellipsoid
centroid.

The radial point a is now interpolated over the base of the infinite element, to give
N
a(s,t)=>_a;Si(s,t) (3.78)
i=1

where S;(s,t) is the implied surface shape function of the base element on the exterior
surface. In this way, tetrahedral or hexahedral elements may be used in the acoustic mesh.
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For the infinite elements, the only difference is the surface shape functions S;(s,t). The
radial interpolation is independent of the underlying finite element. The mapping functions
M;(s,t,v) given in equation (3.75) are constructed as tensor products of the surface shape
functions S;(s,t) and radial basis mapping functions. The radial basis mapping functions
are typically defined to be linear functions that map the finite master domain into the
infinite domain. These functions are given as,

2v
(1) = v—1
1+w
ma(v) = 1-wv
(3.79)
Thus, when v = —1, we have that m;(v) =1 and ma(v) =0. When v = 1, we have
mi(v) = —oo and ma(v) = co. In this way, the infinite domain is mapped to a finite

domain.

The mapping functions M;(s,t,v) are defined as tensor products of the surface shape
functions S;(s,t) with the radial mapping functions from equation (3.79). For example, for
an 8-node hex, the surface shape functions are defined as,

Sa(s.8) — (1—5)4(1—|—t)
Su(s.) = (1—s)(1—1)

4
(3.80)

Then, the 8 functions M;(s,t,v) can be constructed simply by crossing each S;(s,t) from
equation (3.80) with an m;(v) from equation (3.79).

Equation (3.77) can then be used to compute the phase function u(x) at an arbitrary
point
N 1+v 1+v

N
px)=r—a=> (r—a;)Si(s,t) =>_a;Si(s,t) —— = a(s,t)
i=1

i=1 1-v

— (3.81)

With p(z) defined, we now turn attention to defining P(x). The I** shape function P(x) is
defined as

;Si(s,t)(l —0)Q;(v) (3.82)

where ();(v) is a polynomial in a single variable. Various choices of @);(x) have been
investigated, including Lagrangian,%®%° Legendre,” Jacobi, and rational (integrated
Jacobi).”™ Lagrangian shape functions result in very poorly conditioned infinite element
matrices. The other three choices all appear to give acceptable levels of conditioning.

By(x) =
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Dreyer’ showed that the Jacobi polynomials in general give a better condition than the
Legendre polynomials. Regardless of the choice for Q(z), equations (3.75) and (3.82) imply
that P(z) will be a function of the master element coordinates r,s,t, and thus can be
integrated over the master element.

The function D(x) is defined as

1— 2
D(x) = < 5 ”) (3.83)
Now that we have defined P(z), u(x), and D(x), in terms of the master element
coordinates r, s,t, the integrals in equations (3.69), (3.70), and (3.71) can all be evaluated
by standard Gaussian quadrature over the master unit element (either hex or tet).

3.3.4. Computation of solution at far-field points

After the solution to the acoustic problem is complete, the values of the coefficients in the
expansion of equation (3.67) are known. The next step is then to compute the solution at
far-field points outside of the acoustic mesh. We consider two cases below, one where the
polynomial functions P(x) in equation (3.65) is a Lagrangian shape function, and the other
where P(x) is a more general polynomial (like a Legendre or Jacobi polynomial). In the
former case, the functions P(x) are associated with particular nodes having values of 1 at
the node and 0 at the other nodes. In the latter case, this property does not hold.

We assume that we wish to compute the solution at a node d that is at a location x4, and a
radial distance r = ||z4|| from the origin. This point is located on a radial line with a
corresponding radial point a. Thus, for this point we have pgy =r —a., We have

N
BlBg.w) = ;q‘j (w)Pj(md)e_ik“d (3.84)

Note that "N’ in this case is the number of infinite element basis functions within the
infinite element that includes the point d. In the case of Lagrangian polynomials, we have
the property that the function is equal to 1 at the node of interest and is equal to 0 at the
other nodes. Thus, in the case that the point z; coincides with a node in the infinite
element, we have the expression

p(z4,w) = qa(w)e” (3.85)

where gg(w) is the infinite element shape function corresponding to node d. Equivalently,

we have ,
qa(w) = p(zq,w)e’*H (3.86)

Thus, the pressure at the node d is equal to the corresponding value of the coefficient of the
infinite element expansion corresponding to that node, multiplied by the factor e~ %+,
where 14 is equal to the distance (along the radial line) from the boundary of the acoustic
domain to the node d.
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If we take the inverse Fourier transform of equation (3.86), we get

alt) =plat+ ) (3.87)

Thus, the pressure time history at node d is equal to a time-shifted value of the infinite
element degree of freedom ¢4(t) corresponding to node d. This makes physical sense in that
it would take the wave additional time equal to % to reach the point d.

Next we consider the case when P(x) is not a Lagrangian polynomial. In this case, the
point d could not be associated with any particular node. In this case, we still have the
relation

p(zg,w Z gj(w e~ i (3.88)

except in this case, the polynomials P(:Jc) do not necessarily vanish at d. Thus, again
bringing the exponential to the other side of the equation, we have

p(zg,w)e™ e = Zq (3.89)

Taking inverse Fourier transforms, we arrive at the result

xd,t+ qu (3.90)

Since all quantities on the right hand side of equation (3.90) are known after the
finite/infinite element solution is complete, we can post-process to compute the pressure at
the field point z,4.

3.3.5. Point Acoustic Sources

Point acoustic sources are common in acoustic modeling, and we provide some capability
for doing this in Sierra/SD. Here we describe the theory behind this implementation. The
theory of point sources*® 70 in acoustics is typically formulated by considering a pulsating
sphere of radius R, centered at the point x5. Upon taking the limit as the radius of the
sphere goes to zero, one obtains the equation for an acoustic point source.

We consider a point source that is injecting mass into the acoustic domain at a rate

s (t) = pQs(t) (3.91)

where g is the mass per unit time of fluid that is being injected into the domain, p is the
density of the fluid, and Qs(t) is the volume velocity (volume per unit time) of the fluid
that is entering the acoustic domain. More on this will be given later in section 3.5.2 on
Lighthill’s approach, and its connection with the point source. We can construct a point
source consistent with the mass injection rate g defined in equation (3.1) via multiplication
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of g by a Dirac delta function (which itself has units of one over volume). Because dq/0t
appears in the wave equation (3.11), one more time derivative of 7 is required:*?

1 0%

o —V2p = —ing(£)8(x — z5), (3.92)

where p is the acoustic pressure at a point in the domain, ¢ is the speed of sound, and p is
the fluid density. We note that the volume velocity can also be written as the time
derivative of the volume in the source

_dav

Qs(t) - E

(3.93)
where V' is the volume enclosed by the source. Equation (3.93) is valid for a spherical
source enclosing a volume V', but in the case of a point source we shrink the radius to zero.
The volume velocity, Q)s, is also sometimes referred to as the source strength. It is simply
the integral of the normal component of surface velocity over the spherical surface of the
source. Since the surface velocity is the same everywhere on the surface of the sphere, the
source strength is

Q= /SvndS = vn/dS = 4ra’vy, (3.94)

where a is the radius of the sphere, and v,, is the normal component of velocity on the
surface. By considering the volume increase for a pulsating sphere, it is easy to see that
equations (3.93) and (3.94) are the same.

We note that in the Sierra/SD implementation of acoustics, we actually use the time
derivative of pressure rather than the pressure directly. We also scale the equation by
density, since this is needed when the fluid properties are not constant. Thus, we would
modify equation (3.92) as follows

1 0% V) s (t)
P T R Iz —xg), (3.95)

where p = 0 /0t. Equivalently, this gives

1 0% V%

o2 B - 5 = —Qs(t)d(z — ) (3.96)

In the frequency domain, equation (3.92) is typically written as
(V2+k%) ¢ = —4m Ad(x — z) (3.97)

where A is referred to as the amplitude of the source. The solution to equation (3.97) in an
unbounded domain can be shown to be

¢ = A ikr (3.98)

r
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where r = |z — 4] is the distance from the source to the point z in the domain, and k = £
is the wavenumber. Assuming a time-harmonic expression for Qs(t) = Qe’*t, it follows
from equation (3.96) that () and A are related by

4T A
Q=" (3.99)
p
The solution ¢ can therefore be expressed as
ejkr
= 3.100
¢=pQ— (3.100)
or due to ¢ = dp/0t, as
ejkr
p=jwpQ - (3.101)

In Sierra/SD, the keywords point__volume__vel and point__volume__accel are used
to set the point source behavior. The former specifies dV/dt as in equation (3.96), while
the latter specifies d?V/dt? as in equation (3.92). See the user manual for further details.

A finite element formulation of the previous equation can be constructed as usual, by
multiplying the previous equation by a test function, and integrating by parts. We note
that the domain of integration must include the point zg, the location of the point source.
Also, we note that the integration against the delta function 0(z — z;) is actually a duality
pairing, rather than an integral, since the integral of a delta function is not defined. In
what follows, we assume that the point z¢ lies on a node in the finite element mesh. This
will facilitate the modeling, since we will typically define the point source on a nodeset or
nodelist consisting of a single node.

Denoting by V;(€2f) the function space for the fluid, the weak formulation can be written
as follows. Find the mapping ¥ :[0,T] — V¢(§2f) such that

/Q pc2¢ / Wf;vqjdmz— /a o, indds Qa1

Vo € V¢(Qy), where 1, is the prescribed velocity on the Neumann portion of the fluid
boundary. We note that the first term on the right hand side is a surface excitation force,
and thus only contributes nonzero terms on nodes that lie on the surface [3q . The second
term comes from the point source, and only contributes a nonzero term on the node where
the point source is located.

Inserting a finite element discretization ¢(z) = SN, ¢; N;(x) into equation (3.102) results in
the system of equations )
M+ Kb = fa, (3.102)

where N is the vector of shape functions, M = [, » p%N NTdz is the mass matrix,

g
= fo wdx is the stiffness matrix, and f, = [y, U, NTdz + Q4(t) is the external
forcing vector from Neumann boundary conditions.

If @ =% is computed with a void element in Presto, equation (3.102) can be used to
compute the right hand side term and the corresponding acoustic response.
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3.4. Nonlinear Acoustics

Linear acoustic theory is based on the assumptions of small amplitude waves and a linear
constitutive theory of the fluid medium. Although these assumptions hold for many
vibro-acoustic interactions, they are invalid in sound fields with high sound pressure
levels,”™ ™ i.e. sound fields that have finite amplitude waves. Finite amplitude waves can
be generated in interior fields when resonance occurs,®? in the far-field of atmospheric and
underwater explosions,3! in tire noise generation,®? and in many aeroacoustic sources (such
as sonic booms).77 Nonlinear effects increase with the frequency of the waves, and thus the
study of nonlinear acoustics has also become important in high-frequency applications such
as ultrasound.®®3* Unlike the linear acoustic wave equation, the nonlinear counterparts
can handle waves with finite amplitude, and allow more accurate modeling of nonlinear

constitutive models in the fluid.

The classical Kuznetsov equation® treats three-dimensional nonlinear acoustic waves to
second order in nonlinearity. Recently, Soderholm®® generalized Kuznetsov’s equation using
the exact equation of state, rather than a series expansion. The nonlinear terms in these
wave equations imply that the sound speed depends on the stress state in the fluid. This
leads, eventually, to the formation of weak shocks (small discontinuities in acoustic
pressure). For a monofrequency source, energy will be gradually transferred from lower
harmonics to higher harmonics, leading to a steepening of an initially smooth wave. Weak
shocks radiated from a structure lead to unpleasant cracking noise, and when impinging on
a structure they cause a very different response than smooth acoustic waves. Thus, it is
important to characterize their effects in both noise radiation and structural coupling
problems.

The governing equations of acoustics can be formulated in terms of particle displacement,
or scalar-based quantities such as acoustic pressure or velocity potential. In particle
displacement approach, the mesh moves with the waves, whereas in the latter approaches
the mesh is fixed. The primary advantage of the displacement approach is its easy coupling
with a Lagrangian solid mechanics code, since the unknowns are the same as for the solids.
The displacement approach has been studied in,*"® though these references dealt only
with the linear case. Since ideal fluids have zero shear modulus, this approach suffers from
an infinite dimensional null space consisting of rotational modes in the fluid. Numerically,
this leads to spurious modes that pollute the computed solution. These modes can be
eliminated through the use of penalty formulations, but this can result in poor
conditioning. Displacement formulations for acoustics are also prone to mesh tangling in
the case of large displacements in either the solid or the fluid, making them inappropriate
for many applications.

In the Eulerian approach, the unknown is typically acoustic pressure or velocity potential.
In problems without structural coupling, the mesh remains stationary. In addition, the null
space consists only of the constant pressure mode, which makes these formulations more
stable for numerical computations. On the other hand, for coupled solid/fluid problems,
the Eulerian formulation requires a coupling mechanism between fluid and solid to handle
the different degrees of freedom used to discretize the fluid/solid domains. In the case of
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small structural displacements, this coupling mechanism reduces to coupling operators that
couple acoustic pressure and structural displacements between fluid and solid. In the case
of large structural displacements or rotations, methods such as the Arbitrary
Lagrangian-Eulerian (ALE) approach, which have been developed for aeroelastic
coupling,*®?° could also be applied to the structural acoustics problem. An alternative
approach in the case of large structural motion would be a purely Eulerian method for the
fluid, wherein the solid/fluid boundary cuts through fluid elements. Regardless of the
approach taken for the structural coupling, we have chosen the Eulerian approach for
acoustic discretization, since it avoids the null space issues eluded to earlier.

Unlike the rich history of finite element formulations in nonlinear solid mechanics, the
finite element formulation of nonlinear acoustic equations for fluids has received
considerably less attention. Cai et al®* recently used finite elements and parallel
computations to solve Kuznetsov’s equation for the purpose of modeling ultrasonic waves.
In a sequence of works, Hoffelner et al®? also used a finite element method to solve
Kuznetsov’s equation. Later,”! they used their method to simulate acoustic streaming and
radiation force, two important acoustic phenomena that cannot be captured from linear
theory. Kagawa“? took a similar approach in solving Kuznetsov’s equation, except that
additional approximations were made to the equation prior to discretization. Vanhille et
al?® used finite differences and finite volume methods to solve a nonlinear acoustic wave
equation in the Lagrangian framework.

In this section, we present a finite element implementation of the Kuznetsov wave equation.
We derive the full tangent operator for the spatial discretization, and give an
implementation of a time discretization scheme using the generalized alpha method. We
then derive a formulation for coupling the Kuznetsov equation to the equations of motion
of an elastic solid.
In order to illustrate ideas, we begin with the linear acoustic wave equation
1 9%
——=—A¢p=0 3.103
29z ¢ (3.103)

where ¢ is the velocity potential (¢ = Vu, where u is the particle velocity), and ¢ is the
speed of sound. The derivation of this equation neglects both convective and constitutive
nonlinearities.

The nonlinear isentropic equation of state for air can be written as follows

P ¥
== <ﬁ> (3.104)
Py Po
where P and Py are the total and reference pressures, p and pg are the current and
reference densities. 7y is the ratio of specific heats, and is equal to 1.4 for air. Equation

3.104 can then be combined with the conservation of momentum and conservation of mass
for the fluid to derive nonlinear wave equations. In Soderholm’s approach, equation 3.104
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is used directly. In Kuznetsov’s approach, it is first expanded in a Taylor series about the

isentrope s = so'"
opP 1(6°P
p=P-R= (8_> (p=po)+35 (W) (p—p0)* + ... (3.105)
P 50,00 P 50,P0
which can be written compactly as
2
_ B{a—
p=A<'0 p0>+—<p po) Fo (3.106)
Po 2\ po

2

— opP — 2 _ 2 (&P - or 2
where A = pg (5_P>so,po = pocg, and B = pj (a—p2>80 " Since (8_;) = ¢ is simply the

square of the linear speed of sound, we see from the expansion that the ratio of the first

two terms is 5
B po ( P )
—=55= (3.107)
A g \0p 50,00

The parameter B/A accounts for the nonlinear constitutive law of the fluid up to second
order. A table of values of B/A for various fluids can be found in texts on nonlinear
acoustics.””

)307/)0

For linear acoustics, only the first term in the expansion 3.106 is retained. In that case, we
have

p=A<p;0pO> = c5(p—po) (3.108)

which implies that the stiffness of the fluid is simply the square of the linear speed of
sound.

Kuznetsov’s equation uses the above Taylor series expansion of the equation of state, but
truncates all terms past the second. It also accounts for convective nonlinearities to second
order. The equation is derived by combining the Taylor series expansion of the equation of
state with the conservation of mass and momentum. The result is the following. 80,8594

1826 10 BJ/A [(9¢\* 2\
?W‘Ad)_c_?&(b(A@*W(E) +(vey =0 (3109)

where ¢ is defined as p=p f%, and p is the acoustic pressure. The first two terms in
equation 3.109 are the same as in equation 3.103, but the fourth and fifth terms are
nonlinear. The third term is actually a linear absorption term, but it is usually grouped
with the nonlinear terms to indicate deviation from the linear wave equation. The
parameter b is for absorption in the fluid due to viscosity and thermal conductivity.

Equation 3.109 was originally developed in terms of the velocity potential. Here, instead of
solving for the velocity potential, we prefer to solve for ¥ such that p =1. This implies
that ¢ = %w. Inserting this relation into equation 3.109 yields

1 0% 10 B/A (00\ (V)2
?W‘Aw_c?& (b(A¢)+w (E) + =0 (3.110)

p
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This is done only for convenience, since the acoustic pressure can easily be computed
during postprocessing as p = . For simplicity, we will still refer to ¥ as the velocity
potential in the remainder of this paper.

Soderholm® derived a higher order nonlinear acoustic equation that accounts for
nonlinearities to higher order. In this approach, the exact equation of state, equation 3.104,
is used directly, rather than the second order expansion of Kuznetsov’s equation. This
equation is only valid for air, whereas Kuznetsov’s equation can be used for any fluid that
has a tabulated value of % After combining the equation of state with the conservation of
mass and momentum, the following equation results

1 0%¢ b O 10
%W_A(b Qat(A¢) _(2)8_( )
1 2 ")/—1
+ﬁv¢-V(v¢) - 7 ( )Acb 0

We note that Soderholm’s equation is a generalization of the exact relation given by
equation 3 26 in,”” which was derived for the case of a lossless fluid. The only difference is
the term 2 at(Agb) which accounts for absorption.

The range of validity of nonlinear wave equations is typically given in terms of acoustic
mach number. u

M= (3.111)

€o
where u is the particle velocity, and ¢g is the linear speed of sound. Rough guidelines are
given in.”* For the Kuznetsov equation, a limit of M < 0.1 is given. For a third order wave
equation, a limit of M < 0.7 is given. These are useful guidelines for the acoustic analyst,
who needs to decide which equation is applicable to their needs.

In summary, three-dimensional nonlinear acoustic waves in thermoviscous fluids can be
modeled using equations derived by Kuznetsov and, more recently, by Soderholm. These
equations include the linear wave equation as a special case. Kuznetsov’s equation
generalizes the linear wave equation to include nonlinearities to second order and linear
dissipation. Soderholm’s equation is an additional generalization that allows for higher
degrees of nonlinearity. The dissipative term in Soderholm’s equation is the same as in
Kuznetsov’s equation.

3.4.1. Weak Formulations

In this paper we will only work with Kuznetsov’s equation, since we are interested in a
formulation that is valid for any fluid, and not just air. A weak formulation of equation
3.110 can be constructed by multiplying with a test function and integrating by parts. We
denote the fluid domain by € and its boundary by €2 = 9, |J0€24, where the subscripts
n and d refer to the portions of the boundary where Neumann and Dirichlet boundary
conditions are applied. We also assume that the fluid is initially at rest, i.e.

¥(x,0) = (z,0) = 1)(z,0) = 0, which is sufficient for most applications.
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Denoting by V;(€2f) the function space for the fluid, the weak formulation can be written
as follows. Find the mapping ¢ : [0,7] — V;(€2f) such that

C%/chzﬂ/gw-wdx
+l/ bvzb-vgbdas—i(B/A)/ TZ}@/}qbdaj—
/w V¢¢dx—/ :—/ 0 (it + i) b (3.112)

pc?
V¢ € Vi(§f), where 4y, and 1, are the prescribed particle velocity and acceleration on the
Neumann portion of the fluid boundary. Here we use ¢ to denote the test function, and not
the velocity potential as denoted earlier. We note that for air, c% is of the order 1e~10
under normal conditions, and thus it is usually sufficient to drop the acceleration term and
approximate the right hand side as — [y prin@ds. We will make this approximation in

the remainder of this paper.

We note that an interesting feature of the weak formulation of equation 3.110 is that the
integration by parts only occurs on the linear elliptic terms. The nonlinear terms are not
integrated by parts.

3.4.2. Spatial and Temporal Discretization

A finite element formulation of equation 3.112 is constructed by representing the unknown
by a finite summation ¥(z) = 2", ¢; N;(z) = 9T N, and substituting in equation 3.112.
This leads to the following set of nonlinear ordinary differential equations in time

Fina(d(2,),9(z, 8), 9(x,8)) = Fage(z, 1) (3.113)

where

n 1 7
F t:?/ﬂwgbdzp—k/ng-ngdm (3.114)
1 . 1 -
+5 /Q bw.wdx—pT(B/A) / dnbda —
= / Vi - Vipoda (3.115)
and

o = —/8Q pyln@ds (3.116)

F is the internal force, which depends on ¢ and its first two time derivatives, and F’ ek g
the external force. We note that 1) and ¢ actually depend on ¢ through the time
discretization scheme, and thus we could write equation 3.113 as

Fint(0(,1)) = Foge(,1) (3.117)
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In order to linearize equation 3.113, we could use a finite difference approach, in which the
tangent matrix is derived by differencing the internal force function with respect to an
incremental displacement. Alternatively, we could derive a full Newton tangent matrix by
taking partial derivatives with respect to all of the independent variables. We have taken
the latter approach, since it reveals explicitly the fact that the tangent matrix is
nonsymmetric.

We define ’QE,wﬂ/J as the current iterates, and 1,1, as the unknowns. The tangent
equations can be derived by expanding the left hand side of equation 3.113 in a Taylor
series. If we truncate all terms beyond the constant and linear contributions, we obtain

ZTLt(w?QLﬂL) mt(l/; ¢71;)+

it (5,3.0)+ 2 0,00 5+ 20,8 5] Av = (5.0, + A
(3.118)

O 0y N

where Ay = 1) — 1), and 1 is the current iterate. The full tangent matrix A is defined as

A= [aﬂnt

(B, d) + (D0 0) 5 (4,9, 9))

aFint = 3¢ aFmt . 8¢
5 55t 50 ¢] (3.119)

Since A is unknown, we approximate it as Ay =1 — 1), where 1 is the previous iterate.
Thus, as convergence occurs, the current and previous iterates become identical.

We have chosen the generalized alpha time integration scheme® in order to discretize

equation 3.113 in time. The generalized alpha method is based on the generalized
Newmark method. The flexibility of this method is useful in this case, since it can be made
to be either implicit or explicit (e.g. central difference), depending on the problem at hand.
In displacement form, the generalized Newmark method first needs an update equation.

Given A, and a previous iterate 1), we compute an updated current iterate as

%=1+ A (3.120)
Then, we use ¢ to compute updated first and second time derivatives as follows
7Z = [lﬁ (D %At} - —6%
ﬁAtQ 2p

b = Yn+A [(bv)%ﬂﬂ

1-28

[ID P — &nAt}_WW

= Yn+At [(1—7)% ﬁAtQ zﬁn}

(3.121)

where v, are the integration parameters for the Newmark method, and U, 1/173 are the
first and second time derivatives from the previous time step. Note that, as Ay — 0,
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¥ — 41, indicating that the current iterate has converged to the value at the next time
step, step n+ 1.

We can simplify by noting that, from equation 3.121,

W v

o BAt
W 1
oy BAL2

(3.122)

We also make the following definitions, which define the tangent stiffness, damping, and
mass matrices

OFint - 5 = .
aw (¢7¢7¢)_Kt
OFint , ~ 7 = .
aw (¢a¢>¢)—ct
OFint , 7 7 = -
aw (¢7¢,¢)—Mt

(3.123)

where K;, C;, and M; denote the tangent stiffness, damping, and mass matrices. The
tangent matrices are the derivatives of the internal force, but evaluated at the current
Newton iteration. Substituting equations 3.122 and 3.123 into equation 3.118 yields

Fmt(%lb,@:fjmt@ﬂzalz) thﬂL o+ —— M, Ay (3.124)

BAL 6At2
Finally, substituting equation 3.124 into equation 3.113 yields

1
Kt—i-—ct-i-

A2
BT GAE Res (3.125)

I

M;| Aw Femt Znt(zz 772 7;)

Note that the right hand side of equation 3.125 is simply the residual, or the difference
between the external force and the internal force at the current Newton iteration. As
convergence occurs, the residual goes to zero.

We now derive explicit expressions for K;, C;, and M;. We have

8Fm
Ki = 5r@0.0)

_ T, _ 2 [ (v UNT
- /Q VN INdr /Q (V- VNT)Ndz (3.126)
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OF; wnt

G = 3% (&, 1))
_ 1 / bVNT.VNdx—% /Q (V- VNT)Ndz (3.127)
_ pC4B/A / UNT Ndz (3.128)
(3.129)
M = TG
_ C%/QNTNdx—;CQB/A/Q;ZNTNdx (3.130)

where N is the vector of element shape functions.

For the full Newton method, these tangent matrices need to be reformed at each iteration
of the Newton loop. The tangent damping and tangent stiffness matrices are
nonsymmetric, since some terms involve products of shape functions with gradients of
shape functions. However, we note that the initial tangent matrices are all symmetric,
since at time ¢ = 0, we have ¢ =0, ¢ = 0 and ¢ = 0 by assumption. In that case, we have

Ky, = | VNT.VNdz (3.131)
¢ Q
1
Oy = /Q bVNT . VNdz (3.132)
1
My, = — /Q NT Ndz (3.133)

In this work we chose the Newton method for the nonlinear solution, and thus we could use
any of the variants of this method, some requiring more and less frequent updating of the
tangent matrices. In the case of the full Newton method, the nonsymmetric tangent
matrices would need to be reformed at each iteration. In the initial Newton method, only
the initial symmetric tangent needs to be formed. The numerical experiments conducted
thus far indicate that excellent convergence behavior is observed even with the initial
Newton method.

3.4.3. Structural Coupling
The second order equations of motion for the solid and the Kuznetsov equation for the
fluid are

psuyt —V-o=f

1 0% 1 a BJA (09 (V)2 _

(3.134)

144



Here u corresponds to the displacement of the structure, o is the structural stress tensor,
and subscripts s and f refer to solid and fluid, respectively. The equations of motion for
the solid in equation 3.134 are written in the most general form, which could include both
material and geometric nonlinearities. However, since we are only considering small
structural displacements, these will now be specialized to the linear elasticity equations.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet
interface, which is designated by 0€Q.t), are

R e
on p.f "
on = —Yh

(3.135)

where 7 is the surface normal vector. These correspond to continuity of velocity and stress

on the wet interface. In the case of nonlinear acoustics, the second condition is replaced
by94

o = = (4 0?2 (Ve +bap)
(3.136)
Clearly, the linear approximation of condition 3.136 is
On = —N (3.137)

numerical results were presented on the solution of Kuznetsov’s equation, and the
approximation 3.137 was used to convert from velocity potential to pressure as a
post-processing step. In our case we also use this approximation as a post-processing step,
and additionally, we use equation 3.137, rather than equation 3.136 to approximate the
structural acoustic coupling. Obviously, this is an additional approximation, but it is
consistent with the previous studies.®38% Using relation 3.136 would lead to nonlinear
boundary integral terms, and result in a nonsymmetric formulation.

n, 83,84

The weak formulation of the coupled problem is constructed by multiplying the two partial
differential equations in equation 3.134 by test functions and integrating by parts.
Denoting by V(€2) and V¢ (€2s) the function spaces for the solid and fluid, respectively, we
have the following weak formulation.

Find the mapping (u,v):  [0,7] = Vs(Qs) x V¢(§2f) such that
/ psﬂwdx—i—/ o szdx—/ opwds :/ fwdx+/ opwds
Qs Qs 8Qwet

—/ ¢¢dx+/ Vi< Vad +/

wct a
. B/A
+C—2/ Vi Vodr =5 / / el —
oY
= / Vi Viode = [ 2 gds

(3.138)
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Vuw € Vi(Qs) and Vo € Vi(§2f), where 09, is the portion of the solid and fluid boundaries
that has applied loads, and f is used to denote body forces on the solid. Also,

V¥ = % (V + VT> is the symmetric part of the gradient operator. If Dirichlet boundary
conditions were applied to part of the structure, or if the fluid had a portion of its
boundary subjected to Dirichlet conditions, then the Sobolev spaces Vi(€2) and Vy(€2y)
would be modified accordingly to correspond to spaces that have those same boundary
conditions. We also note that in the integration on the wet interface, the normal is defined
to be positive going from solid into the fluid.

Next, we insert the boundary conditions from equation 3.135, and we define o, = g on the
solid portion of 9€,,, and g—;ﬁ = —pfuy on the fluid portion of 9€2,. This leads to the
following weak formulation. Find the mapping (u,v): [0,7] — Vi(2s) x V¢(§2f) such
that

/Qs psilwdm+/ﬂsa : Viwdz + Yiwds = /Qs fwdx+/(99n gwds

C%/gfwdx+/gfvw.v¢dx—pf/ inds

wet

0Qwet

b . B/A
+C—2/va¢-v¢dx— / Db

2 .
—V-Vd:—/'d 3.139
o2 o, VO Vodr =y [ ingds (3139
Vuw € Vs(Qs) and Vi) € V;(€2f). Equations 3.139 are a nonlinear system of equations, since
the fluid wave equation is nonlinear.

Inserting the spatial discretizations u = > u;/N; and ¢ =3 ¢; N; into equation 3.139 yields
the following semidiscrete system of nonlinear ordinary differential equations in time

M, O At Cs L A Ky 0 Au | | Ress
l 0 MfHA@L]+l—PfLT CfHA1/5]+[ 0 Ky || v || Res | P10
where Mg, (s, and K, denote the mass, damping, and stiffness matrices for the solid, and
M;, C 7Zf’ and Ky denote the same for the fluid. The coupling matrices are denoted by L
and L' . Coupling between fluid and structure, as well as any damping in the fluid or solid

separately, is accounted for by the damping matrices. The quantities Ress and Resy
denote the residuals in the solid and fluid, respectively (recall equation 3.125).

Ress = F&" — Mii — Cyti — LT;

R@Sf — F;It Znt(w ,w ¢)
(3.141)

Equation 3.25 is solved using Newton’s method, in conjunction with the time discretization
scheme that was introduced earlier. The nonlinear terms in the fluid wave equation are
accounted for in the right hand side in the initial Newton method, but for a full Newton
update, the matrices My, Cr, and Ky would all need to be updated using equations 3.126,
3.129, and 3.130.
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For the initial Newton method, equation 3.140 can be symmetrized in a number of ways.
For example, the second equation can be multiplied by ;—fl. This makes the system

symmetric, but the matrices are indefinite.

In order to solve the coupled system of equations (3.25), we could either treat the 2 x 2
block system as a monolithic system of equations and integrate it directly, or we could use
a staggered, loose coupling scheme. For the numerical examples presented next, we simply
integrate the system directly.

Finally, we note that most numerical methods for absorbing boundary conditions in
acoustics have been developed for the linear case. The development of absorbing boundary
conditions for nonlinear acoustics is an important area of research, but we do not pursue
that subject here. In this paper we use first-order absorbing boundary conditions of the
form 5
ap_ _low (3.142)
on c Ot
This condition leads to an additional contribution to the matrix C'y from equation 3.140.
Equation 3.142 is, or course, an additional approximation that neglects nonlinear terms.
We mention that Cai®* made a similar approximation when simulating nonlinear acoustic

fields.

3.5. Fluid Coupling through the Lighthill Tensor

Fully convective, turbulent flow may be effectively coupled to acoustic formulations for
sound propagation using the Lighthill analogy. For convenience, we use a pressure
formulation of the acoustic medium.

The inviscid Euler equations given in equation (3.10) including a source term are given

by

dp

9p . 14
4+ poV u=0, (3.143)
po(??—'; +Vp=§, (3.144)

where pq is a reference density, p is density, p is pressure, u is particle velocity, and S is a
source term. We note that in equation (3.144) the Pressure and density are related as

p=p. (3.145)

3.5.1. Pressure formulation

The acoustic pressure formulation is obtained by combining the mass and momentum
balance equations. The time derivative of (3.143) is

p+poV-a=0, (3.146)
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where a superposed dot represented partial differentiation with respect to time. The
divergence of (3.144) is

poV-u+V3p=V.S. (3.147)
Substituting (3.145) and subsequently eliminating V -1, the acoustic pressure equation is
L. 2
C—Qp—V p=—-V-8S. (3.148)
0

3.5.2. Lighthill tensor

Lighthill’s analogy” is an approach to the problem of sound generation and propagation in
turbulent flow. The equations of motion are rearranged into a scalar, inhomogeneous wave
equation where the source terms are the noise generation due to turbulence in the fluid:

p—Vp=V-(V-T), (3.149)
where T is known as the Lighthill tensor. It is expressed in Cartesian component form as
Tj = puiuj + (p— c§p)dij — 7ij, (3.150)

where the tensor 7 is the viscous stress tensor for the fluid.

The pressure form of (3.149) is
p—EVp=ciV-(V-T) (3.151)

In Sierra/SD, only the pressure formulation of Lighthill’s method as given by the above
equations is implemented. This is in contrast to most acoustic solutions which employ a
velocity potential formulation.

3.5.2.1. Handoff of Lighthill Tensor from Fuego The incompressible form of the
Lighthill tensor is given by,
Tij = ptiglls = Tige (3.152)

Fuego provides V- T of equation (3.152) as a nodal variable with an arbitrary name on an
SD acoustic mesh. We implement the weak form of (3.151) in Sierra/SD.
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4. SIERRA /SD ELEMENTS

Structural dynamics is a rich and extensive field. Finite element tools such as Sierra/SD
have been used for decades to describe and analyze a variety of structures. The same tools
are applied to large civil structures (such as bridges and towers), to machines, and to
micron sized structures. This has necessarily led to a wealth of different element libraries.
Details of these element libraries are presented in this section. For information on the
solution procedures that tie these elements together, please refer to section 2.

4.1. Isoparametric Solid Elements. Selective Integration

The following applies to any solid isoparametric element, but is implemented in the code
on elements with linear shape functions (such as hex8 or wedge6). This discussion
addresses calculation of relevant operators on the shape functions and eventual integration
into the stiffness matrices. 17

4.1.1. Derivation

We begin with the separation of the strain into deviatoric and dilitational parts so that
their contributions to the stiffness matrix can be computed separately. This is part of the
strategy for avoiding over stiffness with respect to bending.

The strain energy density in the case of an isotropic, linearly elastic material is:

p= %(ZGe—l—/\tr(e)I)oe (4.1)

with some re-arrangement, this can be shown to be:
b5 g 1 9
p=Géeé+ iﬁ(tr(e)) (4.2)

where é = e — Ztr(e)l.

Having separated the part of the strain energy density due to deviatoric part of the strain
from the part of the strain energy density due to the dilitational part of the strain, we shall
integrate them separately. First, we must determine how to express the strains in terms of
nodal degrees of freedom.

We know that the deformation field is linear in the nodal degrees of freedom and that the
displacement gradient is also, so we should be able to expand each of those quantities as
follows.

1TThis development is based on work by Dan Segalman.
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Let P; be the node associated with the jthe degree of freedom and let s; be the direction
associated with that degree of freedom. The displacement field is:

i(x) = NP (z)us e, (4.3)
where summation takes place over the degree of freedom j.

Similarly, the displacement gradient is:

6 o P P

Vil(z) = (T%)N i (2)us) €, (4.4)

We now define the shape deformation tensor W7 corresponding to the j the nodal degree of
freedom: 5

Wi(z) = (—5)Vii(x) (4.5)
Ous)
which, with Equation 4.4 yields:
. O —p, .
W (z) = (a—%)N 7()€s, € (4.6)
The symmetric part of this tensor is:
. 1. . .
§(z) = 5 (W (z) + W’ ()") (4.7)

and the strain tensor is , P,
e(z) = S (z)us? (4.8)

From the above, we construct the dilitational and deviatoric portions of the strain in terms
of the nodal displacement components:

tr(e(z)) = b (x)us? (4.9)
where ' _
W (z) = tr(S%(z)) (4.10)
Similarly,
é(x) = B (w)us) (4.11)
where
Bi) = §9(z) - %bj(.r)l (4.12)

The stiffness matrix is evaluated using the constitutive equation (Equation 4.2) and the
following definition:

62
=—F5—5 x)dV (x 4.13
ST T | p@)dva) (4.13)
This plus our expressions for strain in terms of the nodal degrees of freedom yield us the
following expression for element stiffness:

K =0 (B™(x))T @ B™(2)dV ()

volume

+8 ™ ()b (2)dV (z) (4.14)

volume

m,n
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4.2. Implementation

From the above it is seen that once the shape deformation tensor W7 is found, the rest of

the calculation follows naturally. The calculation of the components of that tensor is

presented here. The components of W7 are

Wi, = én-W.g,
0 | «p
= 5m,8j<a—xn)N i(x)
The partial derivative (%)N Pi(z) is calculated from
2N — (2N
(GNPl = (GNP Iah
where
Ty = p-m(€)
and

The issue of selective integration in the elements is discussed in section 4.3. The
formulation discussed there applies to all the isoparametric solid elements.

4.3. Integration of Isoparametric Solids

A selective integration method for isoparametric solids is described that satisfies the
standard conditions, including the patch test, and at the same time accommodates

anisotropic materials.!

(4.18)

(4.19)

We begin with the definition of the strain vector. For computational convenience define the

stress and strain vectors as

011
022
033
023
013
012

and,

€11
€22
€33
2€93
2613
2€19

18 This is a transcription of Dan Segalman’s framemaker document, “Isolnt.frm”.

(4.20)

(4.21)

151



These are related through the matrix of elastic constants.

s=Cv (4.22)

We now take a look at virtual work, since it is from virtual work that the stiffness matrix is
derived.

SW = /v sTovdV = /V el \% (4.23)

If we select the above volume to be that of an element and use the strain-displacement
matrices associated with each nodal degree of freedom,

v(z) = ZB]' (z)u; (4.24)
J

where u; is the 4% nodal degree of freedom, the virtual work becomes

SW = ujduy /V B;(2)7C By(x)dV (4.25)

Since the element stiffness matrix is defined by
oW = UjéKij (4.26)

we conclude that
Kij = /V B;(2)TC By(x)dV (4.27)

The next step is to decompose the strain-displacement vectors into deviatoric and
dilatational components.

Bj(z) = BP (z)+ B} (z) (4.28)
where,
-
1
BY (o) =dj(z) | (4.29)
0
L 0]

and 3d;(x) is the sum of the first three rows of B;(z). BJD(I‘) is defined by Equation 4.28.

Substitution of Equation 4.28 into Equation 4.27 yields:
Ky = | BP@TCBP@)aV + [ BY (&) CBY (2)dV +---

+ [ BY @ CBP@)av + | B (@) CBY (2)av (4.30)
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For isotropic materials, the deviatoric and dilatational portions of the strain are orthogonal
with respect to the matrix of material constants, so the last two integrals in the above
equation are zero. It is sometimes common to integrate the contributions of each to the
stiffness matrix using separate strategies. Such approaches can produce elements with
slightly less susceptibility to parasitic shear. Such an approach does not work for elements
of anisotropic material, so the following approach has been developed.

Uniform Strain-Displacement Matrices. At this point it is useful to define the
element averaged strain displacement matrices.

Bk = %/VBM:U)CZV (4.31)

For hex elements, these are the strain-displacement matrices of the Flanagan and
Belytschko, and are known as “uniform strain” elements. Elements formed by the above
strain/displacement matrices are very “soft”, having properties similar to elements formed
by single point integration. Hex elements of this sort display extraneous zero-energy
modes. In what follows, we consider linear combinations of this strain-displacement matrix
formulation with the consistent formulation presented in Equation 4.24.

The uniform strain matrices are also separable into dilatational and deviatoric parts.

By=DBY +BP (4.32)

Mixed Integration. This selective integration method builds on one presented by
Hughes.?® We can achieve the effect of softening elements by forming the strain
displacement matrices from combinations of the consistent strain-displacement and the
uniform strain displacement matrices.

A

By(z) = aB) +(1—a)BY (z)+ BB + (1 - B)BY (x) (4.33)

(14) Note that for all values of @ and 3, the above correctly captures uniform strains. It is
in how the non-uniform strains contribute to the stiffness matrix that the particular values
of a and 8 make a difference. By setting values of a and § according to the following table,
we recover the standard integration forms:

Integration
Flanagan and Belytschko
Full Integration
Selective Integration

OO R™

— O Q2

We note that setting o = 1 and using an intermediate value of 3, we can achieve
performance almost as good as that of the Flanagan and Belytschko element but without
admitting hour-glass modes.
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4.4, Mean Quadrature Element with Selective Deviatoric Control

In this section we discuss the implementation of the mean quadrature element in
Sierra/SD. This work is a result of a collaboration with Sam Key.""

We first examine the element stiffness matrix resulting from a fully integrated element
K= /V BYCBdV (4.34)

where K is the stiffness matrix, V' is the volume of the element, B is the standard
strain-displacement matrix, and C' is the matrix of material constants. When implemented
in the standard way, this element behaves very poorly for nearly-incompressible materials,
and is too stiff even on materials with moderate Poisson ratios.

A standard approach for softening the element formulation in the presence of nearly

igcompressible materials is to replace the matrix B with its mean quadrature counterpart,
B

?

B= /V BdV (4.35)

This alleviates problems associated with nearly incompressible materials, but the resulting
stiffness matrix exhibits hourglass modes. These modes can be removed either through
hourglass control methods, or by adding in some of the missing deviatoric components. In
the approach described here, we use the latter method. We note that both B and B can be
decomposed into their volumetric and deviatoric components, i.e.

B= BV +Bp (4.36)
B=By+Bp

With these decompositions, we define
B =By + Bp+sd(Bp — Bp) (4.37)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean
quadrature element. When sd = 1, the element corresponds to mean quadrature on the
volumetric part, but with full integration on the deviatoric component.

With this new definition of B, we can define the stiffness matrix for this element as

K= /V BTCBAV (4.38)

4.5. Bubble Element

Low order finite elements tend to behave poorly when subjected to bending loads. The
bubble hex elements have been shown to give much better bending performance, without

154



increasing the number of degrees of freedom in the element,”® % 100 In this section we give
a brief review of the theory behind this element.

The representation of displacement at the element level in the standard hex8 element is
8
u=> uyN;(¢)=u'N (4.39)
i=1

where u is the element displacement, Nj; is the i shape function, N is the vector of shape
functions, and £ is the vector of reference element coordinates. The bubble element
augments the standard finite element basis functions with additional bubble functions. The
representation of displacement at the element level for the bubble element takes the form

8 3
u=> wN;(€)+ > aPi(¢) =ut™N +aTP (4.40)
i=1 i=1

where P;(§) are the bubble functions, P is the vector of bubble functions, a; are the
unknown coefficients for the bubble functions, and a is the vector of unknown coefficients
for the bubble functions. The corresponding expression for element strain is given as

e =Bu+Ga (4.41)

where B and G are the appropriate derivatives of the shape functions. We note that B is a
6224 matrix, whereas G is a 629 matrix. See,”% for the exact forms of these matrices.

The corresponding element stiffness and load terms can be assembled into a 222 system

v |l e

E H
where K = [, BTCBdV is the 24224 element stiffness matrix corresponding to standard
element shape functions, H = [, GTCGdAV is the 929 stiffness matrix corresponding to
bubble shape functions, £ = |, GTCBAV is the 9224 matrix corresponding to products of
bubble and standard shape functions, and f is the element load vector. Since the bubble
unknowns a are local to each element, they can be condensed out, which yields a modified
element stiffness matrix

K=K-ETH'E (4.43)
Note that K is still a 24224 matrix.

It has been shown that the bubble hex element does not pass the patch test unless a
correction is made to the element formulation. There are two options for this correction.
The first”® involves evaluating the matrix G at the centroid of the element rather than at
the Gauss points. The second approach? consists of subtracting from the matrix G its
average value. Both approaches yield an element that passes the patch test, and thus
convergence is assured.
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In Sierra/SD, we have taken the second approach. A new G matrix is defined, é, that is
constructed by subtracting the average value of G from G.

A 1

G=G—— [ GdV (4.44)

Ve Je

Then, we simply replace G with G in the above equations. We note that, in the
implementation of this element in Sierra/SD, it was found that after implementing the
correction described above, the element passed the patch test. Without the correction, the
element failed all of the patch tests.

With the bubble element, the stresses vary through the thickness. In order to compute the
stresses at any particular point within the element, we need to recover the strains. These
are given in equation 4.41. However, an additional task is to compute the bubble degrees of
freedom, since only the displacement degrees of freedom are calculated during the solution
procedure. From equation 4.42, the bubble degrees of freedom can be computed from the

displacements as
a=H 'Eu (4.45)

where u is the element displacement vector. Given a, we can then compute the strains
from equation 4.41, and then the stresses can be computed in the standard way.

4.5.1. Nonlinear analysis with bubble element

The bubble element can be used in nonlinear analysis. A brief description of the procedure
is given in.?? More details will be given here. In,”? an assumed strain approach was used
rather than the assumed displacement method, but the two reduce to the same

procedure.

We will give the necessary modifications for a nonlinear static analysis. The equations that
need to be satisfied are

Fit(u,q) = Fo (4.46)

More specifically, this breaks down to two separate equations
Fint — /Q BLodq) = Feat (4.47)
Fint = /Q GTodQ =0 (4.48)

The stress is given by o0 = C'e, where € is given by equation 4.41.

Next, we expand the expressions for internal force in a Taylor series, and truncate after the
first two terms. In the following, the quantities u and a denote the unknowns, and @ and &
represent the current iterates of displacement and bubble unknowns.

. . o aFint 6Fint

Fi(u,0) ~ F(4,4) + 8111 Au+ 8; Aa (4.49)
. . 8Fint aFint

Fi(u,a) = FiPt(4,4) + 8121 Au+ 8; Aa (4.50)
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We define

O™
B
o ou
oFm™
FEp —
r Oa
OFg™
Hr =
r Oa

where the subscript T denotes tangent matrices that are computed at the current

(4.51)
(4.52)

(4.53)

configuration. Using these definitions and substituting equations 4.50 into equations 4.48,

we obtain

Kr (ET)p
Er Hr

Aa

where

Resy = Fe — Fi™ (41, 4)

Resq = —F3™(01,4)

Au ] B [ Resy

Res,,

(4.54)

(4.55)
(4.56)

More detailed expressions for the tangent matrices will now be given. We note that, for
example, in equation 4.48, both ¢ and the matrix B depend on displacement v and bubble

unknowns «. Thus, the chain rule is needed to compute the following expressions.

T 0
Kp= M /83 dQ+/BT—dQ

 fo BTadQ oBT

E
r= oo Q Oo
T T
AL N L
«

adQ+/ BT a”dQ

(4.57)
(4.58)

(4.59)

In each of these expressions, the first term on the right hand side represents a geometric
stiffness term, whereas the second term represents the material stiffness term. Next, in

T
order to evaluate terms like 2 8 " and %7 we use the deformation gradient. We use the
notation x = u+ X, where x is the current configuration, u is the displacement, and X is

the initial configuration.

e=1 (FTF—1)
Oe oOF
B= =F—
ou ou
8_B_F82F+8F6F OF OF
ou ou: ' Oudu  Oudu
where the last identity follows from the fact that = 0. This can be seen from the

(4.60)

(4.61)

(4.62)
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following relations.

Feox=1tox =1t px ' bx
OF _ DN
ou DX
0*F
= =0
ou?

Similarly, we can construct these equations for the bubble functions

1

ezi(FTF—I)
Oe OF
G=r =Fp

oG 0*F OFOF OFOF

S _pr - T
Oa Oa? + da 0o Oa O«
where similar identities have been used
Ox ou rDN  DP
Feoo —J4—— ] = el
ox " Tax T DxTY Dx
oF DP
da DX
0°F
il
oo
For the cross terms, we have
1 T
e= i(F F-1I)
B Oe B oF
Ou Ou

0B _ , OPF  OFOF _OFOF
da  Ouda  Ou da  Ou da

where, again we justify that the second term vanishes as follows

=22 g B T2 T
ax  CTox tTY DoxTY Dx
oF _ DN
ou DX

0%F
—0

ouda

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)
(4.70)

(4.71)

(4.72)
(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

In a similar manner as was done for the linear element, the bubble degrees of freedom can

be condensed from equations 4.56. This results in the equation

(K7 — EFH;'Er)Au = Res, — ETH1'Res,
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Thus, the full tangent operator for the bubble element is given by
Kr—EFH:'Er (4.79)
the internal force is given by
Fi"(f,4) — BFHZFIM (4, 4) (4.80)
and the residual is given by two terms
Resy — EFHy'Res,, (4.81)

These equations fully describe the nonlinear analysis of the bubble element.

4.6. Quadratic Isoparametric Solid Elements

Quadratic elements (elements with bilinear or higher order shape functions) such as the
Hex20 and Tet10 are naturally soft and do not need to be softened by positive values of G
and [ (see sections 4.1 and 4.3 for definitions of G and f3.) Therefore, G=0 and =0 are
good values for such elements.

4.6.1. Shape Functions and Gauss Points

The shape functions and Gauss points for Hex20 elements follow very standard ordering.
The nodal ordering (and shape functions) follows the ordering in the exodusIl manual.
Gauss points are input and output using the ordering developed by Thompson 101.
Internally, the Gauss points are located at element coordinates (and order) shown in Table
4-5.
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number label suffix | X Y Z
1 111 0 0 0
2 112 0o 0 A
3 110 0 0 -A
4 121 0 A 0
5 122 0 A A
6 120 0 A -A
7 101 0 -A O
8 102 0 -A A
9 100 0 -A -A
10 211 A 0 0
11 212 A 0 A
12 210 A 0 -A
13 221 A A 0
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 A0 0
20 012 A0 A
21 010 A0 -A
22 021 AA 0
23 022 AA A
24 020 AA A
25 001 A A0
26 002 A -A A
2T 000 A -A A

Table 4-5. Hex20 Gauss Point Locations.

The constant

A=0.77459666924148. The unit element is 2x2x2, with a volume

of 8 cubic units.



4.7. Wedge elements
4.7.1. Shape Functions

The shape functions are given explicitly as in 96. These are provided as bi-linear
polynomials in r, s, t, and &, where r and s are independent coordinates of the triangular
cross-subsections, t =1—7r —s, and £ is the coordinate in the third direction. For our
purposes, it is necessary to expand the shape functions as polynomials in 7, s, and &:

Ny = AE+ A%r 4 ARs + Abe 4 ARre + Alse (4.82)

The shape functions and the coefficients are given in the following table:

Shape Function | Ag | A1 | As | A3 | Ay | As
Ni=3(1-&r 2 =5

Ny =5(1—-¢)s 2 =
RS AESEIEIEIEEE
Ny=5(14+&r 5 5

N5 =5(1+&)s 2 2
S (RS EIE IRAEIE:

4.7.2. Quadrature

Three reasonable quadratures for wedges that come to mind are indicated in the following
table:

No. Points | r S €
1 1/311/3] 0
2 1/31/3]-1/V/3
1/311/3| 1/V/3
6 1/6 | 1/6 | -1/v/3
1/3|1/6 |-1/V/3
1/6 | 1/3]-1//3
1/6 [ 1/6 | 1/V/3
1/3|1/6 | 1/V3
1/6 | 1/3 | 1/V/3

4.8. Tetl0 elements

The degree 2 integration rule (see for example Appendix 3.1 of 96) based on values at the
four vertices is used for the stiffness matrix. The mass matrix depends on integrals of
polynomials two degrees higher than the stiffness matrix. Higher order integration is
required to determine a consistent (exact) mass matrix than is required for the stiffness
matrix. The 16-point integration comes from 102. (Using 4-point integration to try to
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estimate the mass matrix of a natural element resulted in a 30 by 30 mass matrix with
several zero eigenvalues.) A 16-point integration with degree of exactness 6 from 102 is
used for the mass matrices. However cubature rules of degree two or four 103 suffice for the
Tet4 and Tet10 respectively.

4.9. Calculating shape functions and gradients of the Hex20
element

Using a 3D Pascal’s triangle, we can construct 20 polynomials of the form,

75 -8; b;
Pi = 51782155

where the r;, s; and ¢; (1 =1,...,20) are integers satisfying,
ri4si 42 <7

These terms may be constructed with the following loop.'?

count=0
for T =0to 7
for J=0to 7
for K=0 to 7
if I72 + J72 +K°2<=7
count = count + 1

r(count) =1
s(count) =
t(count) = K
endif
endfor
endfor
endfor

We require 20 shape functions N;, with ¢ =1,...,20, that satisfy the conditions that N; =1
at node ¢ and N; =0 at every other node. This results in 20 equations at each node.
Expressing the N; as linear combinations of the p;, we can write,

N = Ap (4.83)

where A is a 20x20 matrix. We want to find the 400 term A—matrix values. For each node,
we have 20 equations and there are 20 nodes; so, there are 400 equations for the 400
unknowns. Let &; denote the natural coordinate value at the ith node. We have

Ap(e1) =1 =(1,0,0,...,0)T, and, in general, Ap(&;) = ¢&;. So,

[€1,€2, ..., 0] = [A][p(21),P(&2), - .., D(E20)]

19 This is how the rst matrix in Hex20.C was created.
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or,

I=AP

or,

A=p1
This matrix A is the matrix “hc20” in Hex20.C.

Not only can the shape functions be expressed as a linear combination of the p;, but so can
the derivatives, %, (7 =1,2,3). Differentiating equation 4.83, we have
J

ON  Op

ON _ , 0p

Oe; Oe;
but the 0p/0e; may be written as a linear combination of the pj, via the following three
equations.

ap 1 s t:
agi = pElT e (4.84)
8p g1 ¢t
65; = s;e'eq’ &g (4.85)
ap i S; ti—1
(‘96; = teriesiey (4.86)

while noting that equations 4.84, 4.85 and 4.86 are zero if r;, s;, or t; is zero, respectively.
We would like to find the matrix B; with j =1,2,3 such that,

ON

86]' - 2P

Evaluating ON /Oe; and p'at all 20 nodes, we have,
aﬁ(ﬁ)aﬁ(ﬁ) ON

—(&1),=—(&9), ..., —

88]' 17863‘ 21 786]'

Matrix equation 4.87 can be inverted to solve for B; with j=1,2,3. In Hex20.C, AB1 is B4
, AB2 is Bg, and AB3 is Bj3.

(520) :BJ [ﬁ(ﬁl)aﬁ(éé)v 75(520)] (487)

4.9.0.1. Shape Function Ordering: The above method results in elements which satisfy
the requirements that the evaluation of shape function 72 on node 7 is one. However, the
implementation does not ensure compatibility with standard node ordering from exodus.
We've provided a re-ordering function to ensure this.

4.10. Anisotropic Elasticity

Anisotropic elasticity requires special care in the rotation of the matrix of material
parameters when those parameters are given in some coordinate system other that in
which the element matrices are calculated. A derivation of the formulae for rotating those
matrices is given in 5.6.
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4.11.  Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bending d.o.f. (w,0,,0,)
and the membrane d.o.f. (u,v,0,) are decoupled. The idea is to obtain the membrane
response using Allman’s triangle and the bending response using the discrete Kirchoff
triangular (DKT) element.

4.11.1.  Allman’s Triangular Element

Using the formulation given in Ref. 104 and replacing cos(7;;) = ¥ and sin(y;;) = _lj;j L we

=
get

1 1 1
U = w11 + ugthe + usz + §y21(w2 —w1)Y11P2 + §y32(w3 — wo)ath3 + §y13(w1 — w3)Y31
(4.88)

v =11 + votha +usth3 + %fﬁm(u& —w1)P192 — %xsz(wa — w2)1hath3 — %3?13(001 — w3)P3h1
(4.89)

The stiffness and mass matrices ([K]ar,[M]ar) are found using general finite element
procedures. Unfortunately, a mechanism exists for this element if the deformations are all
zero and the rotations are all the same value. Cook et al.® have a “fix” for this which has
been implemented to avoid undesirable low energy modes produced by this mechanism.

4.11.2. Discrete Kirchoff Element

As for the DKT!% element, things are not so simple. The nine d.o.f. element is obtained
by transforming a twelve d.o.f. element with mid-side nodes to a triangle with the nodes at
the vertices only. This is obtained as follows. Using Kirchoff theory, the transverse shear is
set to zero at the nodes. And the rotation about the normal to the edge is imposed to be
linear. Using these constraints, a nine d.o.f. bending element is derived (DKT) using the
shape functions for the six-node triangle. Unfortunately, the variation of w over the
element cannot be explicitly written. Therefore, the w variation over the element needs to
be calculated before the mass matrix can be obtained.

As stated, the equation for w is not explicitly stated over the element in the derivation by
Batoz at al.. Using a nine d.o.f. element, a complete cubic cannot be written, since 10
quantities would be needed to get a unique polynomial. The strategy taken here is that the
stiffness matrix produced using for the DKT element provides reasonable results, and the
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derivation of the mass matrix is not as critical. So, the equation for w is taken from Ref.
106, as

w = a1y + agta + azths + agh1ihs + asaths 4+ agibaihn + arr 2 + aghe®hs 4+ agibs i
(4.90)

For the AT and DKT elements, the stiffness and mass matrices are derived with the help of
Maple. The consistent mass matrix is derived using “normal” finite element procedures. If
a lumped mass matrix is requested then the mass matrix terms associated with the
translation d.o.f. are found in the “normal” sense. However, mass matrix terms for the
rotational d.o.f. are set to 1%—5 of the translation terms.

In summary, the code has been written which uses the AT and DKT element use in
combination as a shell element. The stiffness matrices are calculated without complication.
The mass matrix for the AT element is also derived without complication. The mass
matrix for the DKT element is derived using an incomplete polynomial, but the results
obtained should not be effected very much.

4.11.3. Verification and Validation

The AT element is verified by comparing calculated results with the results published by
Allman in Ref. 104. The square plate in pure bending and a cantilevered beam with a
parabolic tip load are used as verification examples. The mass matrix is not verified except
to note that the mass is conserved in the u,v directions.

The DKT element is validated by using the experimental data published by Batoz et al. in
Ref. 105 for a triangular fin. The first 10 eigenvalues for the triangular fin (cantilever)
match very well. In addition, the DKT element is verified by using a cantilevered beam
and matching deflection results at the tip. If v =0, then results should match very closely
with Euler-Beam theory results, and they did.

Finally, the AT /DKT element is verified by comparing with published results from Ref.
107. Tables 4-6 and 4-7 show that our elements match exactly with ABAQUS to the
number of digits shown. The first column is the result produced by Ertas et al., the second
column is the result produced by ABAQUS, and the third column is the result produced by
Sierra/SD using this DKT/AT element.
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DOF AT/DKT ABAQUS AT /DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
2z | -1.405 x 1072 | -1.398 x 102 | -1.398 x 102
6, | 3.337 x 1072 | 3.337 x 1072 | 3.337 x 1072
0, | 3.106 x 1072 | 3.089 x 1072 | 3.089 x 102
0, 0.000 0.000 0.000

Table 4-6. Comparison of deflections at Node 2

DOF | AT/DKT ABAQUS AT /DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
2 1.949 x 1072 | 1.955 x 1072 | 1.955 x 1072
6, | 3.363 x 1072 | 3.363 x 1072 | 3.363 x 1072
6, |-2.686 x 107 | -2.702 x 1072 | -2.702 x 102
0, 0.000 0.000 0.000

Table 4-7. Comparison of deflections at Node 3

4.12.

Triangular Shell - Tria3

The triangular shell used most in Sierra/SD is the Tria3 element developed by Carlos
Felippa of the University of Colorado in Boulder. This element is very similar to the
TriaShell element presented in section 4.11. Full details of the theory behind the element
is out of the scope of this document, but details may be found in references 108, 109 and
110.

4.13. Beam?2

This is the definition for a Beam element based on Cook’s development (see pp 113-115 of
reference 3).

The beam uses under integrated cubic shape functions. Only isotropic material models are
supported. Torsional affects are accounted for in the axis of the beam. The beam is uniform
in area and bending moments, i.e. they are not a function of position in the beam.

The following parameters are read from the exodus file.?"

1. The cross sub-sectional area of the beam (Attribute 1)

20 Beam attribute numbering has changed, due to changes in pre-processors. The original ordering had
attributes 2,3,4 associated with orientation.
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2. The first bending moment, /7. (Attribute 2).

3. The second bending moment, Io. (Attribute 3).

4. The torsional moment, Ji. (Attribute 4).

5. The orientation of the beam (Attributes 5, 6 and 7)

The orientation should not be aligned with the beam axis. In the event of an
improperly specified orientation, a warning will be written, and a new orientation
selected. The orientation is an x,y,z triplet specifying a direction. It does not need to
be completely perpendicular to the beam axis, nor is it required to be normalized.
The orientation vector, and the beam axis define the plane for the first bending
direction.

Torsion

As outlined in Blevins,''! the stiffness properties of beam torsion are governed by Jj,
(Attribute 4), while the mass properties are derived from the polar moment of inertia,
Jpolar = 11+ I5. This representation is fairly accurate for beams with closed cross sections,
but will have significant error for more open sections. Warping in open sections is not
accounted for in this standard beam formulation.

4.14. Nbeam

Beam /bar elements are a major component in many structural Finite Element Models
(FEM). It is important to employ a beam/bar element which includes transverse shear and
torsion in addition to axial and bending stiffness. Additionally, the mass formulation needs
to include rotary inertia. The nbeam element is an implementation of the NASTRAN
CBAR element. The stiffness matrix is identical to the CBAR. The mass matrix is a new
formulation to this implementation providing a diagonal mass matrix w/ rotary inertia
included.

The nbeam element stiffness matrix is based on Timoshenko beam theory. A good
theoretical description can be found in [112]. The formulation differs (slightly) in the
inertia coupling formulation. The derivation of this specific form is provided in [113]. The
exact form of the stiffness matrix implemented in Sierra/SD is shown in Figure 4-17.

The following derived quantities are used depending on the value of I;2.

If I12=0 If I12 # 0
=0 petm
Rp= 1280 [y M2 gyt
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AE/L 0 —AE/L 0 0 0 0 0
LRy/2 0 —Rq -8 0 —LB/2 LRy/2
—LRy/2 LB/2 0 -8 —Ra 0 —LRy/2 LB/2
0 0 0 0 —~&JI/L 0 0
—BL2%/3 0 LB/2  —LR2/2 0 kg —BL?%/6
k1 0 LRy/2 —LB/2 0 —BL?%/6 k3
AE/L 0 0 0 0 0
Ry B 0 LB/2 —LRy/2
Rig 0 LRy /2 —LB/2
GJ/L 0 0
ko —BL?%/3

Figure 4-17. nbeam Element Stiffness Matrix

The rest of the quantities are valid for any value of ;5.

k1

L?R, | EL
k1 —
4 L
L?Ry  El
ko —=
4 L
L?*R, FEI
kg = - —
4 L
. _ LRy ED
YT T4 L
s1 = Ay/A shear factor
so = A, /A shear factor

The nbeam mass matrix is given in Figure 4-18. The mass quantity m’ is defined as

m' = pAL/2.

To preserve a diagonal mass matrix for arbitrary beam element orientation, the mass
matrix subroutine provides the calling routine options of diagonal stripping or diagonal
summation. The mass matrix will not be diagonal after transforming to global coordinates
under general conditions (off diagonal terms will be present in the rows corresponding to
rotary inertia). If diagonal stripping is chosen, the off diagonal terms are simply zeroed,
restoring a diagonal matrix. If diagonal summation is chosen, the off diagonal terms are
added to the diagonal element and then zeroed. Diagonal stripping slightly reduces the
total rotary mass contributions while diagonal summation slightly increases rotary mass
contributions. In the current implementation, diagonal stripping is assumed and coded.

The user provides the element properties in the Sierra/SD input deck. The required
parameters are listed in Table 4-8.
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m 0 0 0 0 0 0O 0 O 0 0 0
m 0 0 0 0 0O 0 0 0 0 0
m’ 0 0 0 0O 0 O 0 0 0
m'J/A 0 0 0O 0 0 0 0 0
m' Iy JAz 0 0O 0 O 0 0 0
m'I/A, 0 0 0 0 0 0
m 0 0 0 0 0
m 0 0 0 0
m’ 0 0 0
m'J/A 0 0
m/IQ/AZ 0
m'I il / Ay
Figure 4-18. nbeam mass matrix
Table 4-8. Nbeam Parameters
Description Keyword Exodus Attributes
Cross-Sectional Area Area 1
First Bending Moment I1 2
Second Bending Moment 12 3
Cross Inertia 112 N/A
Torsional Moment J 4
Beam Orientation orientation 5-7
Y-axis Shear Area Factor Shear factor 1 N/A
Z-axis Shear Area Factor Shear factor 2 N/A
Offset Vector At 1st Node offset 8-10
Offset Vector At 2nd Node - 11-13
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The parallel axis theorem is used to account for offsets. The offset vector is defined as a
vector from the bending neutral axis of the beam to the nodal location. All other
quantities are derived from the material data and the element length.

Torsion

As outlined in Blevins,!!! the stiffness properties of beam torsion are governed by .J;, while
the mass properties are derived from the polar moment of inertia, Jyoq, = 11+ I2. This
representation is fairly accurate for beams with closed cross sections, but will have
significant error for more open sections. Warping in open sections is not accounted for in
this standard beam formulation.

4.15. Nquad - Navy Quadrilateral Shell Element

Many structural components on naval vessels, including the hull, bulkheads and decks are
made from plate, be it steel, aluminum or a composite material. As such, plate and shell
elements are essential to any finite element analysis of ships or submarines. It is important
to employ an element that is shear deformable and can also accommodate orthotropic
layers. The nquad is a four-noded isoparametric element that is designed to be similar to
the NASTRAN CQUAD4 element.

This section is based on material in chapter 4 of [114] that does not appear in [115].

The development of the stiffness matrix draws heavily from the plane elasticity and bending
formulations found in [114]. The membrane and bending components are decoupled. The
membrane stiffness terms are derived from the integrals in equation 4.156 in [114]:

Ot; Oy O; O
Kl j j
ke /Qe (Cll 91 07 + (33 By By )dl’dy (4.91)
Oh; O O; O
K12 g2 i e
L i /Qe (Clz oz Oy +C33 By Oz )dmdy (4.92)
Oy O O; O
2 _ J J
K2 /Q e (033 e g g )dmdy (4.93)

where the Cj; are the elastic material constants for plane stress

E VE E
Cn=Cn=1 Co=1p On=q9y
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and the 1); are the bilinear element shape functions (see equation
element Q°. For a rectangle of width a and height b,

b= (1=¢/a)(1-n/b)
v = S
s = (1-¢/a)y

£n
Yy = p—
The membrane stiffness matrix is of the form:
Kll K12
l KZI K22 ]

4.31 in [114]) over the

assuming the displacement vector is of the form {uy,v1,ug,v2,...}.

The bending terms are organized here into a block 3 by 3 matrix,

|K11 K12 K13 ] w ;;
22 23 33 o
K K%*sym K S, 13

|

The bending stiffness terms, based on the shear deformation theory of plates, are based on

the integrals in equation 4.226 in [114]:

O; 81,& 8¢, o,
11 ovi vvi
Ky = / (D + Ds5 > dz dy

@b]) dx dy

KB = /

2

D55—¢]> dx dy

Sy oy

Kj = /Qe D awl 8% +Ds3 00 00 +D44¢zw> dr dy

e (20
X
(215
K%-?’:/(

(9 Or

K%g _ / (D 8¢28¢1+D 8@/)28% +D55¢Z¢J>dxdy

o1 Ox >0y oy

where the D;; are the isotropic elastic material constants (defined for example in equation

4.221 of [114]:
Eh3

Dii = Dog— 210
11 22 1201 = 7
Dy = vDqny

Gh3
Dy = &
33 1

Dy = Dss=Ghk
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where h is the thickness of the plate and £ is the shear correction factor. The bending
stiffness matrix is of the form:

[Kll] [K12] [Kl?)]
[KQQ] [K23]
sym [K33]

assuming the displacement matrix is of the form {w1, 0,1, 0y1,w2, 022, 042, ...} To minimize
the effect of locking, reduced integration on the shear terms (i.e., those involving D44 and
Dss) is used.

The stabilization method from Belytschko!!6 is used for the Nquad element. Using single

point integration K. E”ﬂ] for the shear stiffness matrix leads to hourglass modes for some

problems. Using full integration K S[Qﬂ] can cause shear locking in some problems.

Belytschko recommends a shear stiffness matrix given as K = (1—¢) S[lml] +eK, 5[;2962], a
linear combination of the reduced integration and full integration shear stiffness matrices.
The fraction, e = rt?/A is a function of thickness and area. Here r = 0.03, ¢ is the element
thickness and A the area of the shell. This automatic selection of ¢ works well for very thin

plates, but can be a problem for thicker elements; clearly, & should never exceed 1.

The layered shell formulation, also based on first-order shear deformation theory, draws
heavily from [117], particularly equations 3.4-5 and 3.4-6 found therein.

The stiffness matrices developed for the isotropic and laminate cases do not account for
in-plane rotational stiffness. A fictitious stiffness for the 6, d.o.f. is provided by equation
12.3-4 in [3]. The resulting element stiffness matrix is 24 x 24, accounting for 6 d.o.f at
each of the four nodes.

A consistent mass matrix is formed based on equation 4.235 in 114:

Mij= | phii;drdy
where p is the material density. The diagonal mass matrix is derived by row summation.

Element level strains are expressed by equation 4.147 in 114:

{efe = [Bl{A},

where the five terms in {€}, are e;, ¢, and 7, as well as the transverse shear strains .
and 7. The 5 x 24 matrix [B], is formed by the element shape functions and their
derivatives and the 24 x 1 vector {A}, are the nodal displacements. The membrane and
bending strain-displacement relationships are found, respectively, in equations 11.1-3 and
11.1-4 in [3]:

Membrane:
£ = Wz By =y Vg = (g o )
Bending:
&y =—20yz Yoy =—2{0y y +0z.2)
gy = —20zy Yyz = Wy — Oz

Vex = Wyx — Qy
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Note that the bending equations are altered slightly from 11.1-4 in [3]. In that reference, a
rotation about the x-axis is expressed as 6, and a rotation about the y-axis is 6, x. These
definitions have been reversed in the above equations.

The user provides element properties in the Sierra/SD input deck. The required
parameters are:

1. Element thickness.
2. Material ID, which contains the required material properties (E, v, p).

3. For the layered shell case, each layer must have specified its own material ID (usually
an orthotropic_ layer), thickness and fiber orientation.

4.16. Truss

This is the definition for a Truss element based on pages 214-216 of Cook (ref 3).

The truss uses linear shape functions. Unlike the truss elements used by Nastran, there is
no torsional stiffness. The truss is uniform in area, i.e. the area is not a function of
position in the truss.

The following parameters are read from the exodus file.

1. The cross sub-sectional area of the truss (Attribute 1)

4.17.  Springs

The Spring element is the simplest one dimensional element. It has no mass. Entries in the
stiffness matrix are added by hand. Note the following.

o The force generated in a Spring element should be collinear with the nodes. Typically
spring elements connect coincident nodes so that no torques are generated.

o Springs attach 3 degrees of freedom. In the event that some of the spring constants
are zero, there is no effective stiffness for that associated degree of freedom. However,
the degree of freedom will remain in the A-set matrices. This will be a problem if the
other degrees of freedom are not attached to other elements which provide stiffness
entries connecting them to the remainder of the model. For an understanding of the
various solution spaces (such as the A-set), see section 6.1.
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The data for spring elements is entered in the input file. Three values are given, Kz, Ky,

and Kz. This results in a 6x6 element stiffness matrix,

K, 0 0 —-K, 0 0
0o K, 0 0 -K, 0
w_| 0 0 K. 0 0 -K
K, 0 0 K, 0 0
0o -K, 0 0 K, 0
o 0 -K. 0 0 K,

Notice that K’ is blocked. It could be written more simply,

!/ K{l _Kil
K= ( K|, Kl

(4.94)

The rotation matrix for the two endpoints is block diagonal.?! As a result, the stiffness

matrix in the basic coordinate system can be written,

K1 Ko
b
( K2 Ku )

where,
Ki;j=RTK[R

and R is the 3x3 rotation matrix of subsection 4.26.

4.18. Superelements

A superelement refers to the reduced mass and stiffness matrices generated as part of a

model reduction process. See section 2.13 for details of the reduction. Typically with

Sierra/SD, the reduction is accomplished initially and written to a file, and the resulting
superelement is later read from a file for subsequent analysis as part of a full system (or

residual structure).

Superelements may contain sensitivity matrices. A point estimate of the superelement
mass or stiffness matrix may be computed as a Taylor series expansion and used as part of

a standard analysis. The approximate reduced matrix is given by the expansion.

dK,
Kr(p) ~ Kr(po) =t d_p(p _po)

(4.95)

21 In other words, the displacements in a rotated frame are related to the unrotated frame by a transformation

matrix of the form,
22
2 U2

o[ ]

where,

0 Ry

Here, R; is a 3x3 rotation matrix, and because the two nodes of the spring must rotate together, Ry = Ro
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where p is the sensitivity variable, p, is the nominal value of that variable and K, (p)
represents the reduced order matrix evaluated at an arbitrary point in parameter space.

4.19. Gap Elements

The Gap element is a nonlinear spring which has a stiffness matrix that is dependent on
displacement. In the element coordinate frame, the stiffness matrix has the same form as
the matrix in equation 4.94 with the following replacements.

Spring Gap

Open Closed
Ky KU KL
K, KT x KU/KL KT
K, KT xKU/KL KT

Note that typically KL > KU.

Also, like the spring, the two nodes of the gap element must rotate together and the matrix
transforms exactly as the matrix for a spring element.

4.20. Multi-Point Constraints, MPCs

A description of MPCs is contained in the users manual. This subsection discusses the
coordinate system dependencies.

MPCs may be defined in any coordinate system. However, all nodes in the MPCs are
defined in the same system. This is done for convenience in parsing, and not for any
fundamental reason. Consider a constraint equation where each entry in the equation could
be specified in a different coordinate system.

Z Ciul(-ki) =0

where C; is a real coefficient, and ugki) represents the displacement of degree of freedom 7 in
degree of coordinate system k;. We can transform to the basic coordinate system using
ugki) =3 R;lfi)ugo) , where R*i) i the rotation matrix for coordinate system k;. Then we
may write,

k; 0
S RSO —o
2y}

or,

50 o
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where C’i(k“ =2; Rg?i)C’j. Note however, that in this analysis, we have assumed that the
dimension of C' is 3. Thus, rotation into the basic frame will likely increase the number of
coefficients.

Sierra/SD is designed to support constraints through at least two methods. These include
a constraint transform method and Lagrange multipliers. Lagrange multiplier methods are
used for all the parallel solvers. The serial solver uses constraint transform methods.

4.20.1. Constraint Transforms

Constraints may be eliminated using the constraint transform method. This is described in
detail in Cook, chapter 9 (ref 3). In this method, the analysis set is partitioned into
constrained degrees of freedom and retained degrees of freedom. The constrained dofs are
eliminated.

Unlike many Finite Element programs, Sierra/SD does not support user specification of
constraint and residual degrees of freedom. The partition of constrained and retained
degrees of freedom is performed simultaneously in the “Gauss()” routine. This routine
performs full pivoting so the constrained degrees of freedom are guaranteed to be
independent. Redundant specification of constraint equations is handled by elimination of
the redundant equations and issue of a warning. User selection of constrained dofs in
Nastran has led to serious difficulty to ensure that the constrained dofs are independent
and never specified more than once.

For constraint elimination we have a constraint matrix C' = [C,, C,] where C, is a square,
non-singular matrix and C) is the solution. We wish to solve for,

Orc =~ — [Oc] _107"

This is equivalent to the Gauss-Jordan elimination problem for Kz = b if we let C) =0,
C.= K and x = —C}.. There is one additional wrinkle: we have mixed the rows of C' so C,.
is intermingled with C,.. However, we only require that C'c be non-singular. Therefore if we
do a Gaussian elimination with full pivoting we should simultaneously obtain an acceptable
reordering of C, and obtain C..

In practice, it is not even necessary that C. be non-singular. It is not uncommon for two
identical constraints to be specified. The program issues a warning and continues.

Constraint transform methods do not currently support recovery of MPC forces.

The Gaussian elimination is presently being performed with a sparse package called
"SuperLU," instead of a dense Gaussian elimination, to speed up the time to create C,..
On some platforms, e.g., sgi and DEC, the blas routine dmyblas2.c in the CBLAS
directory of of the SuperLLU directory (need superlu-underscore-salinas.tar to create this)
should be the one and only routine whose object file is placed into the SuperLU-blas
library (presently called libblas-underscore-super.a) to be linked in to create the
Sierra/SD executable. Failure to include this routine will cause failures of the type

176



"Tllegal value in call to DSTRV" on the above platforms, and including more than just
dmyblas2.c can cause slow performance on many platforms as the SuperLU-CBLAS could
override the built-in blas routines. (The built-in routines are almost always faster.)

4.21. Rigid Elements

Sierra/SD supports standard pseudoelements for rigid bodies. These include,

o« RRODs - a rigid truss like element, infinitely stiff in extension, but with no coupling
to bending degrees of freedom. There is exactly one constraint equation per element.

o« RBARS - a rigid beam, with up to 6 constraint equations per element.

« RBE2 - a rigid solid. With up to 6(n — 1) degrees of freedom deleted, where n is the
number of nodes.

« RBE3 - an averaging type solid. This connects to many nodes, but removes up to 6
dofs on the slave node.

All of the rigid elements are stored and applied internally as MPC equations. The RBE2 is
a special case of RBAR (actually just multiple instances). Note, that unlike MPC
equations, these rigid elements do activate (or touch) degrees of freedom. In general, an
MPC equation will not activate a degree of freedom. In the case of a rigid element
however, it is necessary to activate the degrees of freedom before constraining them.
Otherwise the rigid elements do not act like real elements.

Rigid elements are input into Sierra/SD using exodus beam elements. A block entry is
then provided in the input file indicating what type of rigid element is required. There is
no stiffness or mass matrix entry for any type of rigid elements (only the MPC entries
described above).

Considerations for Nastran users

These rigid elements are provided for similar capability with Nastran, however significant
differences can exist. There are a number of reasons for this. A primary issue is the
differences in the solvers. Sierra/SD solvers manage the separation of dependent and
independent degrees of freedom, freeing the analyst from having to manage this
complexity. Specification of rigid elements in Nastran implies this relation. When the
elements are applied in the most common ways (such as an RBAR constraining all 6 dofs),
little or no differences are found between the two implementations. When only some of the
dofs are constrained, and certainly if Nastran’s autospc capability is invoked, larger
differences may be found.
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4.21.1. RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction. The
constraints for an RROD may be conveniently stated that the dot product of the
translation and the beam axial direction for a RROD is zero. There is one constraint
equation per RROD.

Consider the geometry of Figure 4-19. The equation of constraint for the RROD may be

written as follows.
ledug +1lyduy +1,du, =0 (4.96)

Figure 4-19. Rigid Element Geometry. The undeformed extent of
the bar may be expressed as [, with components,

l, = zp—x4
ly = yp—ya
lz = ZB—ZA

After deformation, du = dJB —dJA, the modified extent is, I/, with
components as below.

L= L+dug
U= 1 +du,.
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4.21.2. RBAR

An RBAR is a pseudoelement which is infinitely stiff in all the directions. The constraints
for an RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,
2. there is no extension of the bar, and
3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified mathematically by
requiring that the translation be the cross product of the rotation vector and the bar
direction.

T=RxL
where T is the translation difference of the bar (defined as Uy—U 1),
R is the rotation vector, and

L is the vector from the first grid to the second.

The three constraints in the cross product, together with the three constraints requiring
identical rotations at both ends of the bar form the six required constraint equations.
Referring to Figure 4-19, the six constraint equations may be written as follows.??

duy+1,R. —1.R, = 0 (4.97)
duy+1,Ry—I,R, = 0 (4.98)
du,+1,Ry—Il,R; = 0 (4.99)
Ry, = Ra, (4.100)
R,, = Ry, (4.101)
R, = R, (4.102)

Partial Constraints on Rbars

Nastran permits application of only some of the above constraints on an RBAR. For
example, one can apply only the first 3 constraints, and ignore the constraints on rotation
alone. In addition, Nastran permits control of which end of the bars is constrained, and
can split dependent and independent degrees of freedom between the nodes. However while
Nastran permits less than 6 dependent dofs, there must always be exactly 6 independent
dofs.

Sierra/SD uses two attributes in the exodus file to establish partial constraints on
RBARs. An attribute labeled “CID_FLAG INDEP”is the constraint flag associated with
the independent dofs. It should always be “123456”, and it is always associated with the
first node of the bar. The second attribute, “CID_FLAG_DEPEND”, establishes the

22 For a zero length bar, the first three constraints are modified to become du, = duy = du, =0.
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dependent degrees of freedom on the second node of the bar. This attribute determines
which of the equations above are applied. For example, if CID_FLAG_DEPEND = 123000
then only the first three constraint equations are applied.

With partial application of the constraint equations, the results can be confusing. If
equations 4.100-4.102 are not applied, then the rotation terms in 4.97 are appropriate only
to the independent node. This is not always what is anticipated by the analyst, and
because there is no mechanism for allocating degrees of freedom to arbitrary ends of the
bar, it may differ from what is produced by Nastran.?

4.21.3. RBE3

The RBE3 element behavior is taken from Nastran’s element of the same name. Earlier
implementations of the RBE3 differed significantly from the MSC/Nastran
implementations (see section 4.22). The revised element should act like a Nastran RBE3
for most applications®*. The element is used to apply distributed forces to many nodes
while not stiffening the structure as an RBE2 or RBAR does. The RBE3 uses the concept
of a slave node. The theory follows the MSC documentation included in section 4.22.

4.21.3.1. Characteristic Length. An element characteristic length is computed to allow
scaling the equations. The distance between the reference point (subscript ¢) and a
connected point (subscript i) is expressed by the components

Lz‘,x = T —Zq (4.103)
Liy = yi—yq (4.104)
Li,z = Zi—Zq (4.105)

Li = L2, +L3,+12, (4.106)

The characteristic length of the element is the average of these lengths,
Ne
Lo=Y"|Lil/N., (4.107)
i=1

where N, is the number of connected points. If L. is computed as a binary zero it is
changed to a value of unity.

23 Applying CID_FLAG_INDEP = CID_FLAG_DEPEND = 1 results in an RROD type constraint.

24The Sierra /SD element is not as flexible as the Nastran element in all respects. In particular, there is
no flexibility to apply node specific weighting. Weights may be applied by degree of freedom, but these
weights are applied uniformly to all nodes in the pseudo element.
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Figure 4-20. Equilibration of loads

1

Li,y

A force of —é1 at point 7 is equiv-
alent to a force of —é; and a mo-
ment of 7, = L; ,, at point gq.

To ensure that the element is invariant to a change of scale, the weighting functions w1

through w6 provided by the user are modified to produce a connected grid point’s

weighting matrix.

w1

w9 0
w3
L2
Wy L,

0 ws L2

wGLz ]

(4.108)

That is, the rotational DOF coefficients are scaled by the square of the characteristic

length.

4.21.3.2. Equilibration.

Conventional equilibration equations are applied. These

equations relate a force applied at the reference point to an equivalent force and moment
applied at the slave node as illustrated in Figure 4-20. The loads at the connection point, i,
relate to the loads at the slave point.

Where,

Pq:Sl{qPi
0 0 0 L,
10 —L;, 0
1 Liy —Liy
1 0
0 1

(4.109)

(4.110)
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4.21.3.3. Assembled Constraint. As shown in section 4.22 (equation 4.118), the loads
on the set of all connection nodes may be computed from the load on the slave node.

= G&Z'Pq (4.111)
Where,
Gui=A"1s'W (4.112)
here S is a concatenation of the individual Sj4,
Sl7q
s=| % | (4.113)
SNeyq
Similarly,
Wi
W= W (4.114)
We
and A is a 6 by 6 weightings matrix.
A=8WS (4.115)

We require that A be non-singular, which corresponds to a requirement that the RBE3 be
non-mechanistic. The constraint relation follows directly from G, i.e. define the 6 by
(64 61N,) matrix,

C=[ =ly Gg | (4.116)
and apply the constraint,
c{ U ] = 0. (4.117)
Uj

Each row of C contains the constraint coefficients for one of the six possible constraints in
the RBE3.

4.21.4. RBE3 — old version

The RBE3-old elements behavior is taken from Nastran’s element of the same name. Note
however, that the precise mathematical framework of the Nastran RBE3 element is not
specified in the open literature. This element should act like an RBE3 for most
applications. The element is used to apply distributed forces to many nodes while not
stiffening the structure as an RBE2 or RBAR would. The RBE3-old uses the concept of a
slave node. Constraints are specified as follows.
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1. The translation of the slave node is the sum of translations of all the other nodes in

the element.

2. The rotation of the slave node is the weighted average of all the other nodes about it.

This is determined by the nodal translations, not by their rotations.

While the first of these constraints is easy enough to apply using multi-point constraints,

the second is a little more difficult. We seek a least squares type solution.

X1

X2

X3

Slave

Let Dz = Uz - Uslavev
Li = Xi - Xslcwe

The L represent a vector from the “origin” to the point ¢, while the D; represent the

differential displacement of the same points. Note that the origin is at the location of the

slave node, and will not in general be at the centroid of the structure.

We will use least squares to compute the rotational vector of the slave node. This is

equivalent to computing a rotational inertial term and requiring a similar net rotation for

the centroid.

The displacement at the centroid should be given by,
Di=RxL;

or, in the least squares sense we seek to minimize F.

E:Z(ﬁz—ﬁxil)(ﬁl—ﬁxfl)

(3

Take the derivative of E with respect to a component of R, 7.

-

—:OIQZ(ékXﬁi)'(éxﬁi>—ﬁi-<ékXLi)
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Now, let R=73",,7mém. We substitute for R in the previous equation to obtain,
ZZT’m(ék X LL) ¢ (ém X Ll) = Di £ (ék X Lz) =0
mo

Now, if we write L; as a column vector then the expression (éj x El) (ém X El) can be
written as LiTLZ- 1 — LiLZ-T. If the sum on 7 is performed for the first term, we may write,

> rmAmp— > ek (Li x Di) =0
m ;

where

n
A = (zw) St — LI LE
7

This provides three equations (one for each k) in the 3 unknowns, r,. Note that L}
represents the m component (1-3) of the vector L;.

The solution is found by looping once through all 7 to fill in the A matrix, and
simultaneously to fill out the coefficients for the three equations involving D;. Once the
loop has been completed, the coefficients of R are known, and the three components of r,
can be added for each of the three equations. Each equation has 3 components of R, 2n
components of U; and 2 components of Ug,ye for a total of 2n+ 5 equations.
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4.22. MSC documentation of Nastran’s RBE3 element

The documentation of the modern RBE3 element is provided by MSC from their web
page.!18 It has been reformatted for math type formatting in TEX.

Solution#: 4494 Last Modified Date: 06/01/00 09:06:19 AM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN (1002 or 1004)
Product Version: Product Feature:
Article Type: FAQ Publish: Y

The RBE3 element is a volume or surface spline element similar to the RSPLINE line
spline element. The purpose of this memorandum is to develop a method for computing
the terms in the equations of constraint generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 G1,1 G1,2
RBE3 15 5 123456 1.0 123 10 20

$ G1,3 G1,4 WT2 c2 .

5 30 40

$ UM G1 C1 G2 C2 s W @

5 UM 10 123 20 23 30 3

The grid points 10 through 40, entered in the Gi,j fields on the entry, are connected to a
reference grid point (number 5). The number of connected points, N, is unlimited. The
physical principle used to generate the constraint equation coefficients is that the motion of
a body connected to the reference grid point produces a weighted least-squares best fit to
the actual motions at the other connected grid points. The reference point is connected by
1 through 6 DOFs (REFC specification). The connected points are also connected by 1
through 6 DOFs (Ci specification) with a weighting factor Wti. The UM data is optional,
and is explained below.

The reference is the original design document for this element. Over the years some
changes have been made in the interests of better theory and increased numerical
robustness. Those changes are incorporated in this document as though this were the
original design document, to avoid the awkwardness of first explaining older behaviors and
then the present behavior. The original equations of the reference are derived with
conventional variational principles applied to displacement variables. The derivation used
here is based on force variable principles. This has proven to be more intuitive and better
understood by some engineers. The results derived by the displacement method theory and
force method theory are identical. The reference is not available in machine-readable
format. A fax copy may be requested from the MSC/NASTRAN Development Secretary,
Jan.McLaughlin@MSCSOFTWARE.COM. It is primarily of historical interest now.
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4.22.0.1. REFERENCE: Mathematical Specification for the RBE3 Element, MAG-4, 15
April 1975 (Also known as MAG-81).%

4.22.1.  Generation of unit weighting functions

The element is designed to allow use of any coordinate system at any connected grid point,
the global coordinate system in NASTRAN parlance. In the interests of clarity the
equations are first developed for a system where all variables are defined in one common
coordinate system (the basic coordinate system), then modified to allow global coordinates.
An element characteristic length is computed to allow scaling the equations. The distance
between the reference point (subscript q) and a connected point (subscript i) is expressed
by the components

Li@ = T —Zq
Li,y = Yi—Yq

Zi —
Li = L2, +L%,+12,

The characteristic length of the element is the average of these lengths, L. =>5_;|Li|/c,
where ¢ is the number of connected points. If L. is computed as a binary zero it is changed
to a value of unity.

The weighting functions wl through w6 provided by the user are modified for reasons to be
motivated later to produce a connected grid point’s weighting matrix, a diagonal matrix
shown here as a vector. Let w; = wiLg. Then,

W = [w1 W2 W3 1I)4 2IJ5 ”LI)G]

That is, the rotation DOF coefficients are scaled by the characteristic length squared, but
not the translation DOF coefficients.

Conventional equilibrium equations are developed,

100 0 =z —y
1 0 —2 0 T
1 vy —2x 0
Sig = 1 0 0
0 1 0
. 1 -

25 This TAN is known in MSC’ s internal filing system as MAG-102.
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This matrix expresses the loads that must be applied to the reference point to react loads
applied at a connected point,

Py = S{qPZ-
The equilibrium matrix can also be used to generate a loading pattern on the connected
points due to a load on the reference point. Let Pg;, be a set of arbitrary loads on the
reference point. When this load is applied, it is “beamed out” as loads on the connected
points,

P1 W1 Sl
pio | 2] W, 52 | X Pgi, = WS,
PC WC SC

X is a 6 by 6 matrix to be determined. The criterion used in its determination is that the
load distribution mechanism should be in equilibrium. The equilibrium condition is that

quut = Si Sé S(/: Pi = Sllqu
Then
Pqout = SZqWquXPQZn
If Pgout = Pqip, then
X =[S WSy =471

and,
P=WSXPq= Gf]qu

Where for convenience we define,
Gy =WSX (4.118)

4.22.1.1. Transformation. The direction cosine matrix 7T; expresses the transformation
between u;, the values in basic coordinates, and #;, the values in global coordinates:
u; = Tt

The transformed equilibrium equations and weighting matrices are

1151
1555

The transformed weighting matrix in global coordinates is

W; = TW.T;
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The transformed A matrix is

A = 8}, WiSiq

A=Y A

It is shown in the reference that the introduction of global coordinates modifies G; as
shown:

Gyt = TiA ™ [Sig) Wi

This implies the dual relationship between displacements
Ug = quui
Cast in the Nastran convention of constraint equations,

qu :[ _Iqq qu ]

and,

Ry is the rows of the matrix of MPC coefficients for one RBE3 element.

4.22.2.  Selection of dependent dofs (Optional)

The default selection for dependent DOFs (m-set) are the REFC DOFs listed for the
REFGRID. There are modeling applications where it is convenient to use these DOFs in a
set exclusive from the dependent set, such as the analysis set (a-set). The dependent DOFs
may be moved to the connected DOFs with the optional UM data. The number of DOFs
must match the number of REFC DOFs, and the selected DOFs in the UM data must have
non-zero weighting functions. If the subset of Rgi associated with these DOFs is named
Rmm, the Rqi matrix is pre-multiplied by the inverse of this quantity,

qu = Rr_n}ani = [—[mm|R;z}ann]

The user is required to select a UM set that produces an R,,,, matrix that is stable for
inversion. There are TANs that describe techniques for selection of a good set of UM
variables. The uncoupling of the dependent equations allows some of them to be discarded,
as described in the next section.

Equation selection. The total R, is generated above. It has 6 rows. Six or less rows are
transmitted to the system constraint matrix R4, depending on the REFC data. This data
consists of a packed integer with up to 6 numbers in the range of 1 to 6, and describes
which rows are to be passed to R;,4. The remaining rows are discarded.
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4.22.3.  Features for dimension independence

A good finite element should produce the same results regardless of the units of measure
used in the model. That is, the same structure modeled in millimeters, centimeters, or
inches should provide identical results. The RBE3 gains this valuable characteristic by
scaling the rotation weights with an element characteristic length, L., as described above.
The effect of this scaling is demonstrated here by an example. In the interests of simplicity
all geometry is in the basic coordinate system and the only non-zero offsets are in the z
direction. The 7" matrix is then an identity matrix, and need not be listed in these
equations. Consider the problem, defined by the S;, matrix above and W; matrices below,
where

r =x;—xg =0,
y =vi—yq =0,
2 =zi—zg ><0

The user inputs up to six weighting factors w1 through w6. The weighting factors for
rotation are multiplied by Lesq = Le?, the square of the characteristic lengths of the
element. These modified terms are underlined in the matrix below, for example,

wy = L2wy. The modified weighting factor matrix is then

w1
w2
w3
L2
wq L,
UJ5L3

w6L2 i

The contribution for grid point i to the equilibrium matrix A is

w1 0 O 0 w12 0
wy 0 —w9z 0 0
A= HE= L2wy + 2%wo 0 0
Sym Liws+ 22wy 0
I LZwe |

The diagonal terms for rotation (for example As5) have the form L2w; + zij7 where w; is
the rotational weighting term, and w; the translation term active in rotation weighting
because of offsets. The motivation for modifying the rotation term can be seen in this
addition of effects. Both L? and 2% are in the same units of measure. When a model is
changed from centimeters to millimeters, for example, the ratio of rotation effects to offset

189



effects is unchanged. This modification of the rotation term allows the solution in the area
of the RBE3 element to be the same for all units of measure. As z and L. are related by a
common factor the ratio of moment terms coming in directly from applied moments (L2ws)
stays in constant ratio to the moment terms from offsets (2%w1) regardless of whether
lengths are measured in centimeters, millimeters, or inches. This modification of the
moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counter-intuitive behavior of
the RBE3 element, the difference between the user-supplied weighting functions and the
actual values used in the corresponding coefficients of the constraint matrix. Let us
simplify the expression of A above by setting z; = 0.0. A becomes a diagonal matrix, which
when inverted and multiplied by W to form G, becomes an identity matrix. That is, the
weighting factors, whatever they are, are scaled to provide equilibrium. There may be little
correlation between the values in the weighting matrix and the values in the coefficients of
the constraint matrix. The requirements for equilibrium may change these values radically.
Similarly, it shows that the significance of the weighting factors is mainly in their ratio to
one another. If all are multiplied by 10, for example, the inversion of the A matrix, used to
impose equilibrium, removes this factor of 10 so that the coefficients of the constraint
matrix are unchanged.

Stability issues. The solution requires the inverse of A. It may be ill-conditioned for
linear equation solution. It is first equilibrated to make the inversion more stable. Let Ay
be the diagonal terms of A. It is pre- and post-multiplied by the inverse of Ay,

A=A71AAG!

This makes all of the diagonal terms of A unity. Any term multiplied by A is first
multiplied by A;. A matrix decomposition subroutine is used that provides an inverse
conditioning number. As this number approaches zero the solution becomes more
ill-conditioned. A belt-and-suspenders check that is less mathematical and more
engineering-oriented is made by also computing the largest term in [A~1A — I], which
should be a computational zero, and outputting this value when it passed a certain
threshold. If the element is determined to be pathologically ill-conditioned it causes a user
fatal error exit.

4.22.4. Upward compatibility

The RBE3 element prior to V70.7 had a more primitive theory that does not provide
dimension independence. Its theory is identical to that above if a value of 1.0 is substituted
for the characteristic length L.. A system cell is provided to obtain this theory in V70.7.
Its use allows computation of the same answers that were provided in earlier systems.

System Cell 310 Value Action
0 (default) Use new theory.
1 Use old theory.

190



The name of this system cell is OLDRBES3. For example, either entry below will cause the
old theory to be used:

NASTRAN OLDRBE3=1 $ or
NASTRAN SYSTEM(310)=1 $

Changes to the RBE3 element for V70.7 are summarized in TAN 4155.

4.22.5. RBE3 element changes in Version 70.7

Solution#: 4155 Last Modified Date: 04/17/00 02:50:26 PM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN Basic (1003)
Product Version: 70.7 Product Feature: ELEM
Article Type: FAQ Publish: Y

4.22.5.1. 1. The theory used for the RBE3 element has been modified so that the
element is now independent of the units of measure. For example, a structure modeled in
centimeters will now provide the same results when modeled in millimeters. This was not
true for certain cases in systems prior to Version 70.7. A system cell provides the capability
available prior to Version 70.7.

Ref. Tan 3280 for Version 70.6

4.22.5.2. 2. THEORY The modeler inputs a reference grid point, its connectivity, a
weighting factor for other connected grid points, their connectivity, and the connected grid
point ids. An RBE3 element used for testing this new capability of the form

$ EID [blank] REFGRID REFC WT C G1 G2
RBE3, 123, s 4 123456 1.0 123456 1 2
$ G3

5 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFs to the 1, 2, and 3
grid points, for all of their DOFs, with a uniform weighting factor for all. The element
divides forces applied to point 4 to the other grid points in a manner that is influenced by
their geometry and weighting factors, in a manner that maintains equilibrium. Define a
line from the reference point to a connected point as an arm of the element. In the revised
theory, a characteristic length, L. of the element is calculated from the average length of its
arms. The square of this length is used to modify the weighting of the connected rotation
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DOFs. The theory for the element is rather involved. The derivation is given in TAN 4494.
Some of the results of that derivation are used here. The constraint equation terms applied
to a connected point u; and the reference point u, are

The constraint matrix itself has the following components:
qu = TiA_lsqu,-

T; is a rotation matrix that is an identity matrix when GIDi and GIDq are in parallel
coordinate systems. It will be dropped from this discussion. Sj, is the traditional matrix
for transmitting rigid body motion between point “i” and point “q”. It has unit terms on
the diagonal, and offset lengths on coupling terms between translation and rotation in the
upper triangle. W; is the user-supplied weighting functions, and A a matrix used to force
the element to meet equilibrium requirements. All MSC/NASTRAN constraint-type (R-)
elements must meet an equilibrium condition, to avoid any possibility of internal
constraints in the element. It is instructive once in one’s lifetime, if tedious, to work out a
simple example by hand, for a simple geometry. We will instead just look at typical terms,
to avoid some of the tedium.

The A matrix is generated by finding the resultants of loads applied at the connected
points, measured at the reference point. The 5,5 term for a single connected point is shown
in the referenced TAN to be

Ass = w5+ 27;211)2.

When A is inverted, this term operates on the corresponding S;,w; term
qu55 = w5/(w5 + zz-zwl)

If z; is zero, the effects of this normalization is to "wash out" the ws weighting term, so
that the coefficient is 1.0. If z; is not zero, the ratio of translation load effects z%wl to
rotation loads effects ws is

Ratio = ws/(z2w1)

This leads to a dimensional dependence, in that the ratio changes when the model is
converted from millimeters to centimeters, for example. This undesirable behavior is
eliminated by multiplying the rotation weighting factors by the square of the characteristic
length, L,

Ratio = L? xws /(z2w)

If z; (and L.) have their units of measure changed, the ratio stays constant. If this
modified weighting constant is used on the 5,5 term

GiQ55 = ng5/(ng5 + Z?wl)

If 2; = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantity
is constant with changes in units of measure.
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Note that answers will change only when rotations are given connectivity for the connected
DOFs, and then only when the rotations at the connected DOFs are part of a redundant
load path. This is because the element is required to meet equilibrium conditions to avoid
internal constraints, that is, single point constraints that do not appear in the SPCFORCE
output. If the load path is statically determinate the equations used to impose equilibrium
will adjust the values of internal loads in the element as needed to meet equilibrium,
regardless of the value of the weighting functions. Always meeting equilibrium
requirements ensures that there will be no internal SPC forces in the element.

4.23. Perfectly Matched Layers

The perfectly matched layers are described in detail in Bunting et al.''? Given a structure
S surrounded by bounded interior domain €2;, and an exterior domain €2, the exterior
acoustics problem consists of determining the acoustic pressure, p, in domain . U$;. We
refer to Figure 4-21 for a schematic of the geometry. In a domain truncation strategy,
boundary conditions are applied to the outermost boundary I'; of £2;.

To illustrate the ideas, we assume an acoustic pressure wave propagating in the z-direction,
with wavenumber & = ¢, where w is the circular frequency, and c is the speed of sound.

The wave takes the form '
p(x) = poet*® (4.119)

As written, this wave is undamped, and will propagate indefinitely with no change of
shape. However, if we allow the wave to propagate on a coordinate system that has
complex coordinates & = a(x)+ib(x), where a(x) and b(x) are functions of x, then the
equation of the wave becomes

() = Doeh® — poei(ka(x)Jrikb(m)) _ poefkb(x)eika(w) (4.120)

We observe that this wave now corresponds to damped wave propagation, with decay
coefficient equal to kb(x). For a coordinate stretching of b(x) > 0, this wave will decay

Figure 4-21. Domains ¢); and (). and interface I" for the exterior
acoustic problem.
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exponentially fast, which is the case considered in this paper. If b(z) is chosen to be less
than zero, the wave will grow exponentially fast.

In order for equation (4.120) to be a solution to a wave equation, that wave equation must
itself be written in a coordinate system that is complex, rather than real-valued. On the
other hand, the corresponding finite element implementation is most easily derived on a
real-valued coordinate system. Thus, though the governing partial differential equations of
the PML are written in a complex coordinate field, the corresponding weak formulation is
mapped to a real coordinate system, to facilitate the finite element implementation.

In order to build up to the ellipsoidal PML formulation, the following sections provide
derivations of rectangular, rotated rectangular, and spherical PML. These provide the
building blocks for the ellipsoidal case. We will subsequently show that the ellipsoidal
formulation reduces to the spherical and rectangular cases simply by choosing equal and
large radii of curvature, respectively.

4.23.1. Cartesian PML

We define the PML domain as being a paralleliped of dimension (2a,2b,2¢), centered at the
origin, with an interior paralleliped hole of dimension (2a,2b,2c). Practically, this would
correspond to the case where the structure of interest, as complex shape it may have, was
surrounded by an acoustic mesh that terminated at the boundary of the inner paralleliped.
The PML would then occupy the region between the inner and outer paralleliped
boundaries. A simple shift can be applied if the domain is not origin-centered.

The PML formulation can be broken down into three steps. First the analytic continuation
is used to map the Helmholtz equation into the complex plane. Then the weak form is
formulated on the complex plane, and the chain rule is applied to map between the
complex and real plane. Finally, the results from the chain rule give a weak formulation
over the real-valued domain, but with the dissipative properties stemming from the
transformation to complex coordinates.

4.23.1.1. Step 1. Analytic continuation The PML equations can be written in either
first or second order form. Here we consider the implementation of second order form. In
the interior 2 = (), the acoustic pressure must satisfy the acoustic Helmholtz equation

—Ap—Kk?p=0 (4.121)
where k =%, and p is the acoustic pressure, a prescribed Neumann boundary condition on

Is
o

B g(z,w) (4.122)
and the Sommerfeld radiation condition for outgoing waves at infinity'?!
dp . 1
|E_ka| :O<7‘_2>’ T — 00 (4.123)
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where k = . We note that equation (4.121) involves constant coefficients, meaning that
the speed of sound and density in the fluid are assumed to be constant. More specifically,
equation (4.121) is undamped, meaning that the waves will not attenuate as they
propagate through the medium.

Equation (4.121) is written in terms of real coordinates. As illustrated earlier, the waves
will decay in the PML if the coordinates are considered as complex-valued rather than
real-valued. Thus, we use analytic continuation to map the Helmholtz equation into the
complex plane

Ap—k*p=0 (4.124)

where the change of coordinates for the x-direction is defined as:

:i‘::v—g/:a(f)dﬁ a<z<a (4.125)

+£ xa(g)df —a<z<—a (4.126)

a

N
Il
&

Similar expressions describe the coordinate transformations for the other two coordinate
axes.

4.23.1.2. Step 2. Weak formulation over complex-valued domain We note that the
weak formulation of equation (4.124) can be constructed using either a bilinear or
sesquilinear formulation.'?> 1?3 The difference is only whether complex conjugation is
applied to the test functions. In standard finite element methods for acoustics, these
formulations lead to the same discrete system of equations. However, with PML the
formulations yield different numerical methods. In this paper we take the bilinear approach,
since it yields a complex-symmetric system of linear equations that can be exploited in the
linear solver. The bilinear weak form of equation (4.124) seeks p € Vf(gj) such that

Vp,Vq) —k?pq 1dQr = drl 4.12
o 1(9p.Va) ~Kpq a0 = [ gqdl's (1127)

where the tildes indicate quantities defined over the complex extension of the domain €y,
and q represents the test function.

4.23.1.3. Step 3: Apply the chain rule From equation (4.126) and the Fundamental
Theorem of Calculus, we see that

0z i
e Aot = 1 ;O’(l‘) (4.128)
Similar expressions hold for the y and z coordinates. This implies that the gradients of
acoustic pressure can be transformed between the real and complex domains using a

Jacobian i
Vp = Jcarth (4.129)
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where the Jacobian matrix for the Cartesian coordinate system J.q¢ is defined as

Y= 0 0
Jcart — O ’Yy 0 (4.130)
0 0 7

Conversely, we can map from the complex to the real derivatives using the inverse of the
Jacobian.

Vp=J,.Vp (4.131)
where
% 0 0
- 1
cml"t = 0 Ty 0 (4132)
0 0 71—2

The scale factor that maps € into 2 is simply the determinant of the Jacobian,

Weart = Yz Yy Yz (4'133)

4.23.1.4. Step 4: Revert to real-valued weak formulation Using the previous results
and the determinant relation from equation (4.133), the corresponding weak version of the
Helmholtz equation is given as follows. Find p € Vy(€r) such that

| [k V0 (FeabeVa) = K] Wearsds = [ gadsS, (4.134)
Qr s

We note that we can turn this into a Helmholtz equation with variable coefficients as
follows

/Q [A(Vp,Vq) = k*pg|Weart dr = /F g9qdl's (4.135)
I S

where A = Wegptd ooty J ok, We note that A is a symmetric matrix, which follows from our
choice to use a bilinear formulation rather than sesquilinear. Matrix A can be interpreted
in a general way, without being tied to the cartesian coordinate system. The Jacobian
matrices account for the different scaling factors for the various coordinate systems. Note
that equation (4.135) achieves all of the goals that were set from the beginning - a
symmetric weak formulation over the real-valued domain, but with built-in dissipative

properties stemming from the transformation to complex coordinates.

In the following sections, we will derive PML equations for rotated Cartesian, spherical,
and ellipsoidal coordinates. In all cases, the weak formulation will be precisely the same as
in equation (4.135), but with a different Jacobian matrix J and corresponding determinant
W. Thus, we will only derive expressions for J in each of the coordinate systems.
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4.23.2. Rotated Cartesian Coordinates

In this section we consider the case where the PML surface is extruded from a flat plane
that is oriented at an arbitrary angle in three—dimen/siona;I space. If we define

T =x;,1=1,2,3 as the unrotated coordinates and * = z;,7=1,2,3 as the coordinates in
the rotated coordinate system, we have

ail al2 a3
R=| a1 a9 as3 (4.136)

azr az2 as3

where a;; is the direction cosine between the x; and :1:; axis. This defines the
transformation as follows

© =Rz (4.137)
The Jacobian matrix for this case can be computed from the chain rule'?*
PR e~ / r O 0
o(z,y,2 (z,9,2) 0(x ,y ,z Ve
Jroteart = ( Y ) = ( 7 :g /> ( Y ) = 0 Yy 0 |R=JeartR (4-138)
8(10,3/,2) (9(x Y,z ) 8(1’,3/,2) O O
V=
The inverse of this matrix is given as
7:)1150(1’/‘t = RTJc_a?l"t (4'139)
Thus, the coefficient matrix for this case is given by
-1 T
A= WTOtCGTtJTotcart Jrotcart
= rotcartRTJc_mlnt(JcartR) nd (4-140)
1 =
= Ca"‘tRT cml"thartR

where we have used the fact that Wiorcart = Weare. We see that this involves a simple
rotation tensor transformation applied to the diagonal Jacobian matrix given in the
unrotated case, equation (4.132). Thus, equation (4.135) applies, and can be used to
construct the weak formulation in the rotated Cartesian case, but with a modified
coefficient matrix A given in equation (4.140).

4.23.3.  Spherical Coordinates

In a similar manner, we can derive the Jacobian matrix for a spherical PML. Though other
researchers?> 126 have chosen to solve the spherical PML equations directly in spherical
coordinates, we prefer to map the equations back to the Cartesian system to facilitate the
finite element implementation. Thus, in this case our Jacobian needs to account for this
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additional transformation. The formulation for this case is given in.'?* The mapping from
spherical to Cartesian coordinates is given as

x = rsin(¢)cos(h)
y = rsin(¢)sin(0) (4.141)
z =rcos(¢)

The corresponding analytically continued coordinates are given as
T = rsin(¢) cos(0)
g = 7sin(¢)sin(0) (4.142)
Z =7cos(¢)

Note that the complex coordinate stretching occurs only in the radial direction, as

dissipative effect is not desired in the transverse directions. With these definitions the
Jacobian matrix is given by the chain rule

spherical — a(x7y7z) = (9(7’, 79) 8(
7 sin(¢)cos(f) 7cos(d)cos(d) —sin(¢)sin(6)
( ) Fsin(¢)c
1

= |7 sir/l(gb) sin(f) rcos

7 cos(¢) —7sin(¢) 0

sin(¢) cos(f) rcos(p)cos(f) —rsin

sin(¢)sin(0) rcos(¢)sin(f)  rsin(
cos(¢) —rsin(¢)

(4.143)

oﬁ:fé?

Once again, equation (4.135) applies, and can be used to construct the weak formulation in
the case of spherical coordinates, but with a modified coefficient matrix A given in
equation (4.143).

We note that an advantage of the curvilinear PML formulation is that it is one-dimensional
in the sense that the stretching only happens in one of the coordinate directions, in this
case the radial direction. Thus, we simply can define the stretching as being in the radial
direction only. This takes the form

=t — d 4.144
F=r e o(e)de ( )
which implies that
P = *87? =~v(r)=1+ ‘ o(r) (4.145)
= » =y, — .

4.23.4.  Ellipsoidal Coordinates

In the case of ellipsoidal coordinates, we first must choose an appropriate coordinate
system for the complex stretching of the PML. Ellipsoidal coordinates can be expressed in

198



various ways, but we have found use of the coordinates developed by Burnett'?” to be the
most convenient for defining the PML. We select the case of the prolate ellipsoid, with

a > b=c. As in the spherical case, we prefer to solve the final equations in Cartesian
coordinates rather than ellipsoidal. Thus, we will apply complex stretching to the
ellipsoidal coordinate system, but will map the resulting equations back to Cartesian
coordinates for the finite element solution. Once again, all of these transformations can be
applied with the Jacobian.

We define an ellipsoidal radius'?7 as

="t ;L @ (4.146)

where ¢; and ¢y are the distances of a given point on the ellipse to the two foci. We note
that on the ellipsoidal surface, r is a constant, and is essentially a generalization of the
notion of radial distance in the case of a sphere. Given the major and minor radii @ and b
of the ellipse, the distance to the focus along the major axis is given by f = v/a? — b2

In terms of PML, we choose the direction of complex stretching to be along the direction
defined in equation (4.146). We note that unlike the radial direction for a sphere, equation
(4.146) defines curvilinear lines, and thus the PML layer will produce damping along those
directions. This is necessary since if we were to define damping along straight-line paths
(say in the direction normal to the ellipsoid surface), then the complex stretching would
occur in all three directions r, ¢, 0

Given these parameters, the ellipsoidal coordinate system is defined as

v =72~ sin(6) cos(0)
y =/r?— f?sin(¢)sin(6) (4.147)

z =1rcos(¢)

11

Note that in the case of a sphere, a = b = ¢, which implies that f =0, and these coordinates
reduce to the spherical case. The stretched coordinates in the ellipsoidal case are given by

Z= \/ — [*sin(¢) cos(6)

§=/72— f?sin(¢)sin(0) (4.148)
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This implies that the transformation matrix is given as

g . — a(‘% g’ ~) _ 8(.’%,@,2) (LL' y7 ) -
ellipsoidal 8(3} Y.z ) (T‘,¢,(9

TT

)
f2cos(¢)cos(0) — fQ sm )sin(6
s(<b)sm() f2811’1 ) cos (6
(4.149)
0

r;;f2 sin(¢) cos(0) \/T — f2cos(p)cos(d) —y/r?— f2sin(¢)sin(f

( )
\/rzr__fz SH;E;;) sin(6) \/ r2 — f2 COSEz)) sin(6) /12— f2sin(9) cos(@)
cos —rsin 0

4.23.5.  Ellipsoidal Coordinates with X axis as Major axis

The previous section assumed that the major axis of the ellipse was oriented along the z
direction. For completeness, we show here how to adjust the formulation in the case when
the major axis is along the z direction. In this case the ellipsoidal coordinate system is
defined as

x =rcos(¢)
y=1/r?— f2sin(¢)sin(h) (4.150)
— Wsin(qb) cos(f)

Note that in the case of a sphere, a = b = ¢, which implies that f =0, and these coordinates
reduce to the spherical case. The stretched coordinates in the ellipsoidal case are given by

N

T =rcos(¢)
§ =72 — f2sin(¢)sin(0) (4.151)
Z=/72 — f2sin(¢) cos(6)

This implies that the Jacobian matrix is given as

7 cos(¢) —7sin(¢)
_ \/g_—ﬁsm ¢)sin(6 \/—f2 cos(¢)sin(6 \/—f2 sin(¢) cos(
:zfl_fQ sin(¢) cos(f) /72— f2cos(¢)cos(0) —,/72 — f2sin(¢)sin(6) (4.152)
cos(gb) —rsin(gb)
msm n(f) /r?— f2cos(¢)sin(d) /1 f2sm )cos (6
rzr_fz Sm 9 \/—JCQCOS Cb 9 —msm Sln

200



4.23.6. Relations Between the PML Formulations

It is clear that as the minor and major axis become equal, a = b = ¢, and hence f =0. This
implies that the Jacobian for ellipsoidal coordinates in equation (4.149) reduces to the
spherical Jacobian given in equation (4.143).

As an additional step, we consider that the spherical Jacobian reduces to that of the
Cartesian in the limiting case of a large radius of the inner sphere defining the PML
boundary. This can be seen by considering equations (4.144) and (4.145), which we repeat
here for convenience

Z‘ r
= — d 4.153
Fert< [ o(e)de (4.153)
which implies that
o (r) 4! (r) (4.154)
F =—=x~(r)= —o(r .
or w

As r and hence R become very large, we see from equation (4.144) that then 7 — 7, since
the imaginary term will become vanishingly small compared to r. However, from equation
(4.145) we see no limiting change in 7 as r becomes large, since o(R)=0 and o(r) will be
bounded by the thickness of the PML layer. Thus, going back to equation (4.143), we
have:

-1

0(z,9,2) _ 9(%,9,%) 9(x,y,2)
Foherid = g(y,2) ~ 00,0,0) 0(r,,6)
7“ sin(¢)cos(f) 7cos(¢)cos(f) —rsin(¢)sin(f)
7 sm ) sin( (9 rcos(¢)sin(f)  7sin(¢)cos(0)
~1

7 cos(¢ —7sin(¢) 0

{sm(@cos(@) rcos(¢) cos(6
0

)
) rsin(¢)cos(h)

—rsin(¢)sin(0)
sin(¢)sin(f) rcos(¢)sin(

cos(¢) —rsin(¢) 0
T sm(qﬁ) cos(#) rcos(¢)cos(d) —rsin(¢)sin(h)
— rsm(qb)sm(@) rcos(¢) sin(6) Tsin(gb)cos(é) (4.155)
T Cos(gb) —rsin(¢)
sin(¢) cos(f) rcos(¢)cos(f) —rsin(p sm
sin(¢)sin(f) rcos(¢)sin(f)  rsin <b cos(f

cos() —rsin(¢

[sm(gb)cos(@) cos(¢)cos(f) —sin(¢)sin(h) ]

sin(¢)sin(f) cos(¢)sin(f)  sin(¢p )Cos( )
cos(¢) —sin(Q) 0
sin(¢) cos(f) cos(¢)cos(f) —sin(¢)sin(f) |
sin(¢)sin(0) cos(¢)sin(f)  sin(¢)cos(0)
cos(9) —sin(¢) 0

[ |
—
O O =
O3~ O

RO O
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For the cartesian case in the pure x direction, ¢ = § and ¢ = 0.

1 0 O
R=10 0 1 (4.156)
0 -1 0
and
y(r) 0 0
J = 0 10 (4.157)
0 01

Similar substitutions can be applied for other values of ¢ and 6 that show the Jacobian
reduce to a rotation between spherical and cartesian coordinates. For off axes cases, the
Jacobian will be a full matrix. Thus, the limiting case of a large radius for the PML surface
reduces to a one-dimensional PML layer. Constructing a tensor product with PML layers
in the other two directions produces a diagonal Jacobian matrix as given for the Cartesian
case in equation (4.130).

4.24. Shell Offset

Consider a shell offset, with an offset vector, ¥. Notice that ¢’ could be defined at each
nodal location in what follows, but for this development, we assume a single offset ¥ which
applies to all nodes. Define a coordinate system at the node, with variables u. On the
offset beam the coordinate system is 4.

Now, u is related simply to @. The constraint of a constant offset may be stated that the
displacement difference of the two systems must be orthogonal to ¥, i.e. (u—1u) =1 XK,
where K is the rotation at the nodes. Notice that the rotation is the same at both nodes.

( Z ) =[I] ( : ) (4.158)

where L is a constant matrix which depends only on the geometry. We can use this
transformation matrix to eliminate the degrees of freedom associated with @. The energy of

the shell can be written,
- \T -
Estrain = 05{ : } [K} { Z } (4159)

Thus we can write,

But with this substitution,

Estmm:o.5{ : }T[LTKL]{ Z } (4.160)
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If we let K = LT KL, then,
T
Estmm:()ﬁ{ " } [K]{ " } (4.161)

Thus, @ has been eliminated, and the equations may be rather simply put in terms of the
output variables.

4.25. Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element Analysis
by Cook et al.[3],

{re} = / BT Elco}av — /V (BI" {oo}av + /V INT{FYav + /S V"{e}as (4162

where each of these terms are defined in Subsection 4.1 of the above mentioned reference.
The load vector, {r¢}, is composed of four parts in equation 4.162. In this document, only
the last part, which is the contribution of the surface tractions to the load vector, will be
considered. Rewriting,

{re} = /S N {@yas (4.163)

Here, the integral is calculated over the surface of the element on which the surface
traction, {®}, is applied. Therefore,

{0} = [ By P.]" (4.164)

and [N] is the shape function matrix of the element on which the surface tractions, {®},
are applied. To generate a model for application inn Sierra/SD, {®} can be generated
within PATRAN or other preprocessors by applying a spatial field to a specified side set.
In Sierra/SD however, these spatial field values are available only on the surface nodes of
the element. Using the nodal values of this surface traction, the value at any surface
location must be determined using an interpolation function over the surface or side of the
element. Since only one value per node may be specified on the side set in Sierra/SD, a
surface traction may be applied only in one direction at a time. Therefore, {®} will be
defined as,

{@}=1 ny (2,9,2) (4.165)
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4.25.1. Sierra/SD Element Types

The following 3-D and 2-D elements have consistent loads implemented:

o Hex8

o Hex20

o Wedge6

o Tetd

o Tetl0

o Tria3

« TriaShell

o Tria6 (four Tria3s)

e QuadT (two Tria3s)

e Quad8T (1 QuadT and 4 Tria3s)

4.25.2.  Pressure Loading
Here, we will consider only pressure loads on 3-D elements, such that
Ny
{2} =2 ny ¢ D(z,y,2) (4.166)
Ny

where [nm,nymz]T is the normal to the element face. Hence, the consistent loads can be
calculated as,

_ T _ T =
{re} = /S [N {@}dS = /S N (2., 2)(@x B)dS. (4.167)
Here,
L Oz Oy Oz,
a= [87’,%7 87“] (4168)
- Oz Oy Oz
b= [%,%, 85] (4.169)

where ® is the pressure load, and (z,y,z) are the physical coordinate directions, and (r,s)
are the local element directions for the face of the element. The normal may be obtained
by taking the cross-product of @ and b.
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4.25.3.  Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence, shape
functions for quads and triangles could be used to evaluate the consistent loads. However,
application of the shape functions for the 3-D elements, reduces code and “fits” better into
the current finite element class structure. This is what is currently implemented. This
requires a “mapping” of the 3-D elements’ faces to a 2-D plane. The additional overhead
for using the 3-D elements is that each face of the element must have this “mapping” which
states how the elements’ 3-D shape functions map to a 2-D element. For example, for a
Hex20, the element coordinates (n1,72,73) are defined in a particular way. For each face of
the Hex20, defined by a side id, the face has a local coordinate system (r,s). The
“mapping” defines how (r,s) are related to (11,72,73). This also helps define how 2-D
Gauss points are mapped to the 3-D face. These mappings are available for all the linear
and quadratic 3-D elements.

4.25.4. Shell Elements - consistent loads

All the 2-D elements (shell elements) compute loads based on the Tria3 shape functions.
The consistent loads calculations for the Tria3 can be “copied” to the TriaShell. This way
all the shell elements use the same consistent loads implementation. Since Carlos Felippa
designed the Tria3, his consistent loads implementation is used. The portion for linearly
varying pressure loads is shown here. If the loads are aligned along an edge, {q}, they need
to be decomposed into (gs,qn,qt). Where (s,n,t) are coordinate directions along the
element edge. Coordinate s varies along the element edge tangentially, n is normal to the
element edge, and ¢ is tangent to the element edge in the transverse direction, i.e., in the
direction of the thickness. Once, the edge load is decomposed, the equations for consistent
loads are,

flo= (7‘151 +3¢s2) La1 Pa= % (3¢s1 + 7gs2) Lot (4.170)
o= 20 (7Qn1 +3qn2) L21 2 = 210 (3gn1 + Tqn2) La1 (4.171)
fre= 210 (Tqn +3qr2) Lo PPi=155 - (3gu + Ta2) Ln (4.172)
m's=m? =0 (4.173)

mby, = —6—10(3%1 +2qs2) L1 P = 610 (2ge1 + 3qr2) L*21 (4.174)
mly = an (36]n1 +2¢n2) L2 m?; = 410 (2qn1 + 3qn2) L21 (4.175)

where g5 is the value of ¢ in the s direction at node 1 of the edge, Li2 is the length of the
edge. The superscripts 1,2 are the node numbers of the edge. Note, it is assumed here that
the load ¢ is per unit length, but this is not assumed when creating the sideset in PATRAN
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for example. Therefore, this distributed load is multiplied, in Sierra/SD, by the thickness

of the triangle.

Now if the pressure load is on the face of the Tria3, the equations become,

f f1 —mz—f2 _f2 =m222f3x=f3y:m32:0
= <4—85p1 + %pa + 910193) A

2= (9—70191 + f—5p2 + %m) A

= (970191 + 970192 + 485]93) A

m'y = 360 = [7(y31 +y21)p1 + (3y31 + 5y21)p2 + (5y31 + 3y21)p3]
mly _— —[7(x13+x12)p1 + (3213 + 5x12)p2 + (5213 + 3212)p3]
My = 360 ——[(5y12+ 3ys2)p1 + T(y12 + y32)p2 + (3y12 + Sys2)ps]
mzy 0 ——[(5x21 + 3x23)p1 + T(x21 + x23)p2 + (3221 + Hx23)p3]
my = 3210 [(3y23 +5y13)p1 + (5y23 + 3y13)p2 + 7(Y23 + y13)ps]
m?y = —— (332 + 5231)p1 + (532 + 331)p2 + (32 + 231)p3]

360

(4.176)
(4.177)

(4.178)
(4.179)
(4.180)
(4.181)
(4.182)
(4.183)
(4.184)

(4.185)

where vy;; = y; —y; and x;; = x; — x5, A is the area of the triangle, p; is the value of the

pressure load at node i, and (x;,y;) are coordinates of the triangle in 2-D space.

Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using triangles require
a little extra overhead. For example, the Quad8T is composed of 1 QuadT and 4 Tria3s.
However, since it is defined as a Quad8T, it has distribution factors at its 8 nodes, and

these distribution factors have to be mapped to the 1 QuadT and the 4 Triads. The

number of distribution factors is 3 however, if the load is applied to its edge. Therefore,

this extra coding can be seen in the ElemLoad method of the shells’ classes.

4.26. Coordinate Systems

Coordinate systems are provided for a number of applications including;:
1. specification of boundary constraints (SPCs)
2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.
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Y/

Figure 4-22. Original, and rotated coordinate frames

4. specification of spring directions (see subsection 4.17).
5. specification of output coordinate systems (in history files only).

There are some applications for coordinate systems which we do NOT intend to support.
These include,

1. specification of nodal locations,
2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In
the case of non-cartesian systems, the X Z plane is used for defining the origin of the
direction only.

Each coordinate system carries with it a rotation matrix. It is important to clarify the
meaning of that matrix. Specifically,

X'=RX

Where X’ is the new system of coordinates, R is the rotation matrix and X is the basic
coordinate system. For cartesian systems, the rotation matrix is static. Curvilinear
systems will require computation of a new rotation matrix at each location in space.

The usual identity on rotation matrices applies, namely:
X=RTX (4.186)

and
RTR=RRT =1
As an example, consider a cartesian system as shown in Figure 4-22.

The new system (marked by primes) is rotated 6 from the old system with the new X' axis
in the first quadrant of the old system. The rotation matrix is,

cos(f) —sin(d) 0
R=| sin(fd) cos(f) O
0 0 1
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4.27. Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here describe
the transformation equations and implications for general constraints in any coordinate
system. The implications of this use in Sierra/SD are also outlined.

Consider a constraint equation,

C'u'=Q (4.187)

where the primes indicate a generalized coordinate frame. The frame may be transformed
to the basic coordinate system using equation 4.186, and

u' = Ru (4.188)
We can now rewrite equation 4.187,
C'Ru =@
Cu =0 (4.189)

where C' = C'R.

Thus a general system of constraint equations may be easily transformed to the basic
system. Further, the rotational matrix is a 3x3 matrix which may be applied to each
node’s degrees of freedom separately.

4.27.1.  Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained and
retained degrees of freedom, and describe the constrained dofs in terms of its Schur
complement.

u= l tr ] (4.190)

The whole constraint equation may be similarly partitioned.

(o ¢ ] [ o ] =[Q] (4.191)

Ue

Note that C) is an cxr matrix, C,. is cxc, and @) is a vector of length ¢. Under most
conditions () is null.

This may be solved for u,,
u.= 0. 1Q - C1Cu, (4.192)

We must be concerned with cases where C. may be either singular or over constrained.
The former case occurs if we try to eliminate ¢ equations, but the rank of C' is less than c.
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This could occur if the equations are redundant. We can over constrain the system only if

() is nonzero. Both these situations need attention, but both can be dealt with.

We may also write the solution using a transformation matrix, 7.

up | ~
|~
where
1
=|é.
Crc = _Cc_ ICr
and

o=\ o= 4]

4.27.2. Transformation of Stiffness Matrix

(4.193)

(4.194)

(4.195)

(4.196)

We assume a similar partition of the stiffness matrix. The equations for statics are then,

Krr Kre Ur | _ R,
Ko Kee Uc R,

(K] [T, + (K] [Q] = R

or,

and
T KTu, =TT {R— KQ} =R

We can define the reduced equations,

f( = TTKT = K+ Krcorc ry C;,;Kcr + CE;KCCC’I‘C

and,
- K.Q
R =TTR-TT| 7% ]
KCCQV @
=R, + OTJ,;RC — K@ — OE;KCCQ

The solution in the retained system is

Kur,=R

(4.197)

(4.198)

(4.199)

(4.200)

(4.201)

(4.202)
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The system may now be solved using the reduced equations, and the constrained degrees of
freedom may be solved using equation 4.192. Much of this is detailed in Cook, but without
the constrained right hand side.

For eigen analysis the mass matrix may be transformed exactly as the stiffness matrix in
equation 4.200. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The force vector
and force vector corrections may be time dependent. There is currently no structure to
store these time dependent terms in Sierra/SD.

4.27.3.  Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the basic
coordinate system. In that system the equations decouple, C. is unity and C,. is zero.
Then equations 4.200 and 4.201 reduce to elimination of rows and columns.

To properly account for the coupling that occurs when the constraints are not applied in
the basic coordinate system, we must generate all the constraint equation on the node.
This may be up to a 6x6 system. I believe that there is no real conflict in first applying
constraints in the basic system, then adding additional constraints in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equation
4.187).

2. Transform the constraint equation to the basic coordinate system (equation 4.188).

3. Determine the constraint degrees of freedom. It may need to be done in concert with
the next step to keep from degrading the matrix condition.

4. Compute the two transformation matrices C. ' and C;. from equations 4.191 and
4.195.

5. Compute the corrections to the force vector from equation 4.201. We currently do
not have a structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 4.200.
7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.
In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of
freedom (equation 4.192).
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A few words about post processing could also prove useful. In the first implementation of
Sierra/SD, constraints were applied only in the basic coordinate system. The degree of
freedom to eliminate was obvious from the exodus file, and it’s value was a constant
(usually zero). In this later version, a more general approach must be used. We use the
following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is done
by setting the G-set vector to zero before merging in the A-set results. There is no
storage cost for this.

2. Other degrees of freedom are managed using an spc_info object. An array of these
objects will be stored globally. Each object contains the degree of freedom to fill, an
integer indicating the number of other terms, a list of dofs/coefficients, and a
constant. This facilitates solutions of the form,

retained dofs
Uugpc = constant + Z ;C; (4.203)

i
4.27.4. Multi Point Constraints

The application to multi-point constraints is very straight forward. The only difference is
that the whole system of equations must be considered together. This changes the linear
algebra significantly because the matrices must now be stored in sparse format. However,
the steps that are applicable for single point constraints apply here as well. Subsection 4.20
deals more explicitly with MPCs.

4.27.5. Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [43]. We identify how to
transform output PDS.

Let H(f) denote a frequency response function vector for a given input (in the global
system) expressed as,

H(f)=Hi(f)e1+ Ha(f)ea+ Hs(f)es

where e; represents the unit vectors of this space. Note that H(f) is an output vector at a
single location in the model. H(f) can also be expressed using an alternate set of unit
vectors, €;.

H(f) = Hy(f)é1 + Ha(f)ea+ Hs(f)és

Taking the dot product of these two equations and equating the results, we have,

3
H(f) =" criHy(f) (4.204)
k=1
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where
Cki = €f * €;

The spectral density function Gj;(f) (for a given input and at a single output location) can
be expressed as,

Gij(f) = aH; (f)H;(f) (4.205)

where « is a constant and superscript * denotes complex conjugate. Similarly for the
alternative coordinate frame,

Gij(f) = aH; (f)H;(f)

We may use equation 4.204 to express G in terms of the H;. We may then use the spectral
definition in equation 4.205 to provide the transformation of spectral densities.

3
Gij(f) = O‘(chiHE(f)) (Z_lcijmm)
3 3 B
= > D %icmjGrm (4.206)

This can be expressed in matrix notation as G = CTGC.

4.28. Hexshells

Hexshells are provided to give the analyst an element with performance similar to a
standard shell, but with the mesh topography of a brick. Thus, thin regions of the model
can be meshed with hexshells, without concern for the bad aspect ratio of the elements,
and with topography consistent with a solid mesh.

The element is documented extensively in the description by Carlos Felippa (see reference
128). The paragraphs in this document summarize the limitations of the shells and the
possible usage.

Because hexshells have an inherent thickness direction, it is important to be able to
identify that direction. There are (at least) four methods to accomplish this.

natural The natural ordering of the nodes in the element can determine the thickness
direction. This is the method used by Carlos in developing the element. I believe
that the connectivity for the element will indeed have to be modified to properly
interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements
uniquely identifies the thickness direction.
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topology Usually the topology can be used to identify the thickness direction. The
hexshell should be used in a sheet. If the hexshells are considered alone, only the free
surfaces of the sheet are candidates for the thickness direction. Further, once the
thickness direction is established for one element, it must propagate to the neighbors.
(Note that this implies that we can’t have a self intersecting sheet).

projection The thickness direction could be determined by the closest projection to a
coordinate direction.

We will try to support all of the above methods. The topology method puts the least burden
on the analyst. It is the least explicit however, and the most work to implement (especially
in parallel). The next simplest (for the analyst) is the projection method. Sideset methods
are burdensome for both the analyst and the code development team. The natural method
is the easiest to implement, but can be next to impossible for the analyst to use.

Input will be structured as follows. Keywords are associated with each method. Only one
of the four keywords above can be entered. If no keyword is entered, then topology is
assumed.

Block 9
HexShell
orientation sideset=’1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end

The mass properties of a layered HexShell are computed approximately as follows.
1. The volume fraction, f;, and density, p;, of each layer is determined.

2. The contribution of the mass of the element is added to the nodes as if an element of
density p=>"; pi fi filled the entire element.

The net affect of this is that the mass is computed as if an average density were applied.
This could introduce minor errors if the element is thick and is much denser on one side
than another.

Materials for all HexShell specifications can be defined as a function of temperature, with
the temperatures defined through the exodus file as element variables.
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4.29. Membrane

In this section we provide the theory behind the tangent stiffness matrix for the quad
membrane element in Sierra/SD. This element has stiffness in the in-plane directions, but
has no stiffness out-of-plane. Also, it has no rotational degrees of freedom. We note that
the formulation given here is identical to the membrane used in Abaqus.'?

To begin, we define two orthogonal surface directions in the plane of the membrane [ and
m, and a normal vector n. Given these unit vectors, a local coordinate system (I,m,n) is
implied. Then, we consider the weak formulation of the internal force term for the
membrane in the deformed configuration?

Wt — /Q D : od (4.207)

where W;,; is the virtual work, €2 is the domain of the membrane, o is the stress tensor,
and L = g—’; = D+ W is the deformation gradient. The rate-of-deformation D and spin

tensors W are defined as -
1]|/(/0u ou
oot (2)] g

W % {(%";) _ (%)T] (4.209)

Note that we are using an updated Lagrangian formulation here, and thus the integral in
equation 4.207 is over the current (deformed) configuration of the membrane.

We note that we can also write equation 4.207 as
SWint = /Q SL : odQ (4.210)

since W is a skew-symmetric tensor, and the tensor product of a skew-symmetric tensor
with a symmetric tensor (i.e. o) is zero.

Equation 4.210 is written in terms of the global coordinate system. In the formation of the
tangent stiffness matrix, we wish to use the fact that all stress components normal to the
plane of the membrane are zero. Hence, when considering equation 4.207 in terms of the
(I,m,n) coordinate system of the membrane, we can eliminate the out-of-plane terms and
write as

SWint = /Q Ly Oy dQ (4.211)

where [,m = 1,2 are the indices for the in-plane coordinate system of the membrane,
L, = g;‘; , and oy, is the 222, in-plane stress tensor.

Next, we need to relate the derivatives in the plane of the element to those in the global
coordinate system. This is because the numerical integration of the tangent stiffness matrix
takes place in the plane of the element (and hence involves derivatives with respect to
in-plane coordinates), whereas the derivatives in equation 4.211 are in terms of global
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coordinates. We can express the in-plane displacement in terms of the out-of-plane

displacement as

ul:u-l
Uy = UMM

Up =U"N

Then, the relationship between the derivatives can be computed

Ou _Oudr _ Ou
ox; Oxdxr; Ox “l

(4.212)
(4.213)
(4.214)

(4.215)

where e; is the unit vector in the [ direction. Similar expressions hold for the other
components. Taking the dot product of both sides of the previous equation with the unit
vector in the m direction, e,,, we arrive at

oup, ou

Next, we consider the expression given for the tangent operator in'2’

/951) .C:dD+o: (SL"-dL—26D-dD)dQ (4.217)

Since there is no stress in the out-of-plane direction, and nothing varies through the
thickness, the thickness can be pulled out, and this can be written simply as an area
integral

t/AéD:C:anLa: (§L7-dL—25D-dD)dA (4.218)

The first term is recognized as the material stiffness, and the second is the geometric
stiffness term. In particular, the material stiffness term is precisely the same as the
standard form of the material stiffness in three dimensions, expect that now it is restricted
to two dimensions. The geometric stiffness term is more involved, and so we elaborate
some more on that.

First, we consider the deformation gradient in the plane of the element

ou
Ly, =e—— 4.21
m = €15 — (4.219)
Then, we have
0du
6L, =e—— 4.22
m = €15 — (4.220)
T
0du
We also note that . -
ou ou ou ou
L= | 2= x m—==—| =— 4.222
<8xm> € e oxy <8xm> ox; ( )
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since elTem = Ol

The rate of deformation D is simply the symmetric part of L. Thus, we can write

Dy, = % (eza—u + ema—u> (4.223)

With these relations, we can expand the expression for the geometric stiffness, as

([ o | (225) O L (o Do Ou) ( Obu Ou
Aalm 0Ty, ) Ox; 2 €y ox; el@xy e”axm em8m7

v=1

dA  (4.224)

The material stiffness term can be integrated with a selective deviatoric approach, in much
the same was as for a volumetric element. First, we note that after finite element
discretization, the material stiffness term in equation 4.218 can be written as

Konat = /V BTCBAV (4.225)

where K is the stiffness matrix, V' is the volume of the element, B is the two-dimensional
strain-displacement matrix

We define the mean quadrature counterpart to B,
B= /V BdV (4.226)

We note that both B and B can be decomposed into their volumetric and deviatoric
components, i.e.

B= Bv—l—BD (4.227)
B=By+Bp

With these decompositions, we define
B = By +Bp+sd(Bp — Bp) (4.228)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean
quadrature element. When sd = 1, the element corresponds to mean quadrature on the
volumetric part, but with full integration on the deviatoric component.

With this new definition of B , we can define the stiffness matrix for this element as
K= /V BTCBdv (4.229)

This is the approach taken for integrating the material stiffness term in equation 4.218
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4.30. Corrections to Element Matrices

Several elements generate element matrices that may need corrections. For example, the
stiffness matrix generated from Craig-Bampton reductions may not be positive definite,
and may not have the proper null space. Infinite acoustic elements have a similar problem
with the mass matrix. These errors are typically small, but may lead to unstable systems.
Correcting the errors is an important step.

The errors are removed using an eigen decomposition. We compute the eigenvalues and
eigenvectors of the element matrix of concern.

(A= X)p=0

where A is the matrix of concern, A\ are the eigenvalues and ¢ are the eigenvectors.
Computation of the eigen problem on a small element matrix is not expensive. We
normalize the eigenvectors such that ¢7¢ = I. Tt follows that ¢* = ¢~1. We then correct
the element matrix by computing,

5 Ai<0
Ajr = Ajr — Z PijNiPik (4.230)

The element matrix A then replaces matrix A in subsequent calculations. The correction of
the null space vectors (as well as the element matrix) is optionally performed for
Craig-Bampton models. See Figure 2-7.

4.31. Mass Lumping

Typically Sierra/SD uses consistent mass for the calculation of the system response.
Lumped mass is used for application of gravity loads and is an option for eigen analysis and
dynamics. There are several means of generating a lumped mass matrix outlined in the
literature. While none of these methods are truly optimal, summing mass across rows is a
well established method. This method works quite well for most volumetric elements.

Shells, beams and some mass elements may have both translational and rotational degrees
of freedom. It makes no sense to sum these contributions — units don’t even match.
Sierra/SD uses a row sum to determine translational mass contributions, but restricts the
sum to translational dofs. Thus, for a 2 node beam with 6 dofs per node, only columns 1:3
and 7:9 are included in the sum for rows 1:3. Rotational lumping is even more problematic.
We use the same row sum method for rotational inertias, though there is no theory to
support this. For example, row 4 of these matrices includes contributions from columns 4:6
and 10:12.
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5. LOADS AND MATERIALS

5.1. Matrices from Applied Forces

In addition to the standard mass and stiffness matrices that arise in linear structural
dynamics, force-based matrices are also common. The most common include follower
stiffness matrices from applied pressures, and Coriolis/centrifugal matrices in rotating
structures. These notes describe the design of the interface for these additional matrices.
We will focus on the following three terms

1. Follower stiffness matrix from applied pressure. This is a nonsymmetric term, but is
symmetrized, and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, and becomes
part of the stiffness matrix.

3. Coriolis matrix in rotating structures. This is a skew-symmetric term that becomes
part of the damping matrix.

5.2. Analysis of Rotating Structures

The finite element analysis of rotating structures has been studied by many authors. There
are two different approaches to this problem, with each approach being limited to certain
applications. In the first approach, a rotating coordinate system is constructed that rotates
with the structure.'?132 Then, deformations about that rotating coordinate system are
sought. In the second approach, an Eulerian (ALE) formulation is used, in which the
structure rotates through an Eulerian mesh, and then Lagrangian deformations are
considered about the Eulerian configuration.'? 134 The Lagrangian approach is not
appropriate for problems when contact surfaces are present, since the boundary conditions
in the contact patch would change with time. On the other hand, the Eulerian approach is
applicable to problems with contact, but requires the structure to have a radial

symmetry.

In these notes, we derive the finite element formulation corresponding to three-dimensional
finite elements for the Lagrangian approach. The Eulerian derivation can be found in.'?3

We begin by considering the homogeneous equations of motion of a solid body in three
dimensions (see Figure 5-23).
pi—V-0=0 (5.1)

where 7 is the particle acceleration, p is the material density, and o is the stress tensor. We
consider here both the case of homogeneous (no forcing), as well as the case where the
body forces from rotation enter into the right hand side. This equation holds relative to a
fixed, inertial reference frame. The term inertial reference frame is typically used to
describe a reference frame that is not accelerating. Thus, we assume that the coordinate
system is rotating, but not undergoing a translational acceleration. It could have a
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Figure 5-23. A schematic of a structure that is undergoing rota-
tions about the three global coordinate axis.

translational velocity. We use a dot notation (i.e. Newton’s notation) to denote the time
derivative of a function.

We now consider a reference frame that has the same origin as the inertial one described
above, but is rotating at some angular velocity 2 = (21,€9,{23). We wish to formulate the
problem in a relative Lagrangian framework, in which the displacement, velocity, and
acceleration are all written as relative quantities, i.e. relative to the rotating coordinate
system. Once the equations are written in terms of these relative quantities, we will be able
to consider the small deformation problem about this rotating state.

The position vector r of a point on the structure can be written in terms of either the
stationary coordinate system or the rotating (relative) coordinate system. Given these
position vectors, the velocity and acceleration expressions can be developed. Standard
textbooks on rigid body dynamics'®® give the following expressions for the velocity 7 and
acceleration 7 in terms of the relative velocity ,..; and relative acceleration ;.

=y + QX 7 (5.2)

and '
P =tipe] +2Q X Upeg + QX r+ QX (2 X 7) (5.3)

where r = x4 u,¢; and x are the coordinates of the point in the rotating coordinate systems,
and u,.¢; is the displacement of the point relative to the rotating coordinate system.

We can now rewrite the first term in equation 5.1 as

p'i;:p[ﬂrel—l—QQX?ly-el—l-QX?“—i-QX(QXT’)} (5.4)

Having the equations of motion in the rotating coordinate system, we now proceed to
construct the weak formulation. This can be done by multiplying equation 5.1 by a test
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function v, substituting equation 5.4, and integrating by parts

p[/ et vdV +2 [ (0 %) -0V + [ (2xr) -wdV
%4 14 1%

—’r/V(QX(QXT))-vdV}-i—/VU:VUdV—/SUnUdS:O (5.5)

We note that since r = x + u, the term involving x will simply become part of the load
vector. Also, we will subsequently drop the rel subscripts from the above equation, since
all quantities are now in the relative (rotating) coordinate system. Thus, the weak
formulation becomes

p{/vfz}vdV%—Q/V(Qxu)-vdV—l—/V(qu)‘vdV
+ [ @x@xw)-vdv]+ [ o Voav = (5.6)
+/Sanvd5—p/v(Q><$)-vdV—p/V(Q><(QXiU))-UdV

For simplicity in the subsequent derivations we will drop the flux load term on the right
hand side of 5.6. Thus, we have

p| [ ivav 2 [ (@xi)-vdV + [ (@xu)-vdv
+/‘/(Qx(qu))-vdV]—l—/VUZVUdV: (5.7)

—p/V(me)-vdV—p/V(Qx(Qxx))-vdV

The first and last terms in the left hand side of the above equations correspond to the mass
and stiffness matrices, respectively. The second term is the skew-symmetric Coriolis term,
the third term is the Euler force term, and the fourth term is the symmetric centrifugal
term. We note that the stiffness term includes both the initial (material) stiffness
associated with the material properties, as well as the geometric stiffness associated with
the stresses. This stress state comes from the solution of the steady-state spinning
problem, which will be described shortly.

It is easy to show that the centrifugal term is symmetric, whereas the Coriolis term is
skew-symmetric. For the centrifugal term, we note the following identity for the triple cross
product

ax(bxc)=bla-c)—c(a-b) (5.8)

Using this for examining the centrifugal term, we have

p/v(Qx (Qxu))-vdV:p/V(Qm)(Q‘u)—(u-v)(Q~Q)dV (5.9)

By switching u and v in the above expression, the same result is obtained, since the dot
product is commutative. Thus, this term is symmetric.
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For the Coriolis term, we use the following identities
a-(bxc)=b-(cxa) (5.10)
and
axb=-bxa (5.11)

Using these two identities, we have
Qp/V(qu)-vdV:2p/vv-(qu)dV:2p/VQ-(u><v)dV

(5.12)
:—2p/VQ-(v><u)dV:—Zp/V(va)-udV

A similar argument can be made to show that the Euler force term is skew-symmetric.

5.2.0.1. Stiffness Adjustments. We can now construct the finite element discretization
of this equation by adopting the usual expansions, u = N;u;, u = N;u;, and i = Njii;. We
will generate the forms of the matrices corresponding to the interactions a single node
(node 7) with another single node (node 7). Both of these nodes are within the same
element. These will be 3 x 3 matrices, which then can be projected into the element
matrices. First, we note the form of the expansion for displacement

u=N, 1 Uj (513)
We also use the isoparametric approach and approximate the position vector as

x = Nx; (5.14)

where x = (2!, 22,23) is the position vector of a point in the rotating coordinate system.

Since the displacement is a vector of dimension 3, each shape function can be represented
as a dimension-3 vector of the form

N; = (¢4,0,0) (5.15)

where ¢; is the i shape function. Although we write the shape function in the first entry
of the 3-vector Nj, it is actually placed in the k entry, where k = mod(i,3).

5.2.0.2. Coriolis Submatrix. With this notation, the 3 x 3 Coriolis submatrix
corresponding to the interaction between shape functions ¢ and j can be evaluated by
setting w = N;, and v = N;. Then, the (¢, j)submatrix is given by

Zp/v(Q x Ny)- N;dV (5.16)
We also define the Coriolis rotation matrix as
B 0 —Q3 O
0= Q3 0 = (5.17)
—Qy 0
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and the Euler force matrix as simply the time derivative of the Coriolis matrix

. 0 -3 O
Q=] 0 0 - (5.18)
Qs 0

Finally, for a given finite element we define the matrix A to be the square matrix of
dimension the number of degrees of freedom for the element, where each 3 x 3 diagonal
block of A simply contains a copy of 2. That is,

Q0 0
0 .. 0

After doing some simplifications, we find that the element level Coriolis matrix is given
by,

2,0/V(Q x N;)- N;dV = 2MQ (5.20)

where we have the on the right hand side, the product of the 3 x 3 matrices, and M and Q.
M is simply the diagonal matrix

p fy dip;dV 0 0
M= 0 p fy dip;dV 0 (5.21)
0 0 pfy ¢ip;dV

As observed earlier, because of the skew-symmetry of the matrix €2, the Coriolis matrix is
skew-symmetric.

Now that we have the 3 x 3 interaction matrix for nodes ¢ and j, and using the matrix A
we can project the result from equation 5.20 into the full element matrix

K, =2MA (5.22)

where K, is the Coriolis (gyroscopic) matrix, M is the mass matrix of the element.

5.2.0.3. Centrifugal Stiffness Contribution. Next, we derive the form of the 3 x 3
submatrix corresponding to the centrifugal term. Again, setting v = IV; and v = N;, we
have the 3 x 3 matrix

p/V(Q % (% Ny)) - NydV = MOQ (5.23)
As with the Coriolis term, we can project this into the full element mass matrix as

K, = MAA (5.24)

Given the finite element discretizations just defined, we can construct the matrix equations
corresponding to equation 5.7 as

Mi+Gu+ [Kn+Ky+ Ke+ K Ju=F.+F, (5.25)
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where M and K, are the standard mass and stiffness matrices, K, is the geometric
stiffness matrix(to be defined below),

G:p/Ve(QxNi)-deVe:MA (5.26)
is the Coriolis (or gyroscopic) matrix (given here over a single element volume V)
Keij = p/ve(Q x N;) - NjdV, = MA (5.27)
is the Euler force matrix,
Keij = p/ve(Q % (% N;)) - N;jdVe = MAA (5.28)
is the centrifugal matrix,
F.;= —p/VP(Q x (2 x 7)) - NjdVe = —MAAx (5.29)

is the centrifugal force term, and

F.;= —p/v (Qx 2))- N;dV, = —MOx (5.30)
is the force term corresponding to the Euler force matrix, where x is the position vector in
the rotating coordinate system of the nodes on the element.

We note that the solution of equation 5.25 must proceed in two steps. First, a static
problem must be solved to determine the stress field, which in turn can be used to
determine the geometric stiffness matrix K,;. Once K is known, equation 5.25 can be
solved by standard methods.

52.1. Static Analysis

In the case of a statics, problem, we have i =4 =0, and equation 5.25 reduces to
[Km+ Ke+ KcJu=F.+F, (5.31)

this equation can be solved for u, which then provides the stresses to allow for the
computation of K.

522 Modal Analysis

In either the Lagrangian or Eulerian cases the formulation leads to a gyroscopic eigenvalue
problem, which can then be solved using a quadratic eigenvalue solver.

Setting the force terms to zero, and assuming a solution of the form u = e, equation 5.25
reduces to
VM +AG + (K + Ky + Ko+ Ko) | u=0 (5.32)

Again, we mention that K, must be determined by the solution of equation 5.31 before
equation 5.32 can be solved.
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5.2.3. Transient Analysis

We note that equation 5.25 can be solved with a direct time stepping algorithm to compute
the transient response of the structure to some loading type. In that case the solution that
is obtained is the time history of the displacement u of the structure relative to the
rotating coordinate system.

5.3. Alternative Derivation Based on Lagrange’s Equations

Here we consider an element e with both translational and rotational degrees of freedom
(dofs). It is assumed that rows 1-6 of the element mass matrix M, correspond to the
translational and rotational dofs of the first node of the element. Similarly, rows 7-12 of M,
are for the second node, and so forth. In these notes the subscript e is used for element and
not for Euler.

The velocity of node i of e in an inertial frame can be expressed as
v = +w X (T +uy), (5.33)

where ; is the velocity of node 7 in the rotating frame, w is the angular velocity vector of
the rotating frame, x; is a position vector from the axis of rotation to node i, and w; is the
displacement vector of node ¢ in the rotating frame. Notice that the time derivative of x;
in the rotating frame is zero. It follows from (5.33) that

v; = U; + Au; + b;, (5.34)

where v;, 1;, and u; are 6x1 vectors of dofs for node i associated with v;, 1;, and w;,
respectively. Further,

0 —Q3 O 000 [ Qoxiz — Qzxio ]
O3 0 -0 000 Qazi1 — 23
=% 9 0 000 | ze — Qozin
A= 0 0 0 00 0]’ bi = 0 ’ (5.35)
0 0 0 000 Qs
0 0 0 00 0] i Q3 |

where x; = (1,22, 3) and w = (21,Q2,Q3). Let n. denote the number of nodes for
element e. Defining

vy Uy Uy b1
v , U U )

Y = : . lg= : ,  Ug = : , bg= : (5.36)
Ve Ty U bn.

and A, = diag(A, A4,..., A) we find
Ve = Ue + Actte + be. (5.37)
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Okay, all the hard work is done now. The kinetic energy of element e is given by
Ty= UZMeUe /2
= (tte + Aette +be) T Mo (tie + Actic + be). (5.38)

With Lagrange’s equations in mind, we find

d (0T, . . .
e — e\Ue Ae e ele e/ .
dt<8u6> Me(tie + Aette + Actle + be) (5.39)
T
OLe _ AT M.tk + Actie+be), (5.40)

where Ae and be are obtained by replacing Q;,€s,€3 in the previous expressions for A, and
be by €21,€2,€3. We then obtain
d (0T¢ oT,

- :Me"e+ MeAe_AZMe .e‘l” MeAe_AZMeAe e
B, Metle +{ Jie Ju (5.41)

+ Mob, — AT M,b..
The first matrix M, on the right hand side of (5.41) is the standard mass matrix, while
(MeA. — AT M,) is the skew symmetric Coriolis matrix. Similarly —AT M, A, is the
symmetric centrifugal softening matrix, while M. A is the contribution to the stiffness
matrix from a non-constant angular velocity. The internal (strain) energy of element e can

be expressed as
U, = ul (K3t 4 K90y, /2, (5.42)

where K59 and K9°°™ are the standard and the geometric stiffness matrices for element
e. If we ignore any external or damping forces, the equations of motion for element e
obtained from Lagrange’s equations are given by

d <8Te> e " oU.

dt \ Ot Oue  Oue

It then follows that the contribution of element e to the equations of motion are obtained
from Lagrange’s equations and given by

Meiie + (MeAe — AL M Yite + (K5 + K9°™ + Mo Ap — AT Mo Ac)ue =

AT Mb, — M_b..

=0 (5.43)

(5.44)

In summary,

1. We have expressions for all the various matrices and forcing terms originating from
rotating coordinate system effects. Notice in the derivation that they all originated
from a single scalar, the kinetic energy of element e.

2. Just like expected, we can avoid calculating additional integrals simply by using
element mass matrices.

3. There can be forcing terms for rotational dofs since the rows of b, associated with
them are not necessarily zero for a non-constant angular velocity.

4. For rotational dofs, there are no centrifugal loads for a constant angular velocity since
the final three rows and columns of A vanish (see AT Mb, term in (5.44)).
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5.4. Random Pressure Loading

Input for random loads can be complicated. The most general type of input is the
correlation matrix, which is the inverse Fourier transform of the spectral density matrix,?

Sij(w).

6

C(fl,fg,tl — tg) = E[P(fl,tl)P(fQ,tQ)] (5.45)

where EJ] is the expected value of the pressure at two locations on the surface at respective
times.

This could be defined as a user defined function. In the most general case, that is the best
means of a definition. However, defining that function is a real chore, and in many cases,
the function can be more easily defined.

5.4.1. Specialization for Hypersonic Vehicles

A number of simplifications can reduce the complexity of the correlation matrix. In the
following paragraphs, we examine each of these, and arrive at a simplified parametric input
for the correlation matrix.

Ergodic or Stationary Systems

Many variables change significantly during hypersonic flight. For example, the velocity of
the body and the density of the air may depend on the portion of the trajectory. However,
within limited time bounds of the trajectory, the system may be considered stationary. We
represent this by writing the pressure as a product of a deterministic function and a
stationary function of time and space.

P(7,t) = o(7,0)Q(,1) (5.46)

where, o is a slowly varying, deterministic function, and () contains all the random
processes.

More precisely, the pressure field applied to the hypersonic body is not stationary due to,
among many things, the deceleration of the vehicle and the increase in dynamic pressure
with time. However, we assume here that this non-stationary behavior can be modeled
simply by P = 0@, where () is stationary and ergodic, and o is a scaling or modulation
function of time and space. This class of non-stationary model is called a modulated
stationary process. Because @) is stationary, E[Q(z1,t1)Q(x2,t2)] can be written as a
function of t9 —t1, call it 7(t2 —t;). However, P is not stationary because
E[P(z1,t1)P(x2,t2)] = o(x1,t1)0(x2,t2)7(t2 — t1) cannot be written as a function only of
(ta —t1); t1 and t2 appear in the o terms.

26 In the frequency domain we have the autospectral density matrix, and cross spectral density matrices
which together form the spectral density matrix. It typically has units of (PST)%/Hz.
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This can simplify computation of the correlations of the pressure.
c(Z1,%9,t1,t2) = E[P(Z1,t1)P(Za,t2)] (5.47)
= 0'(:1?1,t1)0(fg7tQ)E[Q(fl,tl)Q(fg,tz)] (5.48)

Separation of spatial and temporal components

We may often separate the temporal and spatial components of the correlation function.

ElQ(Z1,t1)Q(T2,t2)] = m(¥1,72) T(t1,12) (5.49)

Where 7(Z1,Z2) contains the spatial component of correlation, and 7(t1,t2) contains the
temporal correlation.

Simplified Spatial Correlation

There is little data and few mathematical models of the spatial correlation of pressure on a
body during hypersonic flight. A report by Corcos'® is most commonly used. It describes
the correlation variation as products of decaying exponentials. There is some evidence that
the variables may be “self similar”, at least in the flow direction, so the decay constants are
scalable with the frequency and velocity. The self-similar properties are less well established

in the transverse directions.!'3” The spatial component of correlation may be written as,
(%1, %2) = exp(—a,Az) exp(— [ Ay) (5.50)

In this expression, the spatial correlation terms depend on the separation in the stream (or
flow) direction, Az, and on the transverse separation, Ay.

Simplified Temporal Correlations

Aerodynamic models that predict the pressure power spectral density (PSD) on the surface
of a hypersonic body are still under development. Many of these models predict a PSD
that is only a weak function of the axial location. Thus, the PSD at the back of the body is
a scaled version of those at the front. Further, with high velocities, the PSD is very flat
within the band of interest. Thus, the PSD may be represented as a product of a
deterministic function of z and a single PSD. The correlations reflect this same product,
and the deterministic function o() can be employed to carry this scaling. If the PSD is flat
over the bandwidth, the temporal correlation may be further simplified. We may then
write,

SiH(OJC(tl — tz))
we(t1 —t2)
where we use the fact that the Fourier transform of a constant frequency response with

cutoff frequency w, is a sin(z)/z.%7

Tt o) = (5.51)

2"While a flat response results in a sin(z)/x, which is the default, many PSD responses are not flat, so a
user defined temporal function may be required.
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Temporal Interpolation and Filtering

As noted above, we have an assumption that there is a cutoff frequency. Anything above
that frequency is out of band of the analysis, and can (should) be filtered. Equivalently,
time steps less than 7' = 7 /w. should also be filtered. One way to approach this is to
sample at an interval 7', and interpolate using a sin(z)/x type filter as described below.
Note that in addition to the benefit of filtering, sampling at an interval, T', can reduce the
amount of memory used to store the temporal correlation.

Let [—v*,v*], 0 < v* < w,, be the frequency band of a deterministic function, x(t),
—00 <t < 00. Then,

n

z(t) = lim > (kD)o (t,T) (5.52)
k=—n
where
sin[ﬁ(t/T —k)]
t,T )
Z(t—kT
= —W[T< ) (5.54)
Flt—&T)
“It is sufficient to know the values x(kT), with k -2,-1,0,1, 2, ... to reconstruct the

entire signal z(t), —oo <t < 00."

Note:
1 it L (5.55)
o = if —= .

: T

t
op = 0 if T any other integer (5.56)

t

78 decreases to zero as T k| increases. (5.57)

Advancing the Coarse Temporal Solution

The strategy described involves computation of the solution on a coarse temporal grid,
with interpolation to a fine time step as described above. The process for advancing the
coarse time solution is described here.

The initial coarse solution, Y (z,T), is given by the solution to the Cholesky factor of the
correlation matrix.

Y = chol (&)W (5.58)
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where

is the d(2n+1) x d(2n+1) correlation matrix

is a vector of zero mean, unit variance random vari-
ables, and

is the properly correlated solution vector at the
2n+ 1 coarse time values, 0, T, 27T, ..., 2n+1)T
and the d sample locations.

F< %Qz

5.4.1.1. Temporal Advancement As described in texts on stochastic calculus (see 138
for example), we can compute the response of a Gaussian random vector when a portion of
the vector is known. Consider a random vector Y, which is partitioned into a known part,
Y and a portion to be determined, Y@, We may write, (see equation 2.109 of [138]),

£ = (y(2)’y(1) = 2) (5.59)
© N(p,e) (5.60
where,
g o= p® 4 @D, () (5.61)
é 0(272) — 0(271) [6(171)]710(172) (562)

and u(i) is the mean on each portion of the solution.

In words, we can express the normal distribution of the unknown vector as a random
distribution with mean fi and variance given by the covariance matrix ¢. The covariance
does not depend on the previous samples but only on the partition of the original
covariance matrix. The mean depends weakly on the previous sample, z.

The matrix c is partitioned as follows.

L1)

o is just ¢, the original correlation matrix. It is a square matrix of dimension d(2n+1).

2,2)

i is the dxd correlation matrix associated with zero time lag.

¢21) ig an additional set of d rows of the correlation matrix associated with the time lag

(2n+2)T.

C(0) o(T) c@r) .. |
o(T) C(0) o) .. |

((2n+2)T)

C
C((2n+1)T)

C((2n+2)T) C((2n+1)T) C@nT) ... |  C(0)

and C(T) is the d x d correlation matrix evaluated on the d spatial points at time lag 7T'.
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5.4.1.2. Procedure The solution is advanced as follows.

1.

5.3.

5.5.1.

We augment the system to have d(2n+2) equations. Thus ¢ is the d(2n+ 1)
covariance previously calculated.

. We use b= chol(cI'))) to compute the desired mean of the new distribution.

Specifically,
po= @+ e - pll) (5.63)
= 2Dtz (5.64)
= gz (5.65)

where we have used the fact that both p(1) and u(2) are zero. We store the
rectangular matrix g = 0(2’1)(6%)_1. We no longer need the original covariance matrix
¢, nor it’s factor, b.

. We reuse g to compute the revised correlation matrix.

b = C(z,z)_0(2,1)[0(1,1)]—16(172) (5.66)

= C(0)—gcM? (5.67)

where C(0) is the d x d correlation matrix for a time lag of zero. The matrix ¢ is dxd
as well.

. We perform a Cholesky factor on ¢. This is the second such factor, and it is

performed on a smaller space. It need be performed only on the first advancement as
¢ is a constant.

b= chol(é) (5.68)
Compute the new distribution.
£ = N(po (5.69)
= [i+chol(¢)w (5.70)
= f+bw (5.71)

where w is a zero mean, unit normal Gaussian basis.

Move solution vector solution, Y, up by one, and insert £ in the new locations.

Removing Net Torques from Applied Loads

Introduction

For structures without any connections to ground, there are six rigid body modes. Three
modes correspond to rigid body translations, while the remaining three are for rigid body
rotation about the center of mass of the structure. If the applied loads have a net torque
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about the center of mass, then we should expect the structure to eventually begin tumbling
as time progresses. If the net torque vanishes, then Salinas should perform well (in small
strain settings) since rotational deformations should remain small. This expectation holds
even in the presence of large displacements caused by loads with significant translational
rigid body components.

The purpose of these notes is to describe options for removing net torques from applied
loads in order to avoid tumbling in Salinas during transient analyses. One option assumes
that the center of mass is known, while the second makes use of the mass matrix for the
system finite element model. We note that net translational loads are not removed using
either of these options. Only the mass matrix option is used in Sierra/SD.

5.5.2. Use of Mass Matrix

Let M and K denote the mass and stiffness matrices for the structure. Further, let ®4,4,
and ®,,; contain the translational and rotational rigid body modes. Both @4y, and @y
have 3 columns, and for floating structures K ®4,.qy, = K®ro = 0. We will assume the mass
matrix M is symmetric and positive definite, while the stiffness matrix is assumed to be
symmetric and have 6 rigid body modes as stated. Further, we assume for the damping
matrix C' that C®,,,,, =0 and @TTme’ =0, where ®,4,, = [ Diran Prot } If rigid body
motion of the structure does not cause any damping forces, then this assumption holds.
One instance where this assumption on C' does not hold is for models with mass

proportional damping.

Consider a node 7 of the model that has both translational and rotational degrees of
freedom. The rows of ®,4,, associated with this node are given by

1 0 O O 733 —Ti2 i
01 0 —Ti3 0 T1

; 0 0 1 732 —Til 0

A _ 7 7
000 O 1 0
L0000 0 0 L |

where r; = r;1€1 +rj2es +r;3€e3 is the position vector of node 7 in the global coordinate
system. Note here that the origin for r; is the origin of the global coordinate system and
does not necessarily coincide with the center of mass of the system.

Salinas mass orthonormalizes the rigid body modes. Namely,
oL My, =1, (5.73)

where I is the identity matrix (notice this equation also implies ®1 , M ®,.,; = I). Moreover,
the columns of ®,,,, are orthonormalized from the leftmost column to the right so that the
rigid body translational modes remain in the first three columns of ®,;,,. Henceforth, &,
will refer to the mass-orthonormalized rigid body mode matrix for rotations.
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The standard equations of motion can be expressed as
Mi+Cu+ Ku=f, (5.74)

where u and f are the displacement and applied force vectors. Next, consider the
approximation u = ®,,,q, where ¢ is a 6x1 vector. Substituting u = ®,4,,q into (5.74) and
premultiplying by ®%, . it follows from (5.73) and the assumptions K ®,,, =0 and
C®,4,, =0 that

=L f (5.75)

or, equivalently,
éjtran = q)g;anﬁ (576)
erot = QZOtf- (5.77)

Notice from (5.77) that there will be rigid body rotational accelerations if ®Z,f # 0. We
will now consider a modified force vector of the form

f=f—Moys, (5.78)
where s is a 3x1 vector to be determined from the condition
ol f=0. (5.79)
Substitution of (5.78) into (5.79) and use of ®1 , M ®,.,; = I then gives us
s=aT f, (5.80)
and (5.78) then reads
f == Mror(@o0). (5.:81)

Examination of Flexible Modes
By premultiplying (5.81) by ®! . and using 1, M ®,, = I once again, one can confirm
that CIDgot f =0 as required to avoid rigid body rotational accelerations.

Let ® ., denote the mode shape matrix for the undamped flexible modes. The mode
shape matrix for all the modes can be written as ® = { Diran Prot Pfiex ] Notice since
both ®LMP and ®T K are diagonal, it follows that @?lequ)mt = 0.

The generalized force associated with the flexible modes is given by
Frier = Pref- (5.82)
Since q)?lewM(I)mt =0, we then find
Frier = ®fieaf = P frex M Prot(Prorf)
= [flea- (5.83)

Thus, the generalized force vector f flex for the modified force vector is identical to the
original one fje;. This implies that the adjustments made to the original force vector do
not modify the flexible response. This is a nice feature.
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Parallelization Issues

When the model is decomposed by element?® the mass matrix provides requisite
information about duplication of nodal quantities on the boundaries. Thus, nodal
quantities (which are replicated on subdomains which share a boundary) are only counted
once in a dot product. However, for statics, there is no mass matrix, and the identity is
substituted for the mass matrix. While the system matrix is the identity, the appropriate
submatrix of the identity on each subdomain is not a subdomain identity matrix. Rather,
it is a diagonal matrix with entries,

I ;}‘b = 1/cardinality, g,

This definition of the subdomain identity submatrix, IS permits multiplication without
duplication of values on the subdomain boundary. This submatrix must be used for
orthogonalization and for the force correction (equation 5.81).

Filter of Output Displacements

The mass matrix also provides stabilization of the solution matrix. For statics solutions on
floating structures, the solution matrix is just the stiffness matrix, which is singular.
Additional tools are in place to help the linear solver with this challenge. In particular,
GDSW (see e.g.!!) may solve such systems provided that the dimension of the null space is
provided. However, small nonequilibrated forces or round off in the solver can still result in
solution vectors in the range of the null space. For statics, these displacement vectors are
also filtered to eliminate the rigid body component. The filtering uses equation 5.81, with
the identity matrix replacing the mass matrix.

5.6. Anisotropic Materials

Here we discuss how anisotropic elasticity is implemented in Sierra/ SD.%Y The approach
is reasonably standard, but a documentation here is necessary to specify which of the many
conventions of material parameter numbering is used in Sierra/SD. Further, it is useful to
present the theoretical development for those who may do maintenance on this part of the
code.

Linear Anisotropic Elasticity. Linear elasticity asserts that the stress is a linear
function of the strain:
4
Oij = Oijklekl (584)

Where ij i are the Cartesian components of the fourth order constitutive tensor and the
Einstein convention of summation on repeated indices is used.

28¢ach element is on exactly one subdomain.
29 This is a transcription of Dan Segalman’s framemaker document, “aniosConst.frm”.
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5.6.1. Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutive assumption
that the stress is symmetric. This permits the representation of the 3x3 stress matrix and
the 3x3 strain matrix each by a column vector having six rows.

011

022
g

=4 73 (5.85)

023

013

J12

and,

€11
€22
€33
2€93
2€13
2€19

This is the Voigt notation. Note that this mapping from o to s and from € to e is not
universal. This is the numbering used in Malvern and seems to be popular in the materials
science world, but it differs from the numbering used in NASTRAN and from the
numbering in ABAQUS. Further, note that though the above are usually referred to as
“stress vectors” and “strain vectors”, they are not vectors in the sense that they map from
one coordinate system to another as true vectors do. How that mapping is done is
discussed in a later section.

We use the above to map the fourth-order tensor C’fj i into a 6x6 matrix of material
parameters. This is done with the aid of the matrices that formally map ¢ to s and from e
to e.

Enp = Em'jeij (5.86)
and
€ij = enFm'j (5.87)
where
1 0 0] [0 0 0] [0 0 0]
Ei=10 00 Eo=10 10 Es=10 0 0
0 0 0 | 10 0 0| 0 0 1]
[0 0 0] [0 0 1] [0 1 0]
Ey 0 0 1 Ex 0 0 0 Eg 0 0 0 (5.88)
010 1 00 010
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and

10 0] 000 [0 0 0

Fr=|00 0 =010 Fs=|00 0

00 0 000 00 1

0 0 0 ] 0 0 1/2 [0 1/2 0
F=l0 0 1/2| Fs=| 0 0 0 | Fs=[0 0 0 (5.89)

0 1/2 0 | 1/2 0 0 0 1/2 0

We note that the stress mappings are also achieved with the above third order quantities:
Sn = Fnijoij (5.90)

and
Oij = STLEm'j (5.91)

From Equations 5.86 and 5.87 or Equations 5.90 and 5.91 we see that,

Emianij = Omn (592)

Substituting Equations 5.87 and 5.91 into Equation 5.84 and simplifying with Equation
5.92, we find
S$m = Cmnén (5.93)

where
Cmn = FmijC%lenkl (594)

Though above shows how to find the 6x6 matrix Cj; in terms of the fourth order tensor
components ij i1» the material description is usually provided directly in terms of the
components of Cj;.

5.6.2. Strain Energy and Orientation

We now address the situation where the matrix of material parameters of are provide in a
Cartesian coordinate system different from the coordinate system (usually the global
system) in which strains are calculated. Because stress and strain are tensors, they transfer
from one coordinate system to another by:

Uij = Raia'abij (595)

and

€5 = Raiap Ry (5.96)

where 0;; and €;; are the stress and strain components calculated in some other (global)
Cartesian system and R,; are the components of the rotation matrix that rotates the basis
vectors in that global system to that with respect to which the material properties are
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defined. A basis vector b, in the local, material frame is expressed in terms of the basis
vectors of the global system by:

A

ba. = Rabi (5.97)
where by, by, and b3 are the basis vectors of the global frame.
From Equations 5.90, 5.91, and 5.94, we find following
sm = (Fmij Enab Rai Ryj)3n. (5.98)
From Equations 5.86, 5.87, and 5.96, we find the more useful relationship
em = (Emij FrapRaiRej )én. (5.99)

The above two transformations are simplified:

s=TT3 (5.100)
and
e=Te (5.101)
where the 6x6 transformation matrix, 7', is defined
Tk = EnijFrapRaiRyj = tr (EE; RFkRT) (5.102)
Noting that A
s =Ceé, (5.103)

and substituting Equations 5.100 and 5.101 into Equation 5.103, we further find
s=TTCTe. (5.104)
Comparing the above with Equation 5.93, we finally find that
Cc=T17CT (5.105)

which was the main point of this exercise.

Note also that the components of arrays E,, and F;, are mostly zero, with the rest either 1
or 1/2. After using Maple to simplify the product matrix,we find that 7" has a fairly simple
form.

| T The
T_[Tm T221 (5.106)

where
Rfy Ri, Riz
Tii=| Ry R R |, (5.107)
R3 R3, R
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Ri3R12 Ri3Ri1 RizRi
Tio= | RogRoy Ro3Ro1 RosRo1 |, (5.108)
R33R32 R33R31 R33R3
2Ro1R31 RoaR32 RagRss
To1 = | 2R11R31 RigR32 Ri3Rs3 |, (5.109)
2R11Ro1 Ri2R22 Ri3Ras
and
Ro3R3o + RogR33 RozR31+ Ro1R33  RooR3p + Rop R32
Too = | Ri3R3a+ RioR33 Ri3Rs31 + Ri1R3s3 RioR31 + Ri1R32 |. (5.110)
Ri3Roo + R12R23 Ri3Ro1 + Ri1Re3  RioRoy + R R22

Note that T defined above is the transformation matrix N in of Equation 3.34 in Auld’s
“Acoustic Waves in Solids, Volume I” (reference 139), which is used in the same way.

The Maple code to perform the above calculations follows.

with(linalg);
E[1] := matrix(3,3,[ [1,0,0],[0,0,0],[0,0,011);
E[2] := matrix(3,3,[ [0,0,0],[0,1,0],[0,0,0]11);
E[3] := matrix(3,3,[ [0,0,0],[0,0,0]1,[0,0,111);
E[4] := matrix(3,3,[ [0,0,0],[0,0,1]1,[0,1,011);
3,[
3,[

E[5] := matrix(3, [0,0,1],[0,0,0]1,[1,0,011);
E[6] := matrix(3, [0,1,0],[1,0,01,[0,0,011);

b

b

F[1] := E[1]1;
F[2] := E[2];
F[3] := E[3];

F[4] := (1/2)*E[4];
F[5] := (1/2)*E[5];
F[6] := (1/2)*E[6];
R := matrix(3,3);

for k from 1 to 6 do

FRR[k] := matrix(3,3);
FRR[k] := evalm ( R &* F[k] &*transpose(R));
od;

T := matrix(6,6);
for k from 1 to 6 do
for n from 1 to 6 do
Tln,k] := 0;

for i from 1 to 3 do
for j from 1 to 3 do
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Tln,k] := T[n,k] +evalm(FRR[k] [i,jl1)*E[n][i,j];
od; od;
od; od;

readlib(C);
C(T);

read("/home/djsegal/Maple/tools/maple2mif .mpl") ;
M := maple2mif();
fprintf ("/home/djsegal/MPP/notes/temp.mif", ’%s’ ,M(eval(T))) ;

5.7. Traction Loads

In the traction loading of a side set, if the user specified coordinate frame C, with basis
(é1,€2,€3)

is specified with the traction vector, it is used to determine the directions of application of

the loads so that the third component remains the element normal vector, n.

Loads are applied in the projected coordinate frame (), with basis
(p1,P2, 1)
determined using the normal,
Pr=é&xnp,  p2=nxp1p2
Here p; are just positive scalar normalization terms. The event é2 x 1o = 0 is handled by
substituting p; = é; x np; and Pa = N X Py po.

The direction in which forces will be applied depends on the coordinate systems. In
particular side sets will need to be chosen (or subdivided) to ensure that és x no # 0.

In a cartesian coordinate frame, element normal vectors for tractions should not be be
aligned with the y direction of the applicable coordinate frame. In the cylindrical frame
(r,0,z) or a spherical coordinate frame (r,8,¢), element normal vectors aligned with the
azimuthal direction are problematic.
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Figure 5-24. Coordinate Frame Projection for Tractions
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6. LINEAR ALGEBRA ISSUES

6.1. Solution Spaces

There are a number of different dimensions in Sierra/SD. These will be summarized here
with a focus on using the data within the matlab framework. Examples of how to convert
data from one dimensionality to another will be given. The terminology used in this
section is defined in section 6.2.

The subject of matrix dimensions is an important one. Sierra/SD has a fairly simple set
of dimensions compared to more complex systems like Nastran. However, it is critical that
these be well understood if we wish to manipulate the data.

As an example, I consider an eigen analysis of a structure with 9938 nodes. This structure
is made of shells and solids. There are no boundary conditions, but there are 9 mpcs
applied. I look at only the serial file sizes.

To get the required maps and other m-files, in the text input file in the ‘outputs’ section
select both mfile and fetimap. To get the eigenvector data, we must also write the exodus
file with ‘disp’ selected in the outputs section.

For this model, we have the following important dimensions.
#nodes=9938

full set= #nodes * 8 dofs/node = 79504

structural set= #nodes * 6 dofs/node = 59628

G-set = # active dofs before boundary conditions = 42708

A

A-set = analysis set = # equations to be solved = 42699

There are 3 dofs/node for solid elements, but shells and beams have 6. Acoustic and
generalized dofs also add to the G-set. In aggregate, the total dofs is 42708 before
boundary conditions and mpcs are applied. There are no BCs in the model, but there are 9
MPC equations, each of which eliminates 1 dof, so the Aset is reduced to 42699.

Unfortunately, the eigen_disp*.m files are written in the reduced structural set since this
is what the analysts typically want. The bad news is that these m-files are useless to us.
The good news is that all the data is available in either m-files or in the exodus output.

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set. They
are symmetric matrices and only one half of the off diagonal is stored. To get the complete
matrix within matlab,

>>> K = Kssr + Kssr’ - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the structural set) are available in the output exodus file. To get
them use the seacas command exo2mat.
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> exo2Zmat example-out.exo

Within matlab, the data can be converted to a properly shaped matrix.

>>> load example-out

>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (O:nnodes-1)*6;

>>> phi(tmp+1, :)=nvar01;

>>> phi(tmp+2, :)=nvar02;

>>> phi(tmp+3, :)=nvar03;

>>> phi(tmp+4, :)=nvar04;

>>> phi(tmp+5, :)=nvar05;

>>> phi(tmp+6, :)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector. However,
phi is dimensioned at 59628 x 10 for this example. Note that 59628 is the number of nodes
times 6. We clearly can’t multiply phi by K for example - the dimensions don’t match. To
do this we need a map.

We have two maps in our directory. FetiMap_a.m is the map from the structural set to the
A set. Thus we can reduce phi to the A-set by combining it with FetiMap_a. Generally
the G-set map is not output, but is used internally.

>>> p2=zeros(max (max(FetiMap_a)) ,nsteps);
>>> for j=1:nnodes*8

>>> i=FetiMap_a(j);

>>> if (i > 0)

>>> p2(i,:)=phi(j,:);

>>> end

>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mappl=FetiMap_a+1;

>>> tmp=zeros (max (max(mappl)) ,nsteps);
>>> tmp(mappl, :)=phi;

>>> p2=tmp(2:max (max (mappl)),:);

Now we can do all the neat things like p2’ *K*p2.

To get back to the structural set, we again use this map. For example, if we have a vector
of dimension 42699,
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>>> x=1:42699°;

>>> XX = zeros(59628,1);
>>> for i=1:59628

>>> if ( FetiMap_a(i)>0 )

>>> XX(i)=x(FetiMap_a(i));
>>>  end
>>> end

Obviously, similar shortcuts can be made to make this more efficient. One that appears to
work is shown here.

>>> xtmp=[ 0 x’];
>>> X2=xtmp (mappl) ;

6.2. Matrix Dimensions: Terminology

The previous section is is complicated enough to stand out from other documentation.
This section defines some of the terminology used in the previous section. The various
spaces are listed in Table 6-9. A discussion of each follows.

Space Description
Full-set biggest possible set. 8 * number of nodes
Structural-set | 6 * number of nodes

This is the space that is typically written to exodus.
This is the space to which we assemble matrices. It repre-

sents those DOFS that have been “touched” by elements.

Assembly-set

S-set degrees of freedom eliminated by SPC
Common-set | Assembly minus S-set
M-set degrees of freedom eliminated by MPC

Analysis-set | dimension of matrices sent to solvers.

Table 6-9. Sierra/SD solution spaces

Full-set This space is referenced by many of our solvers. We then provide a map from this
space to the Analysis-set using FetiMap. Every node has 8 degrees of freedom (3
translations, 3 rotations, acoustic and generalized). Virtual nodes may have been
added to handle generalized dofs.

Structural-set This is identical to the full-set except that acoustic and generalized dofs
have been eliminated. It is used for output to exodus files, and contains all the
structural dofs of the model. It includes virtual nodes.
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Assembly-set The assembly set is the space to which matrices are assembled. It includes
dofs that may later be eliminated by SPC or MPC. It includes all dofs that are
touched.

Assembly-set = Analysis-set U S-set U M-set

Currently the only map to the assembly set is found in the NodeArray. However
there is no user interface to the NodeArray.

S-set This is the list of degrees of freedom that are eliminated by single point constraints

(SPC).

Common-set The “Common” set includes the Assembly set, with the S-set removed. This
set is common to all solvers, in contrast to the analysis set which may have different
dimensions for serial and parallel solvers.

M-set This is the list of degrees of freedom that are eliminated using multipoint
constraints (or MPCs). When using constraint elimination in serial, the dimension of
the problem is reduced by the number of MPC constraints. In contrast, in solvers
that use Lagrange multipliers, the stiffness matrix is unchanged by introduction of
the constraints. Note however, that the solution vector will include extra Lagrange
multipliers.

Analysis-set The analysis set is the matrix dimension that will be sent to the solver. Note
that it may depend on the solver. With constraint elimination, the M-set may not be
empty, while solvers that use Lagrange multipliers will always have an empty M-set.

Solution-set As noted above, in parallel solutions with Lagrange multipliers, we actually
pass a LHS matrix of dimension equal to the Analysis set. However, the solution
vector returned is of length Analysis-set plus the number of Lagrange multipliers.
This is the solution-set length.

G-set Unfortunately, while the sets above are well defined, the G-set is not. At various
times it has been used to refer to the Full, Structural or assembly set. This confusion
spreads throughout the documentation and the comments in the notes.

6.2.1. Revised Set definition Example

Consider the problem in Figure 6-25. The model consists of 4 real nodes, one MPC, one
superelement (with one generalized dof), and single point constraints sufficient to clamp
the left hand side, and keep the rest of the model in one dimension.

Full-set There are 4 real nodes, plus 1 virtual node (generated for the generalized dof).
Thus,
size(Full) = (441)8 =40

Assembly-set The two elements are beams, with 6 dofs per node. The superelement
touches the generalized dof on the virtual node.

size(Assembly) = (4)6+1 =25
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¢ MPEy SE (1 generalized dof)
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Figure 6-25. Example for Set Definition

S-set Degrees of freedom are eliminated by clamping 6 dofs on node 1, and by eliminating
5 dofs each on the 3 remaining nodes.

size(S)=6+15=21

Common-set After elimination of the S-set, the common set is,
size(Common) =25 —21 =4

All solvers use this space initially. The following cases are different for each solver.

M-set The size of the M-set is one, but what that means to the analysis depends on the
solver. For serial solvers with constraint elimination, the matrix size is reduced by
one. For Lagrange multiplier solvers, we keep our matrices at the same size, but
augment the solution space by one Lagrange multiplier.

Analysis-set For serial, constraint elimination solvers, the analysis set is 3. For Lagrange
multiplier problems, the LHS matrix stays at the Common-set dimension, but
constraint equations are passed in separately, and Lagrange multipliers are part of
the solution vector.

Solution-set For serial solvers, the Solution-set is always equal to the analysis-set (which
is 3 in this example). For Lagrange multiplier solvers, the solution-set in this example
is 5.

6.3. Rotational Degrees of Freedom

Beams, shells and some other specialty elements use rotational degrees of freedom (DOF)
in addition to the three translational DOF. Rotational DOF permit direct application of
moments and allow efficient computations of structural element response such as bending.
Rotational DOF are also important for management of rigid bodies. In our applications
two methods are used to manage rotational DOF. Full rotation tensors are used for large
deformation nonlinear response, while infinitesimal rotations angles are typically used for
small strain, linear response such as eigen analysis.
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6.3.1. Euler Angles

The rotation of a rigid body is often described using a rotation tensor with for example
Euler angles. Note that there are several of definitions of these angles, and that the order
of application does matter.

Euler angles are a means of representing the spatial orientation of any frame of
the space as a composition of rotations from a reference frame. In the following
the fixed system is denoted in lowercase (z,y,z) and the rotated system is
denoted in upper case letters (X,Y, 7).

The definition is Static. The intersection of the xy and the XY coordinate
planes is called the line of nodes (N).

« is the angle between the x-axis and the line of nodes.
B is the angle between the z-axis and the Z-axis.
v is the angle between the line of nodes and the X-axis.

This previous definition is called z x z convention and is one of several common
conventions; others are x y z and z y . Unfortunately the order in which the
angles are given and even the axes about which they are applied has never been
“agreed” upon. When using Euler angles the order and the axes about which
the rotations are applied should be supplied.

Euler angles are one of several ways of specifying the relative orientation of two
such coordinate systems. Moreover, different authors may use different sets of
angles to describe these orientations, or different names for the same angles.
Therefore a discussion employing Euler angles should always be preceded by
their definition. (Wikipedia)

Whatever definition is used, Euler angles use a series of 3 rotations about 3 different axis to
represent the orientation of a body in space. For example, in the case of the z = z
convention, these angle define the following rotation matrix.

cosae —sina 0] |1 0 0 cosy —siny 0
R = [sina cosa 0| |0 cosf —sinf| |[siny cosy O
0 0 1/ [0 sinf cospf 0 0 1

Because matrix multiplication is not commutative, the solution depends on the order of
rotation. Rotation of a vector by this angle is a tensor product with this matrix. i.e.
v' = Ruv.
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6.3.2. Infinitesimal Rotational Angles

Most linear, small deformation FE applications apply the small angle approximation. We
expand all trigonometric functions as polynomials of their arguments and retain only first
order terms in the angles. Thus, sin(6) ~ 6, and cross terms are eliminated. With these
approximations, the order of rotation becomes unimportant, and the component
contributions to the rotation matrix are commutable. For a rotation about x.y, z of «, 3,7

we have:
1 —y B
R=|~ 1 —«
-6 a 1

This formulation is extremely convenient, because the coordinates are completely
independent of each other. There are obvious limitations, as the approach does not
conserve length for larger rotations. This is often apparent in animation of mode shapes;
the modes are computed under a small angle approximation, but are often displayed with a
finite deformation.

6.3.3. Quaternions

Euler angles and full rotation tensors define the rotations of a body. Computational
efficiency is optimized using mathematically equivalent quaternion algebra Sierra/SD uses
the full rotation tensor, and Sierra/SM uses quaternions.

6.3.4. Sierra/SD Implementations

Linear vs. Nonlinear Solutions. Very simply put, linear solutions use the infinitesimal
rotation angle formulations. All nonlinear solutions maintain a large rotation capability
and use the full rotation tensor. Nonlinear solutions using linear elements (or linearized
tangent stiffness matrix terms) require conversion between these forms.

Mixed Variable Solutions. Many linear element have been constructed which are for
use in some parts of nonlinear applications. For example, a large ship may be include a
linearized model of an engine as part of the model. As long as the engine is undergoing
small deformations, it is reasonable to employ such a linearized model, even if another part
of the ship is subject to large strain and large rotation. In general, Sierra/SD allows the
user to specify that certain material blocks in a model are linear, even in a nonlinear
analysis. This also necessitates translation between these alternate (and non-equivalent)
forms.

Incremental Angular Update. Update of the rotation tensor following an incremental
solution of a small deformation is accomplished as follows. Let us call the initial rotation
tensor, R;n;+. We compute a small rotation increment expressed in terms of its small
rotation angles, < a, 3,7 > . From the rotation increment, we compute a rotation increment
quaternion as follows.
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L. 0=/(a2+5%2+2)
2. q1 =cos(0/2)

3. c=sin(6/2)/6

4. qo = ca

5. q3=cp

6. qa =cvy

7.

The quaternion is normalized.

The quaternion is then converted to a rotation tensor,

2(qf +¢3) —1 2((122613 —2q4q1) 2(q2q4 + q3q1)
Ry =| 2(@g3+qaq1) 2(qi +¢3)—1 2((1@(14 —2q2q1)
2(eqa+—a301) 2(@3qa+q@2q1) 2(qi +q7)—1

The updated rotation tensor is,
Rupdate = RV Rinit

Thus, the rotation increment is treated as a full angle update.

6.3.5. Consequence for Linear Elements in nonlinear solutions

The consequence of this update is that there may be significant differences between a
nonlinear solution and a linear solution, even when both are applied to a linear element.
The approximations applied for infinitesimal rotations are significant, and are not
reciprocal, i.e. information is lost in that approximation. Nonlinear solutions should permit
large rotations with most elements. Linear solutions are valid only in the range of small
deformations.

6.4. Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One that is essential is
that the constraints must be orthogonal to rigid body rotations. By this we mean that the
multipoint constraints must not constrain the system in a way that eliminates rigid body
motion. This can be easily seen in modal analysis. An ungrounded system with MPCs
must retain 6 rigid body modes. Transient and static analysis has the same kind of issues,
but here the problem may not be as obvious. Note that there are a variety of means of
arriving at the weights for a set of constraints, such as tied data. A mortar method can
accomplish the same thing with a different set of constraints. The weights for these
systems may differ, but all must allow the body to freely rotate. It is clear that each
constraint equation must satisfy this orthogonality independently.
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A nodal dof on the slave surface 7y is constrained (near) to the master surface by a row of
C. R is a function of the coordinates. Effectively R is a function of the lofting. Particular
solutions of the family of equations

CO)R(N) =0 (6.1)

are determined, ensuring that C' is a continuous function of the lofting parameter. In other
words, enforcing orthogonality changes the constraints as little as possible.

6.4.1. Beam Example

Figure 6-26 illustrates a node ¥'3 constrained to a beam with nodes #1 and Z5. This beam
is represented using a 2 dimensional coordinate frame, and has no rotational degrees of
freedom. The X axis is aligned with the beam. There are two dof per node. The node 73 is
located a distance d from the node #7.

1 3 2

I S d—b
Figure 6-26. Node Constrained Directly to Beam.

The displacement vector is defined as,
U = [u1z U1y Uz Uy U3s U3y] (6.2)

The high level approach of sections 6.4.1 and 6.4.2 is to address certain deficiencies by
activating different dof of nodes. Some Sierra codes do not allow for constraints that couple
different dof of the same nodes.

The constraints keeping node &3 on the beam (z3 = 1 +d) are

-1 0

1-d) 0 d o0
0d 0 -1

cO=1"y (1—d)

(6.3)

and the corresponding three orthogonal rigid body vectors are,? The slave node
Ty = 73 = [w3,y3]" , 03 = [1,22][1 — d,d]”, y3 = 0. The origin o is chosen to make the rigid
modes orthogonal, o =1+ h, h = (z2 — 1) /2. Finally 3 =0+ (2d —1)h.

10 1 0
010 1|, 6=1 (6.4)
06 0 (2d—1)0

0
1
—0

The constraints C' are orthogonal (C'- R =0) to the rigid body vectors, R.

30 We are using infinitesimal rotations where sin(6) = 6.
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6.4.2. Offset Example

A small offset above the plane of the master surface is common for a variety of reasons. For
example, tying together nodes on curved surfaces often introduces an offset from the plane
of constraints, as is illustrated in Figure 6-27. Figure 6-28 shows the general case in which

Figure 6-27. Example Node on Face Constraint on Cylinder. The
faceted surface on the master surface provides a small offset from
the nodal location of a point on the matching cylinder.

the third node is offset, L, along the positive Y axis. The point on the slave surface,

s Silg= [xg,yg]T, is lofted y3 = L. The corresponding rigid body modes are
1 0 101 0
RMN'=10 1 010 1 |, \=Lsign(1/2—d)/h (6.5)
0 -1 0 1 X (2d—1)

What is important here is that the rotation rigid body mode gains an extra term. Rotation
of this beam about the Z axis now has a term in X. These rotational rigid body modes are
no longer orthogonal to the original constraints, 6.3.

1 L 9

-+ d—»
Figure 6-28. Node Constrained Offset to Beam.
Row one of C'(0) is the problem; row two of C(0) equals row two of C'(A). In this
paragraph, ¢(\) is row one of C'(A). Think of ¢()) as a sparse vector. The graph of ¢()\) is
the set of nonzeros. The only vector orthogonal to the RBM, with the same graph as C(0),

namely [1,0,—1,0,0,0], does not constrain the slave node. The graph of ¢(\) will have to
expand. Adding the y dof of active nodes to graph of C, the solution of equation 6.1 is

c(\) = [1—d,\/2,d,~)/2,—1,0]

6.4.3. Correct MPC Equations

A solution to the problem can be obtained by using a projection onto the plane, as
illustrated in Figure 6-29. The constraints for the projected node are determined from the
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standard shape functions of the element face, as in equation 6.3. However, we also
maintain a perpendicular offset from that projection point to the slave node.

Uy = Up+ Uy
and,
Up=0x¢
where § represents the rotation vector, and € represents the offset. When using shells and

beams, we have # as a natural part of the rotational coordinates. For solids elements, we
must compute 6.

€ s
L u
V‘N‘ f’
U }}p,f X,
o“ 4
\
\ ]
€0 e
Xl ~ \ ’a”
\J -

¥ -
N‘ -

Figure 6-29. Constraint Projection. Standard shape functions pro-
vide the constraint relations for the projected point, U,. A rigid
perpendicular offset maintains the proper geometry to retain rigid
body invariance, and is used to compute u,. The total, u; is the
sum of these components.

Initially, one may conclude that higher order elements would alleviate the issues somewhat.
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Quadratic shape functions for these elements can properly represent second order geometry
and displacements. However, multipoint constraints are inherently linear. We have not yet
evaluated the effects of MPCs on curved, higher-order element faces.

6.4.4. Orthogonalization of Incorrect MPCs

A simple orthogonalization step can make the constraint weights once again orthogonal.3!
We compute,

a = C-Rif||Ri|f
é — C_:—Ozf_éi

where C represents the constraint equation, and }?Z represents one of the orthogonalized
rigid body modes. As long as they span a full space, we can restrict R to the nodes in the
constraint interaction. This allows us to modify a constraint without generating terms that
extend across the entire body. Typically this operation will add terms to C' that were
previously zero. In general, this operation must be performed for all rigid body modes on
each constraint.

The orthogonalization process of equation 6.7 works well for shell and beam models that
include rotational degrees of freedom on the nodes of the constraint. If rotational dofs are
added to constraints applied only to solid elements, those constraints are ineffective because
solid elements have no active rotational degrees of freedom. However, if the degrees of
freedom in the constraint spans the space properly, these rotational degrees of freedom may
be removed and only translational degrees of freedom retained. Equation 6.7 still applies,
but now is restricted to the translational degrees of freedom on nodes in the constraint.

6.4.4.1. Orthogonalization on incomplete space. In some cases, there are insufficient
degrees of freedom in the constraint equation to adequately span the space of the rigid
body vectors. With shells and beams this is not an issue because the six dofs on a single
node can fully represent 6 orthogonal rigid body rotations. When only solid elements are
active, a minimum of three nodes are required to represent the same six rigid body modes.
When insufficient degrees of freedom are available in the constraint, a few possibilities are
presented for ensuring rigid body invariance.

1. In some cases the constraint may be fully orthogonal to all rigid body modes. No
modification is necessary.

This is the case for two co-located nodes that are constrained by a rigid translation.
It can be shown in this case, that the rotation vector (expressed only as translational
terms) is a null vector. The orthogonality with that vector is trivially zero.

310rthogonalization can be achieved in a variety of means. This is one simple approach.
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2. The constraint could simply be eliminated. This may be the correct solution for two
nodes tied only by rotation. In some cases, this may change the response of the
solution.

3. Additional degrees of freedom from neighboring nodes could be introduced into the
constraint. See the discussion in Figure 6-30.

Detection: A critical issue is the identification of conditions that result in bad solutions.
This occurs when the orthogonalization of the vector results in a null vector. To avoid
numerical round-off issues we define this such that,

<0

Ql

Where C' is the updated constraint equation determined from equation 6.7 and ¢ is a small
quamtity.32

Observe that we are not adding additional constraints to the system, which would significantly
change the solution, rather we are simply increasing the number of nodes (dofs) that are involved
in the orthogonalization of the RBM. This is much like adding an extra independent term to
a RBE3 averaging element. Recall that we restricted the RBM to the nodes involved in the
constraint. This was an arbitrary choice, determined to avoid creating constraint equations that
span the space of the solution. In this effort we broaden the space just a little to ensure that
the reduced rigid body vectors are long enough to permit orthogonalization of each vector with
respect to the constraints.

Generally, we want to add degrees of freedom that are physically near the nodes in the constraint,
however addition of nodes that are collocated or co-linear with existing constraint nodes is not
beneficial. We use the following strategy.

1. Determine the centroid of the MPC, Z,, and a characteristic length, L.

2. Select the N nearest nodes from each processor, that are not part of the MPC. This
requires a sort by location.

3. Communicate, and contract this list to the NV nearest nodes in space.

4. Apply these additional degrees of freedom, and recompute the C' vector and norms.

5. If the norm is still zero, issue a message and abort.

Figure 6-30. Additional Nodes in the MPC. Unimplemented.

6.4.5. Adding the same dof of new nodes

This section revisits the offset beam problem, discussed in section 6.4.2. Here the same dof
of certain other nodes are added to the graph. The slave node is

32¢chosen as 1/1000.
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75 = [z5,y5]" ;05 = [x1,29][1 — d,d]”, and y5 = L. In node face contact, the other vertices of

the face that have been filtered out are the natural choice: (7;)7_,. Typically
T3~ D +[0,917, Za~T1+[0,9)" (6:8)
The dimensionless parameters of interest are n=g/h, § <0, and A = Lsign(1/2 —d)/h.

Hypothesis for x dof solution: 7+ A # 0 or equivalently g+ Lsign(1/2 —d) # 0.

Differentiating equation (6.1), and once again letting ¢ denote row one of C,
¢R+cR=0,cR=10,0,1]". Nodes Z; and # handled the ¢(0) term. Nodes 73 and 4
handle the ¢(0) term.

Define B as the result of removing the following rows and columns from R: remove the
rows corresponding to the first 2 nodes, remove even rows corresponding to the y dof in c,
and remove the middle column.

It helps to consider the case in which the approximation (6.8) is exact,
Ln
B=|1 n
1 =X

The constraint is determined by BT¢é(3:5) = [0,1]7. The hypothesis is that B has full
rank. If the approximation (6.8) is exact, 7+ A must be nonzero. More generally, the cross
product of the columns is nonzero if and only if B has full rank, a condition that can be
read off from the coordinates.

Solving BT¢(3:5) =[0,1]7 is not trivial. Unfortunately this type of equation is typically
solved via normal equations, whose inaccuracy increases with the need for accuracy. In
terms of the economy size qr factorization of B = QU, (@ has the same size as B and U in
M (2,2) is upper triangular), ¢(3:5) = QR~T[0,1]”. That means, for f such that

RT f =[0,1)’, the constraint is ¢ = [0;Qf].

6.4.6. Lofted node face constraints

An element may or may not be tied to a node, Ty, in a way that preserves rotations. This
section is about detecting constraints that do not preserve rotations, and then modifying
the constraints so that rotations are preserved. Lofting is a geometric characterization of
the extent to which a node face constraint preserves rotations.

To understand all of this, let’s start with some simple cases: a node face constraint tying a
node to a planer triangular face, a planer quadrilateral face, a discussion of lofting, and
then remarks the extent to a planer face accurately describes the general non-planar case.
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A planer triangle is defined by three planer nodes. A node face constraint is not lofted, it
turns out, if the slave node is in the plane containing the triangular face. The vertex
coordinates determine the matrix

I =0 Yo 20
R=11 z1 h =
1 z2 y2 2o

Recall the concept of barycentric coordinates. It turns out that the vertices are coplanar if
and only if R has rank 3, in which case the plane is the 2d set of points of the form

g

in the range of RT. Node triangular face contact involves the matrix

I zo yo 20
I 21 11 =1 .

, (x3,y3,23) =2 6.9
1 % i B (£3,y3,23) = Zs (6.9)

1 z3 y3 23

It turns out that a node face constraint, ¢, preserves rotations if and only if ¢/ R =0. Or
geometrically, node planer triangular face constraints preserves rotations if and only if the
slave node is in the plane determined by the triangle. A constraint that does not preserve
constraints is lofted some nonzero distance A above the plane,

By = T, + 71\

Here 7, is the orthogonal projection along the unit normal 77 of the lofted slave node onto
the face.

The same argument applies to a planer quadrilateral. Although R is 4 by 4 in this case,
still has rank of only 3. Barycentric coordinates define a plane, as in the case of a triangle.
Finally R is 5 by 4 in this case.

In node face constraints, if the nodes are not planer, then barycentric coordinates define a
surface, instead of a plane. In the case of a quadrilateral, R may actually have rank 4, but
it is nearly singular.

A lofted constraint is fixed by adding nodes so that R is well conditioned. This is done by
adding the nodes of the element that contains the face. There are pathological cases in the
SD test suite in which the "face" is just a collection of nodes, and in these cases, nodes are
added from one of the elements attached to one of the nodes.

There’s a nifty construction of the new weights as a perturbation of the old weights, ¢,
which not being documented anywhere else, will be documented here. The construction is
reviewed in the case of a node tied to the quadrilateral face of a hexahedral element. For
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the problem to be well posed, the new weights must be a perturbation that is proportional
to A. In light of this, it is helpful express the equations in terms of A:

R=R(\) =R(0)+es il, c=c()\), c(0)TR(0)=0
Our goal is to determine c¢()\) so that ¢(A\)T R()\) = 0. Substituting
c(A) = ¢(0) + Aé(0)

cNTRN) = Mc(0)TR(0) +¢(0)R(N)

Recalling that the last coordinate of ¢(0) is —1, ¢(0)T R(0) = —e4A(0,77T). After adding (in
this case the other 4) nodes, there is a "reasonable" vector of weights s such that

T 10
R(0)' s = [ﬁl
Note that ¢(0) had to be re-indexed after adding nodes. The nifty trick is the identity
RT(\)(I4¢(0)ed) = RT(0). Note that ¢(0) had to be re-indexed after adding nodes. In
particular

RTO)( +c(0)el)s = L‘%] . ¢(0) = (I +c(0)ed)s

6.5. Interpolation within an Element

It can be useful to sample a field within an element. This is necessary for verification of the
input for temperature fields applied at integration points, as in a X-ray deposition. If the
fields are known at a variety of points inside an element, we can use that information to
determine the fields at an arbitrary location. In the case of infinite elements, the fields
“interior” to the element actually project to the entire space beyond the element surface.
Several means may be used to perform this interpolation. In Sierra/SD we use a least
squares projection onto a Pascal space, and then apply the Pascal shape functions to
generate the interpolated function. The least squares solution requires that there be more
sample points than there are shape functions.

As an example, consider temperatures applied at the Gauss integration points of a Hex20.
The coordinates of the 27 integration points are defined in Table 4-5. For a quadratic fit of
the data, we can complete the Pascal triangle to obtain the shape functions listed in Table
6-10. We generate a shape matrix, A, for which each entry in the matrix is given as
follows.

Aij = Pj(&)
Here, &; is the element coordinate of the i*" integration point.

The coefficients of the Pascal shape functions, b, are given by the solution to the least
squares minimization problem.
minimize||z — Ab||
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Table 6-10. Pascal Shape functions for 3D elements of order 2

where z is the vector of known temperature values at the 27 integration points in the
element, A is the shape matrix defined above and b the vector of coefficients to determine.
This problem is solved using the LAPACK function dgels in Sierra/SD.

Once the coefficient vector is known, the solution at any location within the element may
be determined by expansion of the shape functions at the location of interest.

T(m,m2.m3) = > biPi(n1,m2,m3)
;

where P; are the shape functions of Table 6-10.

6.6. Mass Properties

Mass properties are computed using the method of Baruch and Zemel.!® The total mass,
location of the center-of-gravity, and the moment of inertia tensor are all calculated for
most element types using the mass matrix and a set of rigid-body vectors. However,
acoustic elements and superelements use a slightly different procedure. Both methods are
discussed below.

6.6.1. Mass Property Calculations for Most Element Types

The mass properties are computed using rigid-body vectors. At a node, the translational
rigid-body vectors are

{Rx} = {Ry} = {Rz} = (6-10)

OO O = OO

o g O =IO

OO oo o
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and the rotational rigid-body vectors are

0 B —y
—z 0 T
-z 0
{Rm} = ?i {Rry} = 0 {er} = 0 (6-11)
0 1 0
0 0 1

where z, y, and z are the location of the node in the global coordinate system. These
vectors are actually assembled on an element level. As an example, for a three-node
triangle element, {R,;} takes the form

{Rm}T =

{O—zlyl1000—zzy21000—23y3100}. 812}
The total mass for an element can be computed as
Melement :{Rx}T[Me]{R”L} (613)
= {Ry}" [M{Ry} (6.14)
= {RZ}T[Me]{Rz} (6.15)

where [M,] is the mass matrix for the element. The total mass for the model is computed
by summing over all the elements

Nel
Mtotal - Z {R }T {R } (616)

Note that the x, y, and z-direction equations produce the same result. Sierra/SD uses the
x-direction equation.

In a similar manner, the location of the center-of-gravity can be found by

1 Nel

Yoy = g Z{RTZ}T J{Ry}, (6.17)
Nel

Yeg = Mtotal Z{Rm}T [MeJ{R-}, (6.18)
Nel

o0 = Yy 2 B} MR} (619

The components of the inertia tensor are computed as

Nel

Loy = ; {Rm}T[Me]{Rm}v (620)
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Nel

]yy = z {Rry}T[Me]{Rry}, (6.21)
Nel

I, = E_:l {er}T[Me]{er}a (6.22)
Nel

Ixy = ; {Rrw}T[Me]{Rry}7 (6.23)
Nel

T = ; {RTI}T[Me]{er}> (6.24)
Nel

IZJZ = z_:l {Rry}T[Me]{er}~ (6.25)

This procedure for computing mass properties applies to hex8, hex20, wedge6, wedgel5,
tetd, tet10, beam2, TiBeam, Nbeam, truss, tri3, tri6, tria, quad4, quad8, quadM, and
conmass elements.

6.6.2. Mass Property Calculations for Acoustic Elements and Superelements

Although acoustic element blocks are made up of element types listed above, acoustic
elements only have 1 degree-of-freedom per node. Thus, the rigid-body vectors presented
above cannot be used without modification. Similarly, superelement can have any number
of degrees-of-freedom depending on how the element was formed. Because of this, a
different method is used to compute mass properties for superelements and acoustic
elements.

The mass properties for these elements can be computed with somewhat less accuracy than
the method presented above by lumping the mass matrix of each element, then summing
the contribution from each node. This is the method implemented in Sierra/SD.

The total mass is
Nnode

Miotar = Z M; (626)
=1

where M; is the mass at node i. The center-of-gravity is

i Nnode
Lo = M;z;, 6.27
- Miotar Z:zzl o ( )
I Nnode
Yoy = —— M;y;, 6.28
“ Mtotal Zzzl e ( )
i Nnode
> Mz (6.29)
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where z;, y;, and z;, are the global coordinates of node . The components of the inertia

tensor are

260

Nnode

Iam: Z Mi(yi?‘i"zg)a

i=1
Nnode

Ly, = Z MZ($Z2+Zz2)7

=1
Nnode

Iy = Z Mi(:v%—l—y%),

i=1

Nnode
[my = - Z Mixiyh
i=1

Nnode
I, =— ) Mz,
=1

Nnode

Iyz = - Z szzzz
=1

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)



7. CONSTRAINTS AND CONTACT

A GDSW contact enforcement method is summarized. Maintaining constraints, i.e. given
any 4, finding “near by" u = T'u satisfying the constraints, is discussed at the end. Contact
introduces a residual force to the momentum equation,

Ku+CTa=f (7.1)

and the constraint
Cu=0, Cisrxn, r<n (7.2)

A null space basis Z of rank <n —r satisfies CZ = 0. The full rank case, rank(Z) =n—r,
is addressed here (with the complicated software handling the general case, and including

many important optimizations). Displacements are of the form u = Zv, and the
momentum equation, (7.1), reduces to (ZT'KZ)v=Z"f.

Direct elimination is a null space basis method in which permutation matrices ) and P are
found such that

0= QCPup = Csup = [Csp,Csi] [ ZJZID’ ] . u=Pup

Here D and I denote the dependent and independent sets. The full rank case has Cgp
nonsingular for |S| =|D|=r. A clever notation is CpsCgsp = I and CpsCsr = Cpry.
Independent displacements uyp are independent of the constraints. Meanwhile upp
depends on uyp through the constraints,

—Cbpr
I

upp+Cprurp=0, Z= l

In practice an LU decomposition

Lp

CT:P[ L UQ

leads to
Lh upp+LY urp=0, Cpr=Lp LY.

The transformation T'= PZ PIT resets the dependent constraints, leaving the independent
constraints invariant. Here P = [Pp, Pj] so that in particular @i;p = P{ .

7.1. Tied Friction

The work on tied surfaces with friction is under development. Details are maintained in
our design documentation.
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Te2. Mortar Methods
7.2.1. Background

For simplicity, we only consider one of the three components of displacement in the
following development; the same approach holds for the other two components of
displacement. Let u,, and us denote displacements on the master and slave sides of a mesh
interface. Ideally, we would like to satisfy

at all locations on the interface. This restriction, however, is only practical for meshes
which are conforming at the interface. Otherwise, displacements would be restricted to a
low-order polynomial of degree equal to that of the lowest-order finite element on either
side of the interface. As a result, the interface would be too stiff.

For mortar methods, the constraint ugs = u,, is only satisfied in a weak sense. Specifically,
the mortar constraints are of the form

/F)\(us — Uy, ) dx =0, (7.3)

where I' denotes the interface and A is a Lagrange multiplier. Notice the familiar
inconsistent tied contact (node on face) constraints for a slave node can be expressed in
this form by choosing A as a Dirac delta function for the subject slave node. For mortar
methods it is important that constant functions are in the space of Lagrange multipliers.
Clearly, Dirac delta functions cannot be combined to obtain a constant. Thus, we should
not expect the convergence rates of mortar and tied contact methods to be identical.
Indeed, the convergence rates for tied contact are in general suboptimal.'*!

Let ¢, and g5 denote vectors of nodal values of displacement on the master and slave sides
of the interface. Similarly, let ¢\ denote a vector of discrete values of the Lagrange
multiplier. The displacements and Lagrange multiplier are approximated (discretized) as
follows:

Ui = D (7.4)
uS = ¢zq57
A= oLy,

where ¢,,, and ¢ are vectors of shape functions for the master and slave sides of the
interface, and ¢) is a vector of shape functions for the Lagrange multiplier. A discrete form
of the mortar constraints are obtained from substitution of (7.4-7.6) into (7.3).

Msst + Msmgm =0, (77)

where

M,, = /F Moo dz, M = /F AsdT da. (7.8)
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The standard mortar method implemented in ACME uses

O\ = Ps. (7.9)

In other words, the Lagrange multiplier shape functions are the same as the shape
functions for the slave side of the interface. We note in the mortar methods literature that
Lagrange multiplier shape functions are often modified for slave nodes on the boundary of
the interface. The purpose for this modification is to avoid redundant constraints at the
intersection of two or more interfaces. At present, we make no such modifications, but we
will revisit this topic in a later section. Substitution of (7.9) into (7.8) gives

M;;andard:A¢s¢zdx7 M;fgndaTd:A¢s¢zndx. (710)

Although the matrix M jﬁa”dard is sparse and positive definite, its inverse is dense. Thus, if
one were to solve (7.7) for g5 in terms of ¢,,, each slave node displacement would depend
on all the master side nodal displacements in the general case. As a result, solvers which
make use of this form of constraint elimination would suffer from significant memory and
computational demands for interfaces with large numbers of nodes.

The basic idea with dual mortar methods is to choose a Lagrange multiplier basis which
leads to a diagonal Mg matrix. One could then efficiently eliminate slave node
displacements since each one would only depend on the master node displacements in a
small neighborhood around the slave node rather than the entire interface. In this respect,
the constraint equations for dual mortar methods resemble those of tied contact.

Let o denote an element face on the slave side of the interface. Further, let o(I") denote the
set of all such faces on I'. From (7.8) we then have

Mss = Z Mssm Mgy = Z Msmm (7'11)
ceo(l) oeo(T)
where
Myso = [ x0T do, Mymo = [ ér0hda. (7.12)

For the dual mortar method, we choose the vector ¢y to be a linear combination of rows of
¢s. Specifically, for each slave face o we set

¢A - AJ¢57 (7.13)

where A, is a transformation matrix. In order to have a method which passes constant
stress patch tests (linear consistency), it must be possible to obtain a constant function
from a linear combination of the rows of ¢). We see that A, equal to the identity matrix
satisfies this condition since the sum of all slave shape functions over ¢ is unity. In this
case, however, we recover the standard mortar method. The present goal is to choose A, to
satisfy the constant approximation property while also leading to a diagonal matrix Mgs.
To this end, we follow the construction in%? and:>?

AO‘ _ DU(Mstandard)—l, (714)

880
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where

D, = diag ([ ¢.dr). (7.15)
Replacing ¢s in (7.10) by A,¢s, we obtain
el — Z / ApsT dz = Z ApMgtendard = 5™ p, (7.16)
oco(l oeo(l) oeo(l)
M- Y / Aol d =Y A Miendord (7.17)
oeo(T) oea(l)

Since each D, is diagonal, it follows that M is also diagonal.

Numerical integration over each slave face o is done in ACME by first decomposing o into
a set of triangular facets ¢t(o) and then summing the contributions from each of these
facets. Specifically, from ACME we have access to the integrals

sst smt

Mstandard _ /Qbs de Mstandard _ /tgbs(b% dz, (718)
where t € t(0). By assembling contributions to o, we then calculate

M;ﬁgndard_/¢s¢zdx: Z M;;gndard (719)
7 tet(o)

With Mgtandard pow in hand, we then calculate

dual standard standard standard

Msst =A Msst = Do (Mssa ) Msst ) (7'20)
dual standard standard\—1 3 sstandard

Msmt =A Msst D (Mssa ) Msmt . (7'21)

Since Mglandard js symmetric and positive definite, it can be factored using the Cholesky

decomposition. Accordingly, products with the inverse of Mgandard in (7.20) and (7.21)

SsO

can be obtained with calls to LAPACK routines DPOTRF and DPOTRS. It then only remains to
calculate the entries of the diagonal matrix D,,.

Let e denote a vector of the same length as ¢ and with all its entries equal to 1. Since the
sum of shape functions in ¢4 equals 1 in o, we have

gae=1. (7.22)
From (7.19) we then obtain
agigndorte — [ g,(¢Te)dz = [ ¢,do. (7.23)
With reference to (7.15), it then follows that
550

D, = diag (Mzlgmrde). (7.24)

The procedure used to calculate the transformed mortar matrices Mg, d““l and MJ¥ d““l for the
dual Lagrange multiplier basis is summarized as follows.
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1. Calculate Mztandard 1y assembling contributions from triangular facets as in (7.19).

2. Calculate the diagonal matrix D, according to (7.24).

3. Calculate the mortar matrices M3 and M%4! for the dual Lagrange multiplier
basis according to (7.20) and (7.21).

In summary, all that is needed is to replace the mortar matrices Mglndard and Nstapdard
for each triangular facet ¢ by their dual basis counterparts M4 and M244l. The
remainder of the coding in ACME remains the same. The only code changes on the
Sierra/SD side is to pass a flag to ACME indicating whether or not to use the dual

mortar method.

7.2.2. Treatment of Interface Boundary

To be continued. This section will deal with the special treatment of slave nodes on the
interface boundary to avoid potential redundant constraint equations.

7.2.3. Nodal Coordinate Adjustments

To be continued. This section will deal with how to initially move the slave nodes to retain
all six rigid body modes for curved interfaces or flat interfaces with initial gaps.

7.3. Correction For Constraint Equilibrium

Usually, multipoint constraints are defined in an initial condition that is in equilibrium:
when evaluating the constraint equation on displacement, velocity, or acceleration, the
constraint equation is satisfied and evaluates to zero. This is a homogeneous constraint.
When a constraint is generated in such an equilibrium situation, the constraint maintains
that equilibrium for all future time steps.

Under some circumstances in a transient analysis, constraints can be be generated in a
non-equilibrium state. This occurs, for example, if two domains are initialized to different
pressures and then connected via an MPC. Additionally, MPCs created in the middle of a
run, such as on a moving mesh, are often created in a state that is at least subtly out of
equilibrium. In this circumstance, it is required to bring the constraint back into an
equilibrium state as quickly as possible to enforce the intended continuity. Generally,
immediate enforcement of a constraint on the primary variable will not regain equilibrium.
For example, if enforcement of the constraint immediately eliminates a displacement jump,
this will cause a large discontinuity of velocity at the constraint.

To remedy this situation, a special sequence of non-homogeneous constraints is generated
that brings the constraint back to equilibrium as quickly as possible: specifically, in exactly
three transient time steps.
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Section 2.1 gives a detailed description of the Newmark beta time integration method. Let
d™ and d~ indicate the displacement variable on either side of an interface at which a
constraint is to be applied. The constraint violation across the interface is u =d*™ —d~. At
the current step, we know the values

Up, :d;t —t
iy, =V — vy,
Jr

Up, =a, —a,,

but time-stepping must be done in a special way in order to bring wu, 1, back to zero.
Although not required for the method to work, we simplify the following discussion by
assuming the standard values of v = % and [ = i. Rewriting in u equation 2.4 for the
Newmark beta step, we obtain equations 7.25 and 7.26.

. VAN
Up+1 =Up + 7 (Un + un—i—l) (725)
At? At?

Here, uy41 is not an unknown, but rather is a target value for the constraint violation, to be
specified later. Equation 7.26 can thus be rearranged to provide the unknown acceleration
iip+1 as a function of the known initial conditions and w1, shown in equation 7.27.

R A2

(7.27)

Recursively applying equations 7.25 and 7.27 yields the acceleration and velocity at the end
of three steps as a function of the assumed target values w41, Un+2,un+3 for the constraint
violation:

=2y + 2Up 1 — Aty

g1 = - (7.28)
i g = —lin 41 A8 — 4un+i ; dup 2 — 4ALI, (7.29)
iy — —2uUp41 + 212:2 — Attly 1 (7.30)
o — iy oAt — 4Un+2 ; Ay 43 — 4A U, 4o (7.31)
g = —2Upy2+ 2127,;3 — Aty 42 (7.32)

Now, assume a formula that will set the target constraint violation for the next step in
terms of the current displacement, velocity, and acceleration constraint violation. Assume
there exist some unknown coefficients weighting the mismatch in current displacement,
velocity, and acceleration as given in Equations 7.33, 7.34, 7.35.

Ung1 =Ctin, + CyuAtisy, + CyAt?ily, (7.33)
Up+2 =Cotint1 4+ CoAttint1 + ColAt?iiy 11 (7.34)
Un+3 :Odun—i—Q I CvAtan—FQ + CaAtZun—FZ (7'35)
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Equations 7.31, 7.32, 7.35 can be simultaneously solved to find the update coefficients that
yield exactly zero displacement, velocity, and acceleration at the end of the third step:

Un+3 = 0, ”dn+3 = 0, ﬂn+3 =0. (736)

Note that by plugging 7.33 into 7.34 to express uy,41 in terms of Cy, Cy,Cy, and 7.34 into
7.35 to express u,42 in terms of Cy,C,,C,, the equations become non-linear in the
unknown coefficients Cy, Cyy,C,. This solution yields the coefficients in equation 7.37:

3 o=t oL (7.37)

When the upate coefficents are used to set a target constraint violation at the next step,
then for any initial conditions the constraint will reach total equlibirum after exactly three
Newmark beta time steps. Once this equlibrium is reached, the target displacement for the
constraint becomes becomes zero and for all future steps the constraint is a standard
homogeneous constraint. Two examples of the equations of motion utilizing the constraint
update coeflicients are given in figures 7-31 and 7-32.

Disp

500 —
400 |
300/

200 |

100

! : . ! Step
1 2 3 4 5

Figure 7-31. Equilibration from u 4 = 100 upg = 500
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- Step
5

Figure 7-32. Equilibration from ua =200 uB = 700 @4 = —200 ug =

1600 1A = 1000 iip = 400
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Tetrahedron, 161
time integration, 12
Tria3, 166

Tria6, 164
Triangular Shell, 166
Triangular shell, 164

Truss, 173
Univ. Colo, 1
Univ. Minn, 1

viscoelastic materials, 12
viscoelastics, 44
viscofreq, 44

Wedge, 161
Wet Modes, 99
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